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When geodesic equations are formulated in terms of an effective potential U, circular orbits are
characterized by U ¼ ∂aU ¼ 0. In this paper, we consider the case where U is an algebraic function. Then,
the condition for circular orbits defines an A-discriminantal variety. A theorem by Rojas and Rusek,
suitably interpreted in the context of effective potentials, gives a precise criteria for certain types of
spacetimes to contain at most two branches of light rings (null circular orbits), where one is stable and the
other one unstable. We identify a few classes of static, spherically symmetric spacetimes for which these
two branches occur.
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I. INTRODUCTION

Recent breakthroughs in observations of gravitational
phenomena has made it increasingly relevant to understand
the gravitational field and the motion of light in the
presence of strong gravity. For instance, the spherical
photon surfaces are related to the understanding of the
ringdown phase of black-hole mergers, as well as the
optical shadow of a black hole. The former has been
observed via gravitational wave observations [1], and the
latter was observed for the black hole at the center of the
galaxy M87 [2].
A question related to these issues is whether the shadow

and ringdown phenomena can be conclusively identified
with black holes or whether these signals could be
mimicked by compact objects with no event horizon.
Cunha, Berti, and Herdeiro have shown in Ref. [3] that
stationary, compact (nonblack hole) objects formed from
incomplete gravitational collapse have light rings which
form in pairs. Hod in Ref. [4] provided an important
supplement to their result. On the other hand, it was also
shown in Ref. [5] that generic black holes must have at least
one unstable light ring. Further related results have been
provided by Guo and Gao [6]. The presence of stable
photon orbits may signal an instability of the spacetime
[7,8]. More recently, it was proven that any four-
dimensional, stationary, axisymmetric spacetime with an
ergoregion must have at least one light ring outside the
ergoregion [9]. These results hold for horizonless objects
with an ergoregion such as in Ref. [10]. Therefore, there is
an increasing body of work showing that very compact
horizonless objects have a stable light rings, while black

holes are often characterized by the presence of unstable
light rings. (It should be noted that there are some examples
of black holes with a stable light-ring exterior to their
horizon, for instance, in Ref. [11].)
In this paper, we approach these questions from the

direction of algebraic geometry. In terms of an effective
potential U, circular timelike or null geodesics are deter-
mined by the condition U ¼ ∂aU ¼ 0. If U happens to be
an algebraic function, this condition is equivalent to U
having a vanishing discriminant. Therefore, the circular
geodesics can be represented as an algebraic variety in the
parameter space, known as the A-discriminant.
We explore the following in the main body of this paper:

A theorem by Rojas and Rusek [12,13] states that if U is a
polynomial of n variables and is a sum of nþ 3 mono-
mials, the contour of the amoeba corresponding to the A-
discriminant can have at most n cusps. In the context of the
geodesic effective potential, the cusps represent circular
orbits of marginal stability, thus separating branches of
stable and unstable orbits. Therefore, this theorem provides
a constraint on the kinds of circular orbits that can exist in a
given spacetime, provided that the effective potential
satisfies the aforementioned conditions.
In the case of static, spherically symmetric spacetimes,

the corresponding effective potential U typically takes the
form of a univariate (n ¼ 1) polynomial. Therefore, Rojas
and Rusek’s theorem is appliable if U consists of a sum of
nþ 3 ¼ 4 monomials, for instance, in the form

U ∝ axm þ bxl þ xk þ 1; ð1:1Þ

which says that the A-discriminant can have at most n ¼ 1
cusp. Consequently this means these spacetimes can have
at most two branches of circular orbits, one stable and the
other unstable.
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While this condition may appear highly restrictive,
there are several known spacetimes that do satisfy this
condition, in particular, the effective potentials of timelike
geodesics in Schwarzschild spacetime and of null geo-
desics in the Hayward and Reissner–Nordström space-
times. These examples are worked out explicitly in this
paper. Furthermore, without assuming the field equations
of any theory, we consider generic spacetimes whose null
geodesic effective potential takes the form (1.1). We show
in this paper that the stable branch of light rings only occur
in the case of horizonless (nonblack hole) compact objects,
thus lending support to the arguments of [3–6] from the
point of view of A-discriminants. We also show that the
results of Rojas and Rusek’s theorem continue to hold
when the effective potential is perturbed with additional
monomials beyond nþ 3.
The rest of this paper is organized as follows. In Sec. II,

we review the geodesic equations in spacetimes with a
certain number of Killing vectors and define the effective
potentials. The theory of A-discriminantal varieties, along
with Rojas and Rusek’s theorem are reviewed in Sec. III,
where we also explain how the theorem applies to circular
geodesics. As an demonstrative example of the formalism,
we obtain the circular timelike orbits around the
Schwarzschild black hole in Sec. IV using A-discriminants.
Subsequently, in Sec. V, we find generic forms of static,
spherically symmetric spacetimes which satisfy the con-
ditions of Rojas and Rusek’s theorem, giving us spacetimes
with light-ring pairs. Some known spacetimes that satisfy
these conditions are worked out explicitly in Sec. VI. In
Sec. VII, we consider a case where the spacetime is not
spherically symmetric and also show how Rojas and
Rusek’s theorem continue to hold beyond nþ 3 mono-
mials. Conclusions and closing remarks are given in
Sec. VIII.

II. GEODESICS

We start by establishing some general properties of
the background spacetime. We consider a ðD ¼ pþ nÞ-
dimensional spacetime manifold M that possesses a time-
like Killing vector field ξð0Þ which generates R isometries.
We further suppose M has another (p − 1) spacelike
Killing vector fields ξð1Þ;…; ξðp−1Þ, each generating a
Uð1Þ isometry. Altogether, the full set of p commuting
Killing vector fields,

fξð0Þ; ξð1Þ;…; ξðp−1Þg; ð2:1Þ

generates the isometry group R ×Uð1Þp−1. Spacetimes of
this form have been studied in detail in Refs. [14–18]. For
such a spacetime, we can always find a coordinate system
ðσ0; σ1;…σp−1; x1;…; xnÞ such that each σM is a coordi-
nate Killing direction, that is,

ξðMÞ ¼
∂

∂σM ; M ¼ 0; 1;…; p − 1: ð2:2Þ

It was further shown that if ξ½μ0ð0Þξ
μ1
ð1Þ � � � ξ

μp−1
ðp−1Þ∇νξλ�ðMÞ ¼ 0

holds for all M ¼ 0; 1;…; p − 1, the metric on M can be
written in the form [17]

ds2 ¼ gμνdyμdyν ¼ GMNdσMdσN þ ḡabdxadxb; ð2:3Þ

where the metric components GMN and ḡab depend on
coordinates xa only.
At this point, it is worth noting some subtle differences in

notions which are variously called photon surfaces, photon
spheres, and light rings in the literature. Intuitively, the
general phenomena of interest is where light/photons are in
bound orbit around a gravitating body. In Refs. [19–22], the
authors consider four-dimensional static spacetimes and
defined a photon surface as a codimension 1 submanifold
P ⊂ M, where any null geodesic initially tangent to P
remains tangent throughout the entire geodesic. This has
been extended to higher dimensions in [23]. The authors of
[24,25] use a similar definition, first by defining the optical
metric of M, then the photon surface is a totally geodesic
submanifold of the optical manifold defined by the optical
metric. Geometrically, the surface need not be spherical; the
particular case where the photon surface is a photon sphere
is defined to be the case where the lapse function gtt ¼
gðξð0Þ; ξð0ÞÞ≡ −N2 is constant over P. This definition is
coordinate independent and makes no reference to any
isometries apart from the timelike Killing vector ξð0Þ.
On the other hand, if all the Killing isometries are

invoked to (partially) separate the Hamilton–Jacobi equa-
tions with their associated conserved quantities, the equa-
tions of motion can be cast in terms of an effective potential
U which is a function that depends on xa only. Then, the
light rings are null geodesics which can be obtained from
U ¼ ∂aU ¼ 0. This “defnition” is less precise as it depends
on how one defines the effective potential. In fact, this can
be clarified by considering the following situation in which
we can have two ways of writing down the potential. If the
equations of motion possess hidden symmetries [26], the
equations can be further separated, and we have various
effective potentials U i which are functions depending on
distinct subsets of coordinates fxag.
For example, in Boyer–Lindquist coordinates ðt; r; θ;ϕÞ,

the Kerr spacetime is axisymmetric with two Killing
vectors ξð0Þ ¼ ∂

∂t and ξð1Þ ¼ ∂
∂ϕ. These give rise to con-

servation of energy E and anglar momentum L, and the
effective potential can be easily written as Uðr; θÞ. However
it is well known that Kerr geodesics possess a hidden
symmetry [27] so that the equations of motion can be
completely separated into _r ¼ RðrÞ and _θ ¼ ΘðθÞ. Then,
RðrÞ and ΘðrÞ can be interpreted as the (negative of the)
effective potentials in their respective directions. In this
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context, the photon sphere [28,29] of Kerr geometry refers
to the case RðrÞ ¼ R0ðrÞ ¼ 0while θ is allowed to vary. On
the other hand, taking the definition Uðr;θÞ¼∂aUðr;θÞ¼0
means both r and θ are constant throughout the motion, so
the geodesics are simply circles. Hence, in this paper, we
refer to this situation as the light ring.
We now turn our attention to setting up the geodesic

equations explicitly. The following discussion covers both
null and timelike geodesics. In either case, they are
described by affinely parametrized curves of the form

yμðτÞ ¼ ðσMðτÞ; xaðτÞÞ: ð2:4Þ

We take τ to be an appropriate affine parametrization such
that _yμ _yμ ¼ ϵ, where overdots denote derivatives with
respect to τ and ϵ¼−1 for timelike geodesics and ϵ ¼ 0
for null geodesics.
To derive the equations for geodesic motion, we begin

with the Lagrangian,

L ¼ 1

2
ðGMN _σ

M _σN þ ḡab _xa _xbÞ: ð2:5Þ

From the Lagrangian, we define the canonical momenta,

pi ¼
∂L
∂ _xa ¼ ḡab _xb; PM ¼ ∂L

∂ _σM ¼ GMN _σ
N: ð2:6Þ

As each σM is adapted to the Killing directions, they
become cyclic coordinates of the Lagrangian, and hence,
PM are constants of motion.
The Hamiltonian is obtained from the Legendre trans-

form of the Lagrangian, Hðp; yÞ ¼ pμ _yμ − L. Explicitly,
we have

H ¼ 1

2
ðGMNPMPN þ ḡabpapbÞ; ð2:7Þ

where GMN and ḡab are the inverse of GMN and ḡab,
respectively. Furthermore, the condition _yμ _yμ ¼ ϵ leads to
the constraint

ḡabpapb þ U ¼ 0; ð2:8Þ

where we have defined the effective potential,

U ¼ GMNPMPN − ϵ: ð2:9Þ

As mentioned above, σM are cyclic coordinates and their
conjugate momenta PM are constants of motion. This
means U is a function of xa ¼ ðx1;…; xnÞ only.
We are primarily interested in geodesics where the

coordinates xa are constant. The Hamiltonian equations
for these coordinates are

∂H
∂xa ¼

1

2
ð∂aGMNÞPMPN þ1

2
ð∂aḡcdÞpcpd ¼− _pa; ð2:10aÞ

∂H
∂pa

¼ ḡabpb ¼ _xa: ð2:10bÞ

Assuming ḡab is nondegenerate, the constancy of xa

requires pa ¼ _pa ¼ 0. This, in turn leads to

ð∂aGMNÞPMPN ¼ ∂aU ¼ 0; ð2:11aÞ

U ¼ 0: ð2:11bÞ

In the context of the preceding discussions in this section,
it may be apt to refer to geodesics satisfying (2.11) as
circular geodesics, as they will be ring shaped (circles) in
the case of four-dimensional, axisymmetric spacetimes.
In particular, for null geodesics (ϵ ¼ 0), these are the
light rings.
Suppose that the effective potential is now cast in the

form

−U ¼ hðxÞFðxÞ; ð2:12Þ

where x ¼ ðx1;…; xnÞ and hðxÞ will be some function
strictly positive or strictly negative in the domain of
consideration such that Eq. (2.11) is equivalent to

FðxÞ ¼ ∂aFðxÞ ¼ 0: ð2:13Þ

In practice, the function hðxÞ is simply a result of rescaling/
rearranging of factors of −U such that FðxÞ takes a
convenient form. (It will be clear in the examples that
follow.) Stable circular orbits/light rings can be character-
ized by whether FðxÞ is a local maximum or local
minimum, along with noting the sign of hðxÞ, which
ultimately determines the extremum properties of U.
At this stage, we observe that if FðxÞ is a polynomial,

Eq. (2.13) is precisely the defining conditions for FðxÞ to
have a vanishing discriminant. In other words, the con-
dition (2.13) describes an A-discriminantal variety. In this
case, the theory of A-discriminantal varieties can poten-
tially provide an insight to circular geodesics. This is
reviewed in the following section.

III. A-DISCRIMINANTS

A. Brief review of the A-discriminants and the
Horn–Kapranov uniformization

A common setting for the theory of A-discriminants is
the space of complex numbers. Here, we denote an n tuple
of nonzero complex numbers by z ¼ ðz1;…; znÞ ∈ ðC�Þn,
where C� ¼ Cnf0g is the complex plane with the zero
point removed. Let A be a finite configuration of points
fα1;…; αNg ⊂ Zn where αi ¼ ðα1i ;…; αni Þ ∈ Zn for each i.
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For a given A, we have the corresponding family ðC�ÞA of
Laurent polynomials of N terms,

fðzÞ ¼
XN
i¼1

aizαi ; where zαi ¼ z
α1i
1 � � � zαnin ; ð3:1Þ

with exponent vectors from A. The polynomial fðzÞ is
identified with the point f ¼ ða1;…; aNÞ ∈ ðC�ÞN . If we
denote by Zf the zero locus of f, i.e., the set

Zf ¼ fz ∈ ðC�ÞnjfðzÞ ¼ 0g:

Then, the set of coefficient vectors ða1;…; aNÞ, for
which the hypersurface Zf is not a smooth manifold
coincides with the zero locus of an irreducible polynomial
DA ∈ Z½a1;…; aN �. The notion of A-discriminants was
introduced by Gelfand, Kapranov, and Zelevinsky (see
[30]) and is based on the idea that one should study the
whole family ðC�ÞA rather than a single polynomial f.
Let us give a precise description of the A-discriminant.

A point z ∈ ðC�Þn is said to be a critical point of a
polynomial f if it is a solution of the system of equations,

∂f
∂zi ðzÞ ¼ 0 for all i ¼ 1;…; n: ð3:2Þ

The A-discriminant DAðfÞ is, by definition, an irreducible
polynomial which vanishes if and only if f has a singular
point in ðC�Þn, i.e., a critical point z with fðzÞ ¼ 0.
Moreover, this A-discriminant DA is uniquely determined
up to sign, provided its coefficients are taken to be
relatively prime. Also, a Z-affine isomorphism of the point
configuration A leaves the A-discriminant invariant. By a
slight abuse of notation, we denote by the same letter A its
associated ð1þ nÞ × N matrix,

A ¼
�

1 � � � 1

α1 � � � αN

�
¼

0
BBBBB@

1 1 � � � 1

α11 α12 � � � α1N

..

. ..
. . .

. ..
.

αn1 αn2 � � � αnN

1
CCCCCA
; ð3:3Þ

where each αi ∈ Zn is viewed as column n vectors for
i ¼ 1;…; N. The configuration A gives rise to a lattice
ΛðAÞ ¼ ZA ⊂ Zn of index indðAÞ ¼ ½Zn∶ΛðAÞ�.
We make the following assumptions about the matrix A:

(i) rankðAÞ ¼ 1þ n and (ii) the maximal minors of A are
relatively prime. This means that the columns of A generate
the full lattice Znþ1.
Since every row vector of the matrix A corresponds

to a (quasi)homogeneity of the A-discriminant, then the
A-discriminant DA can be considered as a function of only
m ¼ N − n − 1 essential variables instead of N variables.
To dehomogenize the A-discriminant, one can choose a

Gale transform of A. In other words, we can choose an
integer ðN ×mÞ-matrix B, whose column vectors form
a Z basis for the kernel of the linear map represented by
the matrix A. Therefore, the row vectors b1;…; bN of B
constitute a point configuration in Zm called a Gale
transform of the original configuration A.
To be more precise, we identify B with the matrix

ðb1;…; bNÞT. Explicitly, the entries of B are

B ¼

0
BB@

b11 b21 � � � bm1

..

. ..
. . .

. ..
.

b1N b2N � � � bmN

1
CCA: ð3:4Þ

This B is called a Gale dual of A if the columns of B span
the kernel of A. In other words, B is a Gale dual of A if the
matrix B has maximal rank and

AB ¼ 0: ð3:5Þ

Then, we note that Eq. (3.5) implies

XN
j¼1

bji ¼ 0; i ¼ 1;…; m; ð3:6aÞ

XN
j¼1

αjib
j
k ¼ 0; i; k ¼ 1;…; m: ð3:6bÞ

Also, this means that the column vectors of B can be
used to produce inhomogeneous coordinates for DA. In
fact, the reduction to only m variables corresponds to a
choice of Gale dual B of A, and the induced projection
πB∶ðC�ÞA → ðC�Þm. Explicitly, using coordinates, we have

xj ¼ a
bj
1

1 a
bj
2

2 � � �ab
j
N

N ; j ¼ 1;…; m: ð3:7Þ

Therefore, there exists a Laurent monomial MðfÞ in the
original a variables, and a polynomial DBðxÞ such that

DAða1;…; aNÞ ¼ MðfÞDBðx1;…; xmÞ; ð3:8Þ

where DB is called the corresponding reduced
A-discriminant.
Now, we can equally start the theory from a B matrix

whose row vectors sum up to zero, and then take a Gale
transform A of the form (3.3) which will be uniquely
determined up to a Z-affine isomorphism.
Kapranov proved [31] that the zero locus of the reduced

A-discriminant DB is the image of the projective space by a
birational map Ψ, the so-called Horn–Kapranov paramet-
rization [31,32]. More precisely, Ψ is a birational equiv-
alence whose inverse is the logarithmic Gauss mapping.
Let us recall the definition of the logarithmic Gauss
mapping which we denote by γ. First, γ is defined on
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the smooth part of a complex hypersurface V ⊂ ðC�Þm with
defining polynomial f as follows:

γ∶regðVÞ → CPm−1;

x ↦

�
x1

∂f
∂x1 ðxÞ∶…∶xm

∂f
∂xm ðxÞ

�
; ð3:9Þ

where regðVÞ denotes the smooth part of V. Geometrically,
given a smooth point x0 ∈ V, we choose a local holomor-
phic branch around the point x0 of the complex logarithmic
map L ogC,

x0¼ðx01;…x0mÞ↦ðL ogCðx01Þ;…;L ogCðx0mÞÞ: ð3:10Þ

Then, γðx0Þ ∈ CPm−1 is the complex normal direction to
L ogCðVÞ at L ogCðx0Þ. It was proved by Kapranov [31]
that if the hypersurface V is defined by a reduced
A-discriminant DB, then the logarithmic Gauss mapping
is birational, with inverse the rational mapping Ψ called
Horn–Kapranov parametrization defined as follows.
Definition 1. The Horn–Kapranov parametrization of

the discriminant hypersurface defined as the zero locus of
DB is the rational mapping Ψ∶CPm−1 → ðC�Þm given by

Ψ½t1∶…∶tm� ¼
�YN

j¼1

hbj; tib
1
j ;
YN
j¼1

hbj; tib
2
j ;…;

YN
j¼1

hbj; tib
m
j

�
:

ð3:11Þ

Let us illustrate this concept in a few classical and easy
examples.
Example 1. Consider the trivial A matrix A ¼ ð111Þ.

This means that n ¼ 0. We can define the corresponding
A-discriminant to be the linear map DA ¼ a1 þ a2 þ a3,
and a B matrix for this case is given by

B ¼

0
B@

−1 −1
1 0

0 1

1
CA: ð3:12Þ

Then, we can set x1 ¼ a−11 a2 and x2 ¼ a−11 a3, and then,
DAðaÞ ¼ a1DBðxÞ with DBðxÞ ¼ 1þ x1 þ x2. Hence, the
complex line can be seen as the zero locus of a reduced
A-discriminant. More precisely, the Horn–Kapranov map-
ping in this case is given by

Ψ½1∶t� ¼
�
−

1

1þ t
;−

t
1þ t

�
; ð3:13Þ

which parametrizes the complex line with defining poly-
nomial DBðx1; x2Þ ¼ 1þ x1 þ x2. In fact, set x1 ¼ − 1

1þt
and x2 ¼ − t

1þt then we get x1 þ x2 ¼ −1.
Example 2. Let n ¼ 1 and A be the following

configuration:

A ¼
�
1 1 1 1

0 1 2 3

�
: ð3:14Þ

The A-discriminant in this case is given by

DAðaÞ ¼ 27a21a
2
4 þ 4a1a33 − 18a1a2a3a4 − a22a

2
3: ð3:15Þ

This is the classical cubic discriminant that vanishes
precisely when the degree-3 polynomial equation a1 þ
a2xþ a3x2 þ a4x3 ¼ 0 has a multiple root. The Gale dual
of A is given by the B matrix,

B ¼

0
BBB@

1 0

0 1

−3 −2
2 1

1
CCCA: ð3:16Þ

Let x1 ¼ a1a−33 a24 and x2 ¼ a2a−23 a4, and then, we get
DAðaÞ ¼ a63a

−2
4 DBðxÞ with the reduced A-discriminant

given by DBðxÞ¼ 27x21þ4x1þ4x32−18x1x2−x22. Using
Horn–Kapranov in our case, we get

x1 ¼ −
ð2þ tÞ2
ð3þ 2tÞ3 ; and x2 ¼

tð2þ tÞ
ð3þ 2tÞ2 : ð3:17Þ

This gives a parametrization of the reduced cubic discrimi-
nant curve,

27x2 þ 4x1 þ 4x32 − 18x1x2 − x22 ¼ 0:

Example 3. Let n ¼ 2 and let A be the following
configuration:

A ¼

0
B@

1 1 1 1 1

0 2 0 1 2

0 0 3 3 2

1
CA: ð3:18Þ

In this case, one can choose the Gale dual B matrix to be

B ¼

0
BBBBBB@

1 2

−1 −3
−2 −2
2 0

0 3

1
CCCCCCA
: ð3:19Þ

The variables x1 and x2 are as follows: x1 ¼ a1a−12 a−23 a24
and x2 ¼ a21a

−3
2 a−23 a35 and the reduced A-discriminant DB

given by
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DBðxÞ ¼ 729x2 − 1280x21 þ 2187x31 þ 2187x41 þ 729x51

þ 1728x2 − 4752x1x2 þ 5400x21x2 − 1404x31x2

− 864x41x2 þ 3456x22 − 5616x1x22

þ 576x21x
2
2 þ 256x31x

2
2 þ 1728x32: ð3:20Þ

Using the Horn–Kapranov parametrization, we get

x1 ¼ −
ð1þ 2tÞ

ð1þ 3tÞð1þ tÞ2 and

x2 ¼ −
9t3ð1þ 2tÞ2

4ð1þ 3tÞ3ð1þ tÞ2 : ð3:21Þ

We can verify that it does satisfyDBðx1; x2Þ ¼ 0, whereDB
is the reduced A-discriminant as above.
As DB is an algebraic variety, we may define its amoeba

[30] by the log map Log∶ðC�Þk−1 → Rk−1 defined by

Logðz1;…; znÞ ¼ ðlog jz1j;…; log jznjÞ: ð3:22Þ

The image of DB under this map is the amoeba, denoted
by A. Denoting Φ ¼ Log∘ψ , a point λ ∈ CPm−1 maps to a
point in A that is given in the explicit formula by

ΦðλÞ ¼ ðφ1;…;φmÞ; ð3:23Þ

where the components are

φi ¼ log

����
YN
j¼1

hbj; λib
i
j

����

¼
XN
j¼1

bij log jhbj; λij; i ¼ 1;…; m: ð3:24Þ

Our discussion so far can be summarized in the follow-
ing diagram:

Here, the reduced A-discriminantDB lives in ðC�Þm, and its
amoeba A lives in Rm. Theorem 2.1 of [31] and Lemma 3
of [33] combines to tell us that the image of the map Φ,
when restricted to RPm−1, leads to the contour of the
amoeba. In other words,

ΦðRPm−1Þ ¼ C ⊂ A: ð3:25Þ

The diagram is then restricted to the following:

Here, W ⊂ DB is the set of the critical points of the
logarithmic map restricted to DB, and C ⊂ A is the contour
of the amoeba.
This latter situation is the one of relevance to circular

geodesics, as the real-valued coordinates of RPm−1 will
eventually be the (functions of the) coordinates of the light
ring (for instance, the radius). Indeed, for polynomials of
real variables, their discriminants are always the image of
ΦðRPm−1Þ ¼ DB, and when we apply the methods to
geodesics, we take ΨðRPm−1Þ ¼ C.

B. The case m = 2 and its consequences
for circular geodesics

In Refs. [12,13], Rojas and Rusek provided some
specific results for the case m ¼ 2. In this case, the
Horn–Kapranov map composed with the logarithm is
Φ∶CP1 → R2, and the restriction of the map to RP1 gives
a contour C of the amoeba of the A-discriminant, which is
a one-dimensional curve in R2. Explicitly, the map is
written as

Φð½λ1∶λ2�Þ ¼
�Xnþ3

j¼1

b1j log jhbj; λij;
Xnþ3

j¼1

b2j log jhbj; λij
�
;

ð3:26Þ

and hbj; λi ¼ b1jλ1 þ b2jλ2. The points where C are not
differentiable appear as nodes and cusps. In [12,13], Rojas
and Rusek provided a theorem which gives an upper bound
of the number of cusps in this case, which is given as follows.
Theorem 1. (Rojas and Rusek [12,13]). In the case

m ¼ 2, the graph of Φ has at most n cusps.
For the univariate case n ¼ 1, this result states that the

discriminant of a univariate polynomial which is sums of
nþmþ 1 ¼ 1þ 2þ 1 ¼ 4 monomials will have at most
a single cusp.
To see how this relates to circular geodesics, we consider

spacetimes which can be cast in a form where its metric
components depend only on a single variable, say, x. Then,
the function FðxÞ described in Eq. (2.12) can be cast in the
form of an univariate polynomial if the metric components
are rational functions of x. If, suppose, that FðxÞ consists of
a sum of four monomials, it takes the form

FðxÞ ¼ axm þ bxn þ xk þ xl: ð3:27Þ

Here, two of the coefficients can be set to 1 by an
appropriate choice of hðxÞ and a rescaling of x. Circular
orbits then correspond to FðxÞ ¼ F0ðxÞ ¼ 0, which gives
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a ¼ ðn − kÞxk þ ðn − lÞxl
xmðm − nÞ ;

b ¼ −ðm − kÞxk − ðm − lÞxl
xnðm − nÞ : ð3:28Þ

This describes the A-discriminantal variety of a real
polynomial as a curve in the ða; bÞ plane, parametrized
by x. In the language of the Horn–Kapranov uniformiza-
tion, this is the image of RP2 under the map Φ. Hence,
Eq. (3.28) describes DB. We assume hðxÞ to be positive.
[The negative hðxÞ case is the same upon reversing the
signs and inequalities.] Consequently, along this curve, the
circular orbits are stable if FðxÞ is at a local maximum, i.e.,
F00ðxÞ < 0 and unstable if F00ðxÞ > 0. To identify the
critical point, the additional condition F00ðxÞ ¼ 0 leads to
the simultaneous equations

ðmn−mk−knþk2Þxkþðmn−ml−lnþl2Þxl¼0; ð3:29aÞ

ðnk−nm−k2þmkÞxkþðnl−nm−l2þmlÞxl¼0: ð3:29bÞ

On the other hand, tangents to the discriminant curve are
obtained by taking the derivative of (3.28) with respect to
its parameter x, giving

a0 ¼ −
ðnkþmk − k2 −mnÞxk þ ðnlþml − l2 −mnÞxl

xmþ1ðm − nÞ ;

ð3:30aÞ

b0 ¼ −
ðnkþmk − nm − k2Þxk þ ðnlþml −mn − l2Þxl

xnþ1ðm − nÞ ;

ð3:30bÞ

where primes denote derivatives with respect to x. We
observe that the numerators of a0 and b0 coincide with the
left-hand sides of Eq. (3.29). Therefore, at the critical points
F00ðxÞ ¼ 0, we have a0 ¼ b0 ¼ 0, and the tangents are
undefined. Hence, F00ðxÞ ¼ 0 correspond to cusps of the
A-discriminant in the ða; bÞ plane.
Passing through a cusp means F00ðxÞ changes sign;

therefore, a cusp of the discriminant curve separates two
physically distinct branches of circular orbits, one of which
has F00ðxÞ > 0 and the other F00ðxÞ < 0. If FðxÞ consists of
a sum of four monomials as we have assumed, then Rojas
and Rusek’s theorem asserts that the contour C of the
amoeba of the Horn–Kapranov parametrization has at most
n ¼ 1 cusp. However, since the map Log betweenDB and C
is a diffeomorphism for a ≠ 0 and b ≠ 0, this means DB
itself also has at most 1 cusp. OnDB, the cusp separates two
branches of circular orbits of opposite signs of F00ðxÞ. We
conclude that spacetimes whose geodesic effective poten-
tial takes the form (3.27) have at most two branches of
circular orbits, one of which is stable and the other unstable.

IV. EXAMPLE: TIMELIKE GEODESICS
IN SCHWARZSCHILD SPACETIME

As an illustrative example demonstrating the concepts of
the previous discussions, let us consider the well-known
problem of timelike geodesics in the Schwarzschild space-
time, where the metric is given by

ds2 ¼ −fdt2 þ dr2

f
þ r2dθ2 þ r2 sin2 θdϕ2; ð4:1aÞ

f ¼ 1 −
2M
r

; ð4:1bÞ

whereM > 0 is the mass parameter of the black hole. Here,
∂
∂t and

∂
∂ϕ are the Killing vectors with the corresponding

conserved quantities,

Pt ¼ −E ¼ −f_t; Pϕ ¼ L ¼ r2 sin2 θ _ϕ; ð4:2Þ

which we regard as the energy and angular momentum of
the particle, respectively. Due to the spherical symmetry of
the spacetime, we may take without loss of generality
θ ¼ π

2
¼ constant. We also focus on timelike geodesics,

ϵ ¼ −1. Then, in the present case

−U ¼ 1

f

�
E2 −

L2

r2
f − f

�

¼ 1

1 − 2M=r

�
2M
r

�
3
�

L2

4M2

��
4M2

L2
ð1 − E2Þ

�
−

r
2M

�
3

þ 4M2

L2

�
r
2M

�
2

−
r
2M

þ 1

�
: ð4:3Þ

Defining x ¼ − r
2M, the equation in the square brackets

above is the degree-3 polynomial

FðxÞ ¼ ax3 þ bx2 þ xþ 1; ð4:4Þ

where

a ¼ 4M2ð1 − E2Þ
L2

; b ¼ 4M2

L2
: ð4:5Þ

This FðxÞ is a univariate polynomial which is a sum of four
monomials and hence fits the conditions of Rojas and
Rusek’s theorem.
Inverting the above equation in terms of the conserved

quantities, we have

E2 ¼ b − a
b

;
L2

4M2
¼ 1

b
: ð4:6Þ

Finding the discriminant using FðxÞ ¼ F0ðxÞ ¼ 0, we
have
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a ¼ 2þ x
x3

; b ¼ −
3þ 2x
x2

: ð4:7Þ

On the other hand, we apply the Horn–Kapranov
uniformization by noting that the set of exponents of F
is A ¼ f0; 1; 2; 3g. Hence, the corresponding A matrix and
its Gale dual are

A ¼
�
1 1 1 1

0 1 2 3

�
; B ¼

0
BBB@

2 1

−3 −2
0 1

1 0

1
CCCA: ð4:8Þ

The Horn–Kapranov map (3.11) gives the reduced
A-discriminant as

Ψð½λ1∶λ2�Þ ¼
�
λ1ð2λ1 þ λ2Þ2
ð−3λ1 − 2λ2Þ3

;
λ2ð2λ1 þ λ2Þ
ð−3λ1 − 2λ2Þ2

�
: ð4:9Þ

Taking a patch of RP1 where λ1 ≠ 0, we have ½λ1∶λ2� ¼
½1∶λ�, and we have Ψð½1∶λ�Þ ¼ ða; bÞ, where

a ¼ ð2þ λÞ2
ð−3 − 2λÞ3 ; b ¼ λð2þ λÞ

ð−3 − 2λÞ2 : ð4:10Þ

Eliminating λ between a and b leads to b2 − 4a − 4b3 −
27a2 þ 18ab ¼ 0, which is precisely the vanishing dis-
criminant condition for (4.4). Composing this with the log
map gives the amoeba contour C,

Φð½1∶λ�Þ ¼ ðlog jaj; log jbjÞ; ð4:11Þ

where a and b are as defined in Eq. (4.10).
Comparing Eqs. (4.7) and (4.10), we find x ¼ − 3þ2λ

2þλ , or
recalling x ¼ − r

2M,

λ ¼ 3 − r
M

r
2M − 2

↔
r
2M

¼ 3þ 2λ

2þ λ
: ð4:12Þ

This relates the parameter λ to the radius r of the circular
geodesics. We note that the cusp of DA occurs at λ ¼ −3,
which corresponds to r ¼ 6M, hence recovering the
innermost stable circular orbit (ISCO) around the
Schwarzschild black hole. This is the point where stable
circular orbits r > 6M turn into unstable ones at r < 6M.
This map is undefined for λ ¼ − 3

2
, λ ¼ −2, and λ ¼ 0.

Therefore, we divide the possible values of λ into open
domains separated by these points. Furthermore, we sub-
divide the domain containing the ISCO (λ ¼ −3) into the
stable and unstable parts:

Domain1a∶ −∞< λ<−3; ðunstable circular orbitsÞ;
Domain1b∶ −3< λ<−2; ðstable circular orbitsÞ;

Domain2∶ −2< λ<−
3

2
; ðunphysicalÞ;

Domain3∶ −
3

2
< λ<0; ðunphysicalÞ;

Domain4∶ 0< λ<∞; ðunstable circular orbitsÞ: ð4:13Þ

We can visualize RP1 by parametrizing it using a semi-
circle; the domains are as depicted in Fig. 1(a), where the
angles along the semicircle S1þ are given by θ ¼ arctan λ.
In terms of r, Domain 1a corresponds to 4M < r < 6M.

Domain 1b corresponds to 6M < r < ∞, and Domain 4
corresponds to 3M < r < 4M. Domains 2 and 3 are
unphysical as they correspond to negative r.
The reduced A-discriminant DB and contour C are

depicted in Fig. 1(b) and 1(c), respectively, where we
can clearly see the presence of a single cusp at λ ¼ −3 or
r ¼ 6M. The five segments labeled 1a–4 are the corre-
sponding images of Domains 1a–4 under Ψ and Φ,
respectively. In each figure, the unphysical Domains 2
and 3 along with their corresponding images are drawn in
black, whereas Domain 1b and its images are drawn in
blue, representing stable circular orbits. Domains 1a and 4
are depicted in red, representing unstable circular orbits.
Domains 1a and 1b meet at a cusp corresponding to
r ¼ 6M, the ISCO.
Finally, we note that λ → �∞ corresponds to r → 4M.

This is the circular orbit of energy E ¼ 1. This case is
undefined in the above map as it corresponds to a ¼ 0, and
the leading term of the polynomial vanishes. Physically,
this is the critical point between the bound energy (E < 1)
and the unbound ones (E > 1). Unstable circular orbits of
3M < r < 4M carries energy E > 1 and may escape to
infinity upon perturbation.

V. ASMPTOTICALLY FLAT SPACETIMES
WITH AT MOST TWO LIGHT RINGS

We now turn our attention to null geodesics in static,
spherically symmetric spacetimes. Our task is to identify
a class of spacetimes for which the equations for null
geodesics satisfy the conditions of Rojas and Rusek’s
theorem. For static, spherically symmetric spacetimes, the
effective potential will ultimately be a function of a single
radial variable. It then corresponds to n ¼ 1 in the context of
Sec. III B, if our equations are algebraic. Then, Rojas and
Rusek’s theorem implies that such spacetimes can have up to
two light rings, one of which is stable and the other unstable.

A. Setup

Let us consider static, D-dimensional spherically sym-
metric spacetimes, where the metric can be written in the
form
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ds2 ¼ −fðrÞdt2 þ hðrÞdr2 þ r2γijdϕidϕj; ð5:1Þ

where fðrÞ and hðrÞ are functions of r only, and
γijdϕidϕj ¼ dΩ2

ðD−2Þ is the metric of SD−2, the unit

(D − 2) sphere. The spacetime is asymptotically flat if
limr→∞ fðrÞ ¼ limr→∞ hðrÞ ¼ 1 and describes a black hole
if there exists a horizon at r ¼ rH where fðrHÞ ¼ 0.

The horizon is extremal if this root is degenerate. On
the other hand, the spacetime may describe a horizonless
compact object if there is no root fðrÞ ¼ 0 for r > 0.
The Lagrangian for geodesic motion is

L ¼ 1

2
ð−f_t2 þ h_r2 þ r2γij _ϕ

i _ϕjÞ:

FIG. 1. The semicircle parametrization of RP1 (a) and the reduced A-discriminant (b) and contour (c) of the corresponding amoeba in
the problem of timelike circular orbits in the Schwarzschild spacetime. The plot in terms of physical parameters E2 and L2=4M2 is
included (d). The semicircle is subdivided into domains 1a–4, and their corresponding images are marked, respectively, in the other
three graphs. The blue curves (Domain 1b) represent the stable branch of circular orbits and the red curves (Domain 1a and 4) indicate
the unstable branch. The black curves (Domains 2 and 3) indicate unphysical circular orbits.
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Performing the Legendre transform to obtain the
Hamiltonian, its correspondingHamilton–Jacobi equation is

1

2

�
−
1

f

�∂S
∂t
�

2

þ1

h

�∂S
∂r

�
2

þ 1

r2
γij

∂S
∂ϕi

∂S
∂ϕj

�
þ∂S
∂τ¼0: ð5:2Þ

We take our ansatz to be S ¼ − 1
2
ϵτ − Etþ RðrÞ þ

Φðϕ1;…;ϕD−2Þ. Then, we find there exists a separation
constant L such that the equation for R is

1

h

�
dR
dr

�
2

¼ p2
r

h
¼ 1

f

�
E2 −

L2

f
þ ϵf

�
: ð5:3Þ

The remaining equations are γij ∂Φ
∂ϕi

∂Φ
∂ϕj ¼ L2 which describe

the angular motions, which we do not consider here in
detail as they depend mainly on the spherical geometry of
the spacetime, rather than its gravitating source. However,
we do point out that in the case D ¼ 4, it was shown in
Ref. [3] that light rings are stable along the angular
directions.
For null geodesics, we have ϵ ¼ 0, and the effective

potential for radial motion is

−U ¼ L2

f

�
η −

1

r2
f

�
; η ¼ E2

L2
: ð5:4Þ

We assume f to be a rational function of the form

f ¼ 1 −
PðrÞ
QðrÞ ; ð5:5Þ

where PðrÞ and QðrÞ are polynomials in r. For asymp-
totically flat spacetimes, we require limr→∞

P
Q ¼ 0. For this

form of f, Eq. (5.4) now takes the form −U ¼ L2

r2QfF ðrÞ,
where

F ðrÞ ¼ ηr2Q −Qþ P: ð5:6Þ

We assume that the prefactor L2

r2Qf will always be positive

in the domain of geodesic motion. A light ring then
corresponds to F ðrÞ ¼ F 0ðrÞ ¼ 0, which defines the
A-discriminantal variety of F .
Of course, applying Einstein’s equation or any alter-

native theory of gravity’s field equation would determine f
that may or may not take the form (5.5). However, we are
not presently invoking any particular model of gravity other
than the abovementioned general assumptions of our
spacetime. Instead, we are considering classes of functions
f that fit the conditions so that Rojas and Rusek’s theorem
can be applied. In particular, F ðrÞ must be a sum of
four monomials. To achieve this, we have a few cases. In
the following, we take the exponents m, n, and l to be
distinct, non-negative integers, and A, B, and C to be real
coefficients.

(1) Class I. If Q is a sum of two distinct monomials
whose degrees differ by an integer greater than 2,
then η2r2Q −Q already consists of four distinct
monomials. Hence, P must have monomials in the
same degree as those in r2Q or Q. Requiring
asymptotic flatness immediately rules out the high-
est degree terms in both. Therefore, f takes the form

fI ¼ 1 −
Brnþ2 þ Crn

rm þ Arn
; m > nþ 2: ð5:7Þ

(2) Class II. In this case, Q is a sum of two distinct
monomials whose degrees differ by 2. For asymp-
totic flatness, P cannot have any of the same
monomials in r2Q, nor the leading monomial of
Q. Therefore, f takes the form

fII ¼ 1−
Brl

rmþArm−2 ; m> l; l≠m−2: ð5:8Þ

(3) Class III. Here, Q is a sum of two distinct mono-
mials whose degrees differ by 1,

fIII ¼ 1 −
Brl

rm þ Arm−1 ; m − 1 > l: ð5:9Þ

(4) Class IV.Q has only 1 term. Then, P has two distinct
monomials whose degrees are less than Q to ensure
asymptotic flatness,

fIV ¼ 1 −
Arn þ Brl

rm
; n; l < m: ð5:10Þ

B. Absence of stable light rings in spacetimes
with nondegenerate horizons

We now show that in the four classes f identified above,
the parameters supporting the presence of a stable light ring
corresponds to spacetimes with no nondegenerate horizon.
In Refs. [34,35], it was shown that certain spacetimes with
a degenerate horizon carry a stable light ring on the location
of the horizon.
This latter statement can be shown in a direct manner

when we restrict our attention to the Classes I–IV functions
defined in Sec. VA. First, observe that in the limit η → 0,
the A-discriminantal variety of F coincides with that of
−ðQ − PÞ, which is where f ¼ 1 − P

Q has a degenerate root.
Therefore, the zero-energy limit of a light ring coincides
with the extremal horizon of the black hole. In this limit,
F 00ðrÞ ¼ −ðQ00ðrÞ − P00ðrÞÞ ∝ −f00ðrÞ. If this were to be
the extremal horizon of an asymptotically flat spacetime,
then f00ðrÞ < 0 at the horizon. Therefore, F 00ðrÞ > 0 there.
This means that extremal black holes carry stable light rings
on their horizons, albeit for photons with zero energy.
Next, we show that if we follow the A-discriminantal

variety of F continuously as η > 0, the parameters take
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values such that the degenerate roots of f are taken into the
complex domain. Therefore, the horizon disappears where
a stable light ring exists. This can be demonstrated for each
class explicitly.

1. Class I.

We begin with Class I solutions, where

f¼ 1−
P
Q
; P¼Brnþ2þCrn; Q¼ rmþArn: ð5:11Þ

In order to have attractive gravity as r increases towards
infinity, we require B > 0. Also, to avoid curvature
singularities beyond r > 0, we have A > 0. The horizons
corresponds to the roots

f ¼ 0 ↔ Q − P ¼ rm − Brnþ2 þ ðA − CÞrn ¼ 0: ð5:12Þ

A degenerate root will occur for

Bm−n

ðA−CÞm−n−2 ¼ ζ; where ζ¼ ðm−nÞm−n

4ðm−n−2Þm−n−2 : ð5:13Þ

The degenerate root becomes complex when Bm−n

ðA−CÞm−n−2 < ζ

and becomes real when Bm−n

ðA−CÞm−n−2 > ζ.

We now turn to the function F ðrÞ characterizing the
geodesic motion. As before, light rings correspond to the
discriminantal variety of F ðrÞ ¼ ηr2Q −Qþ P deter-
mined by F ðrÞ ¼ F 0ðrÞ ¼ 0. For the values of η and B
satisfying this condition, we find that its second derivative is

F 00ðrÞjlight ring¼−
2

r2
½ðm−nþ2ÞðA−CÞrn−ðm−2−nÞrm�:

ð5:14Þ

If A < C, the terms inside the square bracket are always
negative; hence, F 00ðrÞ is always positive. Therefore, the
light ring in this case is always unstable.
On the other hand, if A > C, the light ring may or may

not be unstable. We show that the stable case always
corresponds to spacetimes with no horizons. We let
r ¼ ðA − CÞ 1

m−nx, then F can be written as

F ¼ ðA − CÞ m
m−nFðxÞ; ð5:15Þ

where

FðxÞ ¼ axmþ2 þ bxnþ2 − xm − xn;

a ¼ ηðA − CÞ 2
m−n;

b ¼ ηAðA − CÞ−m−n−2
m−n þ BðA − CÞ−m−n−2

m−n : ð5:16Þ

The discriminantal variety of F is given by the solution of
FðxÞ ¼ F0ðxÞ ¼ 0,

a ¼ ðm − n − 2Þxm − 2xn

xmþ2ðm − 2Þ ;

b ¼ 2xm þ ðm − nþ 2Þxn
xnþ2ðm − nÞ : ð5:17Þ

We note that the tangent slope of this discriminantal
variety is

db
da

¼ b0

a0
¼ −xm−n; ð5:18Þ

which is always negative. In particular, we consider the
limit η → 0, which corresponds to the point a ¼ 0 and
where Q − P and F share the same degenerate root. Hence
at this point, b ¼ B

ðA−CÞm−n−2
m−n

¼ ζ1=ðm−nÞ.

We now follow the curve continuously along Eq. (5.17),
as a increases positively from zero, where F continues
to have the degenerate root (describing the stable light
rings). However, Eq. (5.18) means that b must decrease.
Looking at the equation for b in Eq. (5.16), this means
BðA − CÞ−m−n−2

m−n must decrease below its value when η ¼ 0,
which was ζ1=ðm−nÞ. This means entering a > 0 leads to the
degenerate roots of f ¼ ðQ − PÞ=Q becoming complex,
and hence, the horizon vanishes along the branch of stable
light rings. By the Descartes rule of signs, Eq. (5.12) can
have at most two positive real roots. So when they are the
degenerate root/horizon which vanishes as we increase η,
we are left with light rings in a horizonless spacetime. Now,
b will continue to decrease along this branch until b0 ¼ 0,
after which b may increase again. But this is the point
F00ðxÞ ¼ 0. So after this point, we then encounter the
unstable branch of light rings.

2. Class II.

In this class, we have

fII ¼ 1−
P
Q
; P¼ Brl; Q¼ rm þArm−2: ð5:19Þ

As in Class I, to have a weakening attractive gravity as r
grows, along with no curvature singularities at r > 0
requires B and A to be positive. Looking at the discriminant
condition F ðrÞ ¼ F 0ðrÞ ¼ 0 for F ¼ ηr2Q −Qþ P, we
find that for η and B obeying this condition leads to the
second derivative
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F 00ðrÞjlight ring ¼ 2ðm − 2 − lÞ
�ðm − lÞA2rm−2 þ 2ðmþ 2 − lÞArm þ ðm − lÞr2m

r2½ðm − lÞAþ ðmþ 2 − lÞr2�
�
: ð5:20Þ

If l < m − 2, the terms inside the curly braces are always
positive, along with the prefactor. Therefore, the second
derivative is always positive, and the corresponding light
rings are unstable.
The case m < l < m − 2 just means l ¼ m − 1. In this

case, we find

Q − P ¼ rm−2ðr2 − Brþ AÞ; ð5:21Þ

therefore, a degenerate root occurs when B2 ¼ 4A. This
degenerate root becomes complex as B2 < 4A.
Letting r ¼ A

B x, the function F can be cast in the form

F ¼ Am−1

Bm−2 x
m−2FðxÞ; ð5:22Þ

where FðxÞ ¼ ax4 þ bx2 þ x − 1,

FðxÞ ¼ ax4 þ bx2 þ x − 1; a ¼ η
A3

B4
;

b ¼ ðηA − 1Þ A
B2

: ð5:23Þ

The discriminantal variety of F is then equivalent to the
discriminantal variety of FðxÞ, which is now given by

a ¼ x − 2

2x4
; b ¼ 4 − 3x

2x2
: ð5:24Þ

As in the general argument at the beginning of this section,
the degenerate root of F coincides with that ofQ − P in the
limit η → 0, and this corresponds to a stable light ring at
a ¼ 0, in which case b ¼ − A

B2 ¼ − 1
4
. Increasing η con-

tinuously from zero into positive values means following
the discriminantal variety continuously as a > 0. However,
we find that

b0

a0
¼ db

da
¼ −x2: ð5:25Þ

This means b must decrease as we follow this curve.
Looking at the expression for b in Eq. (5.23), the prefactor
ðηA − 1Þ is a negative term decreasing in magnitude as we
increase η from zero. This means A

B2 must increase from its
previous value at a ¼ 0 (namely, A

B2 ¼ 1
4
.) which takes the

degenerate root of Q − P into the complex domain.
Therefore, the horizon vanishes along the branch of stable
light rings.

3. Class III.

In this case, we have P ¼ Brm−1 and Q ¼ rm þ Arm−1.
Horizons occur if

Q − P ¼ rm−1½r − ðB − AÞ� ¼ 0: ð5:26Þ

Therefore, the spacetime has a horizon if B > A and no
horizon if B < A. Letting r ¼ ðB − AÞx, the function F
takes the form

F ¼ ðB − AÞmFðxÞ; ð5:27Þ

where

FðxÞ ¼ ax3 þ bx2 − xþ 1; a ¼ ηðB − AÞ2;
b ¼ ηAðB − AÞ: ð5:28Þ

The discriminantal variety is given by

a ¼ 2 − x
x3

; b ¼ 2x − 3

x2
: ð5:29Þ

The curve is depicted in Fig. 2, where we find that the stable
branch (blue) is in the unphysical a < 0 region correspond-
ing to η < 0. The physically feasible region then is in the
a > 0 part, with b > 0 corresponding to parameters with a
horizon and b < 0 a spacetime with no horizon. In either

FIG. 2. Discriminant curve for the F function due to the Class
III function.
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case, we have the red branch representing unstable circular
orbits.

4. Class IV.

In this case, P ¼ Arn þ Brl and Q ¼ rm. In order to
have a weakening attractive gravity as r → ∞, we assume
n > l and take A > 0. The horizons occur if

Q − P ¼ rm − Arn − Brl ¼ 0: ð5:30Þ
We will have degenerate roots for

Bm−n

Am−l ¼ ζ; where

ζ ¼ ð−1Þm−n ðm − nÞm−nðn − lÞn−l
ðm − lÞm−l : ð5:31Þ

The degenerate root becomes complex as Bm−n

Am−l < ζ and
becomes real as Bm−n

Am−l > ζ.
Turning now to F ðrÞ ¼ ηr2Q −Qþ P which character-

izes the geodesic motion, one can use the light-ring
condition F ðrÞ ¼ F ðrÞ ¼ 0 to determine the discriminan-
tal variety. For the values of η and A obeying this condition,
we find the second derivative to be

F 00ðrÞjlight ring¼
2ðm−nÞrmþðn−lÞðm−l−2ÞBrl

r2
: ð5:32Þ

Hence, the light ring is always unstable if B > 0. However
it is possibly unstable in the case B < 0. Let us consider
this latter case in further detail. Let K ¼ −B be a positive
quantity. The roots of Q − P are degenerate when

Km−n

Am−l ¼ ζ; where ζ ¼ ðm − nÞm−nðn − lÞn−l
ðm − lÞm−l : ð5:33Þ

The degenerate root becomes complex as Km−n

Am−l < ζ and
becomes real and distinct as Km−n

Am−l > ζ.
Turning to the function F ¼ ηr2Q −Qþ P, we let r ¼

A1=ðm−nÞx so that it can be written as

F ¼ A
m

m−nFðxÞ; ð5:34Þ

where

FðxÞ ¼ axmþ2 − xm þ xn − bxl;

a ¼ ηA
2

m−n; b ¼ K

A
m−l
m−n

: ð5:35Þ

We apply the same argument as in the previous classes. At
η ¼ 0, F is a multiple of Q − P; hence, they both have a
degenerate root at b ¼ K=A

m−l
m−n ¼ ζ. We now follow the

discriminantal variety of FðxÞ ¼ F0ðxÞ ¼ 0, which is
given by

a ¼ ðm − lÞxm − ðn − lÞxn
ðm − lþ 2Þxmþ2

;

b ¼ −2xm þ ðm − nþ 2Þxn
ðm − lþ 2Þxl : ð5:36Þ

The tangent to the curve in the ða; bÞ plane is

b0

a0
¼ db

da
¼ xm−lþ2; ð5:37Þ

which is always positive for x > 0. Now suppose we are at
η ¼ 0; then, the light ring occurs when a ¼ 0 and coincides
with the extremal horizon, for which case b ¼ K=A

m−l
m−n ¼ ζ.

We now follow the discriminantal variety as a increases
continuously from zero to positive values. From Eq. (5.37),
b ¼ K=A

m−l
m−n increases as well. Then, the previously degen-

erate roots of Q − P become complex, and the horizon
vanishes. By the Descartes rule of signs for A > 0 and
B < 0, Eq. (5.30) can have at most two positive roots.
When they become degenerate and vanish as η increases,
we are again left with stable light rings in a horizonless
spacetime.

VI. EXAMPLES

We now turn to specific examples of known spacetimes
which embody the consequences of Rojas and Rusek’s
theorem leading to two branches of light rings. In the
following, we consider the Hayward and Reissner–
Nordström spacetime in some detail. We see how the
general arguments of the previous section applies using the
concrete parameters of the spacetimes in question.

A. The Hayward spacetime

The Hayward spacetime [36] is a four-dimensional
spacetime with the metric given by

ds2 ¼ −fdt2 þ f−1dr2 þ r2dθ2 þ r2 sin2 θdϕ2; ð6:1aÞ

f ¼ 1 −
2Mr2

r3 þ 2Ml2
: ð6:1bÞ

Here, M parametrizes the mass of the central gravitating
source, and the essential feature of this spacetime is that it
lacks a curvature singularity at the origin for nonzero l.
The geodesics of the Hayward spacetime have been studied
in Refs. [37–40]. A generalization of the spacetime to
include quintessence was recently studied in Refs. [41].
In these works, it was found that for parameters of the
spacetime containing a horizon (the Hayward black hole),
there exists an unstable light ring. For parameters where the
horizon vanishes, there are two branches of light rings, one
stable and the other unstable [38,39]. In light of the
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discussion of A-discriminants in this paper, we now
reinterpret these results as a consequence of Rojas and
Rusek’s theorem.
The Hayward metric (6.1) is an example of a Class I

spacetime with A ¼ 2Ml2, B ¼ 2M, C ¼ 0, m ¼ 3, and
n ¼ 0. For these numbers, the critical value ζ as defined in
Eq. (5.13) is ζ ¼ 27

4
. The condition for the degenerate roots

becoming complex in terms of the present parameters as

Bm−n

ðA − CÞm−n−2 < ζ →
4M2

l2
<

27

4
; ð6:2Þ

recovering the statements of the original analysis [36].
The effective potential for null geodesics is

−U¼ L2

r2ðr3þ2Ml2Þf ½ηr
5−r3þðηAþBÞr2−A�: ð6:3Þ

Further letting r ¼ A1=3x, this is now written as

−U ¼ −
AL2

r2ðr3 þ 2Ml2Þf FðxÞ; ð6:4Þ

where

FðxÞ ¼ ax5 þ x3 þ bx2 þ 1; a ¼ −ηð2Ml2Þ2=3;

b ¼ a −
�
2M
l

�
2=3

: ð6:5Þ

As expected from the Class I solution, we can explicitly see
how FðxÞ is a univariate polynomial of four terms,
satisfying the conditions of Rojas and Rusek’s theorem.
This time, the prefactor in front of FðxÞ is made to be
negative so that the normalized coefficients of FðxÞ have
positive signs. With this negative sign in the prefactor, this
means stable light rings correspond to F00ðxÞ > 0 and
unstable ones F00ðxÞ < 0. In particular, the degenerate
horizon with l2¼ 16

27
M2 is located at r¼ 4

3
M and f00ð4

3
MÞ ¼

9
8M2 > 0. Equivalently, Q00ð4

3
MÞ − P00ð4

3
MÞ ¼ 4M > 0. At

η ¼ 0, the function FðxÞ and Q − P share the same
discriminant upon rescaling the coordinate by r ¼ A1=3x ¼
ð2Ml2Þ1=3x. Therefore F00ðxÞ > 0 on the degenerate root as
well, indicating the presence of the stable light ring.
For general values of η, the light ring condition FðxÞ ¼

F0ðxÞ ¼ 0 leads to

a ¼ −
x3 − 2

3x5
; b ¼ −

2x3 þ 5

3x2
: ð6:6Þ

At η ¼ 0, we have a ¼ 0 and b ¼ −ð27
4
Þ1=3. Following the

discriminantal variety (6.6) as η continuously increases
from zero to positive means a continuously decreases from

zero to negative values. The tangent b0=a0 ¼ db
da ¼ − 2ðx3−5Þ

x2

being negative means b increases from its η ¼ 0 value.
Looking at Eq. (6.5), to increase in b means ð2Ml Þ2=3 must
decrease from ð27

4
Þ1=3, taking the parameters into the case of

the horizonless Hayward spacetime.
The visual depiction is shown in Fig. 3(a). The dotted

line corresponds to b ¼ a − ð27
4
Þ1=3. Therefore, points

above this line correspond to 4M2

l2 > 27
4
for the horizonless

Hayward spacetime, and points below correspond to the
Hayward black hole with inner and outer horizons. The
stable branch of the light ring is shown in blue and lies
entirely in the horizonless domain. The red branch is
depicted as the red segment which exists in both the
horizonless and black hole cases, separated from the stable
branch by the cusp.
For completeness, let us obtain the contour correspond-

ing to the discriminantal variety of F, as this is where Rojas
and Rusek’s theorem directly applies. Looking at the
exponents of FðxÞ, we see that A ¼ f0; 2; 3; 5g. The
corresponding A matrix and its Gale dual is

A ¼
�
1 1 1 1

0 2 3 5

�
; B ¼

0
BBB@

2 −1
0 3

−5 −2
3 0

1
CCCA: ð6:7Þ

The Horn–Kapranov parametrization is given by

Ψð½λ1∶λ2�Þ ¼
�
27λ31ð2λ1 − λ2Þ2
ð−5λ1 − 2λ2Þ5

;
27λ32

ð2λ1 − λ2Þð−5λ1− 2λ2Þ2
�
:

ð6:8Þ

Taking the restriction of this map toRP1 in the patch where
λ2 ≠ 0, the components of the map are

Ψð½λ∶1�Þ ¼ ðã; b̃Þ; where ã ¼ 27λ3ð2λ − 1Þ2
ð−5λ − 2Þ5 ;

b̃ ¼ 27

ð2λ − 1Þð−5λ − 2Þ2 : ð6:9Þ

Finally, the contour C is the image of Ψ under the log-
absolute map,

Φð½λ∶1�Þ ¼ ðφ1;φ2Þ; where

φ1 ¼ log

���� 27λ
3ð2λ − 1Þ2

ð−5λ − 2Þ5
����;

φ2 ¼ log

���� 27

ð2λ − 1Þð−5λ − 2Þ2
����: ð6:10Þ

The image of this map is depicted in Fig. 3(b). The
components ðã; b̃Þ are related to ða; bÞ by
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a3 ¼ ã; b3 ¼ b̃ ↔ λ ¼ 2x3 þ 5

x3 − 2
: ð6:11Þ

The exponent of 3 occurs because we have rescaled the
entries of B in (6.7) by a factor of 3 to ensure that they are
integers.
Rojas and Rusek’s theorem in this case tells us that the

contour C contains at most n ¼ 1 cusps, as indeed dem-
onstrated in Fig. 3(b). Correspondingly, the discriminantal
variety in the ða; bÞ plane inherits the single cusp, which
implies that there exist two branches of light rings. Indeed,
the stable branch lies in the domain of horizonless
spacetime.

B. The Reissner–Nordström spacetime

The Reissner–Nordström (RN) spacetime is described by
the metric

ds2 ¼ −fdt2 þ f−1dr2 þ r2dθ2 þ r2 sin2 θdϕ2; ð6:12aÞ

f ¼ 1 −
2M
r

þ q2

r2
; ð6:12bÞ

where M and q are the mass and charge parameters of the
spacetime, respectively. It is well known that the solution
describes a charged black hole for jqj < M. An extremal
horizon occurs where jqj ¼ M, and the range jqj > M
corresponds to the horizonless spacetime with a naked

singularity. The stable light rings in the extremal RN
spacetime have been studied in [42]. We now reinterpret
these results in the context of Rusek’s theorem.
In particular, the RN spacetime is an example of a

Class IV solution with A ¼ 2M, B ¼ −q2, m ¼ 2, n ¼ 1,
and l ¼ 0. For this case, the effective potential is

−U ¼ L2

r4f
ðηr4 − r2 þ 2Mr − q2Þ: ð6:13Þ

Letting x ¼ − r
2m, we find

−U ¼ −
4M2L2

r4f
FðxÞ; ð6:14Þ

where

FðxÞ¼ ax4þx2þxþb;a¼−4M2η; b¼ q2

4M2
: ð6:15Þ

In this case we see that the light-ring condition corresponds
to F ¼ F0 ¼ 0, and that stable/unstable light rings corre-
spond to FðxÞ being a local minimum/maximum, respec-
tively. The light-ring condition leads to

a ¼ −
2xþ 1

4x3
; b ¼ −

2x2 þ 3x
4

: ð6:16Þ

FIG. 3. Parameters for light rings in the Hayward spacetime. Panel a shows the reduced A-discriminant of FðxÞ defined in Eq. (6.5)
and panel b its contour C of its corresponding amoeba. The domain above the dotted line in the ða; bÞ plane corresponds to 4M2

l2 > 27
4
of

the horizonless Hayward spacetime, and the domain below to 4M2

l2 < 27
4
corresponds to the Hayward black hole. The blue segments of the

curves correspond to stable light rings, and the red segments correspond to unstable light rings.
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The point η ¼ 0 corresponds to a ¼ 0, or x ¼ − 1
2
. The

value of b at this point is b ¼ q2

4M2 ¼ 1
4
. This is precisely the

extremal condition jqj ¼ M. The cusp is located at a0 ¼
b0 ¼ 0 which is x ¼ − 3

4
. It can be directly checked that

F00ðxÞ is positive between the cusp and η ¼ 0, thus
corresponding to stable light rings. The tangent of the
curve (6.16) is given by b0=a0 ¼ db

da ¼ −ð4xþ 3Þ=x which
is negative for − 3

4
≤ x ≤ − 1

2
, namely, between the cusp and

η ¼ 0. Therefore, following the discriminantal variety
continuously as η increases from zero to positive values
is equivalent to following a from zero to negative values.
The negative db

da means b must increase as we follow the

curve. This will take q2

4M2 to values greater than 1
4
, thus

putting us in the domain of the horizonless RN spacetime
with a naked singularity.
The preceding discussion is depicted explicitly in the

ða; bÞ plane of Fig. 4(a), where the horizontal dashed line

corresponds to b ¼ q2

4M2 ¼ 1
4
. Therefore, points above this

line correspond to the RN naked singularity, and the points
below correspond to the RN black hole. The branch of
stable light rings is shown as the blue curve, and the
unstable light rings are shown in red. The two branches are
separated by the cusp. We see that the stable branch lies
entirely in the naked singularity domain. The branches
drawn in black are unphysical regimes which require

negative η or negative q2

M2.
To complete our discussion, we calculate the contour C

of the discriminantal variety of FðxÞ where Rojas and

Rusek’s theorem applies. We see that A ¼ f0; 1; 2; 4g, and
the corresponding A matrix and its Gale dual is

A ¼
�
1 1 1 1

0 1 2 4

�
; B ¼

0
BBB@

0 1

2 −2
−3 1

1 0

1
CCCA: ð6:17Þ

The map (3.11) gives

Ψð½λ1∶λ2�Þ ¼
�
λ1ð2λ1 − 2λ2Þ2
ð−3λ1 þ λ2Þ3

;
λ2ð−3λ1 þ λ2Þ
ð2λ1 − 2λ2Þ2

�
: ð6:18Þ

Taking the patch where λ1 ≠ 0, we have have the
A-discriminant DB

Ψð½1∶λ�Þ¼ ða;bÞ; where a¼ð2−2λÞ2
−3þλ

; b¼ λð−3þλÞ
ð2−2λÞ2 :

ð6:19Þ

Comparing Eq. (6.16) with (6.19), we find the two are in
agreement if

−x ¼ λ − 3

2ðλ − 1Þ ¼
r
2m

: ð6:20Þ

Finally, its contour C is the image under the log-absolute
map,

FIG. 4. The A-discriminant and contour C of the corresponding amoeba for the problem of light rings in the Reissner–Nordström
spacetime. The blue curves correspond to stable light rings, and the red curves correspond to unstable ones. The black curves correspond
to light rings with unphysical parameters.
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Φð½1∶λ�Þ ¼ ðlog jaj; log jbjÞ: ð6:21Þ
The image of the contour is shown in Fig. 4(b). In particular,
we note that the blue (stable light ring) branch in Fig. 4(a) is
mapped to the blue branch in Fig. 4(b) and similarly for the
red (unstable light ring) branch. Rojas and Rusek’s theorem
asserts that since FðxÞ is a univariate (n ¼ 1) polynomial of
nþ 3 ¼ 4 terms, it has at most n ¼ 1 cusp, as can be seen in
Fig. 4(b). The preimage of the log-absolute map therefore
inherits this single cusp in Fig. 4(a), where it separates the
stable and unstable light ring branches.

VII. BEYOND SPHERICAL SYMMETRY
AND n+ 3 MONOMIALS

The examples we considered in the previous section have
been for problems involving spherical symmetry, which
results in the effective potential being a univariate poly-
nomial, and Rojas and Rusek’s theorem applies for the case
of four monomials. Here, we consider the possibility of
applying this approach to more general situations, geo-
desics in axisymmetric spacetimes.

A. Example: Light rings around
an accelerating black hole

For an example with two variables, we consider the
C metric, where the metric is

ds2 ¼ 1

ðx̃ − ỹÞ2
�
−Fdt2 þ dỹ2

F
þ dx̃2

G
þ Gdϕ2

�
; ð7:1aÞ

F ¼ a0 þ a1ỹþ a2ỹ2 þ a3ỹ3;

G ¼ −a0 − a1x̃ − a2x̃2 þ a3x̃3; ð7:1bÞ
This solution to the vacuum Einstein equations describe an
accelerating black hole. Among the parameters a0, a1, a2,
and a3, they can be reduced by linear coordinate trans-
formations of x and y. It is conventional, e.g., in [43], to use
these transformation to remove the linear terms in F and G.
However, for the present purposes we instead remove the
quadratic term. In other words, we introduce a shift

x̃ → x −
a2
3a3

; ỹ → y −
a2
3a3

; ð7:2Þ

and along with an appropriate renaming of coefficients, the
metric becomes1

ds2 ¼ 1

ðx − yÞ2
�
−Fdt2 þ dy2

F
þ dx2

G
þ Gdϕ2

�
; ð7:3aÞ

F ¼ b0 þ b1yþ b3y3; G¼ −b0 − b1x− b3y3: ð7:3bÞ

It can be checked that (7.3) still solves the 4-dimensional
vacuum Einstein equations, Rμν ¼ 0.

The effective potential for null geodesics in this space-
time is

−U ¼ E2

F
−
L2

G
¼ 1

FG
fðx; yÞ; ð7:4Þ

where

fðx; yÞ ¼ E2b3x3 þ L2b3y3 þ E2b1xþ L2b1y

þ E2b0 þ L2b0: ð7:5Þ
Circular orbits then correspond to f ¼ ∂xf ¼ ∂yf ¼ 0,
which is the defining equations for the discriminant.
The A matrix and its corresponding Gale dual is

A ¼

0
B@

1 1 1 1 1

3 0 1 0 0

0 3 0 1 0

1
CA; B ¼

0
BBBBB@

1 0

0 1

−3 0

0 −3
2 2

1
CCCCCA
: ð7:6Þ

Using the Horn–Kapranov procedure, we find�
b3b20ðE2 þ L2Þ2

E4b31
;
b3b20ðE2 þ L2Þ2

L4b31

�

¼
�
−
4ðλþ 1Þ2
27λ2

;−
4ðλþ 1Þ2

27

�

¼ ða; bÞ: ð7:7Þ
The above parametric curve has a cusp at λ ¼ −1, or (0,0).
Taking the log map, we find that the corresponding amoeba
has the cusp at infinity. However λ ¼ −1 corresponds to
either b3 ¼ 0, b0 ¼ 0, or E2 þ L2 ¼ 0, all of which are
unphysical or irrelevant. It is well known that the C metric
only carries unstable light rings [44]. Therefore, there
would be no cusps in the physically relevant parameter
ranges of interest. Figure 5 shows the curve (7.7) and the
contour of its corresponding amoeba.
Eliminating λ between the two coordinates above, we

recover

27b3b20E
4 þ 4E4b31 þ 54b3b0E2L2 − 8E2b31L

2

þ 27b3b20L
4 þ 4b31L

4 ¼ 0; ð7:8Þ

which gives the values of E and L required to satisfy for a
circular null geodesic in the C-metric spacetime. This is
analogous to the results of [44], although they used a
different parametrization of the C metric.

B. The case of n+ 3 monomials
with small additional terms

In this section, we consider what happens for polyno-
mials of nþ 3 monomials perturbed with small additional

1A third parameter can be fixed to, say, b0 ¼ 1 by a conformal
rescaling of t, x, y, and ϕ. But it is not necessary for our present
purpose.
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terms. We see that the number of cusps may be equal to or
less than n.
A point on the curve through which more than one

branches pass is called a multiple point. In particular, a
point on a curve through which two branches pass is called
a double point. A double point at which the two tangents
are real and distinct is called a node, and a double point at
which the two tangents are real and coincident is called a
cusp. Finally, a double point at which the two tangents are
imaginary is called isolated point or conjugate point. Let us
see that double points on a curve are defined by a function
fðx; yÞ ¼ 0. First, a double point is a singular point ðx0; y0Þ
such that ∂f∂x ðx0; y0Þ ¼ ∂f

∂y ðx0; y0Þ ¼ 0. If the determinant of
the Hessian is strictly positive, i.e.,

detðHessðfÞÞjðx0;y0Þ ¼
� ∂2f
∂x∂y ðx0; y0Þ

�
2

−
∂2f
∂x2 ðx0; y0Þ

∂2f
∂y2 ðx0; y0Þ > 0;

then such a double point ðx0; y0Þ is a node. This means that
the condition to be a node is an open condition. However, if

detðHessðfÞÞjðx0;y0Þ ¼
� ∂2f
∂x∂y ðx0; y0Þ

�
2

−
∂2f
∂x2 ðx0; y0Þ

∂2f
∂y2 ðx0; y0Þ ¼ 0;

then such a double point ðx0; y0Þ is a cusp, which implies
that being a cusp is a closed condition.
Therefore, the function which associates to each real

algebraic curve C (real in the sense that the group Z2 given

by the conjugation in C acts on it, i.e., C ¼ C̄), the number
of its cusps, is a lower semi-continuous function; i.e., the
number of cusps cannot increase if we make a small
perturbation of the curve.
Example 4.
(1) These are the deformations of the E6 singularities

parametrized by ρðtÞ ¼ ðt3; t4Þ, see Fig. 6.
(2) Another example of simple cubic curves C 1 and C 2

defined by y2 ¼ x3, and y2 ¼ x3 þ x respectively, is
in Fig. 7.

(3) Other deformations of cusps are such as shown
in Fig. 8.

The reduced A-discriminant is a polynomial in the
coefficients of the polynomial in question. Since being a
cusp is a closed condition, as we saw above, then the

FIG. 6. Deformations of the E6 singularities.

FIG. 7. Cubic curves C 1 and C 2.

FIG. 5. The reduced A-discriminant DB for Eq. (7.7), and its corresponding contour C of its amoeba given by ðφ1;φ2Þ ¼
ðlog jaj; log jbjÞ.

YEN-KHENG LIM and MOUNIR NISSE PHYS. REV. D 104, 104012 (2021)

104012-18



number of cusps of the amoeba contour of the reduced
A-discriminant Dfε of a small perturbation fε of a poly-
nomial f cannot exceed the number of cusps of the amoeba
contour of the reduced A-discriminant Df.
There are ways to remove singularities so not to lose

information about the original curve. For one-dimensional
curves, it is always possible to carry out this process,
called resolution of the singularity. The higher-dimensional
case is not so straightforward, but it was done. Oscar
Zariski [45,46] studied singularities in two and three
dimensions, and in 1964, Heisuke Hironaka [47,48]
showed that singularities in any dimension can be resolved.
Thus, a polynomial of any degree in any number of
variables is equivalent to one that is regular, that is, without
singularities. This is not the subject of our work in
this paper.
Consider a polynomial f ∈ ðC�ÞA with A being a finite

configuration of points fα1;…; αNg ⊂ Zn,

A ¼
�

1 � � � 1

α1 � � � αN

�
; ð7:9Þ

where each αi ∈ Zn are viewed as column n vectors for
i ¼ 1;…; N. The Gale dual of A is a matrix B with
maximal rank and satisfies

AB ¼ 0: ð7:10Þ

Let m ¼ N − 1 − n, and thenn the ðN ×mÞ-matrix B can
be chosen as follows:

B ¼

0
BBBBBBBBBBBBB@

b11 b21 � � � bm1

..

. ..
. . .

. ..
.

b1N−m b2N � � � bmN−m

λ1 0 � � � 0

0 λ2 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � λm

1
CCCCCCCCCCCCCA

: ð7:11Þ

The reduced A-discriminant is given by the Horn-
Kapranov parametrization corresponding to the matrix B.
Restricting this parametrization to the real projective space
and applying the logarithmic map, we obtain the contour of
its amoeba which is a hypersurface S in Rm. Now if we
remove the (N þ j)th column and the jth row from the
matrix B, we obtain a parametrization of the reduced
Aj-discriminant of the polynomial g obtained by removing
the jth monomial from our original polynomial f. In other
words, the matrix Aj is obtained by removing the jth
column from the matrix A. Geometrically, this is the
intersection of the hypersurface S with the jth plane Hj

axis (i.e., xj ¼ 0), which is also the Aj-discriminant of a
polynomial with less monomials than the original one. We
apply the same process to these new Aj-discriminants until
we get a discriminant of a polynomial with a lower number
of monomials (all this process is done by a routine maple
calculation), more precisely, until N − j ¼ nþ 3 and then
Rojas-Rusek’s theorem tells us that the number of cusps is
at most n for this last projection. Note that by construction
the polynomial corresponding to this last projection has
N − j monomials.
Example 5. Here is another example of univariate

polynomial with five monomials. Consider a generic
quadric given by f ¼ a0 þ a1xþ a2x2 þ a3x3 þ a4x4, i.e.,

A¼
�
1 1 1 1 1

0 1 2 3 4

�
; and B¼

0
BBBBBB@

3 2 1

−4 −3 −2
0 0 1

0 1 0

1 0 0

1
CCCCCCA
: ð7:12Þ

Therefore, the Horn-Kapranov parametrization is as
follows:

x1 ¼
ð3þ λ2 þ λ3Þ3

ð−4 − 3λ2 − 2λ3Þ4
; x2 ¼

ð3þ λ2 þ λ3Þ2λ2
ð−4 − 3λ2 − 2λ3Þ3

;

x3 ¼
ð3þ λ2 þ λ3Þλ3

ð−4 − 3λ2 − 2λ3Þ2
:

We obtain a surfaceS inR3 such that its intersections with
the plane axis are also discriminants of polynomials with

FIG. 8. Other deformations of cusps.
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four monomials coming from the original polynomial f by
removing one of its monomials.
The induction on the number of monomials is used as

follows. If we remove the last monomial from f, we obtain
a new polynomial f5 with four monomials, and its
A5-discriminant is precisely the Horn-Kapranov parame-
trized given by removing the last column from A, and B5 is
obtained by removing the first column and the fifth row
from the matrix B to obtain the following:

A5 ¼
�
1 1 1 1

0 1 2 3

�
; and B5 ¼

0
BBB@

2 1

−3 −2
0 1

1 0

1
CCCA: ð7:13Þ

If we remove, for example, the third monomial from f, we
obtain a new polynomial f3, and its A3-discriminant is
precisely the Horn-Kapranov parametrized given by
removing the third column from A, and B3 is obtained
by removing the third column and the third row from the
matrix B to obtain the following:

A3 ¼
�
1 1 1 1

0 1 3 4

�
; and B3 ¼

0
BBB@

3 2

−4 −3
0 1

1 0

1
CCCA: ð7:14Þ

We presented here two projections, and the third one can be
done in the same way.

VIII. CONCLUSION

In this paper, we have applied the theory of
A-discriminantal varieties to study timelike and null cir-
cular geodesics of various spacetimes. In particular, Rojas
and Rusek’s theorem is applied to identify classes of
algebraic spacetimes with at most two branches of light

rings, one of which is stable and the other unstable. It was
also shown that the unstable branch always occurs in
parameters for which the spacetime is horizonless.
Perhaps it is worth noting that the conditions for which

Rojas and Rusek’s theorem applies is highly stringent. First,
the functions involved must be algebraic, and second, the
resulting effective potential must take the form of a uni-
variate polynomial with exactly four terms. The fact that
the functions must be algebraic immediately makes it
nonapplicable to spacetimes with functions of noninteger
exponents. For instance, the gtt component of the Fisher/
JNW spacetime [49,50] takes the form −ð1 − r0=rÞν and is
nonalgebraic since 0 < ν < 1 for this solution. Remarkably,
even with these restrictions, we still have many examples of
spacetimes that do satisfy the conditions. The examples
provided in this paper have been timelike geodesics around
the Schwarzschild black hole, light rings in the Hayward,
Reissner–Nordström, and C-metric solutions.
In any case, for the “algebraic” spacetimes, we have

identified as Classes I–IV that light rings do indeed come in
pairs, thus giving support to the results of [3,5,6] from the
perspective of A-discriminants. All of these appear to show
that unstable light rings seem to be a generic feature of
spherically symmetric, asymptotically flat spacetimes.
Our results makes use of a specific result in the form of

Rojas and Rusek’s theorem. At the same time, there is a
vast literature on discriminants and varieties, and many of
these are reviewed in Ref. [30] and other references. It may
be worth exploring further to see how the present results
can be expanded and/or generalized.
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