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We carry out numerical simulations of the gravitational collapse of a rotating perfect fluid with the
ultrarelativistic equation of state P ¼ κρ, in axisymmetry in 2þ 1 spacetime dimensions with Λ < 0. We
show that for κ ≲ 0.42, the critical phenomena are type I, and the critical solution is stationary. The picture
for κ ≳ 0.43 is more delicate: for small angular momenta, we find type II phenomena, and the critical
solution is quasistationary, contracting adiabatically. The spin-to-mass ratio of the critical solution
increases as it contracts, and hence, so does that of the black hole created at the end as we fine-tune to the
black-hole threshold. Forming extremal black holes is avoided because the contraction of the critical
solution smoothly ends as extremality is approached.
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I. INTRODUCTION

Critical collapse is concerned with the threshold of black-
hole formation in the space of initial data. Starting with
Choptuik’s study of the spherically symmetric, massless
scalar field [1], and since then generalized to many other
systems [2], one can enumerate several general features of
critical phenomena. The more interesting kind is now called
“type II” phenomena. As the black-hole threshold is
approached through the fine-tuning of a one-parameter
family of initial data, the black-hole mass and spacetime
curvature scale as a power of distance to the black-hole
threshold. Furthermore, for initial data close to the black-hole
threshold, the solution will be, in an intermediary stage, well
approximated by a critical solution. This critical solution has
the general characteristics of being self-similar, universal
(independent of the initial data) and possessing a single
growing linear perturbation mode. By contrast, in “type I”
phenomena, the mass and curvature do not scale, but instead
approach a nontrivial constant. The critical solution is time
periodic or stationary. The above properties for type I and II
phenomena hold for all matter systems studied thus far in
3þ 1 and all higher dimensions; see Ref. [2] for a review.
The vast majority of research studies dedicated to critical

collapse focuses on spherically symmetric initial data.
Since black holes can carry angular momentum, the full
picture of critical collapse requires us to go beyond
spherical symmetry. However, the generalization from
spherically symmetric to, say, axisymmetric initial data
brings about many numerical and theoretical complica-
tions. In part, one has to deal with an additional indepen-
dent variable. Moreover, gravitational waves exist beyond
spherical symmetry, and they can exhibit (type II) critical
phenomena by themselves [3]. In particular, this implies
that, if one wishes to study the critical phenomena of some
matter field in axisymmetry, one will have to disentangle

the critical phenomena due to the matter field and those due
to gravitational waves. This additional difficulty is cur-
rently of great importance since the critical phenomena of
pure gravitational waves are still poorly understood.
One way to work around those problems is to consider,

as a toy model, the situation in 2þ 1 dimensions. Gravity
in 2þ 1 dimensions is rather peculiar. Notably, black
holes cannot form without a negative cosmological con-
stant. The rotating black-hole solution, called the BTZ
solution [4], is also quite unique. Its central singularity is
not a usual curvature singularity, but a causal singularity.
Furthermore, the black-hole spectrum is separated from
the background (anti-de Sitter spacetime) configuration
by a mass gap. A direct consequence of this is that small
deviations from anti-de Sitter spacetime (from now, AdS)
cannot collapse into a black hole. Furthermore, gravita-
tional waves do not exist in 2þ 1 dimensions. For these
reasons, it is unclear if many of the results in 2þ 1
dimensions can simply be carried over to the 3þ 1
dimensional setting. On the other hand, the absence of
gravitational waves enables us to bypass the current major
difficulties encountered in higher dimensions. A rotating
object in 3þ 1 dimensions cannot be spherically sym-
metric, but at most axisymmetric, roughly speaking
because rotation tries to flatten the rotating body. In the
2þ 1-dimensional counterpart of such rotating axisym-
metric solutions, there is no dimension for the flattening to
happen in, and all the variables are still only functions of
“time” and “radius”. This makes the study of critical
collapse with rotating initial data much more tractable. As
in Refs [5,6], we call a solution circularly symmetric if it
admits a spacelike Killing vector ∂θ with closed orbits.
More specifically (and perhaps in a slight abuse of
notation), we call it spherically symmetric if there is no
rotation, and we call it axisymmetric with rotation.
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Pretorius and Choptuik investigated the black-hole
threshold for the spherically symmetric, massless scalar
field in 2þ 1 dimensions [7]. They found type II phenom-
ena (mass and curvature scaling). The critical solution is
also found, near the center, to be approximately continu-
ously self-similar (as opposed to discretely as is the case in
3þ 1 dimensions). This system was investigated in more
depth in Ref. [8]. The authors found good agreement
between the numerical solution during the critical regime
and an exact continuously self-similar Λ ¼ 0 solution.
However, one major unresolved issue is that this exact
solution has three growing modes. Investigating the modes
numerically, they surprisingly only find numerical evidence
of the top (largest) growing mode. There is to date no
satisfactory explanation for this, but it was conjectured
that the nonlinear effect of the cosmological constant may
be responsible for removing all but the top growing mode
(adding the effect of the cosmological constant perturba-
tively does not alter the perturbation spectrum).
In Ref. [5], the same authors generalized the consid-

eration to a complex rotating scalar field. It turns out that
the effect of rotation is highly nontrivial; neither the critical
exponents nor the critical solution are universal. The
angular momentum does not show any scaling. The mass
and curvature may or may not scale, depending on the one-
parameter family of initial data. Finally, the threshold of
mass and curvature scalings are different.
In Ref. [6], the present authors investigated the spheri-

cally symmetric perfect fluid, with barotropic equation of
state P ¼ κρ. We found that the critical phenomena are of
type I if κ ≲ 0.42, while they are of type II if κ ≳ 0.43. The
critical solution for type I is static (as expected), but for type
II, it is not self-similar, but instead quasistatic. That is, the
critical solution corresponds to an adiabatic sequence of
static solutions whose size shrinks to zero (exponentially).
In this paper, we now extend this previous work to

axisymmetric initial data. In Sec. II, we give a quick
overview of the Einstein-fluid matter system. In Sec. III, we
present and discuss our numerical findings.

II. EINSTEIN AND FLUID EQUATIONS
IN POLAR-RADIAL COORDINATES

We refer the reader to the companion paper [9] for a
complete discussion. We use units where c ¼ G ¼ 1.
In axisymmetry in 2þ 1 dimensions, we introduce

generalized polar-radial coordinates as

ds2 ¼ −α2ðt; rÞdt2 þ a2ðt; rÞR02ðrÞdr2
þ R2ðrÞ½dθ þ βðt; rÞdt�2: ð1Þ

We denote ∂=∂t by a dot and ∂=∂r by a prime. Note that
our choice grr ¼ a2R02 makes a invariant under a redefi-
nition of the radial coordinate, r → r̃ðrÞ. The “area”

(circumference) radius R is defined geometrically as the
length of the Killing vector ∂=∂θ.
We impose the gauge condition αðt; 0Þ ¼ 1 (t is proper

time at the center), and the regularity condition aðt; 0Þ ¼ 1
(no conical singularity at the center).
We define the auxiliary quantity

γ ≔ β0; ð2Þ
anticipating that β will not appear undifferentiated in the
Einstein or fluid equations, but only in the form of γ and its
derivatives, since the form (1) of the metric is invariant
under the change of angular variable θ → θ þ fðtÞ. It
follows that the particular choice of gauge for β does
not affect our evolution, and for our numerical implemen-
tation, we choose βðt; 0Þ ¼ 0. The gauge is fully specified
only after specifying the function RðrÞ. In our numerical
simulations, we use the compactified coordinate

RðrÞ ¼ l tanðr=lÞ; ð3Þ

where

l ≔
1ffiffiffiffiffiffiffi
−Λ

p ð4Þ

is the AdS length scale, but for clarity we write R and R0
rather than the explicit expressions.
In our coordinates, the Kodama mass M and angular

momentum J are given by

Jðt; rÞ ≔ R3γ

R0aα
; ð5Þ

Mðt; rÞ ≔ R2

l2
−

1

a2
þ J2

4R2
: ð6Þ

This local mass function generalizes thewell-knownMisner-
Sharp mass from spherical symmetry (in any spacetime
dimension) to axisymmetry (in 2þ 1 only) [9,10].
The stress-energy tensor for a perfect fluid is

Tab ¼ ðρþ PÞuaub þ Pgab; ð7Þ
where ua is tangential to the fluid worldlines, with
uaua ¼ −1, and P and ρ are the pressure and total energy
density measured in the fluid frame. In the following, we
assume the one-parameter family of ultrarelativistic fluid
equations of state P ¼ κρ, where 0 < κ < 1.
The 3-velocity is decomposed as

uμ ¼ fut; ur; uθg ¼ Γ
�
1

α
;
v
aR0 ;

w
R
−
β

α

�
; ð8Þ

where v and w are the physical radial and tangential
velocities of the fluid relative to observers at constant R,
satisfying v2 þ w2 < 1, and
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Γ ≔ ð1 − v2 − w2Þ−1=2 ð9Þ

is the corresponding Lorentz factor.
The stress-energy conservation law ∇aTab ¼ 0, which

together with the equation of state governs the fluid
evolution, can be written in balance law form

q;t þ f;r ¼ S; ð10Þ

where we have defined the conserved quantities

q ≔ fΩ; Y; Zg ð11Þ

given by

Y ≔ R0vσ; ð12Þ

Z ≔ aR2R0wσ; ð13Þ

Ω ≔ R0Rτ þ JZ
2R2

; ð14Þ

the corresponding fluxes f given by

fðYÞ ≔
α

a
ðPþ v2σÞ; ð15Þ

fðZÞ ≔ αR2vwσ; ð16Þ

fðΩÞ ≔
α

a
Rvσ þ JfðZÞ

2R2
; ð17Þ

the corresponding sources S given by

SðYÞ ¼
1

a

�
ðw2 − v2ÞσαR

0

R
− τα;r − ðPþ v2σÞαðln aÞ;r

þ Rwσγ − 2vσR0a;t

�
; ð18Þ

SðZÞ ¼ 0; ð19Þ

SðΩÞ ¼ 0; ð20Þ

and the shorthands

σ ≔ Γ2ð1þ κÞρ; ð21Þ

P ≔ κρ; ð22Þ

τ ≔ σ − P: ð23Þ

At any given time, the balance laws (10) are used to
compute time derivatives of the conserved quantities q,
using standard high-resolution shock-capturing methods.
The q are evolved to the next time step via a fourth-order

Runge-Kutta step. At each (sub-)time step, the metric
variables are then updated through the Einstein equations

M;r ¼ 16πΩ; ð24Þ

J;r ¼ 16πZ; ð25Þ

ðln αaÞ;r ¼ 8πa2RR0ð1þ v2Þσ: ð26Þ

Our numerical scheme is totally constrained, in the sense
that only the matter is updated through evolution equations.
Our numerical scheme exploits the conservation laws for Ω
and Z, and in consequence for M and J, to make their
numerical counterparts exactly conserved in the discretized
equations.

III. NUMERICAL RESULTS

A. Initial data

The numerical grid is equally spaced in the compactified
coordinate r, as defined in (3), with 800 grid points. We fix
the cosmological constant to be Λ ¼ −π2=4, so that the
AdS boundary is located at r ¼ 1. The numerical domain
does not comprise the entire spacetime. Instead, we set an
unphysical outer boundary with “copy boundary condi-
tions” for the conserved variables q. Unless otherwise
stated, we fix the numerical outer boundary at r ¼ 0.7,
corresponding in area radius to Rmax ≃ 1.25 ≃ 1.96l.
We choose to initialize the primitive fluid variables ρ and

v as double Gaussians in R,

ρð0; RÞ ¼ pρ

2

�
e−ð

R−Rρ
σρ

Þ2 þ e−ð
RþRρ
σρ

Þ2�; ð27Þ

vð0; RÞ ¼ pv

2

�
e−ð

R−Rv
σv

Þ2 þ e−ð
RþRv
σv

Þ2
�
; ð28Þ

where pρ and pv are the magnitudes, Rρ and Rv the
displacements from the center, and σρ and σv the widths of
the Gaussians. The initial data for w are defined through the
combination wΓ2, by

wð0; RÞΓ2 ¼ pwR: ð29Þ

Near the center, the fluid is “rigidly rotating” in the sense
that w ∼ R. The strength of the rotation is parametrized
by pw.
As for the spherically symmetric case, we consider three

types of initial data:
(1) time-symmetric off-centered: pv ¼ 0, Rρ ¼ 0.4,
(2) time-symmetric centered: pv ¼ 0, Rρ ¼ 0, and
(3) initially ingoing off-centered:pv ¼ −0.15,Rv ¼ 0.4,

σv ¼ 0.15, Rρ ¼ 0.4.
In all cases, for κ ≤ 0.42, we take σρ ¼ 0.05, while for

κ ≥ 0.43, we choose σρ ¼ 0.2. The reason for this choice is
the fact that in spherical symmetry, where type I behavior
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occurs, numerical instabilities form near the numerical
outer boundary and travel inwards. These instabilities form
strong shocks near the center for a second-order limiter.
Making the initial data more compact partially mitigates
this. Furthermore, for κ ≤ 0.42, we use a first-order
(Godunov) limiter, as we did in spherical symmetry. The
dissipative properties of the Godunov limiter eliminate
those shocks. As we see, similar instabilities now also
occur for κ ≳ 0.43, for “large” deviations from spherical
symmetry. Unless otherwise stated, we therefore also use a
Godunov limiter for κ ≥ 0.43, although we keep the width
as σρ ¼ 0.2.
Finally, in all cases, pw is fixed to a particular value, and

pρ ≕p is the parameter to be fine-tuned to the black-hole
threshold.
We use the same conventions as in [6] and denote by

p ¼ p⋆ the critical parameter separating initial data that
(promptly) collapse and disperse. We are interested in
initial data where p ≃ p⋆, and we denote by subn subcriti-
cal data for which log10ðp⋆ − pÞ ≃ −n, and by supern
supercritical data with log10ðp − p⋆Þ ≃ −n.
In the following, “apparent horizon” (AH) mass and

angular momentum refer to the first appearance of a
marginally outer-trapped surface in our time slicing,
indicated by diverging metric component a.

B. κ≲ 0.42: Type I critical collapse

1. Lifetime scaling

In the spherically symmetric case, we showed in Ref. [6]
that the critical phenomena depend on the value of κ. In
particular, for κ ≲ 0.42, we find typical type I behavior,
where the mass and curvature do not scale and the critical
solution near the center is static. How is this picture
modified in the presence of angular momentum?
We start answering this question by showing, in Fig. 1, a

log-log plot of the apparent horizon massMAH (green group
of curves), the adimensionalized apparent horizon angular
momentum JAH=l (blue group of curves), and themaximum
of curvature −Λρ−1max (orange group of curves), against
p − p⋆, for different values of pω. For all these plots, we
consider centered initial datawith κ ¼ 0.4. The range ofpω is
pω ¼ 0.01, 0.1, 0.2, 0.4, 0.6, 0.8 and 1.0. This corresponds to
a range from “small” angular momentum (in the sense that
JAH=ðMAHlÞ ≪ 1) to “large” angular momentum (for
example, pω ¼ 1.0 corresponds to JAH=ðMAHlÞ ≃ 0.64).
This behavior, as in spherical symmetry, persists up to

some critical value of κ between κ ¼ 0.42 and κ ¼ 0.43.
For comparison, we have also added an evolution with κ ¼
0.43 (dotted curves) and pω ¼ 0.01. The type I behavior
also holds for the off-centered and ingoing initial data.
As in the spherically symmetric case, we consider the

time-dependent quantity RM, defined by

Mðt; RMðtÞÞ ≔ 0; ð30Þ

as a measure of the length scale of the solution. Similarly,
we define the central density ρ0, mass MOB, and angular
momentum JOB at the numerical outer boundary,

ρ0ðtÞ ≔ ρðt; 0Þ; ð31Þ

MOBðtÞ ≔ Mðt; RmaxÞ; ð32Þ

JOBðtÞ ≔ Jðt; RmaxÞ: ð33Þ

In Fig. 2, we plot in a linear-log plot,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Λρ−10

p
, JOB=l,ffiffiffiffiffiffiffiffiffiffi

MOB
p

, and RM=l against central proper time t, for sub6 to
sub15 initial data. We consider here centered initial data
with pω ¼ 1.0. Note that we have shifted log10 JOB=l by a
constant c ¼ 1.2 for clarity. As is typical for critical
phenomena, the more fine-tuned the initial data to the
black-hole threshold, the longer the critical regime, before
the growing mode of the critical solution becomes dom-
inant. In order to avoid cluttering, we truncate the plots
after it is clear that the growing mode causes the curves to
“peel off” from the critical regime.
For type I phenomena, it is not the mass and curvature

that scale. Instead, it is the lifetime of the intermediate
regime where the solution is approximated by the
critical solution. Assuming that the critical solution is
stationary, we can make the following ansatz for its linear
perturbations:

δZðt; RÞ ¼
X∞
i¼0

CiðpÞeσi tlZiðRÞ; ð34Þ

FIG. 1. Log-log plot demonstrating the absence of scaling, for
small κ, of ρmax (upper group of curves, orange), MAH (middle
group of curves, green) and JAH=l (bottom group of curves, blue)
for different values of pω, corresponding to a range of “small” to
“large” angular momenta. Solid lines correspond to κ ¼ 0.4. We
find typical type I behavior, irrespective of pω. This behavior still
holds up to κ ¼ 0.42. For comparison, the dotted curves show
κ ¼ 0.43 and “small” angular momentum, where type II behavior
is instead observed within this range of fine-tuning; see Fig. 4 for
more details.
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where Z stands for any dimensionless metric or matter
variable, such as R2ρ, M, or α.
We assume the critical solution has a single growing

mode, Reσ0 > 0. Since the solution is exactly critical at
p ¼ p⋆, this implies that C0ðpÞ ∼ p − p⋆. We define the
time t ¼ tp to be the time where the growing perturbation
becomes nonlinear. This occurs when

ðp − p⋆Þeσ0
tp
l ≃ 1; ð35Þ

and so

tp ¼ l
σ0

ln jp − p⋆j þ constant: ð36Þ

The exponent σ0 can be read off from Fig. 2. We find
σ0 ≃ 8.29, close to its value in spherical symmetry (which
was ≃8.84) [6].

2. The critical solution

In [11], we showed the existence of a two-parameter
family of rigidly rotating, stationary star solutions for any
causal equation of state P ¼ PðρÞ. These solutions are
analytic everywhere including at the center and have finite
total mass M and angular momentum J. The two free
parameters can be taken to be s, giving the overall length
scale of the star, and Ω̃, parametrizing the rotation of the
star. The latter is defined so that Ω̃ ¼ 0 corresponds to
nonrotating stars. We can write these exact solutions as

ZðRÞ ¼ Ž

	
R
s
; μ; Ω̃



; ð37Þ

where Ž is the corresponding exact stationary solutions.
The cosmological constant enters this picture through a
specific combination, parametrized by the dimensionless
quantity μ,

μ ≔ −Λs2 − Ω̃2: ð38Þ

In what follows, all quantities pertaining to the exact
stationary solutions have a check symbol, as in (37).
The parameters μ and Ω̃ correspond to μ and Ω in [11].

(The tilde is used to distinguish Ω̃ from the unrelated
conserved variable Ω). Regular stationary solutions exist
only for 0 ≤ μ ≤ 1, and μ can be interpreted as para-
metrizing the competition of the attractive acceleration
induced by a negative cosmological constant and the
centrifugal acceleration.
In Fig. 3, we compare our best subcritical numerical

solution at t ¼ 2.1, where the solution is approximately
stationary, to the family of stationary solutions. Since the
stationary solutions form a two-parameter family, we need
to fit those two parameters. For this, we match the central
density and total angular momentum, using the angular
momentum at the numerical outer boundary as a proxy for
the total angular momentum. The matching conditions are

JOBð1 − κÞ≡ 4κlð1 − μÞΩ̃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μþ Ω̃2

q
; ð39Þ

1 − μ≡ 8πκρ0l2ðμþ Ω̃2Þ: ð40Þ

Note that there is a slight abuse of language here; the total
angular momentum (and mass) of the system is a conserved
quantity. The angular momentum (and mass) at the
numerical outer boundary (at finite radius) differ from it,
since a bit of spin (and mass) are radiated away through this
boundary at the start of the evolution, when the solution has
yet to enter the critical regime. At late times, the approx-
imately time-independent value of the angular momentum
(and mass) at the outer boundary during the critical regime
is a fixed fraction of the constant total spin (and mass) of
the system.
Our matching of the angular momentum therefore

introduces a small systematic error. At first, we attempted
to ask for the value of RM between the numerical and exact
solutions to agree. This is also possible, but RM depends
very weakly on rotation. Such a matching condition is
therefore very sensitive to numerical error.
In the example of Fig. 3, our matching procedure gives

s ≃ 0.0882 and Ω̃ ≃ 0.0498. We then find very good
agreement for ρ, M and a=α at all R. We find slightly
less good agreement for the angular momentum. Since J is
relatively small, it is likely that this is a numerical error,
although its precise nature is unknown.
We remark here that, at first, we attempted to push the

numerical outer boundary further out. We noticed however,

FIG. 2. Lin-log plot of RMðtÞ=l,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Λρ−10 ðtÞ

p
,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MOBðtÞ

p
, and

JOBðtÞ=lþ c with c ¼ 1.2, for sub6 to sub15 centered initial
data with pw ¼ 1.0. We observe that, as we fine-tune to the black-
hole threshold, the solution approaches an intermediate attractor
solution in which all the variables are approximately constant.
Less fine-tuned initial data peel off from the critical regime
sooner than more fine-tuned data.
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for Rmax ≳ 4, there is a clear numerical error that builds up
and causes mass and spin to slowly radiate away. For
example, for Rmax ≃ 1.25, the total mass and angular
momentum stay constant in the critical regime within
≪ 1% (see Fig. 7). On the other hand, for Rmax ≃ 4, they
decrease slowly and approximately linearly. As compared to
the near constant value that they take for Rmax ≃ 1.25, they
further decrease by about 29% and 16% for Rmax ≃ 4,
respectively. This is measured up until the time when the
“star” disperses. This decay rate is also different for larger
Rmax.We do not have an explanation for this numerical error.

C. κ≳ 0.43: Type II critical collapse

1. Curvature and mass scaling

In spherical symmetry, we have given strong evidence
that the critical phenomena are type II for κ ≥ 0.43 (the
apparent-horizon mass and curvature scale as some power
law and the critical solution shrinks quasistatically to
arbitrarily small size); see [6]. As we did for κ ≤ 0.42,
we now consider families of initial data with different initial
angular momentum pω. In the following, we focus our
attention on the case κ ¼ 0.5.
In Fig. 4, we plot −Λρ−1max (orange group of curves),MAH

(green group of curves) and JAH=l (blue group of curves)
as a function of p − p⋆ for centered initial data and with
different pw, namely, pw ¼ 0.02, 0.04, 0.06, 0.08, 0.1, 0.16,

0.2, 0.3, 0.4 and 0.5 (solid lines). The dashed-dotted lines
were obtained with pw ¼ 0.2, but using the monotonized
central (MC) limiter.
This plot illustrates multiple points. First, for “small”

initial spin, we find typical type II phenomena where the
density, mass and spin scale like power laws. Second, the
angular momentum JAH scales more slowly than MAH. In
particular, the spin-to-mass ratio of the resulting black hole
increases as we fine-tune to the black-hole threshold; see
also Fig. 6. For larger initial spin such as pw ≥ 0.2 (or
respectively more fine-tuning for smaller pω), the spin-to-
mass ratio approaches extremality. It does not go beyond,
however, because the critical solution becomes stationary
and, as a result, the power-law scaling with respect to
p − p� also smoothly levels off.
The phenomena highlighted above have also been

checked to hold for the off-centered and initially ingoing
data, although we chose not to include them in the plot to
avoid cluttering.
Note that for the evolution using the MC limiter (dashed-

dotted), the scaling stops abruptly, and the spin-to-mass
ratio seems to remain constant with further fine-tuning. For
reasons that will be made clearer later, this is expected to be
a numerical artifact: for relatively large spin-to-mass ratio,
numerical instabilities are generated at the numerical outer
boundary, similar to those we faced when simulating
type I phenomena in the spherically symmetric case.

FIG. 3. Comparison of the numerical solution for our best subcritical data during the critical regime (black dotted lines) with the exact
stationary solutions (solid blue lines). For the numerical data, we chose here κ ¼ 0.4 with pω ¼ 1.0.
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These instabilities travel inward and produce shocks near
the center, which are absent using a more dissipative limiter
such as the first-order Godunov limiter.
In Fig. 5, we explore the relationship between JAH and

MAH more explicitly, for the critical solution and the final
black hole. On the left, we show a parametric plot of MAH
against JAH=l for the same initial data as in Fig. 4 (and
using the same convention for the lines). We have added the
bisections from the off-centered and ingoing initial data
with pw ¼ 0.02, 0.04 and 0.06 (dotted and dashed lines,
respectively). The red line corresponds to JAH ¼ MAHl.
The trajectories in the ðMAH; JAHÞ plane are clearly family

dependent, although as we increase the fine-tuning and the
black holes become smaller (the bottom left corner) all the
curves become approximately parallel to each other. This
provides some evidence that the critical phenomena are
controlled by a unique one-parameter family of critical
solutions (universality).
On the right, we show a parametric plot of the massMOB

against the angular momentum JOB=l, for our best super-
critical data. As expected, both plots are qualitatively very
similar, since one expects the mass and spin at the apparent
horizon to be in some fixed ratio to their values at the
numerical outer boundary, at the time when the solution
veers off from the critical solution. It turns out that, for
close to critical data, MAH ≃MOB and JAH ≃ JOB at this
time, and so this fixed fraction is almost one.
InFig. 6,we use again the samedata as inFig. 5.On the left

plot, we show the spin-to-mass ratio JAH=ðMAHlÞ as a
function of p − p⋆ for different levels of fine-tuning. The
only addition is a second bisection using a MC limiter (a
second dashed-dotted curve), but where the numerical outer
boundary is at Rmax ≃ 2.65 ≃ 4.17l. The fact that both
dashed-dotted lines do not level off at the same spin-to-mass
ratio gives evidence that the unphysical numerical outer
boundary spoils the numerical results in that highly rotating
regime. Instead, the results from the Godunov limiter, which
removes the aforementioned instabilities, aremore plausible;
in the limit of fine-tuning, the black hole is extremal.
Similarly, in the right plot, we show the spin-to-mass

ratio evaluated at the numerical outer boundary, for our best
supercritical data, against proper time t. Both left and right
plots are qualitatively similar. This is expected since the
more fine-tuned the initial data are to the black-hole
threshold, the longer it takes for the growing mode to
dominate the perturbation, and so the more the spin-to-
mass ratio can grow, before the solution collapses.
If we define the time where the critical regime starts to be

the time from which the central density shows critical

FIG. 4. Log-log plot demonstrating the power-law scaling of
−Λρ−1max (orange, upper group of curves), MAH (green, middle
group of curves) and JAH=l (blue, lower group of curves) for
different values of pw. Solid lines correspond to centered initial
data, using the Godunov limiter. JAH decays more slowly than
MAH. For small spin-to-mass ratio, we find typical type II
behavior, while for larger spin-to-mass ratio, the scaling smoothly
flattens as extremality is approached. Dashed-dotted lines show
an evolution with large initial spin (pω ¼ 0.2), but using the MC
limiter. There, the spin-to-mass ratio completely flattens beyond a
certain level of fine-tuning, but this is a numerical artifact.

FIG. 5. Left plot: parametric plot of the trajectories ofMAH and JAH in Fig. 4 (solid and dashed-dotted lines), in theMAH − JAH plane.
The parameter along each curve is p − p�. We have also added the trajectories of off-centered (dotted lines) and ingoing (dashed lines)
initial data for three different values of pw. The red line corresponds to JAH ¼ MAHl. Right plot: a similar plot, using the same
convention, except that we now consider the mass and angular momentum evaluated at the numerical outer boundary, for our best
supercritical data. The parameter along each curve is now time.
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scaling (at least for small rotation), then this occurs at t ≃
0.8 for centered initial data (see, for example, Fig. 7), while
it occurs at t ≃ 1.0 for ingoing and off-centered initial data.
In the right plot of Fig. 6, the different trajectories do not
cross during this critical regime. This again provides
evidence that, in a suitable adiabatic limit, a given pair
ðMAH; JAHÞ in a quasistationary sequence uniquely deter-
mines its evolution.

2. The critical solution

We have seen in Fig. 5 that for sufficient fine-tuning (on
the left) or at sufficiently late times (on the right), the
trajectories in the J −M plane do not cross, providing
evidence that there is a universal one-parameter family

of critical solutions that fibrates the J −M plane.
Independently, the fact that we can make arbitrarily small
black holes or arbitrarily large central densities by fine-
tuning generic one-parameter families of initial data sug-
gests that each member of this family of critical solutions
has precisely one unstable perturbation mode.
As in the spherically symmetric case, the profile of the

solution can be roughly split into two regions: one central
region where most of the density lies and whose size
shrinks in time and an outer region (“atmosphere”) where
the mass and spin are approximately constant in space and
decrease to zero (exponentially) in time.
At a stage where the effect of spin can still be regarded as

perturbative, one would expect the critical solution to be

FIG. 6. Left plot: log-log plot of JAH
MAHl

against p − p⋆, for the same data as in Fig. 5, with the addition of a second dashed-dotted curve
using the MC limiter but with a larger grid. The spin-to-mass ratio approaches extremality as we fine-tune to the black-hole threshold,
except for the two MC limiter cases. Right plot: parametric plot of JOB

MOBl
, as a function of time t, for our best supercritical evolutions. The

critical regime begins at t ≃ 0.8 for centered initial data, and at t ≃ 1.0 for ingoing and off-centered initial data.

FIG. 7. Left plot: lin-log plot of RMðtÞ=l,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Λρ−10 ðtÞ

p
,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MOBðtÞ

p
, and JOBðtÞ=l for sub6 to sub15 centered initial data with

pw ¼ 0.01, using the MC limiter. We observe that, as we fine-tune to the black-hole threshold, the solution approaches an intermediate
attractor solution in which RM, ρ−10 , MOB and JOB decrease exponentially. Less fine-tuned initial data peel off from this critical line
sooner than more fine-tuned data, leading to critical scaling of the maximum density, etc. Note that JOB decreases more slowly than
MOB, as is the case for their values at the apparent horizon. There is a second regime for JOB, after the critical regime, where it takes on
another, less pronounced, power-law scaling. Right plot: lin-log plot of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Λρ−10 ðtÞ

p
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RMðtÞ=l

p
for our best subcritical (sub15) data

with pw ¼ 0.01, 0.05, 0.1, 0.16, and 0.20 using the Godunov limiter. At late times, these quantities decrease more slowly for larger pw
and correspondingly larger spin-to-mass ratio.
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approximated by the quasistatic solution in spherical
symmetry, plus a (unique, growing) nonspherical pertur-
bation proportional to pw that carries the angular momen-
tum. In particular, one would expect that the solution
shrinks exponentially quickly in time.
To confirm this, we plot, on the left of Fig. 7, the

logarithms of RMðtÞ=l,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Λρ−10 ðtÞp

,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MOBðtÞ

p
and JOB=l

for sub6, sub9, sub12, and sub15 centered data with
pw ¼ 0.01. For those plots, we used the MC limiter, as
even at sub15, the spin-to-mass ratio still remains relatively
small, and the aforementioned instabilities are not present.
We find, as anticipated from our study in spherical

symmetry, that these quantities are exponential functions of
t. JOB scales slower then MOB as it is the case for the
apparent-horizon mass and spin, so that the spin-to-mass
ratio JOB=ðMOBlÞ increases. Note that right after the
critical regime, the trajectories for each variable at different
levels of fine-tuning align, up to a rescaling and a shift in
time. This kind of behavior is expected in a spacetime
where the cosmological constant is dynamically irrelevant
and where the field equations become approximately scale
invariant.
Note that after the critical regime, JOB enters what seems

to be a second regime, still decreasing exponentially, but
noticeably more slowly than during the critical regime.
On the right of Fig. 7, we plot the logarithm of RMðtÞ=l

and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Λρ−10 ðtÞ

p
for our best subcritical evolution (sub15)

with pw ¼ 0.01, 0.05, 0.1, 0.16, 0.2 using again centered
initial data, but with the Godunov limiter. The solution first
shrinks and displays typical type II phenomena for “small”
pw. During this phase, RMðtÞ=l and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Λρ−10 ðtÞ

p
are

completely independent of pω, as we would expect while
angular momentum is a perturbation.
As the spin-to-mass ratio has become sufficiently large,

both RM and ρ−10 decrease more slowly and start to level off.
For the same fine-tuning, this corresponds to larger values
of pw; see the inset on the right of Fig. 7. We do not have a
satisfactory dynamical explanation for this.
Together with Fig. 4, one expects that in the limit of

perfect fine-tuning, the critical solution becomes stationary
at late times, and correspondingly, on the black-hole side of
the threshold of collapse, the black hole becomes extremal.
In spherical symmetry, the critical solution is quasistatic,

meaning that it adiabatically goes through the sequence of
static solutions, with s now a function of t, and j_sðtÞj ≪ 1.
Furthermore, μ ∼ s2, and it follows that in the quasistatic
ansatz, μðtÞ ∼ sðtÞ2. Since the solution shrinks exponen-
tially, we have the following ansatz for sðtÞ:

sðtÞ≡ s0e−ν
t
l; ð41Þ

for constants s0 and ν. To leading order in _s, the quasistatic
ansatz then takes the form

Mðt; RÞ ≃ M̌

	
R
sðtÞ ; μðtÞ; Ω̃ ¼ 0



; ð42Þ

and similarly for other suitably rescaled variables.
As we hinted before, one can expect, at least in the

regime where the effects of angular momentum are still
perturbative, that the solution can be thought to shrink
adiabatically to zero size, going through a sequence of
stationary solutions. The picture in spherical symmetry can
then be straightforwardly generalized to axisymmetric
initial data. Specifically, we assume that, to leading order
in _s, the critical solution can be well approximated by

Mðt; RÞ ≃ M̌

	
R
sðtÞ ; μðtÞ; Ω̃ðtÞ



; ð43Þ

and so on. From the exponential form of sðtÞ, we further
make a relatively agnostic ansatz for Ω̃ of the form

Ω̃ðtÞ≕ Ω̃0e−ϕ
t
l; ð44Þ

where Ω̃0 and ϕ are constants. This exponential ansatz is
justified from the fact that, for the family of stationary
solutions, the angular momentum at infinity satisfies (39).
In particular J ∼ Ω̃. From Fig. 7, JOB, seen as a proxy for
the corresponding angular momentum at infinity, decays
exponentially, thus suggesting the exponential form for Ω̃.
Together with the ansatz for sðtÞ (41), we have now four
parameters to fit: s0 and ν (as in spherical symmetry) and
Ω̃0 and ϕ.
For pw ¼ 0.01, where we only observe type II behavior

to our level of fine-tuning, we choose to fix them by
requiring the central density and spin at infinity to match
those of the stationary solutions at times t ≃ 1.0 and 1.4,
where we believe that the solution is in its critical regime;
see Fig. 7. For the spin at infinity, we take the spin at the
numerical outer boundary as a proxy. This is justified
because in the atmosphere, where the density is small, the
mass and spin are approximately constant in space. We find
the following values:

s0 ≃ 0.1913; ν ≃ 0.7925;

Ω̃0 ≃ 0.002110; ϕ ≃ 0.1144: ð45Þ

As expected, the above values of s0 and ν are consistent
with their values in the spherically symmetric case pw ¼ 0.
We have repeated this procedure for the ingoing and off-
centered initial data as well, and summarize the values of ν
and ϕ in Table I. Due to the smallness of ϕ, the relative
variation of ϕ is important. In particular, it is difficult to
confidently say if those variations are purely a numerical
error. However, because Figs. 5 and 6 suggest some
universality for the critical solution, we are inclined to
believe it is so. That is, we believe that ϕ, just as ν, is family
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independent. We find good agreement between the numeri-
cal and exact solutions.
In Fig. 8, we compare the leading-order quasistationary

solution for J, of the same form as in Eq. (43) (dotted lines),
with the numerical data (solid lines) at constant time
intervals t ≃ 1, 1.1, 1.2, 1.3 and 1.4.
Returning back to the left plot of Fig. 7, the quasista-

tionarity of the critical solution can be used to explain the
slope of JOB. Specifically, from (39), we have

JOB ∼ Ω̃s: ð46Þ

In the spherically symmetric case, we showed that
MOB ∼ s2. At the level where angular momentum is still
viewed as a perturbation, this is still expected to hold, so
that

J2OB ∼ Ω̃2MOB; ð47Þ

or

J2OB ∼M1þΔ
OB ; ð48Þ

where

Δ ¼ ϕ=ν ð49Þ

is small. For the centered initial data for example, (45)
gives Δ ≃ 0.144.

IV. CONCLUSION

We have generalized our previous study [6] of perfect
fluid critical collapse in 2þ 1 spacetime dimension to
rotating initial data. We have given evidence that, for
κ ≲ 0.42, the critical phenomena are type I, as in spherical
symmetry. The critical solution is stationary and agrees
well with the family of exact stationary solutions studied in
another paper [11].
The situation for κ ≳ 0.43 is more complicated. We give

evidence for the existence of a universal one-parameter
family of critical solutions, which fibrates the region
jJ=lj < M, M > 0 of the J −M plane. In the limit
jJj=ðlMÞ ≪ 1, as well as s=l ≪ 1, angular momentum
can be approximated as a linear perturbation of the non-
rotating critical solution. We then expect both s and J to be
exponential functions of t, and so J to be a power of s.
However, for supercritical data, the angular momentum

of the solution decreases more slowly than its mass as the
black-hole threshold is approached. The spin-to-mass ratio
therefore increases as we fine-tune to the black-hole
threshold. We gave strong evidence that in the limit of
perfect fine-tuning, the resulting black hole is extremal.
For small angular momentum, rotation can be treated as a

linear perturbation of spherical symmetry. The universality
of the one-parameter family of critical solutions, with
increasing jJj=ðlMÞ, then implies the existence of a single
unstable rotating mode of the spherical critical solution.
One may then wonder how superextremality is avoided. We
have seen that the answer is that the critical solution stops
shrinking as jJj=ðlMÞ → 1, and so both J and M stop
scaling.
Contrast this with the known situation in rotating fluid

collapse in 3þ 1 [12,13]. There, the existence of a single
growing angular momentum mode is known for κ < 1=9
[14], but it turns out that nonlinear effects make J=M2

decrease in the critical solution from the start, even for
small J for κ < 1=9.
As s=l ≪ 1, or M ≪ 1, the physics become approx-

imately scale invariant, and the cosmological constant
becomes essential only in a boundary layer at the surface
of the contracting star. We expect that in this limit the
one-parameter family of critical solutions degenerates to a
single (somewhat singular) critical solution, up to an
overall rescaling.
We have shown that type I critical collapse is controlled

by rigidly rotating stationary solutions and type II by an
adiabatic shrinking sequence of such solutions. The match-
ing between our numerical results and the exact stationary
solutions of [11] is very good, even neglecting the adiabatic
contraction. On the flip side, we have not been able to

TABLE I. The values of ν and ϕ for different families of initial
data.

Initial data (κ ¼ 0.5Þ ν ϕ

Off-centered 0.7844 0.0854
Centered 0.7925 0.1144
Ingoing 0.8049 0.0671

FIG. 8. Numerical solution (solid lines) for J, plotted against
R=sðtÞ, at different times during the critical regime, t ≃ 1, 1.1,
1.2, 1.3 and 1.4 for our best subcritical, centered initial data with
pw ¼ 0.01. For comparison, we plot the leading-order term of the
quasistationary solution for J ¼ J̌ðR=sðtÞ; μðtÞ; Ω̃ðtÞÞ (dashed
lines). We consider the ansatz sðtÞ ¼ s0e−νt=l and Ω̃ðtÞ ¼
Ω̃0e−ϕt=l, where the parameters s0, ν, Ω̃0, and ϕ are given
in Eq. (45).

PATRICK BOURG and CARSTEN GUNDLACH PHYS. REV. D 104, 104017 (2021)

104017-10



derive effective adiabatic equations of motion in the space
of stationary solutions (even in the nonrotating case of [6]),
and so we are unable to derive either the universal time
dependence of the critical solutions or their unique trajec-
tories in the J-M plane.
It is fortunate that our critical solutions appear to be

exactly rigidly rotating, as precisely all rigidly rotating
stationary solutions are known in closed form (for arbitrary
equation of state) [11,15]. It is plausible that the rigid
rotation of the critical solutions is universal, but we have
not tested this, as we have considered only one family of
initial rotation profiles (in which the angular velocity is
approximately constant).
Critical phenomena in 2þ 1 dimensions primarily serves

as toy model which makes the transition from spherical to

axisymmetric initial data, unlike the 3þ 1 dimensional
setting, much more tractable. Between the results from the
scalar field case [5,8] and the results for the perfect fluid
here, one can see that the effects of angular momentum are
generally far from trivial and share little resemblance with
their higher-dimensional counterparts.

ACKNOWLEDGEMENTS

The authors acknowledge the use of the IRIDIS 4 High
Performance Computing Facility at the University of
Southampton regarding the simulations that were per-
formed as part of this work. Patrick Bourg was supported
by an EPSRC Doctoral Training Grant to the University of
Southampton.

[1] M.W. Choptuik, Universality and Scaling in Gravitational
Collapse of a Massless Scalar Field, Phys. Rev. Lett. 70, 9
(1993).

[2] C.Gundlach and J. M.Martin-García, Critical phenomena in
gravitational collapse, Living Rev. Relativity 10, 5 (2007).

[3] A. M. Abrahams and C. R. Evans, Critical Behavior and
Scaling in Vacuum Axisymmetric Gravitational Collapse,
Phys. Rev. Lett. 70, 2980 (1993).

[4] M. Bañados, C. Teitelboim, and Jorge Zanelli, Black Hole in
Three-Dimensional Spacetime, Phys. Rev. Lett. 69, 1849
(1992).

[5] J. Jałmużna and C. Gundlach, Critical collapse of a rotating
scalar field in 2þ 1 dimensions, Phys. Rev. D 95, 084001
(2017).

[6] P. Bourg and C. Gundlach, 2þ 1 collapse of spherically
symmetric perfect fluid, Phys. Rev. D 103, 124055 (2021).

[7] F. Pretorius and M.W. Choptuik, Gravitational collapse in
2þ 1 dimensional AdS spacetime, Phys. Rev. D 62, 124012
(2000).

[8] J. Jałmużna, C. Gundlach, and T. Chmaj, Scalar field critical
collapse in 2þ 1 dimensions, Phys. Rev. D 92, 124044
(2015).

[9] C. Gundlach, P. Bourg, and A. Davey, A fully constrained,
high-resolution shock-capturing, formulation of the
Einstein-fluid equations in 2þ 1 dimensions, Phys. Rev.
D 104, 024061 (2021).

[10] S. Kinoshita, Extension of Kodama vector and quasilocal
quantities in three-dimensional axisymmetric spacetimes,
Phys. Rev. D 103, 124042 (2021).

[11] C. Gundlach and P. Bourg, Rigidly rotating perfect
fluid stars in 2þ 1 dimensions, Phys. Rev. D 102, 084023
(2020).

[12] T. W. Baumgarte and C. Gundlach, Critical Collapse of
Rotating Radiation Fluid, Phys. Rev. Lett. 116, 221103
(2016).

[13] C. Gundlach and T. W. Baumgarte, Critical gravitational
collapse with angular momentum. II. Soft equations of state,
Phys. Rev. D 97, 064006 (2018).

[14] C. Gundlach, Critical gravitational collapse of a perfect
fluid: Nonspherical perturbations, Phys. Rev. D 65, 084021
(2002).

[15] M. Cataldo, Rotating perfect fluids in (2þ 1)-dimensional
Einstein gravity, Phys. Rev. D 69, 064015 (2004).

CRITICAL COLLAPSE OF AN AXISYMMETRIC … PHYS. REV. D 104, 104017 (2021)

104017-11

https://doi.org/10.1103/PhysRevLett.70.9
https://doi.org/10.1103/PhysRevLett.70.9
https://doi.org/10.12942/lrr-2007-5
https://doi.org/10.1103/PhysRevLett.70.2980
https://doi.org/10.1103/PhysRevLett.69.1849
https://doi.org/10.1103/PhysRevLett.69.1849
https://doi.org/10.1103/PhysRevD.95.084001
https://doi.org/10.1103/PhysRevD.95.084001
https://doi.org/10.1103/PhysRevD.103.124055
https://doi.org/10.1103/PhysRevD.62.124012
https://doi.org/10.1103/PhysRevD.62.124012
https://doi.org/10.1103/PhysRevD.92.124044
https://doi.org/10.1103/PhysRevD.92.124044
https://doi.org/10.1103/PhysRevD.104.024061
https://doi.org/10.1103/PhysRevD.104.024061
https://doi.org/10.1103/PhysRevD.103.124042
https://doi.org/10.1103/PhysRevD.102.084023
https://doi.org/10.1103/PhysRevD.102.084023
https://doi.org/10.1103/PhysRevLett.116.221103
https://doi.org/10.1103/PhysRevLett.116.221103
https://doi.org/10.1103/PhysRevD.97.064006
https://doi.org/10.1103/PhysRevD.65.084021
https://doi.org/10.1103/PhysRevD.65.084021
https://doi.org/10.1103/PhysRevD.69.064015

