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We construct a kind of thermal potential and then put the black hole thermodynamic system in it. In this
regard, some thermodynamic properties of the black hole are related to the geometric characteristics of the
thermal potential. Driven by the intrinsic thermodynamic fluctuations, the behavior of the black hole in the
thermal potential is stochastic. With the help of solving the Fokker-Planck equation analytically, we obtain
the discrete energy spectrum of Schwarzschild and Banados-Teitelboim-Zanelli (BTZ) black holes in the
thermal potential. For Schwarzschild black holes, the energy spectrum is proportional to the temperature of
the ensemble, which is an external parameter, and the ground state is nonzero. For BTZ black hole, the
energy spectrum only depends on the anti–de Sitter radius, which is the intrinsic parameter. Moreover, the
ground state of the BTZ black hole in thermal potential is zero. This also reflects the difference between
three-dimensional and four-dimensional gravity.
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I. INTRODUCTION

As an important bridge between general relativity and
quantum mechanics, the black hole has attracted a lot of
attention in its related physical properties. The intriguing
discovery of the semiclassical description on black hole
temperature and entropy [1,2] revealed the thermal nature
of black holes and established a profound relationship
between gravity and thermodynamics. Thus, a black hole is
mapped to a thermodynamic system. Thermodynamics or
statistical physics may provide a potentially complemen-
tary description of black hole physics; it can even provide
some original insights into the quantum nature of gravity.
Subsequently, some abundant properties of black holes
have been investigated [3–5].
Based on the remarkable observation that the horizon

area of nonextremal black holes behaves as a classical
adiabatic invariant, Bekenstein conjectured that the horizon
area of a nonextremal quantum black hole should have a
discrete eigenvalue spectrum [6]. After that, within the
discussion of the quasinormal modes and Bohr’s corre-
spondence principle, some works [7,8] have shown that the
mass and horizon area of black holes have a discrete
spectrum. Afterwards, many studies suggest that black
holes exhibit some kind of quantum behavior and make the
relationship between the black hole and the quantization of
gravity closer [9–13].

Nowadays, with the development of research in this
respect, a black hole—a unique thermodynamic system—
presents incredible and peculiar thermodynamic properties
with some quantum characteristics, such as Hawking-
Page phase transition [14] corresponding to confinement-
deconfinement transition in gauge theory [15] with the
AdS/CFT correspondence, large and small black hole phase
transition similar to gas-liquid phase transition [16–21],
information loss of black hole [22], chaotic effect [23–29],
etc. Some phenomenological schemes have been proposed
to analyze the thermodynamic properties of black holes.
Black hole molecular hypothesis [30] based on thermody-
namics geometry [31] is used to analyze some possible
microbehaviors of black holes [32–37]. With the idea of
stochastic process [38], the dynamic process of black hole
phase transition have been discussed [39–42], where the
on-shell Gibbs free energy is generalized to the off-shell
Gibbs free energy by replacing the Hawking temperature
with the ensemble temperature. In addition, in our previous
work [43], we introduced the general Landau potential
to analyze the process of black hole phase transition
dynamically.
In this paper, our main motivations are as follows:

(a) Based on the spirit of free-energy landscape [39],
we want to find a more intuitive way to analyze some
dynamic behaviors of black holes. Therefore, we
construct a kind of thermal potential by using the
temperature of the ensemble. We put the black hole
system in such a unique thermal potential that some
geometric characteristics of the thermal potential can*xuzhenm@nwu.edu.cn
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directly reflect the thermodynamic properties of
the black hole. Driven by thermal fluctuations, the
black hole system moves in such a thermal potential.
Moreover, we find that the thermal potential con-
structed in the current way is equivalent (in form) to
the off-shell free energy in the free-energy landscape,
but both of them have some certain different physical
connotations.

(b) We are also interested in the dynamical scenario of
the black hole in thermal potential, but we are more
concerned about whether we can get an analytic result.
Fortunately, in the process of the stochastic effect
of thermal fluctuation, we obtain the analytic
dynamic description of Schwarzschild and Banados-
Teitelboim-Zanelli (BTZ) black holes by solving the
Fokker-Planck equation analytically.

(c) Our results also suggest an essential difference be-
tween three-dimensional gravity and four-dimensional
gravity. The four-dimensional Schwarzschild black
hole is in the inverted harmonic oscillator potential,
so its thermal stability is self-evident. The eigenvalue
spectrum of Schwarzschild black hole in the inverted
harmonic oscillator potential is proportional to the
temperature of the ensemble. At the same time, the
system has a nonzero ground state. Once the ensemble
temperature is exactly in accordance with the expres-
sion of the Schwarzschild black hole temperature
(i.e., the thermal potential reaches the maximum)
the eigenvalue is proportional to the reciprocal of
the mass of Schwarzschild black hole while for the
three-dimensional BTZ black hole, it is in harmonic
oscillator potential and its energy spectrum only
depends on the anti–de Sitter (AdS) radius. Further-
more, the ground state of the BTZ black hole in
harmonic oscillator potential is zero.

This paper is organized as follows. In Sec. II we
construct the thermal potential for black holes by intro-
ducing the canonical ensemble. In Sec. III we give a brief
introduction of the Fokker-Planck equation and its trans-
formation to the eigenvalue problem. Taking two specific
black holes (Schwarzschild and BTZ) as examples, we
solve the Fokker-Planck equations of these two black holes
analytically, and give the corresponding energy spectrum
and related discussions. Finally, Sec. IV is devoted to
summary and some future prospects. Throughout this
paper, we adopt the units ℏ ¼ c ¼ kB ¼ G ¼ 1.

II. THERMAL POTENTIAL

Consider a canonical ensemble at temperature T com-
posed of a large number of states in which one, or a group
of them, can represent a real black hole. The real black hole
state (on shell) is the solution of the Einstein field equation
while others (off shell) are not. When the ensemble
temperature T is equal to the Hawking temperature Th,
the ensemble is made up of real black hole states, which is

in equilibrium. For a specific black hole thermodynamic
system, we can construct the thermal potential

U ¼
Z

ðTh − TÞdS; ð1Þ

where the thermodynamic entropy S of the black hole is
seen as a variable. For black holes, we know Th ¼ tðS; YÞ,
where the function tðS; YÞ is the relation satisfied by
thermodynamic entropy S and other parameters Y of the
black hole, like the AdS radius l, charge Q, angular
momentum J, etc. The ensemble temperature T now here
is treated as an independent constant, which can take any
positive value in any way. Note that T ¼ Th mentioned in
this paper is just one of the ways to get the value of the
ensemble temperature T.
The integrand in the above definition (1) of thermal

potential can be understood as the deviation of all possible
states in the canonical ensemble from the real black hole
state (or the equilibrium state). In other words, in the
equilibrium state, the thermal potential will show extreme
behavior, i.e.,

dU
dS

¼ 0 ⇒ T ¼ Th: ð2Þ

Physically, through the construction of such a thermal
potential (1), we put a black hole thermodynamic system in
the potential field U. Due to the thermodynamic fluctua-
tions, the stochastic behavior of black holes in such a
potential field can reflect some thermodynamic character-
istics of black holes.
Moreover, another advantage of the thermal potential (1)

is that the concavity and convexity at the extreme point are
related to the stability of the thermodynamic system,

δ

�
dU
dS

����
T¼Th

�
¼ ∂tðS; YÞ

∂S
����
Y
δS: ð3Þ

When ∂tðS; YÞ=∂S > 0, the thermodynamic system is in a
stable state, while ∂tðS; YÞ=∂S < 0 corresponds to an
unstable state.
For a simple thermodynamic system, according to the

first law of thermodynamics dE ¼ ThdS − PdV, where E
is the internal energy, P is the pressure, and V is the
thermodynamic volume of the system, we have

U ¼
Z

ðTh − TÞdS ¼ Eþ PV − TS: ð4Þ

Formally, we can see that the thermal potential constructed
in this paper is equivalent to the off-shell free energy in the
free energy landscape [39].
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III. FOKKER-PLANCK EQUATION

Due to thermal fluctuations, the black hole moves
stochastically in the thermal potential, which leads to
different phase transition characteristics. In fact, this is a
kind of stochastic process. The probability distribution
Wðx; tÞ of these black hole states (including on-shell states
and off-shell states) evolving in time under the thermal
fluctuation should be described by the probabilistic Fokker-
Planck equation (or in mathematical literature, it is also
called a forward Kolmogorov equation). The Fokker-
Planck equation provides a powerful tool with which the
effects of fluctuations close to transition points can be
adequately treated. It is not restricted to systems near
thermal equilibrium, and can be applied to systems far from
thermal equilibrium (like the laser) as well.
The one-variable Fokker-Planck equation with time-

independent drift coefficient Dð1ÞðxÞ and constant diffusion
coefficient D is [38,44]

∂Wðx; tÞ
∂t ¼

� ∂
∂x f

0ðxÞ þD
∂2

∂x2
�
Wðx; tÞ

¼ LFPWðx; tÞ ¼ −
∂
∂x Sðx; tÞ; ð5Þ

where Sðx; tÞ is the probability current, the potential is
given by fðxÞ ¼ −

R
x Dð1ÞðyÞdy and f0ðxÞ ≔ dfðxÞ=dx. A

separation ansatz for probability densityWðx;tÞ¼φðxÞe−εt
leads to the eigenvalue equation for the Fokker-Planck
equation with appropriate boundary conditions

LFPφðxÞ ¼ −εφðxÞ: ð6Þ

For convenience, we introduceΦðxÞ ¼ fðxÞ=D resulting
that the Fokker-Planck operator LFP which can be
written as

LFP ¼
∂
∂xDe−ΦðxÞ ∂

∂x e
ΦðxÞ: ð7Þ

Easily, we can obtain a Hermitian operator L ≔
−eΦðxÞ=2LFPe−ΦðxÞ=2 and the eigenvalue equation (6)
becomes [44]

LψðxÞ ¼ εψðxÞ; ð8Þ

where ψðxÞ ¼ eΦðxÞ=2φðxÞ and the Hermitian operator L
has the same form as the single-particle Hamilton operator
in quantum mechanics,

L¼−D
∂2

∂x2þVsðxÞ; VsðxÞ¼
1

4D
½f0ðxÞ�2−1

2
f00ðxÞ: ð9Þ

Now we talk about the boundary conditions for the
above eigenvalue problem of the Fokker-Planck equation.

We note that we study in this paper the motion behavior of
all possible states in the canonical ensemble in the thermal
potential and the thermal potential is constructed from the
black hole background. Once the thermal potential is
determined, this becomes an usual quantum mechanical
problem. Hence the boundary conditions below are natural.
For all possible states in the canonical ensemble, the real
black hole states are only some special cases of them.
(a) Reflecting boundary condition (RBC): in the region

x > xmax or x < xmin, the potential ΦðxÞ tends to an
infinitely high positive value, which requires S ¼ 0.

(b) Absorbing boundary condition (ABC): in the region
x > xmax or x < xmin, the potential ΦðxÞ tends to
an infinitely large negative value, which requires
eΦW ¼ 0.

(c) Natural boundary condition (NBC): for xmax → þ∞
and xmin → −∞, we have S ¼ 0 or eΦW ¼ 0.

In the next discussion, we will see the stochastic behaviors
of two different black holes (the four-dimensional
Schwarzschild black hole and the three-dimensional
BTZ black hole) in different thermal potentials. By solving
the Fokker-Planck equation, we will see the application of
the above boundary conditions.

A. Application 1: Schwarzschild black hole

For a four-dimensional Schwarzschild black hole, its
metric reads [3]

ds2 ¼ −
�
1−

2M
r

�
dt2 þ dr2

1− 2M=r
þ r2ðdθ2 þ sin2 θdφ2Þ;

ð10Þ

where M is the Arnowitt-Deser-Misner mass of the black
hole. Correspondingly, the Hawking temperature and
Bekenstein-Hawking entropy of Schwarzschild black hole
take the forms (in equilibrium) [3] in terms of the radius of
the event horizon rh

Th ¼
1

4πrh
; S ¼ πr2h: ð11Þ

In the light of Eq. (1), we can obtain the thermal potential
of the Schwarzschild black hole easily

U ¼ 1

2
rh − πTr2h: ð12Þ

It is the inverted harmonic oscillator potential or para-
bolic potential barrier [45], which plays indispensable roles
in physics particularly in unstable systems. If the ensemble
temperature T is exactly in accordance with the temperature
expression (11) of a Schwarzschild black hole, i.e., T ¼ Th,
we can clearly see that the thermal potential reaches the
maximum.
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For a Schwarzschild black hole, it is now in the potential
field (12). Next, in order to analyze some dynamical
behaviors of the black hole, we set the potential
fðxÞ ¼ x=2 − πTx2, and thus the effective potential is

VsðxÞ ¼
π2T2

D
z2 þ πT; z ¼ x −

1

4πT
: ð13Þ

The Fokker-Planck equation (8) becomes the following
simple form with the help of auxiliary variable
ξ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

πT=D
p

z

∂2

∂ξ2 ψðxÞ þ
�

ε

πT
− 1 − ξ2

�
ψðxÞ ¼ 0: ð14Þ

Hence we can get the corresponding eigenvalues and
eigenfunctions

εn ¼ 2πTðnþ 1Þ; n ¼ 0; 1; 2; � � � ð15Þ

ψnðxÞ ¼
�
T
D

�
1=4 1ffiffiffiffiffiffiffiffiffi

2nn!
p HnðξÞe−ξ2=2; ð16Þ

where HnðξÞ are the Hermite polynomials. Now, we
discuss the above results.

(a) We find that, due to thermal fluctuations, the
Schwarzschild black hole in the potential field has
discrete eigenvalues, which are proportional to the
ensemble temperature under the ABC and NBC at
x → xmax; xmin → �∞. The higher the ensemble
temperature is, the greater its eigenvalue is.

(b) The system has nonzero ground state, which is
characteristic of the inverted harmonic oscillator
potential. The ground state of a Schwarzschild black
hole in thermal potential is

ε0 ¼ 2πT: ð17Þ

When the ensemble temperature is higher, the
corresponding ground state is larger.

(c) The difference between the two energy levels of
the system is also proportional to the ensemble
temperature,

εnþ1 − εn ¼ 2πT: ð18Þ

That is to say, the difference between two adjacent
energy levels is always the same as the ground state
energy of the system.

(d) If the inverted harmonic oscillator described by (12)
is in one-dimensional quantum mechanics, the
Lyapunov exponent in both classical and quantum
mechanics is λ ¼ ffiffiffiffiffiffiffiffiffi

2πT
p

[23,46,47]. Therefore, the
eigenvalue of a Schwarzschild black hole in the
thermal potential is proportional to the square of

the Lyapunov exponent of the inverse harmonic
oscillator [48],

εn ∝ λ2; ð19Þ

which is a very meaningful result and helpful for us
to understand some chaotic effects of the black hole
system.

(e) We have known that for the inverted harmonic
oscillator potential, no stationary point exists for
the Fokker-Planck equation. However, when we
consider ABC and NBC at x → xmax; xmin → �∞,
eigenfunctions do exist (the probability current S
for these eigenfunctions is finite), and they can be
used to calculate the transition probability. Immedi-
ately, we obtain the transition probability into
eigenfunctions ðt ≥ t0Þ

Pðz; tjz0; t0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T

D½1 − e−4πTðt−t0Þ�

s

× exp

�
−
πT½z − e−2πTðt−t0Þz0�2
D½1 − e−4πTðt−t0Þ�

�
× e−2πTðt−t0Þ: ð20Þ

(f) If the ensemble temperature is exactly in accordance
with the temperature expression of a Schwarzschild
black hole, that is T ¼ Th ¼ 1=ð8πMÞ, we can find
that the eigenvalue of a Schwarzschild black hole in
the thermal potential is proportional to the inverse of
the mass

εn ¼
nþ 1

4M
; n ¼ 0; 1; 2;…; ð21Þ

indicating that the larger the mass of a black hole is,
the smaller its eigenvalues is in the thermal potential.

B. Application 2: BTZ black hole

Next, we take a look at a three-dimensional black hole.
As a simple example, we consider a neutral and nonrotating
BTZ black hole. Its metric is [49,50]

ds2 ¼ −
�
−2mþ r2

l2

�
dt2 þ dr2

−2mþ r2=l2
þ r2dφ2; ð22Þ

where m is related to the black hole mass, l is the AdS
radius which is connected with the negative cosmological
constant Λ via Λ ¼ −1=l2. Naturally, some basic thermo-
dynamic properties of the BTZ black hole in terms of the
event horizon radius rh are
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Th ¼
rh
2πl2

; S ¼ 1

2
πrh: ð23Þ

With the help of Eq. (1), we can obtain the thermal
potential of the BTZ black hole

U ¼ r2h
8l2

−
πT
2

rh: ð24Þ

Obviously, the BTZ black hole is in the harmonic oscillator
potential [51] and it is always thermodynamically stable.
Formally, we set fðxÞ ¼ x2=ð8l2Þ − πTx=2, and then the
effective potential is

VsðxÞ ¼
z2

64Dl4
−

1

8l2
; z ¼ x − 2πTl2: ð25Þ

By substituting the auxiliary variable ξ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ð8Dl2Þ

p
z,

the thermodynamic evolution equation (8) of the BTZ black
hole can be written in the following simple form

∂2

∂ξ2 ψðxÞ þ ð8l2εþ 1 − ξ2ÞψðxÞ ¼ 0: ð26Þ

Hence, we can get the corresponding eigenvalues and
eigenfunctions about the thermodynamic evolution of a
BTZ black hole in the thermal potential

εn ¼
n
4l2

; n ¼ 0; 1; 2; � � � ð27Þ

ψnðxÞ ¼
�

1

8πDl2

�
1=4 1ffiffiffiffiffiffiffiffiffi

2nn!
p HnðξÞe−ξ2=2: ð28Þ

(a) When we get the above eigenvalues, we use RBC
and NBC at x → xmax; xmin → �∞. Because the BTZ
black hole is in the harmonic oscillator potential, we
get the stationary solution.

(b) The energy spectrum of a BTZ black hole only
depends on the parameter of the black hole itself:
the AdS radius l. This is different from the case of
a Schwarzschild black hole, where the energy spec-
trum is related to the temperature of the ensemble.
Furthermore, the energy spectrum is also discrete.

(c) Although the BTZ black hole is in the harmonic
oscillator potential, its behavior is different from that
of a quantum harmonic oscillator. The most prominent
difference is that the ground state is zero, i.e., ε0 ¼ 0.

(d) The difference between two adjacent energy levels is
always 1=ð4l2Þ.

IV. SUMMARY

We consider a canonical ensemble composed of a large
number of states with the same structure under the same

macrocondition, i.e., at the same temperature T. One, or a
group of states, can represent the real black hole systems
and its temperature can be labeled as the Hawking temper-
ature Th. The real black hole states (on-shell states) are
solutions of the Einstein field equation, while others (off-
shell states) are not. When the ensemble temperature T is
equal to the Hawking temperature Th, the ensemble is made
up of real black hole states, which is in equilibrium. When
the ensemble temperature T is not equal to the Hawking
temperature Th, we can say that all possible states in the
canonical ensemble deviate from the real black hole state
(or the equilibrium state). Note that the ensemble temper-
ature T can take any positive value in any way and T ¼ Th
is just one of the ways to get the value of the ensemble
temperature T.
Usually for thermodynamics in free energy, the degree of

the thermal motion is measured by the product of temper-
ature and the entropy. Therefore, we simply introduce a
thermal potential (1) to roughly reflect the degree of
deviation. In the equilibrium state, the thermal potential
shows extreme behavior. Meanwhile the concavity and
convexity of potential can be related to the stability of the
thermodynamic system. In this way, we can observe the
thermal-motion behavior of states of the canonical ensemble
in such a thermal potential due to the thermal fluctuation.
With the help of solving the Fokker-Planck equation

analytically in such a thermal potential, we investigate the
motion behavior of all possible states in the canonical
ensemble in the thermal potential. This becomes the barrier
penetration problem (for the thermal potential of a
Schwarzschild black hole) in quantum mechanics or the
motion of states in the potential well (for thermal potential
of a BTZ black hole). Therefore, it is natural to calculate the
eigenvalues and transition probability of states in the
potential barrier or potential well.
For the Schwarzschild black hole, it is in inverted

harmonic oscillator potential. We consider the absorbing
and natural boundary conditions to obtain eigenvalues.
The calculation shows that the motion behavior of the
states in the canonical ensemble that we consider in the
Schwarzschild thermal potential [Eq. (12)] is discrete, and
its eigenvalue depends on the temperature T of the
canonical ensemble. The higher the ensemble temperature
is, the larger the eigenvalue is. At the same time, the system
has a nonzero ground state. When the ensemble temper-
ature T is exactly in accordance with the temperature Th
of Schwarzschild black hole, i.e., states in the canonical
ensemble are at the highest point of the barrier [or the
thermal potential Eq. (12) reaches the maximum], the
ensemble is made up of real black hole states and
the eigenvalue of the Schwarzschild black hole state in
such thermal potential is proportional to the inverse of the
mass, i.e., Eq. (21). That is to say, the larger the black hole
mass is, the smaller the eigenvalue is and the smaller the
energy value of the ground state is.
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For the BTZ black hole, it is in harmonic oscillator
potential. We consider the reflecting and natural boundary
conditions to obtain eigenvalues. Compared with the
Schwarzschild black hole and quantum harmonic oscillator,
a BTZ black hole presents two major differences. One is
that the energy spectrum only depends on the intrinsic
parameter—the AdS radius—of the black hole; the other is
that the ground state is zero. This further reflects the unique
nature of three-dimensional gravity.
Naturally, the current method can be extended to other

black hole models, such as the thermal potential of

several simple black holes listed in Table I. Although
the expression of thermal potential of other models is
somewhat complex, we can use the perturbation method
to calculate the eigenvalues and eigenfunctions of the
system, and then obtain some quantum properties of
thermodynamic system due to thermal fluctuation. In
addition, we believe that the current way can also be
extended to various statistical physical models to obtain
many properties of the system.
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