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The need for more and more accurate gravitational-wave templates requires taking into account all
possible contributions to the emission of gravitational radiation from a binary system. Therefore, working
within a multipolar-post-Minkowskian framework to describe the gravitational-wave field in terms of the
source multipole moments, the dominant instantaneous effects should be supplemented by hereditary
contributions arising from nonlinear interactions between the multipoles. The latter effects include tails and
memories and are described in terms of integrals depending on the past history of the source. We compute
higher-order tail (i.e., tail-of-tail, tail-squared, and memory) contributions to both energy and angular
momentum fluxes and their averaged values along hyperboliclike orbits at the leading post-Newtonian
approximation, using harmonic coordinates and working in the Fourier domain. Because of the increasing
level of accuracy recently achieved in the determination of the scattering angle in a two-body system by
several complementary approaches, the knowledge of these terms will provide useful information to

compare results from different formalisms.
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I. INTRODUCTION

Tail effects in a two-body interaction are generated in the
wave zone far from the system, where the latter can be
described as a single object endowed with multipoles. The
gravitational-wave generation formalism developed by
Blanchet and Damour [1-5] combines a multipolar-post-
Minkowskian (MPM) expansion in the far zone with a post-
Newtonian (PN) expansion in the near zone to relate the
gravitational radiation emitted by the binary system to the
PN expansion in the near zone, where the two constituents
of the binary can be resolved as individual sources. A
matching procedure in the overlapping region where both
expansions are valid allows for expressing the radiative
moments as nonlinear functionals of two infinite sets of
time-varying source multipole moments. The latter
moments mix with each other as the waves propagate,
so that the relation between radiative and source moments
includes many nonlinear interactions, which are called
hereditary effects [6—11], depending on the full past history
of the source.

Starting from the 4PN level of accuracy, the Hamiltonian
governing the conservative two-body dynamics acquires a
nonlocal part summarizing several such hereditary effects,
including tails, tails of tails, tail squared, memory, etc.
The dominant tails are due to the quadratic nonlinear
interaction between higher-order multipole moments and
the mass monopole, namely, the total Arnowitt-Deser-
Misner (ADM) mass. The nonlinear memory effect also
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arises at the quadratic level due to the interaction between
two quadrupole moments. The tail-of-tail and tail-squared
contributions are cubic nonlinear effects caused by the
interaction between the tail itself and the ADM mass and
the self-interaction of the tail itself, respectively [11].

Tail-transported nonlocal dynamical correlations lead to
a nonlocal action, so that the instantaneous interaction
terms in the Hamiltonian are complemented by a (time-
symmetric) nonlocal-in-time interaction [12—14]. The non-
local Hamiltonian has been recently determined up to 6PN
by using a time-split version of the gravitational-wave
energy flux, including both first-order (4 + 5 4+ 6PN) and
second-order (5.5PN) tail effects [15-18]. The formalism
developed there has allowed the computation of both local
and nonlocal parts of the conservative scattering angle up
to the seventh order in G by using a combined PM-PN
expansion [19]. However, radiation-reaction effects as well
as tail effects also enter the problem starting at O(G?) and
O(G*), respectively. This fact has both conservative and
dissipative aspects, as discussed in Ref. [20]. Having
already taken into account the time-symmetric aspect of
tail interaction in the nonlocal contribution to the
conservative dynamics, the only tail-related effect to be
added to radiation-reaction is the time-antisymmetric one,
as explicitly shown in Ref. [12] at 4PN level.

In order to evaluate the radiation-reaction contributions
to the scattering angle, one needs the radiative losses of
energy, angular momentum, and linear momentum. While
there exists a rich literature for the gravitational-wave tails
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in the case of coalescing black holes [21-26], the
companion situation of black holes undergoing a scattering
process is less studied. We have already computed in
Ref. [20] the (integrated) leading-order tail contributions
to the loss of energy, angular momentum, and linear
momentum along hyperboliclike orbits, limiting to the
leading PN term for each of them. We will refer to these
terms as “past tails,” to be distinguished from the time-
symmetric tails entering the nonlocal part of the
Hamiltonian. In the present paper, we evaluate the orbital
average of higher-order energy and angular momentum past
tails (tail of tail and tail squared) as well as the corresponding
time-symmetric tails.

The paper is organized as follows. In Sec. II, we recall
the main definitions of the various past tail integrals
computed in this work. These integrals are more conven-
iently computed in the frequency domain. Section III
provides all necessary information to get the final expres-
sions for the hereditary contributions to the orbital-
averaged energy and angular momentum fluxes, using a
Fourier decomposition of the multipole moments. The
explicit evaluation for hyperboliclike motion is done in
Sec. IV, where the results are expressed as an expansion in
the large angular momentum parameter. Time-symmetric
tails are instead computed in Sec. V, using a slight
extension of the general formulas introduced in Sec. IIIL.
Finally, in Sec. VI, we summarize our results and discuss
their relevance for recent developments in the relativistic
two-body scattering problem.

We will denote the masses of the two bodies as m; and
m, with m, > m; and define the symmetric mass ratio
v=u/M as the ratio of the reduced mass pu=
mymy/(m; + m,) to the total mass M = m; + m,, as

|
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standard. We will use the following dimensionless energy
and angular momentum parameters:

E — Mc?

EET (1.1)

and
cJ cJ

| = =— 1.2
/ Gmiym, GMu (12)

where E,, and J are the total center-of-mass energy and
angular momentum of the binary system, respectively.

II. ENERGY AND ANGULAR MOMENTUM
TAIL INTEGRALS

The total contribution to the energy and angular momen-
tum fluxes

dE\ W dJ;\ W
F=(a)" a=(%)

can be split as the sum of instantaneous and hereditary
terms. The latter can be further decomposed as tail, tail-of-
tail, tail-squared, and higher nonlinear interaction terms.
We will consider below quadratic and cubic-in-G inter-
actions only at their leading PN level of accuracy.

The hereditary part of the gravitational-wave energy flux
reads

Fhered(t) = Frait (1) + Frait(taity (1) + F (ainy2 (1),

(2.1)

(2.2)

where the quadratic and cubic tails (according to the
terminology introduced in Ref. [11]) are given by

(2.3)

124627
44100 |’

(2.4)

respectively. Here M denotes the total ADM mass of the system (which can be set equal to M at the leading order in the PN
expansion) and 7, = cry, with ry a constant length scale entering the relation between the retarded time in radiative
coordinates and the corresponding retarded time in harmonic coordinates. The quadratic term (2.3) is the dominant tail at
order 1.5PN, while the two cubic-order tails (2.4) are both at 3PN order.

Similarly, the hereditary part of the angular momentum flux is decomposed as

gll»]ered<f) _ gEaﬂO) + g';ail(tail)(t) + ggtai])z(t> + ginemory<[)’ (25)

where
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which are both 3PN order.
At the quadratic-in-G order, one also have the following
nonlinear memory integral:

4 G?
T 1()€labla/ t)/ drI (r),

which is 2.5PN order. Notice that there is no memory
contribution in the case of the energy flux, because the

G (1) = 23)

7\, 1w 1
2.6
) e} )
T 57 r—7 124627 (6)
2 1°
21()) 70 n(%) * 44100] @)
124627] s,
* 44100}1“1 (7)}’
11 4) ! t—7 11 (5)
ﬁ} 1, (’Z‘)) </_oo dr[ln( 270> t3 I (7)), (2.7)

("), thus, represents the
m-type past tail associated with the history of X2">, from
past infinity to the present time. For the purpose of the
present work, we need only m = 1, 2.

The energy and angular momentum past tails [Egs. (2.3)—

(2.4) and (2.6)—(2.7), respectively] can then be written as

considered. The integral 7 (X

memory 'integral is time fiifferenti.ated and, therefore, Foan(t) = 4G M (t)Tln[ l ,CIJ( ).
becomes instantaneous, as discussed in Ref. [21], and then 5 8 J
taken into account in the instantaneous part. 4 G3/\/l2
It is convenient to introduce the following notation: F tail(ail) (1) = 5 oIl u ( )[Tln [ ij ’Clz}(t)
n ! n m -7
T [X)": Cx, (1) = / dr X\ (7)In <C—> (2.9) —ﬁzm[ D¢, )}
—0 X,
3442
where X ) denotes a generic multipolar moment with L tall 2 (1) = 4G M (Tln[ 5 ’Clz]( ))? (2.10)
(either electrlc -type or magnetic-type) tensorial indices and 5
differentiated n times with respect to time and Cy, is a
constant which depends on the multipolar moment  and
|
. 4G*M
Gt =5 =5~ ianll) (DTl CLI(0) + 1) (VT [15)s CL) (1),
ail (tail 4G M? 107 6). 7
G (1) = 57 ian L) (0| T 14+ € )(0) = 55 Tl Ci)(0)
0 | Tl e - g Tl o]
i1)2 8G  M? 5
G (1) = 57 € Tull o) s CLI(OTwll}) L) (1), (2.11)
respectively, with
Cp, =2tpe™h, T = Cpelpiox17.55C,,. (2.12)

In order to compute the above tail integrals at their leading PN approximation, one needs only the quadrupole moment

and its time derivatives evaluated at the Newtonian level.
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We will evaluate below the leading-order contribution to
the orbital average of the tail integrals

@) = [ (o)
(AJ;)x = /_oo diGX (1), (2.13)

with X = [tail, tail(tail), (tail)?, memory],
boliclike orbits.

along hyper-

III. COMPUTING THE TAIL INTEGRALS IN THE
FOURIER DOMAIN

Each of the integrals above is conveniently computed in
the Fourier domain. Inserting in Eq. (2.9) the Fourier
expansion of X, (7), i.e.,

dw
X = —e it} 1
0= [T, G
and changing the integration variable as ¢ — 7 = £ yields
n e n m é
T [X):Cx, ) (1) = / déx (1= &)In (C—
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L

For m =1, 2 we have the relations [see Egs. (4.7) and
(4.13) in Ref. [21]]

/2 i
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with the properties

T
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and

. m
Az(w, CXL) = —lw <A1 (60, CXL)2 - W) . (36)

Taking the orbital averages (2.13) leads to integrals of
the type

1 (—ia) )7 (o) / 9D it (oo} 1R, (@) A (@, Cy, )

v [ zjj (i) 77 s (~0) %, (0)A, (0, Cx,)

dw A A N A
= [T i)y (1) (o) @)An(@. ) + () Tu(0)Re (~0)An(-0.Cy)). (3T
which in the special case Y = X and L = M becomes
o N N
FolX. X" Cx] = / o (107X, ()% (@)[(-1)"Ap(@. Cy,) + (-1 Ay (-0.Cx)l (38)
Using this result, the energy and angular momentum past tails (2.10) and (2.11) become
2G*M
8G M? [wdw z? 107, 515063
(AE)uiriy = =51 / P C) [ln%czzwey) 12 7105 €L+ 76400
8 G M? dw n°
(AE)(tail)2 = ETA ECOSK( ) {lnz(ClzweV) + Z:| (39)
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and
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8 T8
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It is also useful to introduce the magnitude N (@) and the
direction n; of the vector k;(w), so that

ki(w) = N(w)n;. (3.12)

Notice that (i) in both cases the contributions from
logarithms squared cancel out once the tail-of-tail and tail-
square terms are summed up; for example,

8/ 107\ G?M?
(AE)tail(tail)+(tail)2 = —|—§ <— 105) T

©dw ®
XA 5@ K(w)ln(scale), (3.13)

where

2
In scale :@ 71'__515065 : (3.14)
Cpe’ 107 \ 3 176400

(i1) the dimensions of « (or k;) are obtained recalling the
dimensions of the quadrupolar moment in the Fourier space
are not the same as in the ordinary space, namely,

Iab(t)NTIab(a))v (315)
with an obvious use of notation. Therefore,
k(w) ~ 1> ~ (TML?)?, (3.16)

which implies, for example,

A direct comparison between energy and angular
momentum past tails shows that the following simple
relation holds between the corresponding densities:

o  JEX o - dJX
AE)x = — Al)x = — A
@B = [Ta (ang= [Tall G
such that
dJX dEX
wk(w) o —Ki(a))%—o, (3.19)

for all different tail terms, X = tail, tail(tail), and (tail)>.
For example,

dE®  2G*M
=5 o'k(w), (3.20)
etc. More precisely,
dJ¥ dEX
L= —ny, 3.21
oL = P(w) (321)
with
= , 3.22
Plo) = o (322)

determining both the direction and magnitude of the
angular momentum flow (in terms of energy flow) in the
Fourier space. The loss of angular momentum rate per unit
frequency, thus, dominates with respect to the energy one in
the range of frequencies wherein P(w) > 1, and vice versa
for P(w) < 1.

Equation (3.21) connecting the loss of energy and
angular momentum rates per unit frequency closely resem-
bles the proportionality relation between the gravitational-
wave energy and angular momentum fluxes for circular
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orbits, satisfying the first law of binary black hole dynamics
in the adiabatic approximation [25].

IV. EXPLICIT RESULTS FOR
HYPERBOLICLIKE ORBITS

Let us evaluate the leading-order contribution to
the orbital average of the tail integrals (2.13) in the
case of hyperboliclike motion. We need only the
Newtonian description of the dynamics of a binary system.
The corresponding Keplerian parametrization of the hyper-
bolic motion in harmonic coordinates in terms of dimen-
sionless variables (and ¢ = 1)—i.e., r = rPV/(GM),
t =P /(GM)—is [27]

r=a,(e,coshv —1),
nt = e,sinhv — v,

e +1 v
4 tanh—| .
anZ]

¢ = 2 arctan
e, — 1

(4.1)

We will assume the motion to be confined in the x —y
plane, so that (7, ¢) are polar coordinates on that plane. The
expressions of the orbital parameters 7, a,, and e, as
functions of the specific binding energy E [Eq. (1.1)] and of
the dimensionless angular momentum j [Eq. (1.2)] of the
system are given by

1 \/7_
a, — — - 1 2E 2 42
ar 2E’ er + -] ’ ( )

with E > 0 also expressed in terms of the relative momen-
tum for infinite separation p., as 2E = p2. The parametric
equations (4.1) are obtained through analytic continuation
of the corresponding elliptic motion (E < 0) by replacing
v — iv. Therefore, 7 and a, are the hyperbolic counterparts
of the inverse radial period and the semimajor axis,
respectively, whereas e, still has the meaning of an
|

= (2E)%2,

2 =7
x(u) = 3222

pu

eccentricity parameter. Notice that this property is lost
from 2PN on [28].

The first step consists in Fourier transforming the
quadrupole moment, i.e.,

R dt .
hoo(@) = / AL ), (1)

= (4.3)

This is done by using the integral representation of the

Hankel functions of the first kind of order p =< and
argument g = iu, with u = we,&fﬂ,
(1) 1 0 sinh v—pv
Hp'(q)=— [ etsmhv=prgy, (4.4)
i J_ o

As the argument ¢ = iu of the Hankel function is purely
imaginary, the Hankel function becomes converted into a
modified Bessel function of the first kind (Bessel K
function), according to the relation

2 .
HY (iu) = Z PR (u), (4.5)

The typical term is of the kind e? s *=(P+X)? ' the Fourier
transform of which is

¢4 sinh v=(p+k)v _ Ze_i%(”+k)K,,+k(u), (46)
involving Bessel functions having the same argument u but
various orders differing by integers. However, standard
identities valid for Bessel functions allow one to reduce the
orders to either p or p + 1.

All energy and angular momentum tail integrals (3.9)
and (3.10) are defined in terms of the trace x(w) of the
tensor k(@) [Eq. (3.11)] and the magnitude N (w) of its
associated vector «;(@) (proportional to its dual and
orthogonal to the orbital plane, ie., with n; =95;,)
[Eq. (3.12)], which are given by

7 Ze_iﬂp{uz(l?z +u? +1)(p* + 1)K, (u)

—ul(2p =3)u’ +2p(p = 1))(p* + u*)K , (W) K 1 (u)

1
+ {uﬁ + <4p2 -3p +3) ut + (5p* = Tp +2)p*u* + 2p*(p - 1)2} Klz,(u)},

vtal

N(u) =128

)i 2=, 00 .

p4u4 e—izrp \/ p2 + u2[qu+l(u) + (P2 + MZ - p)K],(u)]
{2 ek, - (p -3

(4.7)

as functions of the frequency-related variable u introduced above. For convenience, with an abuse of notation, we denoted

here as x(u) the dimensionless (rescaled) quantity
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u

(a)

FIG. 1.

Behavior of the proportionality factor P [see Eq. (3.22)] as a function of the frequency-related dimensionless variable u,

showing the regions of energy versus angular momentum dominance. In (a) the orbital parameters have been set as a, = 1 and ¢, = 2,
implying that P(u) = 1 at u = u,(e,,a,) ~ 3.979. This is the typical behavior for e, > e, = /2, for which P positively diverges as
u — 0 and monotonically decreases for increasing frequencies, crossing the horizontal line P(u) = 1 at some value of u = u,(e,, a,).
The intersection point moves to the right for increasing values of the eccentricity [see also (b)]. The curves in (b) correspond instead to
different values of e, (and the same value of @, = 1), moving from bottom to top for increasing eccentricity e, = [1.1,1.2,1.3,v/2,2,3].
The dotted curve is the separatrix between the two different behaviors (see the text).

KPBYS (37
(o 2

k(u) — (4.8)

and similarly for A/ (u).

Figure 1 shows the frequency regions of energy versus
angular momentum dominance for selected values of the
eccentricity parameter and fixed semimajor axis. At high
frequencies (4 — o), the proportionality factor P [defined
in Eq. (3.22)] goes to zero for every value of the
eccentricity. For instance, at the leading order in the
large-eccentricity expansion limit, we find

(4.9)

u—0oo

(P ~ 233,

where the asymptotic relation sz/ ze, ~ j/ p% also holds. In

the limit of low frequencies (u — 0), instead its behavior
strongly depends on the chosen value of e,. In fact, for
u — 0, one has

2
_3/2 er—2 ue’
P(u),—o ~ 28 {—e% = 1ln <2 >

+24/e2 - 1}, (4.10)

implying that there exists a critical value of the eccentricity
S€

e, = ey = /2 such that in this limit P(u) gets the finite

value 4213/ %, whereas it logarithmically diverges assuming

either positive or negative values depending on whether e,

is greater or smaller than e,".

The tail integrals cannot be performed in closed analytical
form due to the dependence of the order of the Bessel K
functions on the integration variable. However, the order p
tends to zero when e, — oo, allowing for the explicit
computation in a large-eccentricity expansion [18,19,29]. In
fact, Taylor expanding the Bessel functions around p =0

leads to integrals involving Bessel functions K, (u) and their
derivatives ang—;n(”) with respect to the order v evaluated at

v = (0, 1) only. Therefore, one is left with integrals of the type

7 du s,

0

(4.11)

with m = 0, 1, 2, which are conveniently computed by using
the Mellin transform [19]. The latter is defined as

q(s) :Aoo duu=f(u), (4.12)
so that
o) = [ auftu)
dg)f - _ [ u f(u)In(u
0= [ durwm),
20(s o
ddgs(Z)H:A du f(u)In2(u). (4.13)

We list below the results of the computation, by using the
equivalent large-j expansion limit in place of the large-
eccentricity limit:
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for the angular momentum, with
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(4.16)

2

roPso
=1 .
. “( 4j )

The angular momentum memory integral (2.8) requires a
separate treatment. Let us denote

Fo(t) = / a2l (019 (2)

o0 3 3
_ A a1 (=D (e- 1), (4.17)
so that

4 G2

G (1) = 5w Cianley (VF (1) (4.18)

The integral (4.17) does not depend on time. In fact,
inserting the Fourier transform of the quadrupole moment
yields

o= [ %

% e—la)([ ) —l(u 1. (a))iﬂ (Cl)/)

[t e

S

000 ) a0+ o
1 dw A
_ 67
—2/_00 2”60 1 b(a))ljc(—a)).
Recalling the definition of the tensor ., (@) [Eq. (3.11)]

and restricting the range of frequencies between [0, co) then
gives

iw/)3

(4.19)

(4.20)

with & (@) = % (kp;(@) + &j(w)). Finally, the orbital
average (2.13) reads

4 G?
(AJ )memory 35F€iabHaijj’ (421)
where
e 3
H,; = / drl’) (r). (4.22)

The latter integral turns out to be

) o (] IS
_ /_ " /_ S miw) e,y (w)

B /_m do(—iw)*5(w)],;(w)
41/\/62——1

:—7(5 5 +6u}5jx)

(4.23)

so that the averaged memory integral (4.21) becomes

duy/er -1

(A ey = =5 (i Py + ). (424)
with only nonvanishing component

4 G*4vy/e? -1
(AJZ)memory 56—107 (Fyy - Fxx)’ (425)
the large-j expansion of which reads

GM? 16 poo 128 p4,
(AJZ)memory - - : R 5

c 105 j* 63 j
o)
+o— + 0 4.26
7 7 (4.26)

V. TIME-SYMMETRIC TAILS

The tails defined above should be more properly termed
“past tails,” since they refer to the past interaction between
the two bodies, in the sense that the integration variable
& =t — 7 in the typical tail integral (3.2) takes values in the
interval 7 € [0, o), namely,

T X Cy (1) = /) P dex\" (1 7) In” (CL> (5.1)

X
implying contributions from X (L")(f) with & varying in the
range ¢ € (—oo, ).

Previous works focusing on ellipticlike motion used the
tails in this precise form. The meaning and importance
of time-symmetric tails was proven at the 4PN level
in Ref. [12], where tail effects on the dynamics were
decomposed in a time-symmetric action contribution and
a time-antisymmetric radiation-reaction force. Such a
decomposition seems clearly extendable when considering
effects which are linear in radiation reaction, as recently
accomplished in Ref. [20]. It is well known that the
radiation-reaction force starts at 2.5PN, so that quadratic
effects in radiation reaction start affecting the dynamics
of the system beyond the 4PN order. More precisely, one
expects that second-order effects will enter the dynamics at

order CGTT) i.e., at the 4PM level and the 5PN level (see the

discussion in Sec. X in Ref. [20]). No complete treatment of
the energy flux (as well as angular and linear momentum
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fluxes) exists at such a level yet. It is reasonable to
expect that the contribution of higher-order time-symmetric
tails becomes relevant as soon as the PN accuracy
increases, as they did at 4PN. Further investigation is
necessary to systematically include in the dynamics time-
symmetric tails which are nonlinear in radiation reaction,
whatever approach one uses (e.g., the effective field theory
approach [30-32]).

Let us replace X(L")(t —7) by the sum of its symmetric
(sym) and antisymmetric (asym) parts,

(5.2)

The time-symmetric part only is used as the proper tail
contribution, since the time-antisymmetric one is already
included in the nonlocal part of the Hamiltonian. The time-

(n)

symmetric (ts) version of 7,»[X;"; Cy,](t), thus, reads
|

Tha (X5 Cx, (1)

T
= drx! t,7) In™ .
A L sym( ) (CXL )

Passing then to the Fourier domain, the above expression
becomes

(5.3)

Th )= [ 52 (i) R (o)

x e A, (@,Cx,) +An(-w,Cx,)].
(5.4)

The final expressions for the (averaged) energy and angular
momentum time-symmetric tails are given by Eq. (2.13)
with the replacement 7 ,» — 75, in the fluxes (2.10)
and (2.11).

Consider now the time-symmetric version of the basic
integral (3.7), i.e.,

FSY X0y ) = / Y (T (X Cy (1)

~ [T / " (i) Py ()

< | o i) Ry w)e A

2) . 2x

m(@,Cx, )+ A, (-, Cx,)]

1 [odw . . N N
5 | S i) (i) ()R (@) A (. Cr,) + An(=0.C, ). (55)
which for m = 1 and m = 2 becomes
siyle) y (). L [odo, . i vop g
Fy [YM X ?CXL] = ) E("“’) (lw) YM(—‘U)XL(“’)[AI(@, CXL) —|—A1(—a), CXL)]
1 [*dw - 7
=— [ —(=io)"(io)"¥y(-0)X -)— .
5 | Se o) o) V(o) () () (5.
and
siyle) y ). L [odo, . iyt
F3lYy' Xy Cx, ] = ) P —iw)"(iw)" ¥y (-) X (0)[As (o, Cx,) +As(-w. Cx, )]
1 [>dw o . 2z
=— | Z(—io)"(io)P¥y(-0)X, (0) =1 v .
5 | S i) ) V=o)X () I (C o), (57
respectively, having used Eq. (3.5). In the special case ¥ = X and L = M, Eqgs. (5.6) and (5.7) simplify as
. n 1 nilon dw - 1
A L - A AT (58)
1 o0 - N 1
FSIXY) X{; C ] =5 (1) / o 75, (~0)%, (@) 0 C, fole”), (5.9)
—oo ®
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respectively. Therefore, when n + p is odd, both F} [X(Lp >,X<L">; Cx,| and F§ [X(Lp ), X(L"); Cx, | vanish identically.
The time-symmetric energy tail turns out to be

(@B)e = [P0 = 1 R 1)
1 [P iw)ﬁ<iw>3ii,-<—w>i,-,-<w><—>%
:;Giﬁ/‘ [ dwal w)iij(w)|01)|
=255 [ ol (-0l (5.10)

coinciding with the analogous result for past tails. The time-symmetric part of the tail-of-tail integral is instead identically
vanishing:

105
=0, (5.11)

o0 4 G3M? 107
(AE) ity s = /_oo AtF i (wait) s (1) = 5 T <Ft5[1,<j . Ej),Ch] Fts[lgj), E,),C,,]>

due to the general property shown above with n + p = 9. Finally, the time-symmetric tail-squared integral reads

(AE)(tail)z,ts:/ drF (tail)? ts()

1G3M2 5 —la)t 1 ,—iw't z
~5 o / / (—iw) I!J( |a)/ j(a) Je (=) |
1 G’ M?

w . 7[
=0 [ cior ity @y -a) %
3 A2 © ~ ~
:;Gf\l/lﬂ'/ da)a)slij(w)lij(_w)’ (512)
c 0

differently from the analogous past tail case.
The time-symmetric angular momentum tails turn out to be

o i 4G*M 2) (5 3) (4
(AT ites = /_oo diGie = gTGiab[th[lgj),Iéj);clz} + F[IS[Igvj)J(aj);Cle
2G°M [
—= dwaSk (o),
53 /0 wa’k;(w)
© il 4G M?
(AY ) wi(tait) s = /_oo diG; (s :gTGmb[thsU(a])’IéJ)’CIZ] +Fts[lij),1§,]),cl2]
107
~ o5 RG24 8] + R 1)) =0,
_ (tail)?ts 8 G M? © 1 [eodw . ~ iw T
(AT (it.s = /_m diG; =5 G | dt 7 _mg(—lw)”a/’(ﬂ))e (- o]
1 ood(l)/ . A i/ T
X L/ E(_lw/)slhj(w,)e ‘ l(—)m}
7 GPM? [
=10 o / doo’k;(w)
G3 2 00
= g—cf\l/l A doo’k; (o), (5.13)
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where we have used the property that x;(w) is an odd
function of the frequency [see Eq. (3.11)]:

Ki(—o) = 2i€iab}aj(_w)ibj(w)
= =2iegpalpi(—0)l,j(@) = —ki(@).  (5.14)

(AE)tail,ls = (AE)tail’

(Aji)tail.ts = (A‘Il)

(AE)lail(tail),ts

tail> (aJ i)tail(tail),ts =0,

In summary, direct comparison between the
orbital averages of the energy and angular momentum tail
integrals [Eqgs. (3.9) and (3.10)] and their time-symmetric
counterparts [Egs. (5.10)—(5.12) and (5.13), respectively]
shows that

It
=0, (AE)(tail)z,ts = (AE)HO 1

(tail)?’

(AJ3) (ainp s = (AT s

(tail)??

(5.15)

where “nolog” stands for the nonlogarithmic term of the corresponding (past tail) quantity. The property (3.21) and related

discussion apply also to this case.

The explicit computation of the time-symmetric tail-squared integrals in the large-j expansion limit gives

297 pd. 44288 pl 1579 pS.x 1
AE) . =MV | = TR T T reon — 5.16
( )(tall)z,ts crw |:4O j5 225 j6 6 j7 j8 ( )
and
GM? , 269 pSr 2176 pd, 303 pirx 1
(A‘]Z)(tail)z,ts T, v E—f +—15 j—5+—2 —j6 + 0 ]—7 . (5.17)

Noticeably, the coefficients of the previous expansions
[Egs. (5.16) and (5.17)] coincide with the corresponding
coefficients of the £* terms in Egs. (4.14) and (4.15)
divided by a factor of 4.

VI. CONCLUDING REMARKS

We have computed higher-order tail (i.e., tail-of-tail and
tail-squared) contributions to both the energy and angular
momentum losses averaged along hyperboliclike orbits at
their leading PN approximation, using harmonic coordinates
and working in the Fourier domain. These terms are
conveniently denoted as past tails, since they are determined
by the full past interaction among the bodies. We have also
evaluated the time-symmetric counterpart of these tail
integrals, which plays a key role in the construction of
the nonlocal part of the conservative two-body dynamics
starting from the 4PN level. All results have been expressed
as an expansion in the large-eccentricity parameter and then
converted in a large angular momentum expansion. It is
interesting to note that we have obtained a nonvanishing
value for the (averaged) nonlinear angular momentum
memory integral, differently from the bound case [22].

We have also found the interesting result (valid at the same
approximation level in which the tail integrals are computed)
that there exists a direct proportionality between the loss of

|

energy and angular momentum rates per unit frequency by a
frequency-dependent factor which is the same for tails of any
kind, generalizing similar links known for circular orbits
only. The ranges of frequencies wherein such a factor is
smaller (greater) than one correspond to those regions in the
spectrum of energy (angular momentum) loss dominance for
fixed values of the orbital parameters.

The inclusion of tail effects is necessary for the con-
struction of the two-body Hamiltonian at high PN orders as
well as for the evaluation of more and more accurate
expressions for the radiative losses of energy, angular
momentum, and linear momentum. The latter are essential
for computing the radiation-reaction contribution to the
scattering angle in the relativistic two-body problem [20].
We leave for a forthcoming study the computation of
higher-order tails of the linear momentum flux, following
the same lines outlined in the present work.
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