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Gravitational wave echoes can be used as a significant observable to understand the properties of black
holes horizon. In addition, echoes would also closely relate to the unique properties of compact objects. In
this work, we study the evolution of electromagnetic field and scalar field under the background of novel
black-bounce spacetimes. Our results show an obvious echoes signal that can characterize the properties of
novel black-bounce spacetimes, and a detailed analysis about the characteristics of the echoes signal is
given. By studying the quasinormal ringdown of the three states of novel black-bounce spacetimes,
including black holes in 0 < a < 2M, the one-way wormhole in a ¼ 2M and the traversable wormhole in
a > 2M, we find that the echoes signal only appears when a > 2M in this spacetime, but when the
parameter a increases to a threshold, the echoes signal will be transformed into a quasinormal ringdown of
the two-way traversable wormhole.

DOI: 10.1103/PhysRevD.104.104021

I. INTRODUCTION

Black hole physics has recently made very significant
progress. In particular, Event Horizon Telescope captured
images of the supermassive black hole M87 [1–3], as
well as the gravitational waves generated by the merger of
compact binaries reported by LIGO Scientific and Virgo
Collaboration [4–7]. By observing the characteristics of
gravitational waves generated by the merger of two compact
objects, one can use this signal to study the properties of the
compact object itself. In addition, it can also give us some
new insights about gravitational interaction and astrophysics.
Although experimental observations have not detected
detailed structures other than the photon sphere, we expect
it to give us a deeper understanding of the mechanism of
strong gravity in future detections. Particularly, the exper-
imentally accurate detection of quasinormal modes (QNM)
may contain some exciting information due to the emergence
of some new physics in the late period [8]. QNM is a special
oscillation that occupies most of the perturbation evolution
of the black hole [9–12]. Vishveshwara [10] pointed out that
when the background spacetime of a black hole is perturbed,
its initial perturbation will gradually be dominated by a
damped oscillation with a certain frequency. The frequency
and damping characteristics of this oscillation are only
related to the spacetime properties of the black hole and
are irrelevant to the initial oscillation. Physicists usually

study the physical characteristics of black holes by studying
the QNM of the perturbation [13–19]. Reference [20]
studied the QNM of dilaton black hole in scalar field
perturbation and Moderski et al. also studied the situation
of self-interacting scalar field perturbation [21]. The QNM of
scalar fields perturbation in the n-dimensional charged black
hole spacetime background has been studied in detail in
Ref. [22]. The QNM of massive Dirac field perturbaiton
in the spherically black hole was studied in Ref. [23].
Reference [8] pointed out that extremely compact objects
and black holes have a very similar quasinormal ringdown,
which makes the detection of gravitational waves not
entirely evidence of the existence of black holes, and it is
most likely a signal from other compact objects [24–27] or
wormholes [28].
The QNM of wormholes has attracted the attention of

many physicists, who have conducted extensive research
on it [29–42]. Cardoso et al. [8] discovered the echo signal
for the first time in the later period of QNM in wormhole
spacetimes. Later, people did further research in a large
number of papers on this basis. In Ref. [43], they studied
the QNM of regular black-hole and wormhole transition
and observed unique wormhole echoes picture near the
threshold. The metric they considered allows the different
parameters corresponding to different spacetime, that is,
black holes, the one-way wormhole and the traversable
wormhole. Only the traversable wormhole spacetime back-
ground has a clear echo picture. In Ref. [44], they studied
the echoes of several different wormholes with quantum
corrections. Bronnikov et al. [45] studied the quasinormal
ringdown of the black hole-wormhole transition in brane
worlds and obtained echoes of different wormhole models,
the metric of which was proposed by Ref. [46].
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Recently, Lobo et al. proposed a new type of black-
bounce spacetimes [47], which includes regular black holes
and traversable wormholes. In Ref. [48], Franzin et al.
analyzed the spacetimes geometry of the charged Black-
bounce-Reissner-Nordstrom and charged Black-bounce-
Kerr-Newman. In Ref. [43], the Simpson-Visser black-
bounce model proposed by Simpson and Visser [49] is only
a special case of novel black-bounce spacetimes. In addition,
Mazza et al. [50] generalized the Simpson-Visser black
bounce metric to the case of rotation. Now we want to study
the QNM of this kind of novel black-bounce spacetimes. It is
worth noting that we only study a special case in Ref. [47],
which has the same causal structure as the Simpson-Visser
solution, and the Simpson-Visser solution has been analyzed
in Ref. [43]. In this work, studying the ringdown of novel
black-bounce spacetimes is our main goal. We will explore
the properties of spacetime under different external fields by
considering the perturbation of electromagnetic fields and
scalar fields. Our results show that there is a clear echoes
signal in the later stage of the quasinormal ringdown for the
novel black-bounce spacetimes.
This paper is organized as follows. In the next section,

we introduce the spacetime metric, derive the main equa-
tion of spacetime evolution under the influence of electro-
magnetic field and scalar field perturbation and obtain the
corresponding effective potential. In addition, the image of
the effective potential under the perturbation of the electro-
magnetic field is analyzed. In Sec. III, we discuss the time
domain integration method used in this work. In Sec. IV, we
study time-domain profiles of the electromagnetic field and
scalar field in the background of the black hole and the
wormhole with different spacetime parameters and analyze
in detail different ringdown behaviors including the effects
of echo. In Sec. V, the QNM frequencies of novel black-
bounce spacetimes are presented. Finally, we summarize
the results of the full text in Sec. VI. In our work, we use
geometrized units where G ¼ c ¼ 1.

II. SCALAR AND ELECTROMAGNETIC FIELD
PERTURBATION IN NOVEL BLACK-BOUNCE

SPACETIMES

We analyze the scalar and electromagnetic perturbation
of novel black-bounce spacetimes, which was proposed by
Lobo et al. Its metric can be written as [47]

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ Σ2ðrÞðdθ2 þ sin2 θdϕ2Þ; ð1Þ

where

fðrÞ ¼ 1 −
2Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ a44

p ; ΣðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
; ð2Þ

with M being the mass of compact object. Note that for
different parameters, a corresponds to different spacetimes.

When 0 < a < 2M, this spacetime is a regular black hole
with two horizons, where regular black hole means that this
black hole spacestimes can be extended to r < 0. For
a ¼ 2M, this spacetime is a wormhole with an extremal null
throat, which has only extremal horizon. This throat can only
travel from one area to another, so it is a one-way traversable
wormhole. If a > 2M, this spacetime has no horizon and is a
wormhole with a two-way timelike throat. In particular, for
a ¼ 0, this spacetime is Schwarzschild black hole.
In this study, we are interested in the propagation of

scalar and electromagnetic fields in above spacetimes. Then
we will derive the radial equation of motion and effective
potential for scalar field and electromagnetic field pertur-
bation. The general covariant equation of scalar field can be
expressed as

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νΨÞ ¼ 0; ð3Þ

and the equation of electromagnetic field can be read as

1ffiffiffiffiffiffi−gp ∂μðFρσgρνgσ μ
ffiffiffiffiffiffi
−g

p Þ ¼ 0; ð4Þ

where Fρσ ¼ ∂ρAσ − ∂σAρ and Aμ is a electromagnetic
four-potential.
Let us first consider the scalar field. According to the line

elements of novel black-bounce spacetimes, we expand the
KG equation to arrive at

−
∂2
tΨ

fðrÞþ
1

ðr2þa2Þð2rfðrÞ∂rΨ

þðr2þa2Þf0ðrÞ∂rΨþðr2þa2ÞfðrÞ∂2
rΨÞ

þ 1

ðr2þa2Þ
�

1

sinθ
∂θ sinθ∂θΨþ 1

sin2θ
∂2
φΨ

�
¼0; ð5Þ

where f0ðrÞ denotes d
dr fðrÞ. Because of the spherically

symmetry of the novel black-bounce spacetimes back-
ground, the scalar field Ψðt; r; θ;ϕÞ can be decomposed
into radial and angular parts. Therefore, the scalar field can
be assumed to be

Ψðt; r; θ;ϕÞ ¼ ψðt; rÞ
RðrÞ Ylmðθ;φÞ; ð6Þ

where Ylmðθ;φÞ represent spherical harmonic function, and
RðrÞ is the function of radial coordinate r. Inserting Eq. (6)
into Eq. (5), we can obtain the following equation:

∂2ψðr; tÞ
∂t2 −

∂2ψðr; tÞ
∂r2� þ VðrÞψðr; tÞ ¼ 0; ð7Þ

where r� is the so-called tortoise coordinate, which is
defined as
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dr� ¼
1

fðrÞ dr ¼
1

1 − 2Mffiffiffiffiffiffiffiffiffi
r4þa44

p dr: ð8Þ

The effective potential VðrÞ can be written as

VðrÞ ¼
�
1 −

2Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ a44

p
��

lðlþ 1Þ
r2 þ a2

þ 2Mr6 þ a2r4ða4 þ r4Þ1=4 þ a6ð−2M þ ða4 þ r4Þ1=4Þ
ða2 þ r2Þ2ða4 þ r4Þ5=4

�
; ð9Þ

with l being the angular quantum number.
As everyone knows, electromagnetic field perturbation

can be divided into odd perturbation and even perturbation,
but we find that the effective potentials of odd perturbation
and even perturbation are the same. For the perturbation of
the electromagnetic field, its equation of motion can also be
derived into Eq. (7), but its effective potential function in
the novel black-bounce spacetimes is

VðrÞ ¼
�
1 −

2Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ a44

p
��

lðlþ 1Þ
r2 þ a2

�
: ð10Þ

Figures 1–4 present effective potentials corresponding
to different parameters a. In Fig. 1, the value of a in the
left panel is 0.1 and in the right panel is 0.9. In other
words, the parameter a is in the interval ð0; 2MÞ with
M ¼ 0.5. So Fig. 1 is the effective potentials of regular
black hole. We can see that regular black hole has only one
peak, and there is no divergence behavior. In Figs. 2–4, the
value of parameter a is greater than 2M, so they are the
effective potential of the two-way wormhole. We can see
that the effective potential has obvious double peaks, but
when the parameter a continues to increase, the effective
potential eventually merges to a single peak. It is worth
noting that the behavior of merging into one peak is
different from the results reported by Ref. [43], because
we observed three peaks.

III. TIME DOMAIN INTEGRATION METHOD

In this section, we will introduce the time domain
integration method given by Refs. [51,52], which can
calculate the evolution of the field over time in a specific
spacetime. In order to facilitate the numerical calculation of
time domain integration, the light cone coordinates are
introduced,

u ¼ t − r�;

v ¼ tþ r�; ð11Þ

where u and v are integral constants. When r > 2GM
(G denotes the gravitational constant), u describes the
radial inward movement of light, and v describes the radial
outward movement of light. Using the light cone coor-
dinates, the Eq. (7) can be expressed as

∂2

∂u∂vψðu; vÞ ¼ −
1

4
VðrÞψðu; vÞ: ð12Þ

The time evolution operator can be expressed as

exp

�
h
∂
∂t
�

¼ exp

�
h
∂
∂uþ h

∂
∂v

�

¼ exp

�
h
∂
∂u

�
þ exp

�
h
∂
∂v

�
− 1

þ h2

2

�
exp

�
h
∂
∂u

�
þ exp

�
h
∂
∂v

��

×
∂2

∂u∂vþOðh4Þ: ð13Þ

Using this operator and Taylor’s theorem, the Eq. (12) can
be written discretely as

ψN ¼ψEþψW −ψS−δuδvV
�
ψWþψE

8

�
þOðΔ4Þ: ð14Þ

The points S, W, E, N are defined as follows:
S ¼ ðu; vÞ; W ¼ ðu þ δu; vÞ; E ¼ ðu; v þ δvÞ; N ¼
ðu þ δu; v þ δvÞ. We discover the fact that the damping
and oscillation process of scalar field and electromagnetic
field perturbation are not sensitive to initial conditions. We
use a Gaussian pulse with a width σ at the point ðu0; v0Þ as
the initial pulse. The center of this Gaussian pulse is at vc,
and the field is set to zero at u ¼ u0 and v ¼ v0, namely

ψðu ¼ u0; vÞ ¼ exp

�
−
ðv − vcÞ2

2σ2

�
;

ψðu; v ¼ v0Þ ¼ 0: ð15Þ

After discretizing the equation and setting the initial
conditions, the four-point difference method can be used
for numerical calculation. On the u-v plane, we can always
calculate the value of the fourth point from the previous
three known points so that the calculation can be continued
until the value of all points on the u-v plane is calculated.
As long as our grid is large enough, we can obtain a good
approximate solution to the wave equation.
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FIG. 2. The effective potentials as a function of tortoise coordinate r� for perturbations of the electromagnetic field with M ¼ 0.5,
l ¼ 1, a ¼ 1.01 (left panel) and a ¼ 1.02 (right panel).

FIG. 3. The effective potentials as a function of tortoise coordinate r� for perturbations of the electromagnetic field with M ¼ 0.5,
l ¼ 1, a ¼ 1.04 (left panel) and a ¼ 1.1 (right panel).

FIG. 1. The effective potentials as a function of tortoise coordinate r� for perturbations of the electromagnetic field on the regular black
hole spacetime background with M ¼ 0.5, l ¼ 1, a ¼ 0.1 (left panel) and a ¼ 0.9 (right panel).
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IV. THE PICTURES OF ECHOES FOR NOVEL
BLACK-BOUNCE SPACETIMES

In this section, we focus on the echoes signals from
electromagnetic field and scalar field perturbations. Using
the above numerical calculation process, we study the time
evolution under the perturbations of the massless scalar
field and electromagnetic field in the novel black-bounce
spacetimes background. Note that the necessary condition
for the appearance of the echoes is that the potential well
must appear. Through the analysis of the potential function
in Sec. II, we find that potential well appears when
a > 2M. Therefore, we will fix the angular quantum
number l ¼ 1 to explore the influence of the spacetime
parameter a on echoes when the parameter a is greater than
2M. In the following discussion, we take M ¼ 0.5 (unless
otherwise specified).
For the case of 0 ≤ a ≤ 2M, although there is no

potential well in the potential function, we still need to
verify it. Therefore, before studying the echo, let’s discuss
the case of a ≤ 2M. In Fig. 5, we show the effective
potentials (left panel) and quasinormal ringdown of electro-
magnetic perturbations (right panel), where the red line
corresponds to the Schwarzschild black hole (a ¼ 0), the
black line corresponds to regular black hole (a ¼ 0.9) and
the blue line corresponds to the one-way traversable
wormhole (a ¼ 1). Regardless of whether it is a regular
black hole or a one-way wormhole, there is no double peak
in their effective potential. As expected, in quasinormal
ringdown figures, there is no echo signal, but we can clearly
see the three stages. The first is the initial wave burst stage,
which is mainly related to the initial perturbation source;
the second stage is the QNM stage, which has nothing to do
with the initial disturbance and mainly reflects the property
of spacetime; the third stage is the tailing stage. Moreover,
we found that compared with the quasinormal ringdown of
the Schwarzschild black hole, the quasinormal ringdown of
a one-way traversable wormhole has the slowest decay rate,
followed by regular black holes.

Figures 6–8 show electromagnetic perturbations of novel
black-bounce spacetimes for the case of a > 2M. In these
figures, the values of a are very close to 2M, but they are
still greater than 2M. From these figures, we can see that
the clear and unique echoes signal appears after the initial
ringdown. These echoes pictures present the following
characteristics:

(i) As the parameter a increases, the time interval for
the first echo after the initial ringdown becomes
shorter, and the time interval for the second echo
after the first echo becomes shorter, which shows
that the time interval has a strong dependence on the
spacetime parameter a. This time interval decreases
as a increases, so we can predict from this con-
clusion that when parameter a reaches a certain
level, only weak echoes signals can be detected, or
even none, because the increase of the parameter a
makes the width of the potential well become
smaller and smaller and finally merges into a
single-peak potential barrier.

(ii) When the spacetime parameter becomes larger, the
amplitudes of the echoes signal only slightly change.
This result can be understood by the effective
potential function. From Figs. 2 and 3, we can
see that as the parameter a increases, the peak value
of the potential well only slightly changes. It is
because the scalar wave or electromagnetic wave is
difficult to escape from the potential well that the
echoes are generated. Therefore, potential wells of
almost the same height make the probability of
scalar waves or electromagnetic waves escaping
from the potential well almost the same. This is
why the amplitudes of the echoes signal remain
almost unchanged.

(iii) Compared with the initial ringdown, the amplitude
of the echoes is much smaller. Moreover, the
amplitude of the second echo signal is much smaller
than the first echo signal, which demonstrates that

FIG. 4. The effective potentials as a function of tortoise coordinate r� for perturbations of the electromagnetic field with M ¼ 0.5,
l ¼ 1, a ¼ 1.2 (left panel) and a ¼ 1.5 (right panel).
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FIG. 5. The effective potentials (left panel) and quasinormal ringdown of electromagnetic perturbations (right panel) with M ¼ 0.5,
l ¼ 1, for different a (a ¼ 0 for the Schwarzschild black hole (SCH), a ¼ 0.9 for the regular black hole (RBH), and a ¼ 1 for the one-
way traversable wormhole (OTW)).

FIG. 6. Time evolution of electromagnetic perturbations (left panel) and the semilogarithmic plot of evolution (right panel) with
M ¼ 0.5; l ¼ 1; a ¼ 1.02 for the two-way traversable wormhole.

FIG. 7. Time evolution of electromagnetic perturbations (left panel) and the semilogarithmic plot of evolution (right panel) with
M ¼ 0.5; l ¼ 1; a ¼ 1.04 for the two-way traversable wormhole.
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the amplitude of the echo signal gradually becomes
smaller as time progresses. This will make it
extremely difficult to find echoes in experiments,
and future experiments may require more high-
precision experimental instruments to observe it.

Now, let’s discuss the echoes characteristics of the scalar
field perturbations. Figure 9 displays the effective potential
of the scalar field and time evolution of scalar field
perturbations on the novel black-bounce spacetimes back-
ground. One can see that as the parameter a increases, the
width and depth of the potential well are decreasing, which
is the same as the property of the potential function
observed in the electromagnetic field. As we mentioned
earlier, three peaks appear during the process of merging
the effective potential into one peak for the electromagnetic
field. When the parameter a increases to a certain value, the
effective potential of the scalar field also appears three
peaks. In addition, the peak value of the effective potential
of the scalar field is greater than the peak value of the
electromagnetic field, which shows that the contribution of
the last term of the effective potential under the scalar field
perturbation is not negligible for novel black-bounce
spacetimes.
In the right column of Fig. 9, when the parameters

a ¼ 1.02, a ¼ 1.03, and a ¼ 1.04, we see that the most
obvious effect is that a clear echo signal appears after the
initial quasinormal ringdown, but when a ¼ 1.2, there is no
echo signal after the initial quasinormal ringdown, and there
is another type of quasinormal ringdown, which is the
quasinormal ringdown of the two-way traversable worm-
hole. This fact coincides with our prediction when discus-
sing the echo signal generated by the electromagnetic field
perturbations. Meanwhile, this behavior is similar to the
results of Chowdhury et al. [53], but they consider the
gravitational perturbations in Janis-Newman-Winicour
spacetime with naked singularities. As far as the echo signal
is concerned, the main feature of the echo signal generated
by the scalar field perturbations is almost the same as the

echo signal generated by the electromagnetic field pertur-
bations. As the parameter a increases, the time interval
between the echoes becomes shorter. Moreover, this time
interval is smaller than the corresponding situation in the
electromagnetic field. It is worth noting that the amplitude of
the echo is similarly smaller than the initial ringdown.

V. THE QNM FREQUENCIES OF NOVEL
BLACK-BOUNCE SPACETIMES

In the previous section, we studied the echo signal of
novel black-bounce spacetimes, but we only studied the
time-domain profiles of the echoes signal. In order to have a
further quantitative understanding about the echoes signal,
we will study its QNM frequency. On the other hand, when
studying the echoes signal of scalar field perturbations, we
found that when the spacetime parameter a increases to a
certain threshold, the echo signal transforms into the QNM
of the wormhole. Therefore, it is also meaningful to
quantitatively study the QNM frequency of wormholes
because it directly reflects the unique properties of compact
objects; i.e., QNM is the characteristic “sound” of compact
objects, which has the characteristics of complex fre-
quency, and it can help us further understand the nature
of compact objects. The echoes signal are obviously not
determined by a single QNM. Therefore, the WKB method
[54–58] cannot be used to calculate the QNM frequency in
this case. We use the Prony method to extract the QNM
frequency by the damped exponents [59–62],

ψðtÞ ≃
Xp
i¼1

Cie−iωit: ð16Þ

In Table I, we use the Prony method to calculate the QNM
frequencies of the echoes signal in the electromagnetic field
perturbations. We list the QNM frequencies of initial ring-
down, first echo and second echo under different angular
quantum numbers l and different spacetime parameters a.

FIG. 8. Time evolution of electromagnetic perturbations (left panel) and the semilogarithmic plot (right panel) of evolution with
M ¼ 0.5; l ¼ 1; a ¼ 1.06 for the two-way traversable wormhole.
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FIG. 9. The effective potential (left panel) and the semilogarithmic plot of time evolution of scalar perturbations (right panel) with
a ¼ 1.02, a ¼ 1.04, a ¼ 1.06, and a ¼ 1.2 (from top to bottom) for the two-way traversable wormhole with M ¼ 0.5, l ¼ 1.

YANG, LIU, XU, XING, WU, and LONG PHYS. REV. D 104, 104021 (2021)

104021-8



In particular, the result for l ¼ 1 is extracted from Figs. 6–8.
Since the echoes of l ¼ 2 and l ¼ 3 have similar results to
those of l ¼ 1, we have not given their echo pictures, but the
analysis of their QNM frequencies is still necessary. From
Table I, we can see that for the case of l ¼ 1, as the
parameter a increases, the real and imaginary parts of the
QNM frequencies are both decreasing. In other words, both
the oscillation frequency and damping rate are decreasing.
Moreover, as we have seen in Figs. 6–8, initial ringdown has
a larger oscillation frequency and damping rate. At the same
time, because the second echo contains less energy than the
first echo, its oscillation frequency and damping rate are
smaller than the first echo. For the case of l ¼ 2 and l ¼ 3,
the oscillation frequency of the first echo signal is larger than
that of the initial ringdown signals, but the damping rate is
smaller than that of the initial ringdown signals. The
oscillation frequency and damping rate of the second echo
signal are still smaller than the first echo. When fixing the
parameter a, we can see that with the increase of angular
quantum numbers l, both the real and imaginary parts of the
QNM frequencies increase. In Table II, we list QNM
frequencies in the scalar field perturbations. The results
presented in Table II have similar behaviors to the QNM
frequencies in the electromagnetic field perturbations.
In Fig. 10, we present the wormhole’s quasinormal

ringing with the larger spacetime parameter a for

electromagnetic field perturbations. In Fig. 10, the most
striking feature is that the difference in damping rates is
particularly obvious for different a. For smaller a, pertur-
bation decays are slower, and perturbation decays are faster
for larger a. In order to quantitatively verify this qualitative
behavior, we calculate its QNM frequency. Table III lists
the wormhole’s QNM frequencies under different param-
eter a and angular quantum numbers l. It can be seen
from Table III that the real and imaginary parts of the
QNM frequencies are proportional to the parameter a. The
characteristics presented by these results are consistent with
the results in Fig. 10 for the same l. When the parameter a
is fixed and l is increased, the real part of the QNM
frequencies are proportional to l, but the imaginary part of
the QNM frequencies vary irregularly. The “echoes” in
Table III mean that there is still the echo signal at this time.
From Table III, we also find that the threshold of echo
disappearing is different for different angular quantum
numbers l. When l is smaller, the threshold for the echo
to turn into a wormhole QNM is also smaller.

VI. SUMMARY

In summary, we study the quasinormal ringdown of
novel black-bounce spacetimes and observe clear echoes
signal. By considering the perturbation of electromagnetic
field and scalar field, we derived the motion equation and

TABLE II. The QNM frequencies of scalar field echoes.

l a Initial ringdown First echo Second echo

l ¼ 1 1.02 0.502548 − 0.139999i 0.497635 − 0.0910389i 0.480468 − 0.0793380i
1.04 0.498359 − 0.137980i 0.497157 − 0.0919687i 0.369577 − 0.0812431i
1.06 0.491547 − 0.130677i 0.393255 − 0.0650390i 0.405710 − 0.0513467i

l ¼ 2 1.02 0.804469 − 0.174604i 0.816541 − 0.1186340i 0.809547 − 0.0969228i
1.04 0.801596 − 0.169572i 0.811849 − 0.1098820i 0.801678 − 0.0976120i
1.06 0.798871 − 0.163620i 0.810072 − 0.1059500i 0.793749 − 0.1013810i

l ¼ 3 1.02 1.116940 − 0.226836i 1.159890 − 0.0941111i 1.146080 − 0.0712003i
1.04 1.115040 − 0.216005i 1.156110 − 0.0824485i 1.142690 − 0.0743523i
1.06 1.113020 − 0.206766i 1.154810 − 0.0774514i 1.119260 − 0.0697735i

TABLE I. The QNM frequencies of electromagnetic field echoes.

l a Initial ringdown First echo Second echo

l ¼ 1 1.02 0.432511 − 0.139550i 0.431431 − 0.0909564i 0.416114 − 0.0801438i
1.04 0.432345 − 0.124975i 0.420477 − 0.0990151i 0.375430 − 0.0793338i
1.06 0.426784 − 0.127676i 0.408921 − 0.0610699i 0.398697 − 0.0348392i

l ¼ 2 1.02 0.750710 − 0.150809i 0.772872 − 0.1029900i 0.766563 − 0.0903414i
1.04 0.750162 − 0.145696i 0.766432 − 0.1061910i 0.762562 − 0.0770380i
1.06 0.758609 − 0.141621i 0.773237 − 0.1025230i 0.740002 − 0.0941247i

l ¼ 3 1.02 1.072990 − 0.189673i 1.138030 − 0.0924377i 1.118960 − 0.0707061i
1.04 1.065940 − 0.180983i 1.131770 − 0.0808849i 1.113860 − 0.0697121i
1.06 1.062210 − 0.171786i 1.123070 − 0.0806182i 1.105550 − 0.0742054i
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the effective potential. Then by using the finite difference
method for numerical calculation, the quasinormal ring-
down and echoes are presented. According to our numeri-
cal results, the following summary is obtained:
(a) With the increase of the space-time parameter a, the

effective potential goes through three stages: A single
peak corresponds to a regular black hole, a double
peak corresponds to a two-way wormhole and a single
peak corresponds to the larger a.

(b) For 0 ≤ a ≤ 2M, the quasinormal ringdown of the
novel black-bounce spacetimes is proposed. There is

no echo signal, because, whether it is the Schwarzs-
child black hole, the regular black hole or the one-way
wormhole, they all have the horizon.

(c) For a > 2M, the clear and unique echoes signal
appears after the initial ringdown, but because
the increase of the parameter a makes the width of
the potential well become smaller and smaller, the
time interval between echoes gradually decreases,
which is contrary to the behavior of the wormholes
echo signal given by Ref. [35]. Potential wells having
almost the same height cause scalar waves or electro-

TABLE III. The QNM frequencies of electromagnetic field perturbation for traversable wormhole.

a l ¼ 1 l ¼ 2 l ¼ 3

1.14 0.440865 − 0.00720609i Echoes Echoes
1.16 0.455959 − 0.0106964i Echoes Echoes
1.18 0.468484 − 0.0144827i 0.793189 − 0.00767738i Echoes
1.20 0.478865 − 0.0184685i 0.811127 − 0.0121937i 1.13828 − 0.0111811i
1.26 0.500678 − 0.0308834i 0.848779 − 0.0267356i 1.19011 − 0.0439598i
1.30 0.509679 − 0.0389546i 0.862189 − 0.0369372i 1.21449 − 0.0592475i
1.40 0.519821 − 0.0564344i 0.882812 − 0.0608442i 1.27385 − 0.1159980i

FIG. 10. The semilogarithmic plot of time evolution of electromagnetic field perturbations with a ¼ 1.14, a ¼ 1.2, a ¼ 1.3, and
a ¼ 1.4 (from left to right and from top to bottom) for the two-way traversable wormhole with M ¼ 0.5, l ¼ 1.
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magnetic waves to escape from potential wells with
almost the same probability. Therefore, with the
change of the parameter a, the amplitudes of the
echoes signal are only slightly changed, but gradually
narrowing and shallower potential well may result in
lower QNM frequencies.

(d) When a is much larger than 2M, the potential well
disappears and becomes a single-peak potential
barrier. Therefore, the echo signal no longer exists,
but it turns into a quasinormal ringdown of the two-
way traversable wormhole. Through the study of
QNM frequency to wormhole, we find that the
QNM frequencies are proportional to the spacetime
parameter a, and the threshold for this transition is
proportional to the angular quantum number l. The
QNM results of wormholes may be used as a probe for
detecting wormholes in the future.

This work is only considered scalar and electromagnetic
perturbations, and we find that the echoes signals of two
perturbations have very similar characteristics. The gravi-
tational field perturbations may also be very interesting
because these studies [53,63–69] have shown that echoes
signals can also be generated under gravitational

perturbations. The gravitational radiation excited by gravi-
tational perturbations is much stronger than the external
field perturbations. Therefore, we believe that if the
perturbations of the gravitational field are considered in
the novel black-bounce spacetimes, the echoes signal can
also be observed.
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