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We derive the Hawking radiation spectrum of anyons, namely particles in ð2þ 1Þ—dimension obeying
fractional statistics, from a Bañados, Teitelboim, and Zanelli (BTZ) black hole, in the tunneling formalism.
We examine ways of measuring the spectrum in experimentally realizable systems in the laboratory.
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I. INTRODUCTION

According to the classical theory of gravity, formulated
by Albert Einstein, a black hole is a region of spacetime
from which gravity prevents everything, including light,
from escaping. It is quite remarkable that black holes turn
“grey” and radiate energy in the form of Hawking radiation
[1], when quantum mechanics is brought into the picture.
Hawking radiation, being thermal in nature, contains very
little information, and since a large amount of information
may have entered the black hole during its formation phase,
it may be lost forever when the black hole evaporates
completely. This is the so-called information loss problem,
whose resolution is still-being sought, despite a number of
interesting proposals [2–7]. Hence, it is important to
examine Hawking radiation phenomena for a diverse set
of spacetimes and a variety of particles. At the very least,
this would help in a better understanding of the problem
itself. It has been shown that in ð3þ 1Þ—dimension,
bosons and fermions Hawking radiate from black holes
at the same Hawking temperature of the black hole, with
the respective Planck and Fermi distributions. Contrary to
this, in ð2þ 1Þ—dimension, there can exist particles,
known as anyons, which are neither bosons, nor fermions,
but follow fractional statistics [8,9]. Anyons are interesting
entities to study in their own right. Furthermore, there has
been recent experiments which show strong evidence in
favour of their existence [10]. They may also be practically
useful in a variety of systems such as quantum computation
[11,12]. The obvious question that arise in this context is
whether there exist Hawking radiation of anyons as well.
Existence of Hawking radiation of anyons from black holes
will not only strengthen the Hawking radiation results, but
may also shed new light on the information loss problem, as

well as provide a new avenue of observing Hawking
radiation in the laboratory [13]. Hence the primary focus
of this article is to take a closer look at these issues, which
to the best of our knowledge, is the first study of anyonic
Hawking radiation. In the next section, we review the
important properties of anyons that are relevant to this
work. This is followed by, in Sec. III, a brief review of
the Hawking decay rate from a black hole horizon in the
tunneling approach first proposed by Parikh and Wilczek
[14] for bosons and fermions in ð3þ 1Þ—dimension.
Hawking radiation using a complex path approach in
different coordinates was also studied in [15,16] and anyon
like excitations in the context of Bañados, Teitelboim, and
Zanelli (BTZ) black holes in [17]. In Sec. IV, we describe in
detail an extension of this formalism to anyons in the
context of a BTZ black hole. In Sec. V, we examine
potential ways of observing this radiation in tabletop
experiments. Finally, we summarize our results and con-
clude in Sec. VI.

II. PARTICLES WITH INTERMEDIATE
STATISTICS

In the (3þ 1)-spacetime dimension that we live in,
particles are either bosons or fermions, with intrinsic spin
of integer or half-odd integer (in units of ℏ). These particles
are described by wave functions which are either sym-
metric or antisymmetric under the exchange of two
particles. Contrary to this, in (2þ 1)-spacetime dimension,
a continuous range of statistics is available [9]. Consider
two identical particles in (2þ 1)-dimension. Let ψðrÞ be
the wave function of the two particle system, subject to the
condition that ψðrÞ ≠ 0, if r > a (the so-called “hard-core
condition”), where r⃗1 and r⃗2 are the positions of the two
particles and the relative position vector r⃗≡ r⃗1 − r⃗2. So, the
configuration space of the particles is the two-dimensional
ðx; yÞ-plane with a disc of radius a removed. Given
these coordinates, we can define a complex coordinate
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z ¼ xþ iy and make a transformation z → ze2πi, which
effectively brings a particle back to its starting point,
the wave function must also remain invariant, but up to
a phase, i.e.,

ψðzei2π; z�e−i2πÞ ¼ ei2παψðz; z�Þ; ð1Þ

for some real parameter α. Similarly, one may interchange
the two particles, i.e., transform z → zeiπ , to obtain

ψðzeiπ; z�e−iπÞ ¼ eiπαψðz; z�Þ: ð2Þ

In Eq. (2) the value of α equal to 0 and 1 corresponding to
bosons and fermions. However, in ð2þ 1Þ—dimension,
any real value of α in between 0 and 1 is also allowed. To
understand this particular point, let us consider a system of
two identical particles in ð3þ 1Þ—dimension. We need to
do two consecutive interchanges of the location of the
particles to go back to the original configuration. All such
trajectories are topologically equivalent. However, in
(2þ 1) dimension, after doing one interchange, we need
to do one more winding of one particle around the other to
come back to the initial configuration. Unlike to the case in
ð3þ 1Þ—dimension, these two trajectories are distinct in
nature. So, it can be associated with two different topo-
logical phases which can take any value. It clearly indicates
to the fact that, in two spatial dimension, a particle may
posses statistics which are different from the standard Bose-
Einstein and Fermi-Dirac statistics and are called fractional
statistics. The particles that follow fractional statistics are
called anyons. The objective of our work is to describe the
Hawking radiation of these particles.

III. HAWKING RADIATION FROM TUNNELING
FOR BOSONS AND FERMIONS

Hawking radiation [14] from a black hole horizon can be
interpreted in the following way: there is copious pair
production of particles and antiparticles from vacuum just
inside the horizon. The antiparticle travels backwards in
time inside the horizon, while the particle tunnels out
quantum mechanically and is manifested as Hawking
radiation. An equivalent picture exists in which the pair
production occurs just outside the horizon, with the
negative energy particle tunneling inside the horizon and
the one with positive energy gives rise to Hawking
radiation. A rigorous calculation of the tunneling rate
indeed reproduces the correct radiation rate, derived inde-
pendently by other methods, and lends further credence to
the above picture. To estimate the tunneling probability, we
compute the imaginary part of the action of the particle over
classically forbidden region [14],

ImS ¼ Im
Z

rout

rin

drpr ¼ Im
Z

M−ω

M

Z
rout

rin

dH
dr
_r
; ð3Þ

where H ¼ M − ω0 and the initial value of radius is chosen
just inside the event horizon, rin ¼ 2M − ϵ. Due to loss of
energy, the radius of the event horizon will reduce to,
rh ¼ 2M − ω. Therefore, the point outside will be at
rout ¼ 2ðM − ωÞ þ ϵ.
The integration in Eq. (3) is obtained using the equation

of motion of radial null geodesics to express the ImS in
terms of M and ω,

ImS ¼ 4πω

�
M −

ω

2

�
: ð4Þ

The corresponding amplitude of the tunneling process can
be written in a straightforward manner as

Γ ∼ e−2ImS ¼ e−8πωðM−ω
2
Þ ¼ pω: ð5Þ

The above tunneling amplitude also can be interpreted as
the relative probability of creating a particle-antiparticle
pair just outside the horizon [18]. Equation (5) is valid
for both bosons and fermions. When a pair production
happens just outside the horizon with the relative proba-
bility pω, particle with energy ω escapes from the horizon
and antiparticle with energy −ω goes inward towards
the singularity. The absolute probability of creating
a pair of particles in a particular mode ω is calculated as
follows:

Pω ¼ Cωpω; ð6Þ

where Cω, which is the probability that no pairs are created
in that particular mode. Since fermions obey the exclusion
principle, only one particle-antiparticle pair can be created
in each quantum state, the sum of the probabilities of no
pair production and one pair production must add up
to one,

Cω þ Cωpω ¼ 1: ð7Þ

On the other hand, the probability of creating one pair of
particles in the energy mode ω is given by

P1ω ¼ Cωpω ¼ pω
1þ pω

: ð8Þ

We know that there is an effective potential barrier exterior
of the black hole (2M < r < ∞) which causes a back-
scattering. In the particle production calculation we only
need to consider the fraction entering black hole horizon,
which is represented by the transmission coefficient Γω

[19]. Taking this fact into account we compute the
probability of the one particle emission,

P̄1ω ¼ P1ωΓω ¼ pωΓω

1þ pω
: ð9Þ
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P̄1ω can also be interpreted as the mean number of particles
(N̄ω) emitted in a given mode. We substitute Eq. (5) in
Eq. (9) to obtain N̄ω [20],

N̄ω ¼ Γω

e8πmω þ 1
: ð10Þ

The Eq. (10) is precisely the Fermi-Dirac distribution
modified by the transmission coefficient Γω. Similar
expression can be derived for bosons as well [20]

N̄ω ¼ Γω

e8πMω − 1
: ð11Þ

These results are consistent with Hawking’s celebrated
work about particle emission from black hole and provides
a nice physical picture in terms of tunneling through a
potential barrier [1].

IV. HAWKING RADIATION FROM
TUNNELING FOR PARTICLES WITH

INTERMEDIATE STATISTICS

Following the procedure described in Sec. III, we now
derive the amplitude for the emission of anyons from BTZ
black hole. Since anyons exist in (2þ 1)-dimensional
spacetime only, we restrict ourselves to BTZ black hole.
This is a solution of the Einstein field equation in (2þ 1)-
dimensional spacetime and describes a rotating geometry
with horizons [21,22]. The action corresponding to this
solution is expressed in terms of metric gð3Þ and Ricci scalar
Rð3Þ in (2þ 1)-dimension as follows [21,23]:

S ¼
Z

d3x
ffiffiffiffiffiffiffiffiffiffi
−gð3Þ

q
ðRð3Þ þ 2ΛÞ; ð12Þ

and the line element in polar coordinates is given by

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2
�
dθ −

J
2r2

dt

�
2

; ð13Þ

fðrÞ ¼ −M þ Λr2 þ J2

4r2
: ð14Þ

Here M and J are respectively the mass and angular
momentum of the three-dimensional rotating black hole
and Λ is the cosmological constant.
For the simplicity of the calculations, to start with, we

restrict ourselves to the J ¼ 0 case. Generalization to J ≠ 0
is straightforward and is discussed at the end of this section.
We start with the transformation from the original coor-
dinates ðt; rÞ to the Painlevé coordinates ðtp; rÞ,

dt ¼ dtp −
1

fðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − fðrÞ

p
dr: ð15Þ

In terms of new coordinates and via a dimensional
reduction, the line element in Eq. (13) takes the following
form:

ds2 ¼ −fðrÞdt2p þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − fðrÞ

p
dtpdrþ dr2: ð16Þ

Next, consider the Lagrangian for a massive particle in the
above background,

L ¼ m
2
gμν

dxμ

dτ
dxν

dτ
;

¼ −
1

2
mfðrÞð _tpÞ2 þm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − fðrÞ

p
_tp _rþ

m
2
ð_rÞ2; ð17Þ

where in the last step we substituted the metric components
from Eq. (16). Since tp is a cyclic coordinate, the conjugate
momentum is conserved,

∂L
∂_tp ¼ −mf _tp þm

ffiffiffiffiffiffiffiffiffiffiffi
1 − f

p
_r ¼ −ω ¼ constant: ð18Þ

The negative sign on the right hand side of the Eq. (18)
represents the positive energy of the tunneling particle.
Exploiting the fact that massive particles travel along time-
like trajectories, we derive from Eq. (18) the expressions of
the derivatives of Painlevé coordinates with respect to
proper time of the particle under consideration,

_tp ¼� 1

mfðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1−fðrÞÞðω2−m2fðrÞÞ

q
þ ω

mfðrÞ ; ð19Þ

_r ¼ � 1

m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 −m2fðrÞ

q
: ð20Þ

Given the expressions of the derivatives of Painlevé
coordinates, we rewrite the imaginary part of the action
Eq. (3) as follows:

ImS ¼ −Im
Z

rout

rin

Z
ω

m

dω0
dr
dtp

dr: ð21Þ

Following methodology described in [14], we exchange the
order of integration in Eq. (21) and do the integration first
over the radial coordinate,

Z
rout

rin

1
dr
dtp

dr ¼
Z

rout

rin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − fÞðω2 −m2fÞ

p
þ ω

f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 −m2f

p dr: ð22Þ

Using the Taylor expansion of fðrÞ around the radius of the
horizon, we rewrite the right-hand side of Eq. (22),

Z
rout

rin

1
dr
dtp

dr ¼
Z

rout

rin

GðrÞdr;
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where the function GðrÞ is given by

GðrÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1−f0ðrhÞðr−rhÞÞðω2−m2f0ðrhÞðr−rhÞÞ

p
þω

f0ðrhÞðr−rhÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2−m2f0ðrhÞðr−rhÞ

p dr:

The final expression of this integral is obtained using
Cauchy’s residue theorem,

Z
rout

rin

1
dr
dtp

dr ¼ −
2πi

f0ðrhÞ
: ð23Þ

In terms of this integration, the imaginary part of the action
simplifies to the following form:

ImS ¼ π

Z
ω

m

2

f0ðrhÞ
dω0 ¼ πffiffiffiffiffiffiffiffi

ΛM
p ðω −mÞ; ð24Þ

where we have used the fact rh depends on ω,

rh ¼ rhðM − ω0Þ: ð25Þ

The final expression of the tunneling rate for J ¼ 0 is
obtained using ImS,

Γ ∼ e−2ImS ¼ e−
2πffiffiffiffi
ΛM

p ðω−mÞ: ð26Þ

It is to be noted that we have ignored the backreaction on
the metric to get this results, and hence, the results are valid
when m ≪ M and ω ≪ M. From Eq. (26) in the m → 0
limit gives the tunneling amplitude for massless particle,

Γ ∼ e−2ImS ¼ e−
2πffiffiffiffi
ΛM

p ω: ð27Þ

However, one can obtain the same expression starting from
the condition for null geodesics and following the pro-
cedure applied in case of massive particles. It is to be noted
that, to derive Eq. (26), we have not explicitly used
information about the statistics of the Hawking radiation
particles. Therefore, it is valid not only for bosons and
fermions, but also for anyons. The next step is to find the
distribution function of anyons from the expression of
tunneling amplitude which we have already derived
[Eq. (26)], which reduces to the standard Bose-Einstein
and Fermi-Dirac distribution functions in appropriate
limits. In order to find the expression of the distribution
function, first we consider the following assumptions
which hold for any particles in (2þ 1)-dimensions [24].

(i) The permutation of the coordinates of any two
particles in the multiparticle anyon wave function
results in a phase being picked up by the wave
function as follows [this is simply a restatement of
the Eq. (2) for anyons]:

Ψnð…;qj;…;qi;…Þ¼fΨnð…;qi;…;qj;…Þ; ð28Þ

where f ¼ eiπα.
(ii) Principle of detailed balance: If n1, n2 are the mean

occupation numbers for the states 1 and 2 respectively,
then at equilibrium, the number of transitions from 1
to 2 is the same as from 2 to 1. Under this condition,
the “enhancement factor”FðnÞ≡ Pðnþ1Þ=PðnÞ, where
PðnÞ is the probability of an n-anyon state, satisfies the
following condition:

n1Fðn2Þe
2πffiffiffiffi
ΛM

p ðω1−mÞ ¼ n2Fðn1Þe
2πffiffiffiffi
ΛM

p ðω2−mÞ: ð29Þ

This condition implies that

n
FðnÞ e

2πffiffiffiffi
ΛM

p ðω−mÞ ¼ constant: ð30Þ

The form of FðnÞ can be read-off from Ref. [24], which is
FðnÞ ¼ 4

nþ1
ð½nþ1

2
� cosðπα

2
ÞÞ2. When expanded in a power

series in n, this yields the following:

e
2πffiffiffiffi
ΛM

p ðω−mÞ ¼ 1

n
þ a0 þ a1nþ a2n2 þ… ð31Þ

Inverting the above equation, we get the expression of
occupation number as a function of ω and m,

nðω; mÞ ¼ 1

g
þ B
g2

þ C
g3

þ D
g4

þ � � � ;

≡ 1

g
þ
X∞
k¼3

αk
gk

; ð32Þ

where g≡ e
2πffiffiffiffi
ΛM

p ðω−mÞ − a0 and the explicit form of the
coefficients is taken from [24]. Rewriting Eq. (32) in the
form of a continued fraction, we get

nðω; mÞ ¼ 1

g − α3g
g2þα3−���::

: ð33Þ

Finally, using the expression of g we find from the above
equation, the generalized Hawking radiation formula in
(2þ 1)-dimension,

nðω; mÞ ¼ Γω

e
2πffiffiffiffi
ΛM

p ðω−mÞ − aðαÞ
; ð34Þ

where Γω is the transmission coefficient. Equation (34) for
aðαÞ ¼ 1 and aðαÞ ¼ −1 corresponds to bosonic and
fermionic Hawking radiation respectively. Any value of
aðαÞ in between this range corresponds to anyons. It is now
quite straightforward to generalize the results to the J ≠ 0
case. Dimensional reduction of the full metric [Eq. (13)]
gives the following two-dimensional metric [25,26]:
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ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ ; ð35Þ

where

fðrÞ ¼ −M þ Λr2 þ J2

4r2
: ð36Þ

Following the procedure mentioned before, one obtains the
imaginary part of the action,

ImS ¼
Z

ω

m

2π

f0ðrhÞ
dω0; ð37Þ

where the radius of the horizon is rh is an explicit function
of ðM − ω0Þ, where M is the mass of the black hole and ω0
is the energy of the tunneling particle under consideration.
Now we make the following expansion for f0ðrÞ and keep
only the leading order term f0ðrhðMÞÞ in the expansion:

f0ðrhÞ ¼ f0ðrhÞjω0¼0 − f00ðrhÞ
∂rh
∂M

����
ω0¼0

ω0 þ… ð38Þ

Following the steps described in [27], we calculate the
integral in Eq. (37) using the above expression of f0ðrhÞ,

ImS ¼ 2π

f0ðrhÞ
ðω −mÞ: ð39Þ

For J ≠ 0 case, we have two horizons,

r2h ¼ r2� ¼ M
2Λ

�
1�

�
1 −

ΛJ2

M2

�
1=2

�
: ð40Þ

However, for our work, only the outer horizon is relevant,

f0ðrhÞ ¼ f0ðrþÞ ¼ 2Λrþ −
J2

2r3þ
: ð41Þ

For the outer horizon of the black hole, the imaginary part
of the action takes the following form:

ImS ¼ πffiffiffiffiffiffi
2Λ

p ðM þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − ΛJ2

p
Þ1=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 − ΛJ2
p ðω −mÞ; ð42Þ

and the corresponding expression of the tunneling ampli-
tude is given by

Γ ∼ e−2ImS ¼ e
−2πffiffiffi
2Λ

p ðMþ
ffiffiffiffiffiffiffiffiffiffi
M2−ΛJ2

p
Þ1=2ffiffiffiffiffiffiffiffiffiffi

M2−ΛJ2
p ðω−mÞ

: ð43Þ

The expression of the tunneling amplitude clearly indicates
that Hawking temperature [28,29],

TH ¼
ffiffiffiffiffiffi
2Λ

p

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − ΛJ2

p

ðM þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − ΛJ2

p
Þ1=2

: ð44Þ

Finally, following the steps described earlier for J ¼ 0 case,
we get the expression of anyonic Hawking radiation
spectrum for J ≠ 0 case as

nðω; mÞ ¼ Γω

e
2πffiffiffi
2Λ

p ðMþ
ffiffiffiffiffiffiffiffiffiffi
M2−ΛJ2

p
Þ1=2ffiffiffiffiffiffiffiffiffiffi

M2−ΛJ2
p ðω−mÞ

− aðαÞ
: ð45Þ

V. APPLICATIONS

A. Experimental setup

In this section we review an analogue model of gravity as
a potential system for testing our results. In these models,
the dynamical equation of the analog system closely
resembles that of a quantum field in the background of
a curved spacetime. This allows one to potentially test
certain semiclassical and quantum gravitational results,
especially those pertaining to Hawking radiation (see
[30–35] and the references therein). In particular, if one
considers a two-dimensional photon superfluid system, it
can be shown that the dynamics is governed by the equation
of a massless scalar field in the background of an acoustic
metric [36]. Furthermore, augmenting this equation by
some corrections [last three terms in the rhs of Eq. (46)],
which may be realizable in the laboratory, we show that it
governs the dynamics of anyons in the background of the
superfluid or similar analog systems. It should be noted that
Eq. (46) is nothing but the nonlinear Schrödinger equation
plus corrections,

∂zΨ ¼ i
2k

∇̄2Ψ −
ikn2
n0

ΨjΨj2 þ cα
n0Ψ� ∂zϕ

þ α

2Ψ� ð∇̄ϕÞ2 þ β

Ψ� ϕ: ð46Þ

Here, z is the propagation direction and plays the role time.
c is the speed of light, k is the wave number, n2 is the
material nonlinear coefficient and n0 is the linear refractive
index.Ψ is the slowly varying envelope of electric field. So,
jΨj2 can be interpreted as the intensity of the optical field,

Ψ≡ ρ
1
2eiϕ and t ¼ n0

c
z: ð47Þ

The gradient operator ‘∇̄’ is defined with respect to the
transverse directions ðx; yÞ and, α and β are real valued
functions. The first two terms on the right-hand side of
Eq. (46) can be realized as the dynamics of massless scalar
field in acoustic metric and the rest of the three terms are
relevant for anyons. However, following a set of well-
motivated assumptions, it is straight forward to show that
the presence of the third term on the right-hand side is
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sufficient to realize anyonic Hawking radiation. Plugging
Eq. (47) in Eq. (46) and separating the resultant equation in
to real and imaginary part gives rise to the following
equations:

∂tρþ ∇̄:ðρvÞ − 2kα∂tψ − kαv2 − 2kβψ ¼ 0; ð48Þ

∂tψ þ 1

2
v2 þ c2n2

n30
ρ ¼ 0; ð49Þ

where

v≡ c
kn0

∇̄ϕ≡ ∇̄ψ : ð50Þ

Here v can be interpreted as the fluid velocity. In the last
step, following the articles [36,37], we have neglected the
quantum pressure term which has no analogy in classical
fluid dynamics. Next, we linearize Eq. (48) and Eq. (49)
around the background state (ρ0,ψ0) to obtain acoustic
disturbances as first order fluctuations of quantities describ-
ing mean fluid flow,

ρ ¼ ρ0 þ ϵρ1 þOðϵ2Þ; ð51Þ

ψ ¼ ψ0 þ ϵψ1 þOðϵ2Þ; ð52Þ

v0 ¼ ∇̄ψ0: ð53Þ

In terms of perturbed quantities, Eq. (48) and Eq. (49) take
the following form in polar coordinates:

∂tρ1 þ ∇̄:ðρ0∇̄ψ1 þ ρ1v0Þ − 2kα∂tψ1 − 2kαvr∂rψ1

−2kα
vθ
r
∂θψ1 − 2kβψ1 ¼ 0; ð54Þ

∂tψ1 þ v0:∇̄ψ1 þ
c2n2
n30

ρ1 ¼ 0: ð55Þ

Eliminating ρ1 from Eq. (54) and Eq. (55), we obtain

− ∂t

�
ρ0
c2s

χ

�
þ ∇̄:

�
ρ0∇̄ψ1 −

ρ0v0
c2s

χ

�
− 2kα∂tψ1

− 2kαvr∂rψ1 − 2kα
vθ
r
∂θψ1 − 2kβψ1 ¼ 0; ð56Þ

where

χ ¼ ∂tψ1 þ v0:∇̄ψ1 and cs ¼
c2n2ρ0
n30

: ð57Þ

Here cs is the local speed of sound. The final step is to set
up a connection between dynamics of acoustic disturbances
and the dynamics of an anyonic field, which can be written

as an Abelian Higgs model with a Chern-Simons term as
follows [8]:

gμν∇μ∇νψ þ 2iqgμνAμ∂νψ − ð2c2 þ q2gμνAμAνÞψ
þ 4c4jψ j2ψ ¼ 0: ð58Þ

Here c2 and c4 are constants and Aμ is the four vector
potential associated with the anyonic field. Consider
Eq. (58) in an acoustic metric with c2 ¼ c4 ¼ 0 and
Aμ ¼ ðia; 0; 0; 0Þ for an anyonic field ψ1. Here we have
considered an imaginary vector potential, similar to the
assumption in [38]. With these choices of the parameters
and the four vector potential, Eq. (58) takes the following
form:

gμν∇μ∇νψ1 þ
2qa
ρ20

∂tψ1 þ
2qa
ρ20

vr∂rψ1

þ 2qa
ρ20

vθ
r
∂θψ1 þ

q2

ρ20
a2ψ1 ¼ 0; ð59Þ

and the “analog metric” is given by

ds2 ¼
�
ρ0
cs

�
2
�
−
�
1 −

v2

c2s

�
ðcsdtÞ2 − 2

vr
cs

ðcsdtÞdr

−2
vθ
cs

ðcsdtÞðrdθÞ þ dr2 þ ðrdθÞ2
�
: ð60Þ

It is important to note that the overall structure of Eq. (56)
and Eq. (59) are the same. This is the motivation for us to
study anyonic Hawking radiation in the experimental setup
under consideration. Equation (59) is simplified further by
assuming that the phase ϕ is slowly varying in space. This
implies that vr and vθ are very small. In addition to this we
assume that the charge q is also a negligible quantity. Under
these assumptions, we can drop the last three terms in
Eq. (59),

gμν∇μ∇νψ1 þ
2qa
ρ20

∂tψ1 þOðϵ2Þ ¼ 0: ð61Þ

Here we have taken q ∼ vi∼ O(ϵ). It is now easy to see that
the above equation is identical to Eq. (56) under the
previous assumptions.

B. Hawking radiation of anyons
from acoustic metric

In Sec. IV, we have discussed about the methodology to
calculate the tunneling amplitude of anyons from a BTZ
black hole. In this section we will follow similar procedures
to calculate the same in the case of acoustic metric
[Eq. (60)]. Just to be consistent with the metric of the
geometry around BTZ black hole, we set vθ ¼ 0. In
addition to this consider the case where cs is a constant.

VISHNULAL C, SOUMEN BASAK, and SAURYA DAS PHYS. REV. D 104, 104011 (2021)

104011-6



In order to cast the Eq. (60) in the desired form we consider
rescaling of radial coordinates,

r →
ρ0
cs

r dr →
ρ0
cs

dr: ð62Þ

Under these rescaling, the metric now takes a very simple
form,

ds2 ¼ −
�
ρ0
cs

�
2
�
1 −

v2r
c2s

�
ðcsdtÞ2

−
2vrρ0
c2s

ðcsdtÞdrþ dr2: ð63Þ

This metric is further simplified by setting the radial
component of the velocity vector in c ¼ 1 units as, vr ¼
− π

kn0
ffiffiffiffiffi
rr0

p [36,37],

ds2 ¼ −fðrÞdt2 þ 2fðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − gðrÞ
fðrÞgðrÞ

s
dtdrþ dr2; ð64Þ

where

gðrÞ ¼ 1 −
r2s
r0r

and fðrÞ ¼ ρ20gðrÞ: ð65Þ

From the expression of gðrÞ, it is obvious that the horizon is
located at r ¼ rh,

rh ¼
r2s
r0

; ð66Þ

where

rs ¼
π

kn0cs
: ð67Þ

Given the current form of the metric, the imaginary part of
the action is calculated as follows [27]:

ImS ¼
Z

ω

0

2πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f0ðrhÞg0ðrhÞ

p dω0 ¼ 2πr2s
ρ0r0

ω; ð68Þ

where we have taken the lower limit as photon mass, m to
be zero. It is now very straightforward to calculate the
corresponding tunneling amplitude,

Γ ∼ e−2ImS ¼ e−
ω
TH ; ð69Þ

where

TH ¼ r0ρ0
4πr2s

ð70Þ

is the Hawking temperature. Given this Hawking temper-
ature, the distribution function of the particles in analogue
model is given by

nðωÞ ¼ Γω

e
ω
TH − aðαÞ : ð71Þ

We remind the reader that the parameter aðαÞ in Eq. (71)
can take any value in between −1 and þ1 with aðαÞ ¼ 1
and aðαÞ ¼ −1 corresponding to bosons and fermions
respectively, and intermediate values signifying anyons.
In principle the value of aðαÞ can be determined from the
exact nature of anyons under consideration. However, if we
are unaware about the statistics of the particle, experiment
provides an alternate way to determine the value of
parameter using Eq. (71). So, an experimental confirmation
of the existence of probability distribution of anyons in a
photon superfluid would not only support the existence of
Hawking radiation but also the confirm the existence of
anyons. This work is the first attempt to demonstrate
anyonic Hawking radiation to the best of our knowledge.

VI. CONCLUSION

In this work, we have derived a general expression for
Hawking radiation of anyons, particles with intermediate
statistics in (2þ 1)-dimensional spacetime, using the tun-
neling approach. The results are derived for both rotating
and nonrotating BTZ black holes for massive and massless
cases. We have shown that our results may be verifiable
experimentally in an appropriate analogue system. Such a
measurement on the one hand, will provide further evi-
dence for Hawking radiation and that of anyons, albeit in an
analog setting. Once anyon excitations are detected in this
way, one can envisage potential uses of these particles with
fractional statistics in a variety of ways. Furthermore, it is
hoped that this work and its potential experimental veri-
fication would shed some light on the information loss
problem. For example, our analysis is quantum mechanical
and manifestly unitary, while the information loss problem
suggests a fundamental nonunitarity. Thus it would be
interesting to see how much of the current unitarity, say in
analog models, can carry over to a real black hole and the
subsequent Hawking radiation. We hope to report on these
issues in the future.
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