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Rapid sky localization of gravitational wave sources is crucial to enable prompt electromagnetic follow-
ups. In this article, we present a novel semianalytical approach for sky localization of gravitational waves
from compact binary coalescences. We use the Bayesian framework with an analytical approximation to the
prior distributions for a given astrophysical model. We derive a semianalytical solution to the posterior
distribution of source directions. This method only requires onefold numerical integral that marginalizes
over the merger time, compared to the fivefold numerical integration otherwise needed in the Bayesian
localization method. The performance of the method is demonstrated using a set of binary neutron stars
(BNS) injections on Gaussian noise using LIGO-Virgo’s design and O2 sensitivity. We find the median of
90% confidence area in O2 sensitivity to be Oð102Þ deg2, comparable to that of the existing LIGO-Virgo
online localization method Bayestar and parameter estimation toolkit LALInference. In the end, we apply this
method to localize the BNS event GW170817 and find the 50% (90%) confidence region of 11 deg2

(50 deg2). The detected optical counterpart of GW170817 resides within our 50% confidence area.

DOI: 10.1103/PhysRevD.104.104008

I. INTRODUCTION

Since the first detection of gravitational wave (GW)
signals by the Laser Interferometer Gravitational Wave
Observatory (LIGO) in 2015 [1,2], there have been over
50 GW detections [3–16] from Advanced LIGO (aLIGO)
and Advanced Virgo [17–20]. An exceptional discovery
was made in 2017 when a GW detection of a binary neutron
star (BNS) coalescence (GW170817) [21] was linked to a
gamma-ray burst (GRB) observation and other electromag-
netic (EM) follow-up observations [22], answering a series
of questions including the long-standing conjecture of the
progenitor for GRB [23]. In the latest third LIGO and Virgo
observational run (O3), a new initiative was set up to send
GW alerts in real time in the hope to capture such GW-EM
coincident event.1 Speedy GW early warning, with rea-
sonably accurate localization, is considered to be the key to
capture more of such events [24–28].

The localization of GW sources is a crucial step for joint
GW-EM observations. The conventional parameter estima-
tion method LALInference [29] uses a general Bayesian
framework and uses the Markov Chain Monte Carlo or
nested sampling techniques to sample the entire parameter
space and marginalizes nuisance parameters to obtain the
source directions. This usually takes hours to days to finish,
which is not practical for rapid source localization of GWs.
Fast parameter estimation methods are proposed to

tackle this problem [30–34], including the Bayestar algo-
rithm [34], which is currently used to provide fast online
localization of GW sources after a GW signal is detected
and uploaded to the LIGO-Virgo Collaboration database. A
quintuple numerical integral is used to yield the posterior
distribution of the GW source directions by marginalizing
over source parameters of individual masses, spins of
individual component, and five extrinsic parameters (dis-
tance, binary inclination, polarization angle, coalescence
phase, and merger time).
In this work, we provide a new semianalytical solution to

the posterior distribution of the GW source directions.
Specifically, we start from the Bayesian theorem and
marginalize over five extrinsic parameters semianalytically.
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We test our algorithm on injected GW signals with
simulated Gaussian noise for LIGO-Virgo’s second science
run (O2) and for the future design sensitivity of LIGO and
Virgo. This analytical result is expected to help reduce the
computational cost and the resulting latencies of source
localization, with the potential to be implemented in a
coherent online search, e.g., in the summed parallel infinite
impulse response (SPIIR) pipeline [35–38].

II. BAYESIAN METHOD FOR LOCALIZATION

The Bayesian method is a conventional statistical
method for parameter estimation and is widely used in
the GW field [39]. According to Bayes’ theorem, giving the
prior probability distribution of a set of parameters ϑ and
the observed dataset dðtÞ, one can obtain the updated
distribution, i.e., the posterior distribution. Mathematically,
the theorem is expressed as

pðϑjdðtÞÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Posterior

¼ pðdðtÞjϑÞ
zfflfflfflfflfflffl}|fflfflfflfflfflffl{Likelihood

pðϑÞ
zffl}|ffl{Prior

pðdðtÞÞ|fflfflfflffl{zfflfflfflffl}
Evidence

: ð1Þ

The evidence can be considered constant in our estimation,
thus posterior is proportional to the product of the like-
lihood and the prior distribution.

A. Signal model

To solve the Bayes posterior, we first model our like-
lihood function. We assume the additive Gaussian noise n
for each detector, so the detector data dwhen a GW signal h
is present can be expressed as

dðiÞðtÞ ¼ hðiÞðt;ϑÞ þ nðiÞðtÞ; ð2Þ
where superscript (i) denotes the ith detector, and ϑ is the
parameter set. The binary coalescence GW signal param-
eters can be divided into the intrinsic parameters and the
extrinsic parameters as shown in Table I. As the focus of
this work is on the rapid localization of the binary neutron

star events, the templates used do not take into account the
eccentricity, the tidal deformability, or the spin parameters.
In more detail, a detector response to a GW signal is a

linear combination of the two GW polarizations plus (hþ)
and cross (h×). A GW signal present in a detector can be
written as

hðtÞðiÞ ¼FðiÞ
þ ðα;δ;ψ ; tcÞhþðtÞþFðiÞ

× ðα;δ;ψ ; tcÞh×ðtÞ; ð3Þ

where FðiÞ
þ;×ðα; δ;ψ ; tcÞ are “detector beam-pattern func-

tions” [40] for ith detector, which rely on the right
ascension α, the declination δ, the polarization angle ψ ,
and the coalescence time tc. To separate ψ and α, δ, we

define “amplitude modulation functions” GðiÞ
þ;× [37] as

GðiÞ
þ;×ðα; δ; tcÞ ¼ FðiÞ

þ;×ðα; δ;ψ ¼ 0; tcÞ: ð4Þ

Expressions of GðiÞ
þ;× can be found in Eqs. (1.53) and (1.54)

in Ref. [37]. Although they are dependent on time, they are
treated as constants during the GW events as the time
durations of GW signals for ground-based detectors are
short compared to the self-rotation period of Earth [41].
The two polarizations can be expressed by the extrinsic

amplitude evolution aðtÞ and the phase evolution ϕðtÞ with
the inclination angle ι and the coalescence phase ϕc [37],

hþðtÞ ¼
1

2
aðtÞð1þ cos2ιÞ cos ðϕðtÞ þ ϕcÞ;

h×ðtÞ ¼ aðtÞ cos ι sin ðϕðtÞ þ ϕcÞ: ð5Þ
If we define the two quadrature functions

hcðtÞ ¼ aðt; r ¼ 1 MpcÞ cosðϕðtÞÞ;
hsðtÞ ¼ aðt; r ¼ 1 MpcÞ sinðϕðtÞÞ; ð6Þ

the GW signal in a given detector can be expressed as

hðiÞ ¼ ðGðiÞ
þ ; GðiÞ

× ÞAchc þ ðGðiÞ
þ ; GðiÞ

× ÞAshs; ð7Þ
where

A ¼ ðAc As Þ ¼
�
A11 A12

A21 A22

�

¼ 1 Mpc
r

�
cos 2ψ sin 2ψ

− sin 2ψ cos 2ψ

��
1þcos2ι

2

cos ι

�

×

�
cosϕc sinϕc

− sinϕc cosϕc

�
: ð8Þ

The likelihood function for one detector can be written
as [42]

pðdðiÞðtÞjϑÞ ∝ e−ðdðiÞ−hðiÞjdðiÞ−hðiÞÞ=2

∝ eðdðiÞjhÞ−1
2
ðhðiÞjhðiÞÞ: ð9Þ

TABLE I. Intrinsic and extrinsic parameters of the GWs from
compact binary coalescence systems.

Intrinsic parameters m1 Mass of first body
m2 Mass of second body
S1 Spin of first body
S2 Spin of second body

Extrinsic parameters α Right ascension angle
δ Declination angle
r Distance
ι Inclination angle
tc Arrival time at detector
ψ Polarization angle
ϕc Coalescence phase
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The inner product between two time series is defined as

ðajbÞ ¼ 4R
Z

∞

0

ãðfÞb̃�ðfÞ
SnðfÞ

df; ð10Þ

where the tilde denotes frequency domain and the asterisk
indicates complex conjugate. SnðfÞ is a one-sided power
spectral density (PSD) that evaluates the noise in a detector,
which is defined by

hñðfÞñ�ðf0Þi ¼ 1

2
SnðjfjÞδðf − f0Þ: ð11Þ

Here h…i is the ensemble average.
With a network of detectors, we define the inner product

for two arrays or two matrices of time series as

C ¼ ðDjBÞ ⇒ Cjk ¼
Xn
p¼1

ðDjpjBpkÞ; ð12Þ

where D is an m × n matrix of time series, B is an n × l
matrix, and the result C is an m × l matrix.
The likelihood for a detector network can be expressed

as

pðdjϑÞ ∝ eðdTjhÞ−1
2
ðhTjhÞ; ð13Þ

where

d ¼

0
BBBBB@

dð1Þðtþ τð1ÞÞ
dð2Þðtþ τð2ÞÞ

..

.

dðNÞðtþ τðNÞÞ

1
CCCCCA; h ¼

0
BBBBB@

hð1Þðtþ τð1ÞÞ
hð2Þðtþ τð2ÞÞ

..

.

hðNÞðtþ τðNÞÞ

1
CCCCCA;

ð14Þ

where τðiÞ is to take into account different arrival times of
the signal. Extending Eq. (13) with Eq. (7) and splitting the
matrix A into Ac and As, we have the network likelihood
function

pðdjϑÞ ∝
Y

x¼fc;sg
eðdTjGAxhxÞ−1

2
ðAT

xGThxjGAxhxÞ: ð15Þ

hc and hs are in quadrature so the cross-correlation is zero
and we define sigma as the inner product,

ðhcjhsÞ ¼ 0;

σðiÞ ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðhcjhcÞ

p
jr¼1 Mpc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðhsjhsÞ

p
jr¼1 Mpc; ð16Þ

then the likelihood becomes

pðdjϑÞ ∝
Y

x¼fc;sg
eðdTjHxÞGσAx−1

2
AT

xGT
σGσAx ; ð17Þ

where Gσ is

Gσ ¼

0
BBBBB@

Gð1Þ
þ σð1Þ Gð1Þ

× σð1Þ

Gð2Þ
þ σð2Þ Gð2Þ

× σð2Þ

..

. ..
.

GðNÞ
þ σðNÞ GðNÞ

× σðNÞ

1
CCCCCA ð18Þ

and Hc;s is the normalized signal given as

Hc;s ¼ diag
�
hc;s
σð1Þ

;
hc;s
σð2Þ

;…;
hc;s
σðNÞ

�
; ð19Þ

where “diag” denotes diagonal matrix. Hc;s is also used to
compute the matched filtering signal-to-noise ratio (SNR),
a widely used statistic in GW detection,

ρ ¼ ðHcjdÞ þ iðHsjdÞ: ð20Þ

The ith element of ρ is the SNR time series of the ith
detector. It is a complex time series and we use its modulus
as the SNR. The network SNR is defined as

ffiffiffiffiffiffiffiffiffiffi
ρTρ�

p
.

III. PARAMETER CHOICE AND PRIOR SETTING

A. Parameter choice

Considering the errors of the intrinsic parameters,
including the binary masses, are semi-independent from
errors in sky localization [34], we therefore set component
masses as the values determined by matched filtering. This
is reasonable for the purpose of achieving low-latency
online localization of GW sources.
We only need to consider the extrinsic parameters for our

sky direction estimation. By rearranging extrinsic param-
eters ðι;ϕc; r;ψÞ, the likelihood can be rewritten [Eq. (17)]
as a function of A [Eq. (8)] with these extrinsic parameters
included implicitly. We therefore replace them with A.
Moreover, we divide the sky into equal areas when
calculating posterior probability, thus it is more convenient
to use sin δ than δ. To sum up, we adopt the following
parameter transformation:

ðtc;α;δ; ι;ϕc; r;ψÞ→ ðtc;α;sinδ;A11;A21;A12;A22Þ: ð21Þ
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and from Eq. (8), we have

A11 ¼
1

r

�
1þ cos2ι

2
cos 2ψ cosϕc − cos ι sin 2ψ sinϕc

�
;

A21 ¼ −
1

r

�
1þ cos2ι

2
sin 2ψ cosϕc þ cos ι cos 2ψ sinϕc

�
;

A12 ¼
1

r

�
1þ cos2ι

2
cos 2ψ sinϕc þ cos ι sin 2ψ cosϕc

�
;

A22 ¼ −
1

r

�
1þ cos2ι

2
sin 2ψ sinϕc − cos ι sin 2ψ cosϕc

�
:

ð22Þ

B. Prior setting by Monte Carlo simulation

The prior distribution in Eq. (1) should be the
joint distribution of the seven extrinsic parameters
pðα; sin δ; tc;AÞ. However, we can assume α, sin δ, tc,
and A are independent of each other, i.e.,

pðα; sin δ; tc;AÞ ¼ pðαÞpðsin δÞpðtcÞpðAÞ: ð23Þ

We employ general prior distributions on α, sin δ, and tc
since we have no information for them in advance of source
localization. We assume the GW source is isotropic in the
sky and the coalescence time is uniformly distributed in
�10 ms around the trigger time. Namely,

pðαÞ ∝ 1;

pðsin δÞ ∝ 1;

pðtcÞ ∝ 1; ð24Þ

which means they can be treated as constants in the
posterior probability density.

To investigate properties of A from the original four
extrinsic parameters ðι;ϕc; r;ψÞ, we simulate 50000 BNS
events and inject them to simulated random Gaussian noise
for three detectors: LIGO Hanford, LIGO Livingston, and
Virgo (HLV). Two different kinds of sensitivities have
been used, one is the design sensitivity and the other is the
second observation run (O2) sensitivity as shown in Fig. 1.
Waveforms are generated using the TaylorT4 [46]

approximant with zero spins. Component masses are
uniformly distributed between 1.3 and 1.5 M⊙. Sky posi-
tions and BNS orientations are drawn from isotropic
distribution. Distance is drawn from a uniform distribution
in volume with the maximum distance at 200 Mpc.
Polarization angle and coalescence phase are uniformly
sampled between ½0; π� and ½0; 2π�, respectively. We ignore
cosmological effects as the redshift for LIGO-Virgo
Detectors is only 0.044 at 200 Mpc for the standard
cosmology.
We generate the maximum network SNR by matched

filtering and calculate Aij (i; j ¼ 1; 2; Aij represents each
element of A) by Eq. (22) for each simulated GW event.
The corner plot of Aij in different network SNR ranges is
shown in Fig. 2. Note that here we only show Aij from O2
sensitivity, but the same analysis can be employed on other
PSDs. According to Fig. 2, we find the following character-
istics of the distribution of Aij:

1. Each Aij follows the similar distribution.
2. When SNR is high (>8), Aij follows bimodal

distribution, and the location of the peak depends
on SNR.

3. The diagonal and off-diagonal elements, ðA11; A22Þ
and ðA21; A12Þ, are correlated, while other elements
are entirely uncorrelated with each other.

Based on the first point, we assume all Aij’s follow
the same distribution. Since a GW signal with net-
work SNR < 8 is usually not considered as a successful
detection, we ignore the low-SNR cases and focus on the

FIG. 1. Left: PSDs used at design sensitivity from LALSuite [43]. The PSD is generated with low-frequency cutoff flow corresponding
to the aLIGO 2016–2017 high-sensitivity scenario in LIGO-P1200087 [44]. We adopt the same design sensitivity for the LIGO
Livingston and LIGO Hanford observatories. Right: PSDs of LIGO Livingston, LIGO Hanford, and Virgo in the second observation run
(O2) generated using data from GW Open Science Center [45].
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bimodal distribution of Aij. We adopt a symmetric bimodal
prior distribution for Aij with a superposition of two
Gaussian functions,

pðAijÞ ∝ e−
ðAij−μÞ2

2σ2 þ e−
ðAijþμÞ2

2σ2 ; ð25Þ

where μ and σ will be derived numerically for a given
astrophysical model of the extrinsic parameters for different
ranges of by SNR.

For distributions of Aij in each SNR bin with the
length of 2, we use the least-squares method to obtain
the best-fit μ and σ. Comparing the best-fit values in
different SNR bins, we find μ and σ have a linear relation
with the network SNR, as shown in Fig. 3. For the design
sensitivity, we have

μ ¼ 0.0003026 SNR − 0.0002882;

σ ¼ 0.0001779 SNR − 0.00001968; ð26Þ

FIG. 2. Corner plot of elements ofA generated from 50000 simulations in Gaussian noise colored to O2 sensitivity. We categorized Aij
samples according to the HLV network SNR and plotted them in four subfigures.
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and for O2 sensitivity it becomes

μ ¼ 0.0004860 SNR − 0.0007827;

σ ¼ 0.0002733 SNRþ 0.00005376: ð27Þ

Figure 4 shows the comparison between the distribution
of Aij in different SNR bins and the bimodal prior
distribution calculated using Eq. (26) or (27) at the central
value of the SNR bin. The bimodal distribution with
empirical relation is sufficient to reconstruct Aij’s
distribution.
The bimodal distribution of Aij originates from the

selection effect of high-SNR GW events. The amplitude
of GWs increases monotonically with j cos ιj and 1=r,
therefore, when we select GW events in a higher SNR
range, sources with larger j cos ιj values and smaller r are
more likely to be selected. This also implies that cos ι tends
to have a symmetric bimodal distribution [47], which
results in the bimodal distribution of Aij [Eq. (22)].
Physically, the bimodality of cos ι originates from opposite
handedness of the binary orbit, which corresponds to two
different inclination angles: ι and π − ι. On the other hand,
small distance r corresponds to larger values of Aij, hence
the peaks in Aij’s distribution move outside. This is why Aij

follows bimodal distribution and is dependent on SNR.
The correlation between Aij’s can be explained as

follows. The correlation is also caused by our selection
of high-SNR events. As discussed above, for high-SNR
events we have j cos ιj → 1. According to Eq. (22), when
cos ι → 1, A11 → A22, A12 → −A21; when cos ι → −1,
A11 → −A22, A12 → A21. Plus cos ι has the same proba-
bility to be 1 or −1; as a result, two symmetric crosses are
shown in each corner plot of Fig. 2.

As most Aij samples in Fig. 2 are positioned at the
diagonal cross, we further assume that A22 has half chance
to be A11 and another half to be −A11 for detectable GW
events whose SNRs are usually high, i.e.,

pðA22jA11Þ ¼
δðA22 − A11Þ þ δðA22 þ A11Þ

2
; ð28Þ

where δðÞ is the δ function: δð0Þ ¼ 1 and δðxÞ ¼ 0
otherwise. For the same reason,

pðA12jA21Þ ¼
δðA21 − A12Þ þ δðA21 þ A12Þ

2
: ð29Þ

This approximation is also adopted in previous work on fast
GW source localization [48], in which the authors show
that the probability distribution of cos ι of detectable GW
events has strong peaks for cos ι ¼ �1. Noting that the
correlation only exists in diagonal and off-diagonal ele-
ments of A, we have

pðAÞ ¼ pðA11; A12; A21; A22Þ
¼ pðA11; A22ÞpðA21; A12Þ
¼ pðA11ÞpðA22jA11ÞpðA21ÞpðA12jA21Þ; ð30Þ

where pðA11Þ and pðA21Þ are given in Eq. (25), while
pðA22jA11Þ and pðA12jA21Þ are given in Eqs. (28) and (29).

IV. POSTERIOR MARGINALIZATION

We rewrite posterior probability here as

pðϑjdÞ ∝ pðdjϑÞpðϑÞ; ð31Þ

FIG. 3. Linear relation between the best-fit μ, σ, and SNR. Left: shows the result in design sensitivity and right side is for O2. Points of
the best-fit values are plotted at the center of their corresponding SNR bin.
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where likelihoodpðdjϑÞ and prior probabilitypðϑÞ are given
by Eqs. (17) and (23), respectively. To obtain the sky loca-
lization, we can now marginalize t and elements of A, i.e.,

pðα; δjdÞ ∝
Z

pðdjϑÞpðϑÞd4Adt; ð32Þ

where d4A ¼ dA11dA12dA21dA22. We introduce the follow-
ing Gaussian integral, which gives the integral of Gaussian
functions2

FIG. 4. (a) Comparison between Aij’s simulated distribution and empirical approximation in the design sensitivity. Blue bars are Aij’s
distribution in our simulation; four subplots represent four different SNR ranges. Red lines are empirical distribution with SNRs equal to
the center value of SNR bins. (b) Similar to (a) but the simulated distribution and empirical approximation are for the O2 sensitivity.

2Gaussian integral, https://en.wikipedia.org/wiki/Gaussian_
integral.
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Z þ∞

−∞
e−

1
2
xTAxþBTxd2x ¼

ffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ2
detA

r
e
1
2
BTA−1B; ð33Þ

where A is a 2 × 2 symmetric and positive definite matrix,
and x and B are 2 × 1 vectors. d2x ¼ dx1dx2. Define

M ¼ GT
σGσ; ð34Þ

JTx ¼ ðdTjHxÞGσ; ð35Þ

then likelihood can be converted to the same form as the
integrand in Eq. (33),

pðdjϑÞ ∝
Y

x¼fc;sg
eðdTjHxÞGσAx−1

2
AT

xGT
σGσAx

¼
Y

x¼fc;sg
e−

1
2
AT

xMAxþJTxAx : ð36Þ

Since both the likelihood and prior function are Gaussian
functions, their product is still a Gaussian function, which
can be integrated by Eq. (33). Substituting likelihood (36)
and prior function (23) into posterior probability (32), and
using Gaussian integral (33), we get

pðα; δjdÞ

∝
Z

ttriggerþT

ttrigger−T
dtc

Z
d4A exp

� X
x¼fc;sg

−
1

2
AT

xMAx þ JTxAx

�

× pðA11ÞpðA22jA11ÞpðA21ÞpðA12jA21Þ

∝
Z

ttriggerþT

ttrigger−T
dtcðI1 þ I2 þ I3 þ I4Þ; ð37Þ

where I1;2;3;4 have analytical expressions and are given in
Appendix A. ttrigger is the trigger time and T ¼ 10 ms.
Equation (37) gives the semianalytical posterior probability
of the source direction, which only needs a onefold
numerical integral.

V. PERFORMANCE TEST AND CASE STUDY

We apply the proposed localization algorithm [Eq. (37)]
on a new set of randomly generated GW events with the
same detector sensitivity described in Sec. III. We use the
matched filtering technique to search the simulated GW
data and set the HLV network SNR [Eq. (20)] ≥ 12 as the
criterion of successful detection. As a demonstration of its
performance on real detector data, we also apply this
localization method on the SNR time series output
from the SPIIR pipeline [49] of the detected BNS event
GW170817.

A. Confidence and searched area

We define the 90% and 50% confidence areas the same
way as in Bayestar [34]. Using adaptive Hierarchical Equal

Area Isolatitude Pixelization sampling [34,50], we first
divide the sky into Npix;0 ¼ 3072 pixels and calculate the
posterior probability of each pixel through Eq. (37) and we
assume the posterior probability is constant within a pixel,
thus the probability for each pixel is equal to the calculated
posterior probability multiplied by the area. The top Npix=4
most probable pixels are further divided into Npix daughter
pixels, and posterior probability is calculated again for
those pixels. We also repeat this process seven times as in
Bayestar [34]. We then rank the probability of all pixels in
descending order and search from the first pixel. The
probability of searched pixels is accumulating during the
search (by adding the probability within each searched
pixel together), until the cumulative sum is equal to the
given values of 0.9 and 0.5. The area in that credible level is
given by the sum of the area of searched pixels.
We also define a searched area. The searched area is

computed by searching from the first pixel defined in the
last paragraph until the sky direction of the injection signal
is included. The searched area is the smallest of such
constructed area that contains the true sky direction of the
source. It measures the accuracy of the localization inde-
pendent of the precision [34].
Cumulative distributions of the searched area, 90% con-

fidence area, and 50% confidence area for different SNR
ranges are shown in Figs. 5 and 6 for HLV design and O2
sensitivity, respectively. As anticipated, these areas decrease
with the increase of SNR, and injections on design sensi-
tivity give much smaller areas. Medians of 90% confidence
area for design sensitivity are∼Oð101Þ deg2 for SNR ≥ 12,
while O2 sensitivity is ∼Oð102Þ deg2. This is consistent
with the previous result in Bayestar [34] where the median
for the O2 sensitivity for SNR ≥ 12 is about 200 deg2. In
Fig. 6, we compare our results with those of LALInference’s,
which are obtained from the data release of Refs. [51,52].
The statistics of both of the methods are generated with the
same detector configuration and SNR ranges. It shows the
area cumulative distributions of our algorithm are generally
comparable to that of LALInference. In the SNR range of
28–32, the statistic errors of LALInference’s results become
large due to their small sizes of samples (<10), so an
observable difference between the two methods comes up.
The mismatch is supposed to shrink with the increase in the
sample size.

B. Self-consistency

The p-p plot, widely used in GW astronomy [34,53], is
used to check the self-consistency of the confidence area
statistically. For a given confidence level, we calculate the
percentage of random injections with their true sky direc-
tion falling within the confidence area and plot the number
against the confidence level. We expect these two numbers
to be roughly the same; that is, we expect a diagonal line in
the p-p plot for perfectly estimated confidence levels.

HU, ZHOU, PENG, WEN, CHU, and KOVALAM PHYS. REV. D 104, 104008 (2021)

104008-8



Our p-p plots are presented in Fig. 7. Among all SNR
ranges, p-p plots of high-SNR cases (e.g., SNR ∼ 26) are
more likely to deviate from the diagonal line, as indicated in
Fig. 7. It is caused by insufficient high-SNR injection
events. Since all parameters are sampled randomly, the
high-SNR events are from a shorter distance and therefore
constitute a smaller volume of the GW sources. Evidently,
the errors become larger for both empirical relation fitting
[Eqs. (26) and (27)] and the percentage calculation in the
p-p plot. For the O2 sensitivity, the total number of high-
SNR events is less than that in design sensitivity, therefore,
the deviation is more distinct.
Following Ref. [34], we plot the 95% target confidence

bands derived from a binomial distribution3 for network
SNR ∼ 26 and >12. Falling in the target band means the
error of the p-p plot is acceptable under 95% confidence. It
shows that, although the p-p plots of SNR ∼ 26 deviate

from the diagonal line, they are still in the target confidence
band, which is wide due to the small volume of samples.
The overall p-p plot (SNR > 12) of design sensitivity is
slightly out of the target confidence band. We credit this to
our way of dealing with the correlation of Aij. In Sec. III,
we assume A22 has a half chance to be A11 and another half
to be −A11, which results from j cos ιj → 1. When we select
high-SNR events, sources with j cos ιj → 1 are more likely
to be selected. However, if the noise level is very low (e.g.,
GW detectors achieve the design sensitivity), it does not
need large j cos ιj to produce high SNR, so that we would
select many GW events with small j cos ιj and the A22 ¼
�A11 approximation breaks down. This explains why the
overall p-p plot is in the target confidence band for O2
sensitivity but slightly deviates for design sensitivity.
A simple way to deal with this problem is to give up
the correlation assumption and treat all Aij’s as independent
parameters. We derive results from this alternative prior
choice in Appendix B, which may be useful to the future
detectors with better sensitivity. Considering the current

FIG. 5. Cumulative distribution of the searched area, 90% confidence area, and 50% confidence area of design sensitivity. Left top
panel is for all detections; others are results in various SNR bins.

3https://lscsoft.docs.ligo.org/ligo.skymap/plot/pp.html.
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detector sensitivity and the performance of our localiza-
tion method (Figs. 5–7), we still keep the A22 ¼ �A11

approximation.
We should also note that the p-p lines are within the

target confidence band and close to the diagonal line at the
90% confidence level, which means the algorithm is self-
consistent for the 90% confidence area.

C. Real event test: GW170817

GW170817 is the most accurately localized GWevent to
date. The exact sky direction is obtained via multimes-
senger observation—the source is located inNGC4993with
approximately ðα; δÞ ¼ ð197.45°;−23.38°Þ [21–23,54,55].
We use the public cleaned data of GW170817 from the

Gravitational Wave Open Science Center [45], and use
the SPIIR pipeline [49] to estimate the PSD and generate
the SNR time series. The SPIIR pipeline is also public on

GitLab.4 We use the PSD near the coalescence time of
GW170817 and injections described previously to refit the
μ; σ ∼ SNR relation

μ ¼ 0.0004584 SNR − 0.0007338;

σ ¼ 0.0002892 SNR − 0.0004015: ð38Þ
The horizon distances of H1, L1, and V1 are 213, 142, and
60Mpc, respectively.We employ the SNR of three detectors
from Global Positioning System time 1187008882.42–
1187008882.44 s, and generate the sky map of
GW170817, as shown in Fig. 8. The 90% and 50% con-
fidence areas are 50 and 11 deg2, respectively. The optical
sky direction (green cross in the plot) is included in both the
90% and 50% confidence contour. It shows our algorithm

FIG. 6. Cumulative distribution of the searched area, 90% confidence area, and 50% confidence area for the localization of injected
GW signals on random Gaussian noise with the smoothed O2 HLV PSD (described in Sec. III). We compare our results (solid lines) with
LALInference (dotted lines) under the same detector configuration and SNR ranges. The two methods are consistent in most SNR ranges,
while the difference in the right bottom panel is distinct due to LALInference’s small sample sizes (< 10).

4.https://git.ligo.org/lscsoft/spiir.
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efficiently localized GW170817 with a precision compa-
rable to the rapid localization in real-time detection [21],
where the source is localized to a region of 31 deg2.

D. Run time

For a given set of SNR time series of three detectors
(SNR time series have the length of 20 ms and are sampled
at 4 kHz), it takes about 2.4 s to generate a posterior
probability distribution sky map with one thread on Intel

Xeon CPU E5-2695 (2.40 GHz). In comparison, Bayestar
uses ∼Oð102Þ s with one thread on Intel Xeon E5-2630 v3
CPU [34]. The run time can be further reduced by multi-
threads calculation or some other computational techniques.

VI. CONCLUSIONS AND FUTURE WORK

We have presented a semianalytical approach [Eq. (37)]
for GW source localization. Compared with the localization
algorithm in Ref. [34], our algorithm requires fewer

FIG. 7. p-p plots of our localization algorithm in different SNR ranges. Left: design sensitivity and (right) O2 sensitivity explained in
Sec. III. The gray and red regions around the diagonal are the target 95% confidence bands for different SNR ranges derived from a
binomial distribution.

FIG. 8. Localization sky map of GW170817 using the SPIIR SNR time series output. Black line represents 90% and 50% confidence
contour and a green cross denotes the sky direction taken from the optical observations of the BNS event [22]. The 90% credible area is
50 deg2 and 50% confidence area is 11 deg2. Note the true sky direction is within the 50% confidence area.
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numerical integrations, thus it is expected to reduce the
computational cost and latencies in online real-time source
localization. In our test with simulated data as well as a case
study with GW170817, the algorithm shows fair self-
consistency and accuracy.
Note, we assume extrinsic and intrinsic parameters are

separable in Eq. (7) and this is not valid for binaries with
nonaligned spins. We do not expect this to have large
impacts on BNS events as most of them are expected to
have low spins [21,56,57].
All required inputs for this algorithm (the matched

filtering SNR time series, event time to calculate the
antenna beam-pattern functions for the response matrix
Gσ) in this approach are readily available in online search
pipelines SPIIR and are expected to be available for other
online search pipelines. It can be used to calculate the
posterior probability of source direction following immedi-
ately after a GW event is triggered before the event trigger
is submitted to the database. It can serve as a complement to
the rapid position reconstruction given by Bayestar for GW
events submitted to the database.
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APPENDIX A: DERIVATION OF THE
ANALYTICAL MARGINALIZATION

In this Appendix, we will derive the analytical integral in
the posterior probability (37), i.e.,

I ¼
Z

d4A exp

� X
x¼fc;sg

−
1

2
AT

xMAx þ JTxAx

�

× pðA11ÞpðA22jA11ÞpðA21ÞpðA12jA21Þ: ðA1Þ
HereAc¼ðA11;A21ÞT,As¼ðA12;A22ÞT, andA ¼ ðAc;AsÞ.
For simplicity, define

fxðp; qÞ ¼ exp

�
−
1

2
vTMv þ JTxv

�
; ðA2Þ

where v ¼ ðp; qÞT , x ¼ fc; sg. The likelihood [Eq. (36)]
can be written as fcðA11; A21ÞfsðA12; A22Þ. Note that
fxðp; qÞ ≠ fxðq; pÞ. The integral I can be rewritten as

I ¼
Z

d4AfcðA11; A21ÞfsðA12; A22Þ × pðA11ÞpðA22jA11ÞpðA21ÞpðA12jA21Þ

¼
Z

d4AfcðA11; A21ÞfsðA12; A22Þ × pðA11ÞpðA21Þ½δðA22 − A11Þ þ δðA22 þ A11Þ�½δðA12 − A21Þ þ δðA12 þ A21Þ�

¼
Z

d2AcpðA11ÞpðA21Þ × ½fcðA11; A21ÞfsðA21; A11Þ þ fcðA11; A21Þfsð−A21; A11Þ

þ fcðA11; A21ÞfsðA21;−A11Þ þ fcðA11; A21Þfsð−A21;−A11Þ�
¼ I1 þ I2 þ I3 þ I4; ðA3Þ

where d2Ac ¼ dA11dA21, and I1;2;3;4 correspond to the four terms in the third and fourth lines. For example,

I1 ¼
Z

d2AcpðA11ÞpðA21ÞfcðA11;A21ÞfsðA21;A11Þ ¼
Z

d2AcpðA11ÞpðA21Þ exp
�
−
1

2
Ac

TðMþ M̄ÞAc þ JT1Ac

�
; ðA4Þ

where

M ¼ GT
σGσ ¼

�
M11 M12

M21 M22

�
; Jx ¼

�
Jx1
Jx2

�
ðA5Þ

are defined in Eqs. (34) and (35), and

M̄ ¼
�
M22 M12

M21 M11

�
; J1 ¼

�
Jc1 þ Js2
Jc2 þ Js1

�
: ðA6Þ

Since pðA11ÞpðA21Þ is the product and summation of
several Gaussian functions, the integrand of I1 finally is
still a quadratic form on the exponent, thus Eq. (33) can be
applied. We finally get
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I1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4π2

detðMþ M̄Þ

s X4
k¼1

exp

�
1

2
JðkÞT1 M0−1JðkÞ1

�
; ðA7Þ

where

M0 ¼ Mþ M̄þ 1

σ2
I; JðkÞ1 ¼ J1 þ αðkÞ; ðA8Þ

and

αð1Þ ¼
�
μ=σ2

μ=σ2

�
; αð2Þ ¼

�
μ=σ2

−μ=σ2

�
;

αð3Þ ¼
�
−μ=σ2

μ=σ2

�
; αð4Þ ¼

�
−μ=σ2

−μ=σ2

�
; ðA9Þ

where μ, σ are parameters in the bimodal prior function.
Equation (A7) gives the analytical result of I1. We can
solve the other three terms with the same method,

I2¼
Z

d2AcpðA11ÞpðA21ÞfcðA11;A21Þfsð−A21;A11Þ

¼
Z

d2AcpðA11ÞpðA21Þ

×exp

�
−
1

2
Ac

TðM0þM0ÞAcþJT1Ac

�

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4π2

detðM0þM0Þ

s X4
k¼1

exp

�
1

2
JðkÞT2 M0

0−1JðkÞ2

�
; ðA10Þ

where

M0 ¼
�
M11 0

0 M22

�
; M0 ¼

�
M22 0

0 M11

�
; ðA11Þ

J2 ¼
�
Jc1 þ Js2
Jc2 − Js1

�
; ðA12Þ

and

M0
0 ¼ M0 þM0 þ

1

σ2
I; JðkÞ2 ¼ J2 þ αðkÞ: ðA13Þ

I3 and I4 take similar forms,

I3¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4π2

detðM0þM0Þ

s X4
k¼1

exp

�
1

2
JðkÞT3 M0

0−1JðkÞ3

�
; ðA14Þ

I4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4π2

detðMþ M̄Þ

s X4
k¼1

exp

�
1

2
JðkÞT4 M0−1JðkÞ4

�
; ðA15Þ

with

J3 ¼
�
Jc1 − Js2
Jc2 þ Js1

�
; J4 ¼

�
Jc1 − Js2
Jc2 − Js1

�
; ðA16Þ

JðkÞ3 ¼ J3 þ αðkÞ; JðkÞ4 ¼ J4 þ αðkÞ: ðA17Þ
Since I1;2;3;4’s analytical results are given, the posterior
probability [Eq. (37)] only requires onefold numerical
integral over the coalescence time.

APPENDIX B: ALTERNATIVE
PRIOR CHOICE FOR Aij

In Sec. III, we point out that diagonal elements of A are
correlated and employ the following approximation
[Eq. (30)]:

pðAÞ ¼ pðA11; A12; A21; A22Þ
¼ pðA11; A22ÞpðA21; A12Þ
¼ pðA11ÞpðA22jA11ÞpðA21ÞpðA12jA21Þ: ðB1Þ

However, this approximation may break down when the
noise is very low, as indicated in Sec. V B. Here we provide
an alternative prior distribution of A that assumes Aij’s are
independent, i.e.,

pðAÞ ¼ pðA11; A12; A21; A22Þ
¼ pðA11ÞpðA22ÞpðA21ÞpðA12Þ; ðB2Þ

where pðAijÞ is given in Eq. (25). The posterior can be
obtained by similar Gaussian integral

pðα; δjdÞ

∝
Z

dtc

Z
d4A exp

� X
x¼fc;sg

−
1

2
AT

xMAx þ JTxAx

� Y
x¼fc;sg

�
e−

ðAx1−μÞ2
2σ2 þ e−

ðAx1þμÞ2
2σ2

	�
e−

ðAx2−μÞ2
2σ2 þ e−

ðAx2þμÞ2
2σ2

	

∝
Z

dtc
Y

x¼fc;sg

Z
dAx

X4
i¼1

exp

�
−
1

2
AT

xM00Ax þ JðiÞTxAx

�

∝
Z

dtc
ð2πÞ2
detM00

Y
x¼fc;sg

X4
i¼1

exp

�
1

2
JðiÞTxM00−1JðiÞx

�
; ðB3Þ
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where

M00 ¼ Mþ 1

σ2
I; ðB4Þ

JðiÞx ¼ Jx þ αðiÞ; ðB5Þ

andM and αðiÞ have the same definition as in Appendix A.
Equation (B3) may be used to replace Eq. (37)
for GW detectors with high sensitivity or low-SNR GW
events, in which the A22 ¼ �A11 approximation breaks
down.
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