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The need for more and more accurate gravitational-wave templates requires taking into account all
possible contributions to the emission of gravitational radiation from a binary system. Therefore, working
within a multipolar-post-Minkowskian framework to describe the gravitational-wave field in terms of the
source multipole moments, the dominant instantaneous effects should be supplemented by hereditary
contributions arising from nonlinear interactions between the multipoles. The latter effects include tails and
memories and are described in terms of integrals depending on the past history of the source. We compute
higher-order tail (i.e., tail-of-tail, tail-squared, and memory) contributions to both energy and angular
momentum fluxes and their averaged values along hyperboliclike orbits at the leading post-Newtonian
approximation, using harmonic coordinates and working in the Fourier domain. Because of the increasing
level of accuracy recently achieved in the determination of the scattering angle in a two-body system by
several complementary approaches, the knowledge of these terms will provide useful information to
compare results from different formalisms.

DOI: 10.1103/PhysRevD.104.104020

I. INTRODUCTION

Tail effects in a two-body interaction are generated in the
wave zone far from the system, where the latter can be
described as a single object endowed with multipoles. The
gravitational-wave generation formalism developed by
Blanchet and Damour [1–5] combines a multipolar-post-
Minkowskian (MPM) expansion in the far zone with a post-
Newtonian (PN) expansion in the near zone to relate the
gravitational radiation emitted by the binary system to the
PN expansion in the near zone, where the two constituents
of the binary can be resolved as individual sources. A
matching procedure in the overlapping region where both
expansions are valid allows for expressing the radiative
moments as nonlinear functionals of two infinite sets of
time-varying source multipole moments. The latter
moments mix with each other as the waves propagate,
so that the relation between radiative and source moments
includes many nonlinear interactions, which are called
hereditary effects [6–11], depending on the full past history
of the source.
Starting from the 4PN level of accuracy, the Hamiltonian

governing the conservative two-body dynamics acquires a
nonlocal part summarizing several such hereditary effects,
including tails, tails of tails, tail squared, memory, etc.
The dominant tails are due to the quadratic nonlinear
interaction between higher-order multipole moments and
the mass monopole, namely, the total Arnowitt-Deser-
Misner (ADM) mass. The nonlinear memory effect also

arises at the quadratic level due to the interaction between
two quadrupole moments. The tail-of-tail and tail-squared
contributions are cubic nonlinear effects caused by the
interaction between the tail itself and the ADM mass and
the self-interaction of the tail itself, respectively [11].
Tail-transported nonlocal dynamical correlations lead to

a nonlocal action, so that the instantaneous interaction
terms in the Hamiltonian are complemented by a (time-
symmetric) nonlocal-in-time interaction [12–14]. The non-
local Hamiltonian has been recently determined up to 6PN
by using a time-split version of the gravitational-wave
energy flux, including both first-order (4þ 5þ 6PN) and
second-order (5.5PN) tail effects [15–18]. The formalism
developed there has allowed the computation of both local
and nonlocal parts of the conservative scattering angle up
to the seventh order in G by using a combined PM-PN
expansion [19]. However, radiation-reaction effects as well
as tail effects also enter the problem starting at OðG3Þ and
OðG4Þ, respectively. This fact has both conservative and
dissipative aspects, as discussed in Ref. [20]. Having
already taken into account the time-symmetric aspect of
tail interaction in the nonlocal contribution to the
conservative dynamics, the only tail-related effect to be
added to radiation-reaction is the time-antisymmetric one,
as explicitly shown in Ref. [12] at 4PN level.
In order to evaluate the radiation-reaction contributions

to the scattering angle, one needs the radiative losses of
energy, angular momentum, and linear momentum. While
there exists a rich literature for the gravitational-wave tails
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in the case of coalescing black holes [21–26], the
companion situation of black holes undergoing a scattering
process is less studied. We have already computed in
Ref. [20] the (integrated) leading-order tail contributions
to the loss of energy, angular momentum, and linear
momentum along hyperboliclike orbits, limiting to the
leading PN term for each of them. We will refer to these
terms as “past tails,” to be distinguished from the time-
symmetric tails entering the nonlocal part of the
Hamiltonian. In the present paper, we evaluate the orbital
average of higher-order energy and angular momentum past
tails (tail of tail and tail squared) aswell as the corresponding
time-symmetric tails.
The paper is organized as follows. In Sec. II, we recall

the main definitions of the various past tail integrals
computed in this work. These integrals are more conven-
iently computed in the frequency domain. Section III
provides all necessary information to get the final expres-
sions for the hereditary contributions to the orbital-
averaged energy and angular momentum fluxes, using a
Fourier decomposition of the multipole moments. The
explicit evaluation for hyperboliclike motion is done in
Sec. IV, where the results are expressed as an expansion in
the large angular momentum parameter. Time-symmetric
tails are instead computed in Sec. V, using a slight
extension of the general formulas introduced in Sec. III.
Finally, in Sec. VI, we summarize our results and discuss
their relevance for recent developments in the relativistic
two-body scattering problem.
We will denote the masses of the two bodies as m1 and

m2 with m2 > m1 and define the symmetric mass ratio
ν ¼ μ=M as the ratio of the reduced mass μ≡
m1m2=ðm1 þm2Þ to the total mass M ¼ m1 þm2, as

standard. We will use the following dimensionless energy
and angular momentum parameters:

Ē≡ Etot −Mc2

μc2
ð1:1Þ

and

j≡ cJ
Gm1m2

¼ cJ
GMμ

; ð1:2Þ

where Etot and J are the total center-of-mass energy and
angular momentum of the binary system, respectively.

II. ENERGY AND ANGULAR MOMENTUM
TAIL INTEGRALS

The total contribution to the energy and angular momen-
tum fluxes

F ≡
�
dE
dt

�
GW

; Gi ≡
�
dJi
dt

�
GW

ð2:1Þ

can be split as the sum of instantaneous and hereditary
terms. The latter can be further decomposed as tail, tail-of-
tail, tail-squared, and higher nonlinear interaction terms.
We will consider below quadratic and cubic-in-G inter-
actions only at their leading PN level of accuracy.
The hereditary part of the gravitational-wave energy flux

reads

F heredðtÞ ¼ F tailðtÞ þ F tailðtailÞðtÞ þ F ðtailÞ2ðtÞ; ð2:2Þ
where the quadratic and cubic tails (according to the
terminology introduced in Ref. [11]) are given by

F tailðtÞ ¼
G2M
c8

�
4

5
Ið3Þij ðtÞ

Z
t

−∞
dτIð5Þij ðτÞ

�
ln

�
t − τ

2τ0

�
þ 11

12

�
þO

�
1

c2

��
ð2:3Þ

and

F tailðtailÞðtÞ ¼
4

5

G3M2

c11
Ið3Þij ðtÞ

Z
t

−∞
dτIð6Þij ðτÞ

�
ln2

�
t − τ

2τ0

�
þ 57

70
ln

�
t − τ

2τ0

�
þ 124627

44100

�
;

F ðtailÞ2ðtÞ ¼
4

5

G3M2

c11

�Z
t

−∞
dτIð5Þij ðτÞ

�
ln

�
t − τ

2τ0

�
þ 11

12

��
2

; ð2:4Þ

respectively. HereM denotes the total ADMmass of the system (which can be set equal toM at the leading order in the PN
expansion) and τ0 ¼ cr0, with r0 a constant length scale entering the relation between the retarded time in radiative
coordinates and the corresponding retarded time in harmonic coordinates. The quadratic term (2.3) is the dominant tail at
order 1.5PN, while the two cubic-order tails (2.4) are both at 3PN order.
Similarly, the hereditary part of the angular momentum flux is decomposed as

Ghered
i ðtÞ ¼ Gtail

i ðtÞ þ GtailðtailÞ
i ðtÞ þ GðtailÞ2

i ðtÞ þ Gmemory
i ðtÞ; ð2:5Þ

where
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Gtail
i ðtÞ ¼ G2M

c8
ϵiab

�
4

5
Ið2Þaj ðtÞ

Z
t

−∞
dτ

�
ln

�
t − τ

2τ0

�
þ 11

12

�
Ið5Þbj ðτÞ

þ 4

5
Ið3Þbj ðtÞ

Z
t

−∞
dτ

�
ln

�
t − τ

2τ0

�
þ 11

12

�
Ið4Þaj ðτÞ þO

�
1

c2

��
; ð2:6Þ

starting at 1.5PN order, and

GtailðtailÞ
i ðtÞ ¼ 4

5

G3M2

c11
ϵiab

�
Ið2Þaj ðtÞ

Z
t

−∞
dτ

�
ln2

�
t − τ

2τ0

�
þ 57

70
ln

�
t − τ

2τ0

�
þ 124627

44100

�
Ið6Þbj ðτÞ

þ Ið3Þbj ðtÞ
Z

t

−∞
dτ

�
ln2

�
t − τ

2τ0

�
þ 57

70
ln

�
t − τ

2τ0

�
þ 124627

44100

�
Ið5Þaj ðτÞ

�
;

GðtailÞ2
i ðtÞ ¼ 8

5

G3M2

c11
ϵiab

�Z
t

−∞
dτ

�
ln

�
t − τ

2τ0

�
þ 11

12

�
Ið4Þaj ðτÞ

��Z
t

−∞
dτ

�
ln

�
t − τ

2τ0

�
þ 11

12

�
Ið5Þbj ðτÞ

�
; ð2:7Þ

which are both 3PN order.
At the quadratic-in-G order, one also have the following

nonlinear memory integral:

Gmemory
i ðtÞ ¼ 4

35

G2

c10
ϵiabI

ð3Þ
aj ðtÞ

Z
t

−∞
dτIð3Þcb ðτÞIð3Þjc ðτÞ; ð2:8Þ

which is 2.5PN order. Notice that there is no memory
contribution in the case of the energy flux, because the
memory integral is time differentiated and, therefore,
becomes instantaneous, as discussed in Ref. [21], and then
taken into account in the instantaneous part.
It is convenient to introduce the following notation:

T lnm ½XðnÞ
L ;CXL

�ðtÞ ¼
Z

t

−∞
dτXðnÞ

L ðτÞlnm
�
t − τ

CXL

�
; ð2:9Þ

where XðnÞ
L denotes a generic multipolar moment with L

(either electric-type or magnetic-type) tensorial indices and
differentiated n times with respect to time and CXL

is a
constant which depends on the multipolar moment

considered. The integral T lnmðXðnÞ
L Þ, thus, represents the

m-type past tail associated with the history of XðnÞ
L , from

past infinity to the present time. For the purpose of the
present work, we need only m ¼ 1, 2.
The energy and angular momentum past tails [Eqs. (2.3)–

(2.4) and (2.6)–(2.7), respectively] can then be written as

F tailðtÞ ¼
4

5

G2M
c8

Ið3Þij ðtÞT ln½Ið5Þij ;CI2 �ðtÞ;

F tailðtailÞðtÞ ¼
4

5

G3M2

c11
Ið3Þij ðtÞ

�
T ln2 ½Ið6Þij ;CI2 �ðtÞ

−
107

105
T ln½Ið6Þij ; C̃I2 �ðtÞ

�
;

F ðtailÞ2ðtÞ ¼
4

5

G3M2

c11
ðT ln½Ið5Þij ;CI2 �ðtÞÞ2 ð2:10Þ

and

Gtail
i ðtÞ ¼ 4

5

G2M
c8

ϵiab½Ið2Þaj ðtÞT ln½Ið5Þbj ;CI2 �ðtÞ þ Ið3Þbj ðtÞT ln½Ið4Þaj ;CI2 �ðtÞ�;

GtailðtailÞ
i ðtÞ ¼ 4

5

G3M2

c11
ϵiab

�
Ið2Þaj ðtÞ

�
T ln2 ½Ið6Þbj ;CI2 �ðtÞ −

107

105
T ln½Ið6Þbj ; C̃I2 �ðtÞ

�

þ Ið3Þbj ðtÞ
�
T ln2 ½Ið5Þaj ;CI2 �ðtÞ −

107

105
T ln½Ið5Þaj ; C̃I2 �ðtÞ

��
;

GðtailÞ2
i ðtÞ ¼ 8

5

G3M2

c11
ϵiabT ln½Ið4Þaj ;CI2 �ðtÞT ln½Ið5Þbj ;CI2 �ðtÞ; ð2:11Þ

respectively, with

CI2 ¼ 2τ0e−
11
12; C̃I2 ¼ CI2e

515063
179760 ≈ 17.55CI2 : ð2:12Þ

In order to compute the above tail integrals at their leading PN approximation, one needs only the quadrupole moment
and its time derivatives evaluated at the Newtonian level.
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We will evaluate below the leading-order contribution to
the orbital average of the tail integrals

ðΔEÞX ¼
Z

∞

−∞
dtFXðtÞ;

ðΔJiÞX ¼
Z

∞

−∞
dtGX

i ðtÞ; ð2:13Þ

with X ¼ ½tail; tailðtailÞ; ðtailÞ2;memory�, along hyper-
boliclike orbits.

III. COMPUTING THE TAIL INTEGRALS IN THE
FOURIER DOMAIN

Each of the integrals above is conveniently computed in
the Fourier domain. Inserting in Eq. (2.9) the Fourier
expansion of XLðτÞ, i.e.,

XLðτÞ ¼
Z

∞

−∞

dω
2π

e−iωτX̂LðωÞ; ð3:1Þ

and changing the integration variable as t − τ ¼ ξ yields

T lnm ½XðnÞ
L ;CXL

�ðtÞ¼
Z

∞

0

dξXðnÞ
L ðt−ξÞlnm

�
ξ

CXL

�

¼
Z

∞

−∞

dω
2π

e−iωtð−iωÞnX̂LðωÞAmðω;CXL
Þ;

ð3:2Þ
with

Amðω; CXL
Þ ¼

Z
∞

0

dξeiωξ lnm
�

ξ

CXL

�
: ð3:3Þ

For m ¼ 1, 2 we have the relations [see Eqs. (4.7) and
(4.13) in Ref. [21]]

A1ðω; CXL
Þ ¼ −

π

2jωj −
i
jωj sgnðωÞ lnðCXL

jωjeγÞ;

A2ðω; CXL
Þ ¼ π

jωj lnðCXL
jωjeγÞ

þ i
jωj sgnðωÞ

�
ln2ðCXL

jωjeγÞ − π2

12

�
; ð3:4Þ

with the properties

A1ðω; CXL
Þ þ A1ð−ω; CXL

Þ ¼ −
π

jωj ;

A1ðω; CXL
Þ − A1ð−ω; CXL

Þ ¼ −2
i
ω
lnðCXL

jωjeγÞ;

A1ð−ω; CXL
ÞA1ðω; CXL

Þ ¼ 1

ω2

�
π2

4
þ ln2ðCXL

jωjeγÞ
�
;

ð3:5Þ

and

A2ðω; CXL
Þ ¼ −iω

�
A1ðω; CXL

Þ2 − π2

6ω2

�
: ð3:6Þ

Taking the orbital averages (2.13) leads to integrals of
the type

Fm½YðpÞ
M ; XðnÞ

L ;CXL
� ¼

Z
∞

−∞
dtYðpÞ

M ðtÞT lnm ½XðnÞ
L ;CXL

�ðtÞ

¼
Z

∞

−∞
dt

Z
∞

−∞

dω0

2π
e−iω

0tð−iω0ÞpŶMðω0Þ
Z

∞

−∞

dω
2π

e−iωtð−iωÞnX̂LðωÞAmðω; CXL
Þ

¼ ð−1Þn
Z

∞

−∞

dω
2π

ðiωÞnþpŶMð−ωÞX̂LðωÞAmðω; CXL
Þ

¼
Z

∞

0

dω
2π

ðiωÞnþp½ð−1ÞnŶMð−ωÞX̂LðωÞAmðω; CXL
Þ þ ð−1ÞpŶMðωÞX̂Lð−ωÞAmð−ω; CXL

Þ�; ð3:7Þ

which in the special case Y ¼ X and L ¼ M becomes

Fm½XðpÞ
L ; XðnÞ

L ;CXL
� ¼

Z
∞

0

dω
2π

ðiωÞnþpX̂Lð−ωÞX̂LðωÞ½ð−1ÞnAmðω; CXL
Þ þ ð−1ÞpAmð−ω; CXL

Þ�: ð3:8Þ

Using this result, the energy and angular momentum past tails (2.10) and (2.11) become

ðΔEÞtail ¼
2

5

G2M
c8

Z
∞

0

dωω7κðωÞ;

ðΔEÞtailðtailÞ ¼ −
8

5

G3M2

c11

Z
∞

0

dω
2π

ω8κðωÞ
�
ln2ðCI2ωe

γÞ − π2

12
þ 107

105
lnðCI2ωe

γÞ þ 515063

176400

�
;

ðΔEÞðtailÞ2 ¼
8

5

G3M2

c11

Z
∞

0

dω
2π

ω8κðωÞ
�
ln2ðCI2ωe

γÞ þ π2

4

�
ð3:9Þ
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and

ðΔJiÞtail ¼
2

5

GM2

c8

Z
∞

0

dωω6κiðωÞ;

ðΔJiÞtailðtailÞ ¼ −
8

5

G3M2

c11

Z
∞

0

dω
2π

ω7κiðωÞ
�
ln2ðCI2ωe

γÞ − π2

12
þ 107

105
lnðCI2ωe

γÞ þ 515063

176400

�
;

ðΔJiÞðtailÞ2 ¼
8

5

G3M2

c11

Z
∞

0

dω
2π

ω7κiðωÞ
�
ln2ðωCI2e

γÞ þ π2

4

�
; ð3:10Þ

respectively, where we have introduced the notation

κabðωÞ ¼ ÎajðωÞÎbjð−ωÞ ¼ κbað−ωÞ;
κðωÞ ¼ Tr½κabðωÞ�;
κiðωÞ ¼ 2iϵiabκabðωÞ: ð3:11Þ

It is also useful to introduce the magnitude N ðωÞ and the
direction ni of the vector κiðωÞ, so that

κiðωÞ≡N ðωÞni: ð3:12Þ

Notice that (i) in both cases the contributions from
logarithms squared cancel out once the tail-of-tail and tail-
square terms are summed up; for example,

ðΔEÞtailðtailÞþðtailÞ2 ¼ þ 8

5

�
−
107

105

�
G3M2

c11

×
Z

∞

0

dω
2π

ω8κðωÞ ln
�

ω

scale

�
; ð3:13Þ

where

ln

�
scale
CI2e

γ

�
¼ 105

107

�
π2

3
−
515065

176400

�
; ð3:14Þ

(ii) the dimensions of κ (or κi) are obtained recalling the
dimensions of the quadrupolar moment in the Fourier space
are not the same as in the ordinary space, namely,

IabðtÞ ∼
1

T
ÎabðωÞ; ð3:15Þ

with an obvious use of notation. Therefore,

κðωÞ ∼ Î2 ∼ ðTML2Þ2; ð3:16Þ

which implies, for example,

ðΔEÞtail ∼
G2M
c8

κðωÞ
T8

∼
G2M
c8

T2M2L4

T8

∼Mc2: ð3:17Þ

A direct comparison between energy and angular
momentum past tails shows that the following simple
relation holds between the corresponding densities:

ðΔEÞX ¼
Z

∞

0

dω
dEX

dω
; ðΔJÞX¼

Z
∞

0

dω
dJX

dω
; ð3:18Þ

such that

ωκðωÞ dJ
X
i

dω
− κiðωÞ

dEX

dω
¼ 0; ð3:19Þ

for all different tail terms, X ¼ tail; tailðtailÞ; and ðtailÞ2.
For example,

dEtail

dω
¼ 2

5

G2M
c8

ω7κðωÞ; ð3:20Þ

etc. More precisely,

dJXi
dω

¼ PðωÞ dE
X

dω
ni; ð3:21Þ

with

PðωÞ≡ N ðωÞ
ωκðωÞ ; ð3:22Þ

determining both the direction and magnitude of the
angular momentum flow (in terms of energy flow) in the
Fourier space. The loss of angular momentum rate per unit
frequency, thus, dominates with respect to the energy one in
the range of frequencies wherein PðωÞ > 1, and vice versa
for PðωÞ < 1.
Equation (3.21) connecting the loss of energy and

angular momentum rates per unit frequency closely resem-
bles the proportionality relation between the gravitational-
wave energy and angular momentum fluxes for circular
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orbits, satisfying the first law of binary black hole dynamics
in the adiabatic approximation [25].

IV. EXPLICIT RESULTS FOR
HYPERBOLICLIKE ORBITS

Let us evaluate the leading-order contribution to
the orbital average of the tail integrals (2.13) in the
case of hyperboliclike motion. We need only the
Newtonian description of the dynamics of a binary system.
The corresponding Keplerian parametrization of the hyper-
bolic motion in harmonic coordinates in terms of dimen-
sionless variables (and c ¼ 1)—i.e., r ¼ rphys=ðGMÞ,
t ¼ tphys=ðGMÞ—is [27]

r ¼ ārðer cosh v − 1Þ;
n̄t ¼ er sinh v − v;

ϕ ¼ 2 arctan

" ffiffiffiffiffiffiffiffiffiffiffiffiffi
er þ 1

er − 1

s
tanh

v
2

#
: ð4:1Þ

We will assume the motion to be confined in the x − y
plane, so that ðr;ϕÞ are polar coordinates on that plane. The
expressions of the orbital parameters n̄, ār, and er as
functions of the specific binding energy Ē [Eq. (1.1)] and of
the dimensionless angular momentum j [Eq. (1.2)] of the
system are given by

n̄ ¼ ð2ĒÞ3=2; ār ¼
1

2Ē
; er ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2Ēj2

q
; ð4:2Þ

with Ē > 0 also expressed in terms of the relative momen-
tum for infinite separation p∞ as 2Ē≡ p2

∞. The parametric
equations (4.1) are obtained through analytic continuation
of the corresponding elliptic motion (Ē < 0) by replacing
v → iv. Therefore, n̄ and ār are the hyperbolic counterparts
of the inverse radial period and the semimajor axis,
respectively, whereas er still has the meaning of an

eccentricity parameter. Notice that this property is lost
from 2PN on [28].
The first step consists in Fourier transforming the

quadrupole moment, i.e.,

ÎabðωÞ ¼
Z

dt
dv

eiωtðvÞIabðtÞjt¼tðvÞdv: ð4:3Þ

This is done by using the integral representation of the
Hankel functions of the first kind of order p≡ q

er
and

argument q≡ iu, with u≡ ωerā
3=2
r ,

Hð1Þ
p ðqÞ ¼ 1

iπ

Z
∞

−∞
eq sinh v−pvdv: ð4:4Þ

As the argument q ¼ iu of the Hankel function is purely
imaginary, the Hankel function becomes converted into a
modified Bessel function of the first kind (Bessel K
function), according to the relation

Hð1Þ
p ðiuÞ ¼ 2

π
e−i

π
2
ðpþ1ÞKpðuÞ: ð4:5Þ

The typical term is of the kind eq sinh v−ðpþkÞv, the Fourier
transform of which is

eq sinh v−ðpþkÞv → 2e−i
π
2
ðpþkÞKpþkðuÞ; ð4:6Þ

involving Bessel functions having the same argument u but
various orders differing by integers. However, standard
identities valid for Bessel functions allow one to reduce the
orders to either p or pþ 1.
All energy and angular momentum tail integrals (3.9)

and (3.10) are defined in terms of the trace κðωÞ of the
tensor κabðωÞ [Eq. (3.11)] and the magnitude N ðωÞ of its
associated vector κiðωÞ (proportional to its dual and
orthogonal to the orbital plane, i.e., with ni ¼ δiz)
[Eq. (3.12)], which are given by

κðuÞ ¼ 32
ν2ā7r
p4u4

e−iπp
�
u2ðp2 þ u2 þ 1Þðp2 þ u2ÞK2

pþ1ðuÞ

− u½ð2p − 3Þu2 þ 2pðp − 1Þ2�ðp2 þ u2ÞKpðuÞKpþ1ðuÞ

þ
�
u6 þ

�
4p2 − 3pþ 1

3

�
u4 þ ð5p2 − 7pþ 2Þp2u2 þ 2p4ðp − 1Þ2

�
K2

pðuÞ
�
;

N ðuÞ ¼ 128
ν2ā7r
p4u4

e−iπp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ u2

q
½uKpþ1ðuÞ þ ðp2 þ u2 − pÞKpðuÞ�

×
�
ðp2 þ u2ÞuKpþ1ðuÞ −

��
p −

1

2

�
u2 þ p2ðp − 1Þ

�
KpðuÞ

�
; ð4:7Þ

as functions of the frequency-related variable u introduced above. For convenience, with an abuse of notation, we denoted
here as κðuÞ the dimensionless (rescaled) quantity
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κðuÞ → κphysðuÞ
½ðGMc2 Þ3 M

c �2
; ð4:8Þ

and similarly for N ðuÞ.
Figure 1 shows the frequency regions of energy versus

angular momentum dominance for selected values of the
eccentricity parameter and fixed semimajor axis. At high
frequencies (u → ∞), the proportionality factor P [defined
in Eq. (3.22)] goes to zero for every value of the
eccentricity. For instance, at the leading order in the
large-eccentricity expansion limit, we find

½PðuÞ�LOu→∞ ∼
2

u
ā3=2r er; ð4:9Þ

where the asymptotic relation ā3=2r er ∼ j=p2
∞ also holds. In

the limit of low frequencies (u → 0), instead its behavior
strongly depends on the chosen value of er. In fact, for
u → 0, one has

PðuÞu→0 ∼ 2ā3=2r

�
−

e2r − 2ffiffiffiffiffiffiffiffiffiffiffiffiffi
e2r − 1

p ln

�
ueγ

2

�

þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
e2r − 1

q �
; ð4:10Þ

implying that there exists a critical value of the eccentricity
er ¼ esepr ¼ ffiffiffi

2
p

such that in this limit PðuÞ gets the finite
value 4ā3=2r , whereas it logarithmically diverges assuming
either positive or negative values depending on whether er
is greater or smaller than esepr .

The tail integrals cannot be performed in closed analytical
form due to the dependence of the order of the Bessel K
functions on the integration variable. However, the order p
tends to zero when er → ∞, allowing for the explicit
computation in a large-eccentricity expansion [18,19,29]. In
fact, Taylor expanding the Bessel functions around p ¼ 0
leads to integrals involving Bessel functions KνðuÞ and their
derivatives ∂nKνðuÞ∂νn with respect to the order ν evaluated at
ν ¼ ð0; 1Þonly. Therefore, one is leftwith integrals of the typeZ

∞

0

du fðuÞlnmðuÞ; ð4:11Þ

withm ¼ 0, 1, 2, which are conveniently computed by using
the Mellin transform [19]. The latter is defined as

gðsÞ ¼
Z

∞

0

du us−1fðuÞ; ð4:12Þ

so that

gð1Þ ¼
Z

∞

0

du fðuÞ;
dgðsÞ
ds

				
s¼1

¼
Z

∞

0

du fðuÞ lnðuÞ;

d2gðsÞ
ds2

				
s¼1

¼
Z

∞

0

du fðuÞln2ðuÞ: ð4:13Þ

We list below the results of the computation, by using the
equivalent large-j expansion limit in place of the large-
eccentricity limit:

(a) (b)

FIG. 1. Behavior of the proportionality factor P [see Eq. (3.22)] as a function of the frequency-related dimensionless variable u,
showing the regions of energy versus angular momentum dominance. In (a) the orbital parameters have been set as ār ¼ 1 and er ¼ 2,
implying that PðuÞ ¼ 1 at u ¼ u�ðer; ārÞ ≈ 3.979. This is the typical behavior for er > esepr ¼ ffiffiffi

2
p

, for which P positively diverges as
u → 0 and monotonically decreases for increasing frequencies, crossing the horizontal line PðuÞ ¼ 1 at some value of u ¼ u�ðer; ārÞ.
The intersection point moves to the right for increasing values of the eccentricity [see also (b)]. The curves in (b) correspond instead to
different values of er (and the same value of ār ¼ 1), moving from bottom to top for increasing eccentricity er ¼ ½1.1; 1.2; 1.3; ffiffiffi

2
p

; 2; 3�.
The dotted curve is the separatrix between the two different behaviors (see the text).
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ðΔEÞtail ¼ Mc2ν2
�
3136

45

p6
∞

j4
þ 297π2

20

p5
∞π

j5
þ
�
9344

45
þ 88576

675
π2
�
p4
∞

j6
þ
�
−
2755

64
π4 þ 1579

3
π2
�
p3
∞π

j7
þO

�
1

j8

��
;

ðΔEÞtailðtailÞ ¼ Mc2ν2
��

−
297

10
L2 −

1709227

6125
−
130071

700
L −

297

40
π2
�
p8
∞π

j5

þ
�
−
177152

225
L2 −

841216

945
L −

2060423552

826875
−
1417216

225
L lnð2Þ þ 44288

675
π2 −

2834432

225
lnð2Þ2

−
3364864

945
lnð2Þ

�
p7
∞

j6

þ
�
−
405611

32
ζð3Þ − 57855

16
ζð3ÞL −

3158

3
L2 −

403863077

105840
−
7898921

2520
L −

1579

6
π2 þ 8265

128
π4
�
p6
∞π

j7

þO

�
1

j8

��
;

ðΔEÞðtailÞ2 ¼ Mc2ν2
��

−
297

5
γ2 þ 420γ þ 1260 lnð2Þ − 71707

160
−
1782

5
γ lnð2Þ þ 297

10
L2 þ 3111

20
L −

99

40
π2

−
2673

5
lnð2Þ2

�
p8
∞π

j5

þ
�
708608

225
γ lnð2Þ þ 177152

225
L2 þ 98816

1125
L −

27545792

16875
þ 1417216

225
L lnð2Þ þ 44288

225
π2

−
354304

225
γ2 þ 2480128

225
lnð2Þ2 þ 10336256

3375
γ −

9150464

3375
lnð2Þ

�
p7
∞

j6

þ
�
−
558789

32
ζð3Þ − 6316

3
γ2 þ 1447691

180
γ þ 1447691

60
lnð2Þ − 2354665

432
þ 173565

8
lnð2Þζð3Þ þ 57855

8
γζð3Þ

− 12632γ lnð2Þ þ 57855

16
ζð3ÞLþ 3158

3
L2 þ 82471

40
L −

1579

18
π2 þ 8265

128
π4 − 18948 lnð2Þ2

�
p6
∞π

j7

þO

�
1

j8

��
; ð4:14Þ

for the energy, and

ðΔJzÞtail¼
GM2

c
ν2
�
448

5

p4
∞

j3
þ69

5
π2

p3
∞π

j4
þ
�
4352

45
π2þ128

15

�
p2
∞

j5
þ
�
−
423

16
π4þ303π2

�
p∞π

j6
þO

�
1

j7

��
;

ðΔJzÞtailðtailÞ ¼
GM2

c
ν2
��

−
69

10
π2−

3997468

18375
−
27637

175
L−

138

5
L2

�
p6
∞π

j4

þ
�
−
96745024

55125
−
8704

15
L2−

662528

1575
Lþ2176π2

45
−
139264

15
lnð2Þ2−2650112

1575
lnð2Þ−69632

15
L lnð2Þ

�
p5
∞

j5

þ
�
−
303

2
π2−

5175383

2940
þ1269

32
π4−

104051

70
L−606L2−

8883

4
ζð3ÞL−

296757

40
ζð3Þ

�
p4
∞π

j6
þO

�
1

j7

��
;

ðΔJzÞðtailÞ2 ¼
GM2

c
ν2
��

161

10
π2þ2833

40
þ138

5
L2þ649

5
L
�
p6
∞π

j4

þ
�
8704

15
L2−

512

3
Lþ19936

135
þ69632

15
L lnð2Þþ2176

15
π2þ139264

15
lnð2Þ2−2048

3
lnð2Þ

�
p5
∞

j5

þ
�
707

2
π2−

18073

40
−
1269

32
π4þ8883

4
ζð3ÞLþ606L2þ8689

10
Lþ31437

5
ζð3Þ

�
p4
∞π

j6
þO

�
1

j7

��
; ð4:15Þ

for the angular momentum, with
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L ¼ ln

�
r0p2

∞

4j

�
: ð4:16Þ

The angular momentum memory integral (2.8) requires a
separate treatment. Let us denote

FbjðtÞ ¼
Z

t

−∞
dτIð3Þcb ðτÞIð3Þjc ðτÞ

¼
Z

∞

0

dt0Ið3Þcb ðt − t0ÞIð3Þjc ðt − t0Þ; ð4:17Þ

so that

Gmemory
i ðtÞ ¼ 4

35

G2

c10
ϵiabI

ð3Þ
aj ðtÞFbjðtÞ: ð4:18Þ

The integral (4.17) does not depend on time. In fact,
inserting the Fourier transform of the quadrupole moment
yields

FbjðtÞ ¼
Z

∞

0

dt0
Z

∞

−∞

dω
2π

Z
∞

−∞

dω0

2π
ð−iωÞ3ð−iω0Þ3

× e−iωðt−t0Þe−iω0ðt−t0ÞÎcbðωÞÎjcðω0Þ

¼
Z

∞

−∞

dω
2π

Z
∞

−∞

dω0

2π
ð−iωÞ3ð−iω0Þ3

× e−iðωþω0ÞtÎcbðωÞÎjcðω0Þπδðωþ ω0Þ

¼ 1

2

Z
∞

−∞

dω
2π

ω6ÎcbðωÞÎjcð−ωÞ: ð4:19Þ

Recalling the definition of the tensor κabðωÞ [Eq. (3.11)]
and restricting the range of frequencies between ½0;∞Þ then
gives

Fbj ¼
Z

∞

0

dω
2π

ω6κðbjÞðωÞ; ð4:20Þ

with κðbjÞðωÞ ¼ 1
2
ðκbjðωÞ þ κjbðωÞÞ. Finally, the orbital

average (2.13) reads

ðΔJiÞmemory ¼
4

35

G2

c10
ϵiabHajFbj; ð4:21Þ

where

Haj ¼
Z

∞

−∞
dtIð3Þaj ðtÞ: ð4:22Þ

The latter integral turns out to be

Haj ¼
Z

∞

−∞
dt

Z
∞

−∞

dω
2π

ð−iωÞ3e−iωtÎajðωÞ

¼
Z

∞

−∞
dωð−iωÞ3δðωÞÎajðωÞ

¼ −
4ν

ffiffiffiffiffiffiffiffiffiffiffiffiffi
e2r − 1

p
āre2r

ðδaxδjy þ δayδjxÞ; ð4:23Þ

so that the averaged memory integral (4.21) becomes

ðΔJiÞmemory ¼ −
4ν

ffiffiffiffiffiffiffiffiffiffiffiffiffi
e2r − 1

p
āre2r

ðϵixyFyy þ ϵiyxFxxÞ; ð4:24Þ

with only nonvanishing component

ðΔJzÞmemory ¼ −
4

35

G2

c10
4ν

ffiffiffiffiffiffiffiffiffiffiffiffiffi
e2r − 1

p
āre2r

ðFyy − FxxÞ; ð4:25Þ

the large-j expansion of which reads

ðΔJzÞmemory ¼ −
GM2

c
ν3
�
16

105

p5
∞π

j4
þ 128

63

p4
∞

j5

þ 8

7

p3
∞π

j6
þO

�
1

j7

��
: ð4:26Þ

V. TIME-SYMMETRIC TAILS

The tails defined above should be more properly termed
“past tails,” since they refer to the past interaction between
the two bodies, in the sense that the integration variable
ξ ¼ t − τ in the typical tail integral (3.2) takes values in the
interval τ ∈ ½0;∞Þ, namely,

T lnm ½XðnÞ
L ;CXL

�ðtÞ ¼
Z

∞

0

dτXðnÞ
L ðt − τÞ lnm

�
τ

CXL

�
; ð5:1Þ

implying contributions from XðnÞ
L ðξÞ with ξ varying in the

range ξ ∈ ð−∞; t�.
Previous works focusing on ellipticlike motion used the

tails in this precise form. The meaning and importance
of time-symmetric tails was proven at the 4PN level
in Ref. [12], where tail effects on the dynamics were
decomposed in a time-symmetric action contribution and
a time-antisymmetric radiation-reaction force. Such a
decomposition seems clearly extendable when considering
effects which are linear in radiation reaction, as recently
accomplished in Ref. [20]. It is well known that the
radiation-reaction force starts at 2.5PN, so that quadratic
effects in radiation reaction start affecting the dynamics
of the system beyond the 4PN order. More precisely, one
expects that second-order effects will enter the dynamics at
order G4

c10, i.e., at the 4PM level and the 5PN level (see the
discussion in Sec. X in Ref. [20]). No complete treatment of
the energy flux (as well as angular and linear momentum
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fluxes) exists at such a level yet. It is reasonable to
expect that the contribution of higher-order time-symmetric
tails becomes relevant as soon as the PN accuracy
increases, as they did at 4PN. Further investigation is
necessary to systematically include in the dynamics time-
symmetric tails which are nonlinear in radiation reaction,
whatever approach one uses (e.g., the effective field theory
approach [30–32]).
Let us replace XðnÞ

L ðt − τÞ by the sum of its symmetric
(sym) and antisymmetric (asym) parts,

XðnÞ
L ðt − τÞ ¼ 1

2
½XðnÞ

L ðt − τÞ þ XðnÞ
L ðtþ τÞ�

þ 1

2
½XðnÞ

L ðt − τÞ − XðnÞ
L ðtþ τÞ�

≡ XðnÞ
L;symðt; τÞ þ XðnÞ

L;asymðt; τÞ: ð5:2Þ

The time-symmetric part only is used as the proper tail
contribution, since the time-antisymmetric one is already
included in the nonlocal part of the Hamiltonian. The time-

symmetric (ts) version of T lnm ½XðnÞ
L ;CXL

�ðtÞ, thus, reads

T ts
lnm ½XðnÞ

L ;CXL
�ðtÞ

¼
Z

∞

0

dτXðnÞ
L symðt; τÞ lnm

�
τ

CXL

�
: ð5:3Þ

Passing then to the Fourier domain, the above expression
becomes

T ts
lnm ½XðnÞ

L ;CXL
�ðtÞ¼ 1

2

Z
∞

−∞

dω
2π

ð−iωÞnX̂LðωÞ

×e−iωt½Amðω;CXL
ÞþAmð−ω;CXL

Þ�:
ð5:4Þ

The final expressions for the (averaged) energy and angular
momentum time-symmetric tails are given by Eq. (2.13)
with the replacement T lnm → T ts

lnm in the fluxes (2.10)
and (2.11).
Consider now the time-symmetric version of the basic

integral (3.7), i.e.,

Fts
m½YðpÞ

M ; XðnÞ
L ;CXL

� ¼
Z

∞

−∞
dtYðpÞ

M ðtÞT ts
lnm ½XðnÞ

L ;CXL
�ðtÞ

¼
Z

∞

−∞
dt

Z
∞

−∞

dω0

2π
e−iω

0tð−iω0ÞpŶMðω0Þ

×
1

2

Z
∞

−∞

dω
2π

ð−iωÞnX̂LðωÞe−iωt½Amðω; CXL
Þ þ Amð−ω; CXL

Þ�

¼ 1

2

Z
∞

−∞

dω
2π

ð−iωÞnðiωÞpŶMð−ωÞX̂LðωÞ½Amðω; CXL
Þ þ Amð−ω; CXL

Þ�; ð5:5Þ

which for m ¼ 1 and m ¼ 2 becomes

Fts
1 ½YðpÞ

M ; XðnÞ
L ;CXL

� ¼ 1

2

Z
∞

−∞

dω
2π

ð−iωÞnðiωÞpŶMð−ωÞX̂LðωÞ½A1ðω; CXL
Þ þ A1ð−ω; CXL

Þ�

¼ 1

2

Z
∞

−∞

dω
2π

ð−iωÞnðiωÞpŶMð−ωÞX̂LðωÞð−Þ
π

jωj ð5:6Þ

and

Fts
2 ½YðpÞ

M ; XðnÞ
L ;CXL

� ¼ 1

2

Z
∞

−∞

dω
2π

ð−iωÞnðiωÞpŶMð−ωÞX̂LðωÞ½A2ðω; CXL
Þ þ A2ð−ω; CXL

Þ�

¼ 1

2

Z
∞

−∞

dω
2π

ð−iωÞnðiωÞpŶMð−ωÞX̂LðωÞ
2π

jωj lnðCXL
jωjeγÞ; ð5:7Þ

respectively, having used Eq. (3.5). In the special case Y ¼ X and L ¼ M, Eqs. (5.6) and (5.7) simplify as

Fts
1 ½XðpÞ

L ; XðnÞ
L ;CXL

� ¼ 1

2
ð−1Þnþ1inþp

Z
∞

−∞

dω
2

ωnþpX̂Lð−ωÞX̂LðωÞ
1

jωj ; ð5:8Þ

Fts
2 ½XðpÞ

L ; XðnÞ
L ;CXL

� ¼ 1

2
ð−1Þninþp

Z
∞

−∞
dωωnþpX̂Lð−ωÞX̂LðωÞ

1

jωj lnðCXL
jωjeγÞ; ð5:9Þ
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respectively. Therefore, when nþ p is odd, both Fts
1 ½XðpÞ

L ; XðnÞ
L ;CXL

� and Fts
2 ½XðpÞ

L ; XðnÞ
L ;CXL

� vanish identically.
The time-symmetric energy tail turns out to be

ðΔEÞtail;ts ¼
Z

∞

−∞
dtF tail;tsðtÞ ¼

4

5

G2M
c8

Fts
1 ½Ið3Þij ; I

ð5Þ
ij ;CI2 �

¼ 4

5

G2M
c8

1

2

Z
∞

−∞

dω
2π

ð−iωÞ5ðiωÞ3Îijð−ωÞÎijðωÞð−Þ
π

jωj

¼ 1

5

G2M
c8

Z
∞

−∞
dωω8Îijð−ωÞÎijðωÞ

1

jωj

¼ 2

5

G2M
c8

Z
∞

0

dωω7Îijð−ωÞÎijðωÞ; ð5:10Þ

coinciding with the analogous result for past tails. The time-symmetric part of the tail-of-tail integral is instead identically
vanishing:

ðΔEÞtailðtailÞ;ts ¼
Z

∞

−∞
dtF tailðtailÞ;tsðtÞ ¼

4

5

G3M2

c11

�
Fts
2 ½Ið3Þij ; I

ð6Þ
ij ;CI2 � −

107

105
Fts
1 ½Ið3Þij ; Ið6Þij ; C̃I2 �

�
¼ 0; ð5:11Þ

due to the general property shown above with nþ p ¼ 9. Finally, the time-symmetric tail-squared integral reads

ðΔEÞðtailÞ2;ts ¼
Z

∞

−∞
dtF ðtailÞ2;tsðtÞ

¼ 1

5

G3M2

c11

Z
∞

−∞
dt

Z
∞

−∞

dω
2π

ð−iωÞ5ÎijðωÞe−iωtð−Þ
π

jωj
Z

∞

−∞

dω0

2π
ð−iω0Þ5Îijðω0Þe−iω0tð−Þ π

jω0j

¼ 1

5

G3M2

c11

Z
∞

−∞

dω
2π

ð−iωÞ5ðiωÞ5ÎijðωÞÎijð−ωÞ
π2

ω2

¼ 1

5

G3M2

c11
π

Z
∞

0

dωω8ÎijðωÞÎijð−ωÞ; ð5:12Þ

differently from the analogous past tail case.
The time-symmetric angular momentum tails turn out to be

ðΔJiÞtail;ts ¼
Z

∞

−∞
dtGtail;ts

i ¼ 4

5

G2M
c8

ϵiab½Fts
1 ½Ið2Þaj ; I

ð5Þ
bj ;CI2 � þ Fts

1 ½Ið3Þbj ; I
ð4Þ
aj ;CI2 ��

¼ 2

5

G2M
c8

Z
∞

0

dωω6κiðωÞ;

ðΔJiÞtailðtailÞ;ts ¼
Z

∞

−∞
dtGtailðtailÞ;ts

i ¼ 4

5

G3M2

c11
ϵiab½Fts

2 ½Ið2Þaj ; I
ð6Þ
bj ;CI2 � þ Fts

2 ½Ið3Þaj ; I
ð5Þ
bj ;CI2 �

−
107

105
ðFts

1 ½Ið2Þaj ; I
ð6Þ
bj ; C̃I2 � þ Fts

1 ½Ið3Þaj ; I
ð5Þ
bj ; C̃I2 �Þ� ¼ 0;

ðΔJiÞðtailÞ2;ts ¼
Z

∞

−∞
dtGðtailÞ2;ts

i ¼ 8

5

G3M2

c11
ϵiab

Z
∞

−∞
dt

�
1

2

Z
∞
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2π
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�
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where we have used the property that κiðωÞ is an odd
function of the frequency [see Eq. (3.11)]:

κið−ωÞ ¼ 2iϵiabÎajð−ωÞÎbjðωÞ
¼ −2iϵibaÎbjð−ωÞÎajðωÞ ¼ −κiðωÞ: ð5:14Þ

In summary, direct comparison between the
orbital averages of the energy and angular momentum tail
integrals [Eqs. (3.9) and (3.10)] and their time-symmetric
counterparts [Eqs. (5.10)–(5.12) and (5.13), respectively]
shows that

ðΔEÞtail;ts ¼ ðΔEÞtail; ðΔEÞtailðtailÞ;ts ¼ 0; ðΔEÞðtailÞ2;ts ¼ ðΔEÞnologðtailÞ2 ;

ðΔJiÞtail;ts ¼ ðΔJiÞtail; ðΔJiÞtailðtailÞ;ts ¼ 0; ðΔJiÞðtailÞ2;ts ¼ ðΔJiÞnologðtailÞ2 ; ð5:15Þ

where “nolog” stands for the nonlogarithmic term of the corresponding (past tail) quantity. The property (3.21) and related
discussion apply also to this case.
The explicit computation of the time-symmetric tail-squared integrals in the large-j expansion limit gives

ðΔEÞðtailÞ2;ts ¼ Mc2ν2π2
�
297

40

p8
∞π

j5
þ 44288

225

p7
∞

j6
þ 1579

6

p6
∞π

j7
þO

�
1

j8

��
ð5:16Þ

and

ðΔJzÞðtailÞ2;ts ¼
GM2

c
ν2π2

�
69

10

p6
∞π

j4
þ 2176

15

p5
∞

j5
þ 303

2

p4
∞π

j6
þO

�
1

j7

��
: ð5:17Þ

Noticeably, the coefficients of the previous expansions
[Eqs. (5.16) and (5.17)] coincide with the corresponding
coefficients of the L2 terms in Eqs. (4.14) and (4.15)
divided by a factor of 4.

VI. CONCLUDING REMARKS

We have computed higher-order tail (i.e., tail-of-tail and
tail-squared) contributions to both the energy and angular
momentum losses averaged along hyperboliclike orbits at
their leadingPNapproximation, using harmonic coordinates
and working in the Fourier domain. These terms are
conveniently denoted as past tails, since they are determined
by the full past interaction among the bodies. We have also
evaluated the time-symmetric counterpart of these tail
integrals, which plays a key role in the construction of
the nonlocal part of the conservative two-body dynamics
starting from the 4PN level. All results have been expressed
as an expansion in the large-eccentricity parameter and then
converted in a large angular momentum expansion. It is
interesting to note that we have obtained a nonvanishing
value for the (averaged) nonlinear angular momentum
memory integral, differently from the bound case [22].
Wehave also found the interesting result (valid at the same

approximation level inwhich the tail integrals are computed)
that there exists a direct proportionality between the loss of

energy and angular momentum rates per unit frequency by a
frequency-dependent factorwhich is the same for tails of any
kind, generalizing similar links known for circular orbits
only. The ranges of frequencies wherein such a factor is
smaller (greater) than one correspond to those regions in the
spectrumof energy (angularmomentum) loss dominance for
fixed values of the orbital parameters.
The inclusion of tail effects is necessary for the con-

struction of the two-body Hamiltonian at high PN orders as
well as for the evaluation of more and more accurate
expressions for the radiative losses of energy, angular
momentum, and linear momentum. The latter are essential
for computing the radiation-reaction contribution to the
scattering angle in the relativistic two-body problem [20].
We leave for a forthcoming study the computation of
higher-order tails of the linear momentum flux, following
the same lines outlined in the present work.
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