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We revisit the problem of building the Lagrangian of a large class of metric theories that respect
spatial covariance, which propagate at most 2 degrees of freedom and in particular no scalar mode.
The Lagrangians are polynomials built of the spatially covariant geometric quantities. By expanding the
Lagrangian around a cosmological background and focusing on the scalar modes only, we find the
conditions for the coefficients of the monomials in order to eliminate the scalar mode at the linear order in
perturbations. We find the conditions up to d = 4, with d the total number of derivatives in the monomials,
and determine the explicit Lagrangians for the cases of d = 2, d = 3 as well as the combination of d = 2
and d = 3. We also expand the Lagrangian of d = 2 to the cubic order in perturbations, and find additional
conditions for the coefficients such that the scalar mode is eliminated up to the cubic order. This
perturbative analysis can be performed order by order, and one expects to determine the final Lagrangian at
some finite order such that the scalar mode is fully eliminated. Our analysis provides an alternative and
complimentary approach to building spatially covariant gravity with only tensorial degrees of freedom. The
resulting theories can be used as alternatives to the general relativity to describe the tensorial gravitational

waves in a cosmological setting.
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I. INTRODUCTION

Recently, there has been a revival of interest in ques-
tioning the uniqueness of general relativity (GR) as the
theory of 2 tensorial degrees of freedom (TTDOFs). The
Lovelock theorem [1] is an answer to this question, which
claims that GR is the unique four-dimensional theory for
the spacetime metric with the second order equations of
motion, which obeys the general covariance and locality.
As a result, GR is a unique theory for TTDOFs if all the
assumptions of Lovelock are preserved.

From the field theoretical point of view, the idea of
embedding the gravitational degrees of freedom in a field
theory of metric variables was also explored. By coupling a
massless spin-2 field to the energy-momentum tensors of
matter field(s) as well as of its own, it was arguably
believed that the FEinstein-Hilbert action is the unique
theory one will arrive at. This approach can be traced
back to the Fierz-Pauli theory [2] and was further widely
developed in [3-17] (see [18] for a review).]

In this work, we shall examine the conditions of
propagating only TTDOFs in a large class of metric
theories respecting spatial covariance, which we dub the
spatially covariant gravity (SCG). The SCG can be traced
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Recently the “bootstrap” approach also provided new under-
standing of the uniqueness of GR [19-24] (see [25] for a review).
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back to the ghost condensation [26] and was developed in
the effective field theory of inflation [27,28] as well as
in the Horava gravity [29,30]. It was further generalized in

[31] in which a large class of SCG theories was proposed

and was extended in [32] by including the dynamical lapse

function and in [33] with an auxiliary scalar field.
Theories different from GR while propagating only
TTDOFs first arose in the so-called cuscuton theory
[34,35] and in a subclass of Horava gravity [36,37]. In
[38] a class of SCG theories with only TTDOFs was
proposed as the minimal modification of the GR (MMG).
The cuscuton and MMG theories have been further
extended [39-45] and their applications on cosmology
and black holes have been widely studied [46-54]. A class
of four-dimensional Einstein-Gauss-Bonnet gravity was

also proposed recently as an arguable TTDOF theory [55].

We shall employ the framework of SCG due to the
following reasons.

(a) The Lagrangians of SCG theories are automatically
written in the spacetime-split form, which is conven-
ient for analysing the time evolution and the degrees of
freedom using either the equations of motion or
Hamiltonian constraint analysis.

(b) The SCG can be viewed as the gauge-fixed version of
the scalar-tensor theory with a single timelike scalar
field. By choosing the time coordinate as the scalar field
t = t(¢), which is dubbed the unitary gauge in the
literature, the generally covariant single field scalar-
tensor theory can be naturally recast in the form of a

© 2021 American Physical Society
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SCG theory. Therefore the SCG can be used as a
“generator” of the scalar-tensor theory, especially when
the higher derivatives are present. The generally covar-
iant scalar-tensor monomials and SCG monomials have
been classified and their correspondence has been
investigated in [56-58].2 This may help one to build
well-behaved higher derivative scalar-tensor theories
after the (re)construction of the theory of Horndeski
[60] in its modern form [61-63] and the degenerate
higher order derivative scalar-tensor theory [64—67]
(see [68,69] and references therein for reviews).

(c) Thanks to the spacetime-splitting nature of the SCG,
the construction of SCG with only a single scalar degree
of freedom becomes virtually trivial. Indeed, as shown
in [70-72], the SCG without the dynamical lapse
function automatically propagates at most at 3 degrees
of freedom. When the lapse function becomes dynami-
cal, more conditions must be imposed [32].

Counting the number of degrees of freedom can be well
performed through Dirac’s Hamiltonian constraint analysis
(see [73] for a comprehensive review). In the framework of
SCQG, there are in principle two approaches to finding the
conditions of propagating at most at 2 degrees of freedom.

(a) The traditional and conservative approach is to start
from the Lagrangian and perform the Legendre trans-
formation to derive the Hamiltonian, then to find the
conditions for the Lagrangian by performing the
Hamiltonian constraint analysis. In [74], starting from
a general local Lagrangian of SCG, conditions of
propagating at most at 2 degrees of freedom have been
derived. The analysis was also generalized in [75] with
a dynamical lapse function.

(b) The other approach is to start with the Hamiltonian
directly, and to determine the conditions for the
Hamiltonian instead of the Lagrangian. Indeed, sim-
plified structure and condition(s) are found at the level
of Hamiltonian in [42] in a class of SCG theories. This
approach can be made even more “trivial” by imposing
additional constraint(s) in the phase space through
auxiliary variable(s) [76].

Both approaches have their merits and shortcomings. For
the “Lagrangian” approach, it is more convenient to deal
with the local Lagrangian, while the conditions are func-
tional differential equations for the Lagrangian and math-
ematically complicated to solve. For the “Hamiltonian”
approach, one is able to determine the Hamiltonian in a
simple manner, while the corresponding Lagrangian is
involved and typically nonlocal due to the presence of
extra auxiliary variables.

In view of the above considerations, in this work we
employ an alternative approach to constructing the SCG
with only TTDOFs. We shall deal with the Lagrangian

*The correspondence is subtle when the unitary gauge is not
accessible, see [59] for a discussion.

directly and determine the conditions at the level of
equations of motion. In fact, constraint analysis as well
as counting the number of degrees of freedom can be
equivalently performed at the level of the Lagrangian and
the equations of motion [77,78].

The idea is based on the fact that if the Lagrangian
propagates at most at 2 DOFs—and in particular, no scalar
mode—at the nonperturbative level, the scalar mode must
not show up at any finite order in the perturbative expansion
around a spatially homogeneous and isotropic background.
In particular, the conditions can be determined order by
order in a perturbative analysis, which may be relatively
easier to manage. This is also the approach in [40] to
building the so-called ‘“extended cuscuton” theory. The
same idea was also employed in [79] to find conditions for
the SCG Lagrangians quadratic in the extrinsic curvature
and in the velocity of the lapse function to propagate at
most at 3 degrees of freedom.

This work is organized as follows. In Sec. II we briefly
review the spatially covariant gravity and the general
conditions to have at most 2 degrees of freedom. In
Sec. III we describe our perturbative approach and derive
the degeneracy condition in order to eliminate the scalar
mode at linear order in perturbations. In Sec. IV we use the
degeneracy condition to find the conditions for the
Lagrangians up to d=4 and give the explicit
Lagrangians for d = 2, d = 3 as well as the combination
of d = 2,3.1In Sec. V we use the Lagrangian of d = 2 as an
illustrative example to show how to eliminate the scalar
mode at the next order in perturbations. We summarize our
results in Sec. VI

II. SPATIALLY COVARIANT GRAVITY
WITH 2 DEGREES OF FREEDOM

In this section, we make a brief review of the framework
of SCG theory, and in particular the classification of the
SCG polynomials. We also briefly summarize the con-
ditions of having only 2 degrees of freedom, which are
derived in [74].

The action of the spatially covariant gravity theories
takes the general form

K;\ R

S:/dtdSXN\/Eﬁ(t,N,hU, ij ij,v,-,eijk), (1)

where N is the lapse function, h;; is the three-dimensional
spatial metric, K;; is the extrinsic curvature defined by

1

Klj:ﬁ

(Oshyj — £5hij). (2)
with £5 the Lie derivative with respect to the shift vector
N, R; ; is the three-dimensional spatial Ricci tensor, and V;
is the covariant derivative compatible with the spatial
metric h;;. The spatial Levi-Civita tensor & = \/Ee,»jk

104007-2



SPATIALLY COVARIANT GRAVITY WITH 2 DEGREES OF ...

PHYS. REV. D 104, 104007 (2021)

with €1,3 = 1 is allowed, thus the parity-violating terms can
be constructed by those building blocks with ¢; jk.3 Note in
principle the lapse function N may also acquire a kinetic
term through + (9,N — N'V;N), which has been considered
in [32]. The shift vector N; by itself is not a genuine
geometric quantity of the spacetime foliation structure,
which merely encodes the gauge freedom of choosing the
spatial coordinates.

The SCG Lagrangians, although by themselves respect-
ing only the spatial diffeomorphism, can be viewed as the
“gauge-fixed” version of Lagrangians respecting the full
general covariance of the spacetime. Such correspondence
can be made easily by the Stueckelberg mapping [57]. The
basic building blocks in the corresponding generally
covariant theory are the timelike vector that is proportional
to the gradient of the scalar field, and the induced metric on
the hypersurface of the constant scalar field. This is very
similar to the construction of nonrelativistic models by
localizing the Galileon symmetry and the explicit realiza-
tion of the Newton-Cartan space [see (e.g.) [88-90]].

In this work, instead of analyzing a general Lagrangian
as in Eq. (1), we concentrate on polynomial-type
Lagrangians, which are linear combinations of the SCG
monomials. The irreducible SCG monomials are exhausted
and classified up to d = 4 in [57] with d the total number of
derivatives in the monomials. Here we briefly describe the
construction with improved notation following [58]. We

assign each SCG model a set of integers (cg;d,,d3)
according to their corresponding monomials in the sca-
lar-tensor theories after the Stueckelberg mapping.
Precisely, ¢ is the number of spacetime Riemann curvature
tensor, d,, dy are numbers of the second and third order
generally covariant derivatives of the scalar field ¢,
respectively. In fact we have the simple correspondences

Kij~a;~ (0;1,0), (3)
R;; ~(1;0,0), (4)
kaij"’viajN (0§0,1>7 (5)

and thus d can be expressed by

d= Z[(” +2)c, + (n+ 1)d, ). (6)

We thus classify the various SCG monomials with d and
then with the categories labeled by (cg; ds, ds3).

Up to d = 4, the Lagrangian built of the irreducible SCG
monomials is

L=LO4 LD 4 L@ 4 L0 4 &4 2O 4 ZB - (7)

where the parity-preserving terms are

ﬁ( ) CEO;OA,O)’ (8)
£ =0k (9)
£ = Pk ki 4 a4 PO K 4+ OOR, (10)
6 — 05030)1{ KK+ (030)Kij ; j+cg0;3,0)K K‘/K+C(O3O)K iy 62030)1(

+ "k Vial 4 VR a4 TPORIK 4 PORK, (11)
L& = K Kraial + KKK + VK alalK 4 oM (KK 4 YK K agak

+ el a2 4+ PHOKGKTR? + M aid K+ K+ VKK pVial + VKl K

+c (021 K’a’V K—l—cg021 K; V’a/I(—i-ch21 KKV, ak +c<021 a;a'V;al —I—C(OZI K?V;a!

+ IV, K VK 4 OV KV 4 POV KV K 4 POV RV 4 POV Y a

+ (Va2 + PR KK+ PR aial + PR KK + ¢ PORK K + ¢ Ragal

+c ( )RK2+ (200) R”+C<ZOO)R2+CEI;O’1)RV,~ai, (]2)

and the parity-violating terms are

The spatially covariant parity violating terms and their cosmological implications have been widely investigated, see (e.g.) [80-87].
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L) =" e, KIVIKH, (13)

LW = 5§02 l)e WKMKInY, Kk 4 &0

inKia/Vral + cio 2:1)

e RIK/ ak + cgl 01

einK™ K, ViKY
e KIVIKHK
el-ij;V-’Kkl. (14)

In the above, a; = V;InN is the acceleration. The coef-

Without any specific fine-tuning of the coefficients, in
[31] it has been shown through a Hamiltonian analysis that
the action (1) propagates 3 DOFs in general, of which one
is a scalar mode and two are tensor modes.”* Therefore, in
order to eliminate one of the 3 DOFs, in particular, the
scalar mode, additional conditions must be imposed.

For the action in Eq. (1), the general conditions of
propagating at most TTDOFs have been derived in [74],
which can be written as

ficients cj** +) and &) are generally functions of ¢ L ..
and N without spatial denvatlves Note the spatial deriv- S(x,5) =0, J(*.5) =0, (15)
atives of Ricci tensor, like ViRjk, are not included in our
model as they are higher order in d. | where
&S o 1 oS
S_},_' e T o o d3/ d3 /N—)/ e p—y — 16
&) = NN ) / ' / YNE) SN (N(x’) 5K (x')) (16)
1 oS
X Gyr (X, IN(GY) —z ( ) 17
P ING TS N ok, () "
with G;; (X, ¥) the inverse of the Hessian with respect to K;; satisfying
/d @75 L iara s -5, (18)
T 5K (D)6 () 20
and
5C(X) . - 7S - 6C(Y)
— d3x//d3y//d3x///d3y// = gi"’ ”(x/, //)N(x//) —h (y//’y/) -
/ 5K (&) 7! Shyy (¥")6K v (77) "M 5K;(Y')
6C’ 5C(y)
d3//d3/ l ->/->/N->/ _)_)-5(_)*’ 19
-/ Gy FING) s = (3 5) (19
|
with motivations of this work to look for an alternative and more
practical approach.
SR S N
O = —53v® T N@ K, m i (20 III. THE PERTURBATIVE APPROACH AND

These two TTDOF conditions, which are dubbed the
degenerate condition and the consistency condition, are
the necessary and sufficient conditions for the action (1) to
propagate at most at two DOFs. When the lapse function
becomes dynamical, the generalized conditions have also
been derived in [75].

Although these TTDOF conditions are general and
conceptually simple, they are mathematically involved to
be solved to yield concrete Lagrangians. This is one of the

“In [31] only the parity-preserving Lagrangian is considered,
while from the analysis it is clear that the presence of ¢;;; would
not change the constraint structure and thus the number of DOFs.

DEGENERACY CONDITION

The unwanted degree of freedom, if not contained in the
theory, will never show up at any order in perturbations
around some background. Thus one may tune the coef-
ficients in the Lagrangian such that the unwanted scalar
mode is eliminated order by order in perturbations. Since
there is a finite number of conditions in the nonperturbative
sense, one will stop at some finite order and get the final
Lagrangian in which the scalar mode is fully eliminated.
The perturbative approach can be a possible candidate
method to bypass the mathematical difficulties in dealing
with the nonperturbative conditions gotten in a Hamiltonian
analysis. For a class of SCG theories with the dynamical
lapse function, this perturbative analysis has been used to
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reduce the number of DOFs from 4 to 3 [79]. It was
interesting that even at the cubic order in perturbations
around a cosmological background, one could reproduce
the fully nonperturbative conditions to eliminate the
unwanted mode.

We consider perturbations around a Friedmann-
Robertson-Walker background. For our purpose, we focus
on the scalar perturbations only. After fixing the gauge
freedom of the spatial diffeomorphism, the usual Arnowitt-
Deser-Misner variables correspond to

N = Ne*, (21)
Ni = NaaiB, (22)
hij = aze%éij, (23)

where a = a(t) is the scale factor and N = N(t) is the
background value of the lapse function.

Contrary to what one usually does in generally covariant
theories, here we do not set N = 1, since there is no time-
reparametrization symmetry in our theory in general. In
particular, we assume that the Lagrangian depends on the
lapse function N explicitly while not on the time. As a
result, generally the lapse function N has a nonunity
background value N(z). On the other hand, setting
N =1 implicitly redefines the time parameter ¢, which
reintroduces the time dependence of the Lagrangian.

The quadratic action for the scalar perturbations takes the
form (we follow the notation in [79])

Sz[é/,A,B} = /dtdeNa3£2. (24)
The quadratic Lagrangian can be split into two parts

L, =8+, (25)

in which Egl) stands for terms relevant to counting the
number of DOFs,

LY = E8; & + EC;yA + ECiyB + ACaA
+ ACu3B + BCyyB, (26)

and Egm stands for terms irrelevant to counting the number
of DOFs,

L) = (8ol + LCiuA + LCysB. (27)
In the above @é b égw etc., are time-dependent operators

which may contain spatial derivatives. Following [91],
throughout this paper we shall use the shorthand

_ O f
=N . (28
6N2 NN ( )

r=r

-1
$= 12).4 ’
ON|n—x

“Nor

At this point, note the quadratic Lagrangian for the scalar
modes contains no parity-violating term. In other words,
the parity-violating terms in Egs. (13) and (14) do not
contribute to the quadratic order Lagrangian for the scalar
modes and have nothing to do with eliminating the scalar
modes at least at the linear order in perturbations.
Mathematically, this is simply because it is not possible
to build a term quadratic in the scalar modes with &; ;.. If we
go to higher order, the parity-violating terms do contribute
to the scalar modes.

It is clear that in the quadratic action (24), A and B act as
the auxiliary variables (i.e., without the time derivatives).
We may solve A and B formally from their equations of
motion

T (PR, (A
2ﬁ6,(a C“C) +ﬁ8t(a Cg;AA) +ﬁ81(a CijBB)
— 2a3éC§C — a3@§AA - a3é§BB = 0, (29)
26’AAA + éABB + é{A(: + éé’AZJ == 0, (30)
éABA + 26338 + éCBC + éCBC =0. (31)

The solutions for A and B can be formally written as

A (3 éABégB - éBBégA)é + (3 éABéCB - éBBégA)C (32)
2CasCpp — 3CapCasp

and

J . (33)
2CanChB —

with 2C44Cpp — 1 CupCap # 0. Since @éé, (A?éA, etc., may
contain spatial derivatives, the above solutions may be
better understood in the Fourier space. Plugging the above
solutions into Eq. (29) yields the equation of motion for the
single variable £. If in the equation of motion { acquires a
second derivative term ¢, ¢ is dynamical. Therefore in order
to have no scalar mode propagating at the linear order, we
have to “kill” the coefficient of £ in its equation of motion.
After some manipulations, one find that this implies

A A A 1 A 2 2 o
A = 2CCC <ZCAACBB - 2Ci3) + CABCéACéB
—CppCl, — CaaCly = 0. (34)

We may refer to Eq. (34) as the degeneracy condition. The
main task in this work is thus to use Eq. (34) as our starting
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point to find the conditions for the various coefficients

sdy.d ~(cosdy.d .
cleodzh) ang {c09%) quch that no scalar mode is propa-

gating at the linear order in perturbations.

In the above, we derive the degeneracy condition (24) by
solving the auxiliary variables and looking at the coefficient
of the kinetic term in the effective Lagrangian for the single
variable ¢, which is the standard operation in calculating
the cosmological perturbations. We emphasize that it is
not trivial to count the number of dynamical degree of
freedom even for the quadratic Lagrangian in Eq. (24). In
the Appendix, we make a thorough analysis of a point
particle model.

IV. ELIMINATE THE SCALAR MODE
AT THE LINEAR ORDER

In this section, we shall find the conditions for the
coefficients in the Lagrangian such that the degeneracy
condition (24) is satisfied, and thus no scalar mode
propagates at the linear order in perturbations.

A.d=2

We consider the model constructed by all the terms of
d=2:

S = / dtdxNVh(L? = A), (35)

where £?) is given in Eq. (10). We have introduced a
positive cosmological constant A > 0 in order to have an
expanding background solution. Equivalently, the above
Lagrangian can be regarded as the linear combination of

£O and £® with "% = A.
Expanding the action to the first order in perturbations
yields

S, = / dtd®xL, (36)
with
L, ~Na’[-3H?*(b, — by) — AJA
+3Na®[—(3H? + 2H)by — A — 2Hby)C,  (37)
where we define

b, = C(lo.z,o) + 3050’2’()), (38)

for short. The background equations of motion are deter-
mined by requiring S; = 0, which are

—3H%(by — b)) = A =0, (39)

—(3H? + 2H)by — A — 2Hb, = 0, (40)

for A and ¢, respectively. At this point, keep in mind that f
and f” are defined as in Eq. (28). The Hubble parameter is
defined to be H := % = ﬁ% From Eq. (39) it is transparent
that we get a generally expanding background only with a
nonvanishing cosmological constant A.

Expanding the action to the second order in perturbations

yields
Sz :/dtd3de3£2. (41)

According to Eq. (24), the relevant coefficients are

A(2)
Cee =3b2,
CL) = 6H (b, by), (42)
2
~2) 0
CéB = -2b, 2’ (43)
vy 3 ;0
=S HABY =26y +2b)) by (44)
. 0?
2
R 1 o
a
where we denote
by = C<20,2,0> (47)
and
wy = 020 (43)

for short. For later convenience, we also have

0 = 4t + ) % ()
with
hy = {00 (50)
for short, and
¢ =o. (51)

In the above we have made use of the background equations
of motion (39) and (40) to eliminate A and to simplify the
expressions of the coefficients. From Eqgs. (32) and (33), the
solutions for A and B are
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4[3a2H (by — Dy)wyl + (hy + hb) (by + 2w,)0%(]

A= = (52)
3a?H?[=2(D5)? + by(2b5 + bY) + 2(2by — 2b)y + by)wy] — 2b,(by + 2w,)0?
and
~ 3a{4H(by — bb)(hy + h5)0*C — 3a*H*(—2(bh)? + by (26} + blzl))é + 2byb, 328} (53)
 {=3a2HA[=2(bh)? + by (2B + bY) + 2(2by — 2b% + BY)w,] + 25y (by + 2w,) 3} *
|
By plugging the above results into Eq. (34), we get the The general solution for b, to Eq. (57) is
degeneracy condition
C\N
o b =TT (60)
AR = 12Hw,[=2(b})* + by (2D} + bY)] = :
o where C;, C, are two constants. This solution is also
—8bybywy —. (54)  consistent with the analysis in [74] [see Eqgs. (110) and
a

At this point, note we need to require that w, # 0, otherwise
there will be no kinetic term for the gravitational waves
[87]. In order to have A®) = 0 so that there is no scalar
mode propagating, one special solution is

by = ¢V 43070 = 0. (55)
However, this choice is conflict with the background
equation of motion (39). Therefore we must have

b, # 0, which is also the case of GR. Then first we have
to require that

by =" =, (56)

so that the ~0° term in Eq. (54) vanishes, since we have
assumed w, # 0. This indicates that the acceleration a;
should not appear explicitly. We also need to require

—2(b4)? + by(2b, + bY) = 0. (57)

Note Eq. (57) must hold for any value of N. Therefore
Eq. (57) is regarded as a homogeneous differential equation
for b, as a function of N, in which b} and b} are defined as
in Eq. (28). For later convenience, the solutions for A and B
(52) in Eq. (53) under the conditions (56) and (57) get
simplified to

b o ba(hy + 1) (by + 2w;)
A= 0? 58
Hib =00 T 32 (by— b)ow, 0 Y
and
b,(h /4
2( 2 + 2) é«, (59)

= T aH(by — bh)w,

which involves no Zj . In Egs. (58) and (59) we have made
use of Eq. (57) to replace b} in terms of b, and b),.

(111) therein]. Obviously, b, = const is a trivial solution,
which corresponds to the limit C;, C, — oo by keeping %
finite. To conclude, the Lagrangian

.~ ~.. 1 C|N

L® =w, R KT+ —— K>+ h,R, (61
WKk 3T e K TR (61

with w, and 5, being general functions of N, contains no
dynamical scalar degrees of freedom at linear order in a
cosmological background. Here K ; 18 the traceless part of

K;; defined by

. 1

K” = KU —gKhl]

(62)
With the form of the Lagrangian (61), GR is a special
case with the choice

(0:2.0) 1:0.0)

c = CE =1, (63)
and thus corresponds to

. C,
|C1],|Cy| = o0, keeping o= -2. (64)

2

B.d=3
Next we consider

S = / drd®xNVR(LB) = A), (65)

where £0) is given in Eq. (11), and again we include a
positive cosmological constant A in order to have a non-
vanishing H. Expanding the action to the first order in
perturbations yields

Sl == /dtd3x£1, (66)
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with
L = Na*[3H?(by — 2b3) — AJA
+ 3Na3[-6H (H? + H)by — A — 3H?b3)¢,  (67)
where we define

(0.3,0) (0.3.0)

(0300 1 300300 4 90030, (68)

by=c

for short. Thus the background equations of motion are
—3H*(2b3 — b)) — A =0, (69)

—6H(H? + H)by — A — 3H?b; = 0, (70)
for A and £, respectively. Note we must have bz # 0 in
order to make Eq. (69) consistent with a nonvanishing A.

Expanding the action to the second order in perturbations
yields

Sz = /dtd3xNa3C2. (71)

According to Eq. (24), the relevant coefficients are

~(3) _
Cy) = 9Hb;, (72)
. 0?
OB — _9g2(—p. +2b —, 73
‘A ( 3 + 3) + f3 02 ( )
A 82
&) = ~6i1, (74)
A 2
O3} = 16— bl 603) + Uy~ 52) . (79)
”? .o
¢ = 3H(~b, +2b3)— = fs—. (76)
N o
e = H(2w; + by) = (77)
where we denote
Fa = 01D 43,000, (78)
by = céo.3,0) n 3C4(10,3.0)’ (79)
Fy= 000 4o (80)
wy = 50 30) + C;O.S’O)a (81)

as shorthand. We have made use of the background equations
of motion (69) and (70) to simply the coefficients.

After some manipulations, the degeneracy condition (34)
now becomes

84
() = S4H w3[—3(by)? + 2b5(204 + bY)] =

_ o8
+ 36H3 w3 (=D, f5 + 2b3(f3 + f4 — b3)] =

8
— Hlbs(f3=3f3)* + 2(f3)2W3]%- (82)

Similar to the case of d = 2, we require w3 # 0, otherwise
there will be no gravitational waves [87]. Thus the degen-
eracy condition A®) = 0 yields a set of three equations,

—3(bg)2 + 2b3(2b/3 + bg’) =0, (83)
—bif3 +2bs(f3 + f4 — b3) =0, (84)
by(f3—3f3)% +2(f3)°w; =0. (85)

Recall that there are nine free coefficients in the original

Lagrangian £ (11), which are subject to the above three
equations in order to eliminate the scalar degree of freedom
at the linear order. We can solve b5 from Eq. (83) to be

bs :DliNz, (86)
(1+D,N)?

with Dy, D, being two constants. At this point, note that in
order to make the background equation of motion (69)
consistent, which now reads

3
S +A=0, (87)

we have to require that (since N > 0)

DD,

E A 0. (88)

By using the solution (86), we then solve b; from
Eq. (84) to be

D,N

1+DNf3+f3 (89)

by =

As for Eq. (85), according to whether f5 is vanishing or
not, we discuss two cases.

1. Case 1

If f3 =0, since we assume b3 # 0, from Eq. (85) we
must also have f; = 0, which implies that

(0;1,1)

; _ (0;1,1)
) =0, Cy

=0, (90)
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and w; can be chosen freely (but nonvanishing) in general.
In this case, there is no Va term in the Lagrangian. As a
result, b3 = 0 and thus we may solve

03,0 L 030
cf‘ '>:—§cé ), (91)

In this case, the Lagrangian is given by

A0le avni & o1 DN
£OI_ 650,3’0)1([/[(1"1{2 +W3KUKUK+§(1—Fllflv)2 3
2

(1:1.0)

(0;3,0) (I;I.O)Rini/ + Cy RK, (92)

+C2 Kijalaj+cl

where the coefficients c§0;3»0)

functions of N.

, ws, etc., are generally

2. Case 2
(0;3,0)

If f5 # 0, we can solve w3 or more conveniently ¢
from Eq. (85) to be

0:3.0 0:3,0
(030 _ _(030) _

0;1,1 2
D,N? <c§ >) 3
(1+DyN)? \ f3

As a result, by making use of Eqgs. (68) and (86), we may
solve

030) 2 (030) 2 D,N? C<10;1,1) 2
¢ =—C =
5 9 3(1—|—D2N)2 f3

1 D/N?
9(1+ DN 94
9(1+4 D,N)? (94)

In this case the Lagrangian reduces to

1) A A | .
+ C(lo,lyl)Kijvla] —|—§f3KVia’

HO Rk 4 ¢ MORK, (95)

+ c(l
which contains the spatial derivative terms of the accel-
eration Va.

We thus conclude that Eqs. (92) and (95) are two viable
Lagrangians that do not propagate any scalar modes at the
linear order in a cosmological background.

C.d=2 withd=3

In the above we have determined the viable Lagrangians
when only d = 2 or d = 3 terms are present. It should not
be surprising that although the scalar mode is eliminated for
d = 2 and d = 3 individually, the scalar mode will reappear
if we naively combine them. This also happens in the
investigation of degenerate higher order scalar-tensor
theories [66,68,92]. Fortunately in our case, viable
Lagrangians with the combination of d =2 and d =3
terms do exist, after imposing additional conditions on the
coefficients.

We consider the combined Lagrangian

S = / dtd®xNVR(L® + L£O) = A), (96)

in which £? and £®) are given in Eqs. (10) and (11),
respectively.

The analysis is completely parallel to the above.
Expanding the action to the first order in perturbations
yields

Sl :/dtd3x£1, (97)

where it follows from Egs. (37) and (67) that

L, = Na*|-3H?(b, — b)) + 3H (b, — 2b3) — AJA
+3Na*[—(3H? + 2H)b, — 2Hb,
— 6H(H% 4 H)by — A — 3H2b;]¢. (98)

The coefficients in the quadratic Lagrangian for the
scalar modes read

H(2)+3) _ »(2) | »A03)
Cee ™ =Cee + G

ég)w =) e, (99)
Ag)m) _ @g i CS,? (100)
o =8+ 2 on)
R _ Q) | o) (102)
iy~ e+ ) (103

104007-9
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The degeneracy condition thus becomes

AP*C) = L12H?[-2(b}))? + by (26 + bY)|w, + S4H[=3(B4)? + 2b5(2D} + bY)]ws
+ H3[12(3b3(bY + 2b%) + by (26 + bY) — 6b by )wy + 36(=2(b))? + by (26 + bY))ws]

+ H*[18(=3(b})? + 2b5(2b% + bY))wa + 36(3b3 (b + 2b4) + by(2b4 + bY) — 6b4 b, w3} —

84

(12

+ {—8bybywy + 36H[—bh f5 + 2b3(f3 + 4 — b3)]ws
+ H[8(=bbf3 = 3b3by + by(f3 + f4 — b3))wy — 24bybyw]

+ HP[12(=b}f5 + 2b3(f5 + f5 — b3))wa + 24(=bh f5 — 3bsby + by (f3 + f5 — B3>)W3]}F

G 0alr = 3T+ 200202w2) = Bl = 3720 207 o

Note we have used the background equations of motion to
simply the expressions for the coefficients. We require that
the degeneracy condition should be satisfied for any power
of J and H, thus we get the set of constraints

—2(bb)? + by(2b)y 4 bY) = 0, (105)

—3(b})? + 2b5(2b% + bY) = 0, (106)

3b3(Dy +2bh) + by (205 + D) — 6b5b% = 0, (107)
by, =0, (108)

—byf3 +2b3(f3 + f5 — bs3) =0, (109)

—bhf3 = 3b3hy + by(f3 + f4— b3) = 0. (110)
ba(f3 = 33)* +2(f3)*wr =0, (111)
by(f3—3F3)* +2(f3)*w; = 0. (112)

Compared with the constraints in d =2 and d =3,
respectively, we find that additional constraints should
be imposed in the combined case to ensure the degeneracy.

First of all, Egs. (105) and (106) are exactly Egs. (57)
and (83) in the cases of d = 2 and d = 3 individually. The
general solutions for b, and b5 are given in Egs. (60) and
(86), respectively, from which we may solve

(0.2.0) 020 1

1
- S_Sv 113
“ 31 314 N (113)
and
030) _ _1 030 _1 030 1 DN? 114
“ 9l 3 sy (Y

86

8
(104)

If Eqgs. (105) and (106) are both satisfied, Eq. (107)
reduces to

3
= (2b3b)y — byb})? =0,

115
2b,b; (113)

which yields a constraint between b, and b3. By plugging
in the solutions (60) and (86), we may solve

C, = D, (116)
which implies that b5 is determined by b, through

D,

by = — b3. (117)

2

As a result, Eq. (114) reduces to

(0:3.0) 1 0300 1 (0300 1 DN?
= —— —= _— 118
“ 91 39 Toarone (18
Equation (108) implies

020 — o, (119)

With Eq. (117), the left-hand side of Eq. (109) becomes

D ~
Ths = 2C—%b2[—b’2f3 + by(f3 + f5 = b3)],

(120)

while due to Eq. (108), the left-hand side of Eq. (110)
becomes

Ths = —byf5 + by (f5 + f5 — bs). (121)

which is proportional to Eq. (109). Generally, we look for
solutions with b, # 0 (since GR belongs to the case), thus
Egs. (109) and (110) are satisfied only if
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by f3 + by(f3 +f'3—l~73) =0. (122)

We thus solve b; as

- C,N
b b
3 = 1 n C Nf3 +f3
which also implies
030 _ _Looso) (LA GN 00 (193
4 32 3\1+ c N7?

In order to make Eqs. (111) and (112) have solutions, f3
and f; —3f; must be either nonvanishing or vanishing
simultaneously. Therefore we have the following two cases.

1. Case 1
If f;=0 and f;—-3f3;=0 (and thus f;=0),
Egs. (111) and (112) are both automatically satisfied.
There is no restriction on b,, bz, w,, ws. In this case,
since f53 = f3 = 0 we have

(0:1.,1)

050;1.1) =0, ¢, 7 =0.

(124)
As a result, Eq. (123) reduces to

o030) _ (0:3.0)

1
SV =34 (125)

In this case, the Lagrangian is given by

1 C|N
£(2)+(3),I — (020>K Klj - 1

‘i HES R
(0:3.0) 7

+ ¢ VKKK + wi K KK
1 DN?
9(1+ C,N)?

+ C(ll;l,O)

(1;0,0)

———K?>+¢; 'R

(0:3.0) £

K3—|— Kan

RiK;; + S RK, (126)

which contains no spatial derivative of the acceleration Va.

2. Case 2
If f3#0 and f3

—3f; #0, from Eq. (111) we solve

1 Y
==5b| 1~ 127
"= 2( f3> (127)
ie.,
(0;1,1)N 2
C,N
020 — _p_~1 (C‘ ) : (128)
1+ C,N\ f;
and from Eq. (112) we solve
1 SV
==5bs| 1= 129
"= 3( fz) (129)
1.e.,
(0;1,1)N 2
(0:3.0) (0:3.0) D|N? (Cl )
¢ =—op =2 . (130
: e (A AN (130)

As a result, Eq. (118) reduces to

(0:3.0)

! 9(1+C,N

03.0) 2
C5 —6

1 DN? [ (cﬁ(’;“’
42 11+6
)? f

3

In this case, the Lagrangian is given by

g2 4 HO0R

14+ C,N
+C1 RUKI‘J‘+C2;’

which contains spatial derivatives of the acceleration Va.

01,1y 2 2
) PO 1 DN
)2< 7 ) K;K'K + ——F—= K3

9(1+ C,N)?

1 )
f3 —|—f3)Ka al + C(lo LD K V’a/ +§f3KVl-a’
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We conclude that Eqs. (126) and (132) are two viable
Lagrangians in which d =2 and d =3 terms are both
present, and propagate no scalar mode at the linear order in
perturbations around a cosmological background.

D.d=4

Now we consider the most involved case of d = 4. The
action 18

— / dtd>xNVR(LW = A), (133)

with £*) given in Eq. (12). Expanding the action to the first
order in perturbations yields

S| = /dtd3x£,, (134)
with
L1 =Na*|-9H* (b} +3b,)—AJA
+3Na}[-9H?(3H? +4H )b, — A—12H3b,)¢,  (135)
where we denote
by = 04 | (040 L3040 9,040 (13)
for short. The background equations of motion are
—9H*(=b} +3b;)) — A =0, (137)
—9H?(3H* 4+ 4H)by, — A — 12H3b, = 0, (138)

for A and ¢, respectively.
The relevant coefficients in the quadratic Lagrangian for
the scalar modes are

" P

ClY) = 54Hb, — dy 5. (139)
) L P

O = —36H3 (=D, +3b,) + H(2d,+2f s — 1) . (140)
CA a2

X 0> o

oW = —36H2b4—+2d4 = (141)

(B

ALY = 648[—4(b,)? + 3by (2D, + b!)|wa.

A = 36— (26 + bY)dy+ 12b4 (fa+ Fy—ba) + 40y (=2f 4 + Fa)wy +36[4(b})2 = 3by (26}, + b)) (dy +9dy —6dL),

A = 1820}, + b)) (dy)? + 24dy[=by(f4 + [ —
+24d,4[6b4(f4 + [} — bs) + bl (=24 —

b4) + 0] f4]
374+ Fa)] + 18d4[(2b) + b)dy = 12b4(fs+ fy — b) -
+2[~4dy(fo + fiy = ba) +216b4dy — (=24 + Fa)*]wa,

) 9
) — 5 H (b = 6V, + 12by)

* - o
+HH (fy—dy=bs=fa+Ji) 5 +ds . (142)
R o2 _ G
CW) = 12H3(—b), + 3by) -+ H(=2d, = Ji) 5. (143)
~ o oo
e\ = 2m? (w3 +3bg) 5 —dy . (144)

where we denote

(002) | (002

ds = 3¢ 43¢ (ooz) 9C‘(10,o,2)’ (145)
o= C(10,2.1) n 3050,2,1) " 3c§0’2’1) n 9c§0’2’1), (146)
Fye= 650,2,1) + 3c§0‘2"'), (147)
q = C<lo,o,2) n Cgo,o,z) ) c;0,0,2) +3 C20~0,2)' (148)
54 — C<lo,4.0) n 3cg0,4,0) +3 Cg0,4,0) +9 Cé0»4-0)’ (149)
4= cgo,o,m n Céo,o,z)’ (150)
}4 — 2C(lo,z,l) _ Cgo,zi) _ C(30,2,1) n 4C‘(10~2,1)

I 2Cgo,2,1) i 6c§0’2’1>, (151)
wy 1= 3040 | 2,040 4 3,040 (152)
a, = Cgo.o,z) i C(Zo,o.z) n Cg0.0,2) + 04(‘0»0.2)’ (153)

as shorthand.
After some manipulation, the degeneracy condition (34)
is found to be

A — prsalt >32+H6A< )3 Al >i_8
+ A 8180 + Al af) , (154)
where
(155)
(156)

6by(=2f4+3f4+ f4)?
4b(=2f4+ f4)]
(157)
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4)

A<10 = —A(fy + fy — by)(ds)? + dy[-24bydy + (F4)*] + 2d4[72bydy + Fo(=2f4 + F4)]

+ dy[4dy(f4+ [l — by) = 216bydy + (<2f4 + F4)*] — 8dydywy,

and

ALY = 4dy[dydy — (). (159)
It is interesting that b, always arises in terms of
(fa+ 14— l~)4), and f, always arises in terms of
(=2f4 + fa)-

Following the analysis in the above, we may solve the
coefficients such that A® =0. For example, from
Egs. (155) and (156) we have two constraints

—4(b})? +3b, (20, + b)) =0 (160)
and
— (2b}, 4 b)) dy + 12b4(f4 + [} — bs)
+4bL(=2f4 + f4) =0, (161)

which when combined yield
|

(158)

|
— (b})%dy +9(bs)*(f4 + fy — bs)

+ 3byby(=2f4 + f4) = 0. (162)

The full treatment of the case of d =4, however, is
involved and out of the scope of the present work.

V. ELIMINATE THE SCALAR MODE AT THE
SECOND ORDER: d=2

In the previous section, we eliminated the scalar mode
at linear order in perturbations by making use of the
degeneracy condition (34). Clearly the conditions for the
coefficients derived in the above are merely necessary
conditions, which means that the scalar mode will reappear
if we go to higher orders. Thus one needs to find the
conditions for the coefficients such that the scalar mode is
eliminated order by order. In this section we take the case of
d = 2 as an illustrative example.

Expanding the action (35) to the cubic order in pertur-
bations yields

£3 = 9Na3b2Cé'2 — Naszzé’zazB - 2Nah2§232C + aNi)zCaiAa"A - ZQZHNbZC(?iC(?iB

- 2aNh2C8,C8’C + %aN(—bz + Wz)é;(azB)z + %aN(bz + 2W2)8,£8ZB828

+ 2TNG® Hb, (26 — 2a2b,C0*BO,L — 2Na2b,d, ' BE + 2a*HN (b, — by)ALO*B
+2a*HN (b — b)) AD;CD'B — 184 HALD,L (by — bb) + 2Na?(by — by)AD*BE

27 - _ : _ .
- 7Na3H2(—2b2 + by)E + 3Na (=by 4 bY)AL? + aN (b, + by)AD,AD'A

_ _ . 1 -

—4aN(hy + hb)ALO*¢ — 2aN (hy + hy)AD D¢ + gaN(—bz +w, + by — wh)A(9*B)?
+ aN(—w, + w,)A0;0,B0/9'B + %Na3H2(2b2 -2} + by)AX
— Na®H (b, — by + b3)A29*B + 3Na*H (b, — by + b)AX,

_ 1 -
—2Na(hy + 3h, + ) A20% + ENa3H2b§3)A3, (163)

where we have used the background equations of motion to  the induced cubic action S3[{] for the single variable (.

simplify the coefficients. No integration by parts has been
performed at this point.

By making use of the degeneracy conditions (56)
and (57), and plugging the solutions for A and B into
Egs. (58) and (59), after some manipulations, we get

We tend not to present the full and explicit expression
of S3[¢] due to its length. We pay special attention
to the terms which are relevant to eliminating
the scalar mode (i.e., {), and have the following
observations.
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(a) First, we found that there is no é’3, i.e., there are no
terms with three time derivatives.

(b) Second, there is one “dangerous” term with two time
derivatives:

b3(2H, + hY)

2N 0%, 164
ORI

and thus we need to require (since b, # 0)
2h, + hy =0, (165)

with b, — b, # 0. The general solution for A, is

- (166)

where C5, C, are constants.
(c) Third, there is one dangerous term with one time
derivative:

2b5(hy + hy)?[=2byw3 + 2w3b) + b3 (—w, + wh)]
3aH*w3i(b, — b5)?
x N (0%¢),

(167)
which implies that w, must be related to b, by

1 1
—2(W2 —wy) =2

— 168
w3 b3 (168)

(by = b)).

With the solution for b, in Eq. (60), the general
solution for w;, is

CsC,N

S hd LA 169
1 —2CsC,N (169)

wo

where Cs is another constant.
By combining Egs. (56), (60), (166) and (169), the
Lagrangian (61) is further reduced to

CsC,N o ..
L0 = 231k ki
T ToReN VR

C
+ (C3 + W“) R.
We conclude that the Lagrangian (170) propagates no

scalar degrees of freedom up to the second order in
perturbations on a cosmological background.

1 OGN
31+C,N

(170)

VI. CONCLUSION

In this work, we revisited the problem of propagating at
most 2 tensorial degrees of freedom in a large class of
spatially covariant gravity theories, of which the
Lagrangians are polynomials built of spatial geometric

quantities. Although the general conditions have been
derived in [74,75], these conditions are mathematically
involved to be solved to yield concrete Lagrangians.

We thus take an alternative and complementary approach
in this work based on a perturbative analysis. The idea is
simple: if the Lagrangian has no scalar degrees of freedom in
a fully nonlinear sense, the scalar mode must not show up at
any finite order if we perturbatively expand the Lagrangian
around a cosmological background. This perturbative analy-
sis allows us to determine the coefficients in the Lagrangian
order by order. Since at the fully nonlinear level, there is a
finite number of conditions imposed on the functional form
of the Lagrangian, this perturbative analysis must stop at
some finite order. In other words, there must be a finite order
up to which we kill the scalar mode, and then the scalar mode
is eliminated at fully nonlinear order. In fact, as shown in
[79] in a specific example, it is sufficient to tune the
coefficients up to the cubic order in the Lagrangian such
that the unwanted scalar mode is fully removed.

In this work, we mainly focused on the linear cosmo-
logical perturbations. In Sec. III we showed that in order to
eliminate the unwanted scalar mode at the linear order, the
degeneracy condition (34) must be imposed. This is also
supported by a more rigorous Lagrangian constraint analy-
sis in the Appendix. We then used Eq. (34) as the starting
point to determine the coefficients of the Lagrangians for
d=2, 3, 4 in Sec. IV, where d is the total number of
derivatives in a SCG monomial. In particular, we deter-
mined the concrete form of the Lagrangians for d =2 in
Eq. (61) and for d = 3 in Eq. (92) in the absence of Va
terms and in Eq. (95) in the presence of Va terms,
respectively. We thus concluded that Egs. (61), (92) and
(95) propagate no scalar modes at the linear order in
perturbations around the cosmological background. The
scalar mode will rearise in the naive combination of the
scalar-mode-free Lagrangians for d =2 and d =3.
Therefore one needs more restrictions on the coefficients
in order to eliminate the scalar mode if d =2 and d =3
Lagrangians are present simultaneously. The final results
are given in Eq. (126) in the absence of Va terms and in
Eq. (132) in the presence of Va terms, respectively.

It is not surprising that although the scalar mode has been
eliminated at linear order, it may reappear at nonlinear
orders. In Sec. V we expanded the Lagrangian up to the
cubic order for d =2 and found the conditions for the
coefficients to eliminate the scalar mode up to the cubic
order. The result is given in Eq. (170). In principle this
procedure can be performed order by order, and one
expects to determine the Lagrangian at some finite order,
such that the scalar mode has been fully eliminated.
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APPENDIX: CLASSICAL MECHANICS
WITH ONE DYNAMICAL AND TWO
AUXILIARY VARIABLES

In this Appendix, we make a thorough analysis of a
classical mechanics system with one dynamical and two
auxiliary variables. We shall classify various cases accord-
ing to the number of DOFs as well as the nature of
constraints and gauge identities.

The most general quadratic Lagrangian for three varia-
bles {¢', g% ¢*}, of which one is dynamical and two are
auxiliary variables, takes the form

1 . . .
L= 5911(61‘)2 +f124'q* + 134" ¢
1 1
+ szz(qz)z + §w33(q3)2 + wng’q’

1
+§W11(‘]1)2+W12(]1(]2+W13f]ll]3- (A1)

The coefficients g, f,, etc., are assumed to be constants
for simplicity. We assume g;; # 0 so that ¢! acquires an
apparent kinetic term, while g and ¢> do not have explicit
time derivatives and act as the auxiliary variables. Our task
is to search for cases in which there are no dynamics in the
Lagrangian (Al).

Varying the Lagrangian yields

oL~ —E"5q!, (A2)
where the equations of motion take the form
O ,_ w0 0)
& =W g + V7 =0, (A3)
with
gn 0 0
0) _
Wi =0 00 (A4)
0 0 0
and
T+ 34 =wing' =wipg? —wisg?
0 .
Vﬁ' = —flqu —leql —szqz —w23q3 (AS)

—f134" =wi3q" =wpq> —wzq’
In this Appendix, for clarity we use “~” to denote on-shell
equalities, i.e., those hold only when the equations of
motion are satisfied. Here and in what follows the super-
script “(n)” stands for “level n,” whose meaning will be
clear soon.

1. Level 0
Since rank(Wl(.;))) = 1, there are two null eigenvectors

for Wg.)) :

0
=] (o]
1

0
which when contracted with 550) yield

0)i o(0 . 0
”g ) 5,(' ) = —f 128" = W' —wnd? —wid® Eé‘é ), (A7)

ué())igl('())

. 0
= —f13611 —W13611 - Wz3612 —W33613 = Sg )- (A8)
According to the algorithm of detecting constraints in the
Lagrangian formalism, at each level, we have to examine
whether the contractions lead to constraints or identities.
We have three cases according to how many constraints/

identities we get.

a. Case 1: Two identities

If the two contractions are vanishing identically, we get
two gauge identities G(IO) = ggo) =0 and Ggo) = 550) =0
at “level 0.” In this Appendix “=" stands for off-shell
identities, which always hold no matter whether the
equations of motion are satisfied or not. This requires
f12=f13 =wia =wi3 = wy = wy = w33 =0. This case,
however, is trivial since terms involving ¢, ¢ in the
Lagrangian (A1) completely drop out and the Lagrangian
reduces to that of a single variable g'. Then the algorithm
ends. We include this case merely for completeness.

b. Case 2: One constraint and one identity

Without loss of generality, we assume at least one of
{f12, W12, W2y, wp3 } is not vanishing, and denote the con-
straint at level O as

¢ = uVe” ~ 0.

1

(A9)

Then that ugo)ig(_o) leads to an identity implies that

1

S TAo (A10)
with some constant A, i.e.,
f13 = 4f12, (A11)
Wiz = Awyg, (A12)
Woz = AWny, (A13)
Wiz = Awyz = 2wy, (A14)
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We then get one gauge identity at level O:

GO =260 — el =0. (A15)
Note that 1 = 0 is trivial, since in this case the ¢ sector
completely drops out, and the original Lagrangian reduces
to that of two variables ¢! and ¢°.

c. Case 3: Two constraints

This is of course the general case. As long as at least one
of Egs. (A11)—-(A14) is not satisfied, we get two constraints
at level 0:

¢ =&Y 0, (A16)
o =P ~0 (A17)

2. Case 2: Level 1

Using Egs. (A11)—~(A14) to replace {f 3, Wiz, waz, wa3
in terms of {fi, Wi, W, wys}, the constraint ¢ in
Eq. (A9) becomes

¢(0) - —flzil1 - leql - szq2 - /1W226]3- (A18)

According the standard algorithm, we build the enlarged
“vector” of equations of motion as

(1) Y 1), )
& = <d)l(0>> =W, @ + Vit (AD9)
with
911 0 0
" 0 00
wil) = (A20)
0 00
—fi2 0 0
and

F@ + 24 12q =wig' —wing® = wing?
n _f12ql - W1261l - szqz - /1W22613
; —ﬂflzfll - ﬂleql - /1W22q2 - 42W22613
“Wiag' = wpng® = dwpnd’
(A21)

There are two trivial null eigenvectors for W', which

i’
are merely “(1(,)5) , ug)i) in Eq. (A6) augmented by zeros. On

the other hand, there is a nontrivial null eigenvector

(A22)

g

which is valid whether fi, = 0 or not. Contracting usll)

with £ yields

i el ; ]
uh) ‘51(-1) =—gnwng' + ([, — 91wn)d®
+ A1 = 91w’

- flzw“q' - f12W12q2 - ﬁflzwlsz- (A23)

We need to check whether u(1) 8511) leads to an identity or a
new constraint. There are two subcases.

a. Case 2.1: One identity
Up to “level 1,” we have only one constraint ¢(°) given in
Eq. (A18). If u<1)i15§]1) is not an independent constraint, it
implies that

uMingV o !, (A24)
which puts restrictions on the coefficients. After some
manipulation, the necessary and sufficient condition for
Eq. (A24) can be written as

(A25)

with f, # 0. Note we must have f, # 0 since if f, =0,
Eq. (A24) implies wj, = w,yy = wy3 = 0, which conflicts
with the assumption that at least one of {5, wip, Wy, was }
is not vanishing in order to have the constraint ¢®). Then
we get one gauge identity at level 1:

G(l) = u(l)ilgl(-ll) - 911W11¢$0)

(0)

dé
= f125(10) + g1 —=

7—911W115§O> =0. (A26)

Then the algorithm ends.
In this case, we have one constraint ¢§0) in Eq. (A9), two
gauge identities G® and GV in Eqgs. (A15) and (A26),

respectively. It is easy to show that in this case there is no
dynamical degree of freedom.

b. Case 2.2: One constraint

As long as Eq. (A25) gat least one of the two equalities)
is not satisfied, u(V& [1]) leads to a new independent
constraint:
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¢ = uie ~0. (A27)

Then we go to the next level.

3. Case 2.2: Level 2

By appending q'ﬁ(l) [with ¢()) in Eq. (A27)] to E,(-IU, we
build the enlarged vector of equations of motion:

&) =Wl + Vi, (A28)
with
g1 0 0
0 0 0
w? = 0 0 0
]
—f12 0 0
—911W12 f%z — 91w ﬂ(f%z - 911W22)
(A29)
and
fd® + A g —wig' = wig* — iwng?
_fl2ql - leql - W22q2 - /1W22613
V<2): -1 'l_l l—/1 2_12 3
i f129 Wi24g Wang Wan g

—Wuql - szél2 - /1W22@3
—f12W11511 - f12W12q2 - /1J012W12513
(A30)

Since we have assumed A # 0, we have two subcases.

2
a. Case 2.2.1: w,, ;é{;—ﬁ

In this case, ij) do not possess any further nontrivial
left null eigenvectors. The algorithm therefore ends.

In this case, we have two constraints ¢©), ¢(!) and one
gauge identity G(). One can show that there is 1 dynamical
degree of freedom.

2
b. Case 2.2.2: wy, =12 while wy, # \/#y; .

we have to require that the other

2

Since wy, = %

equality in Eq. (A25) is not satisfied, i.e.,

f
W12¢\/W11\/;%- (A31)
In this case, WZ(ZZJ) possesses a new nontrivial null

eigenvector

Wiz
0
W=10 (A32)
0
1
Contracting ugzz) with 51(-22) yields
”(2>i251('22) = —fuwig' —wiwnq'
—Why' = whq . (A33)

Recall that we have two constraints ¢(10) in Eq. (A18) and
#") in Eq. (A27), which in our case reduce to

2 2
¢(0) - _f12q1 —leql _JQZ —/1£613»
g1 g1

(A34)
4’(1) - —911W12511 —flenq1 —f12W126]2
—Afowng’. (A35)

One can show that M(Z)izgl@ is linearly independent
of ¢ and ¢V as long as Eq. (A31) is satisfied.
Therefore u<2)525522) leads to a new constraint,

PR = g 50, (A36)

4. Case 2.2.2: Level 3

Appending 4.5(2) [with ¢ given in Eq. (A36)] to EE?
yields

eV =wlly + v, (A37)
with
g11 0 0
0 0 0
0 0 0
Wil = (A38)
’ —f12 0 0
w2 0 0
—frownn 0 0O
and
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fd® +Af g —wig' —wing* —wng?
. fZ fZ’)
~f12q" =wng' =2 ¢ =252 ¢
. f2 fZ
v —Af12d4" = Iwnng' =42 q =22 g
S B Y N (Y
Wizg g1 q /1911 q
—f12W11511 - fle125]2 - ﬁf12W12é3
—W11W12511 - W%z‘f - lW%sz

(A39)
W,(:j) possesses a nontrivial null eigenvector
Sfrawn
0
0
) = , (A40)
} 0
0
g
which when contracted with 5,(»33> yields
i 3 . .
u® 351(-3) = —guwnwid' + (wifi, — gnwh) @
+Awnfh = guwh) @ = frawhg'
= frawnwing® = Af uwnwig’. (A41)

Comparing this with the previous constraints ¢(©), (1), )
in Egs. (A9), (A27) and (A36), clearly u®5 &Y leads to a

new constraint

3 = uis g§j> ~0, (A42)

: 2 2
since wy f, — gnwi, # 0.

5. Case 2.2.2: Level 4

Appending (}5(3) [with ¢() given in Eq. (A42)] to 5533)
yields

Y = w4 v,

Iy 4] Iy

(Ad3)

with

g1 0 0
0 0 0
0 0 0
W= ~fe 0 0
—g911W12 0 0
—fiawn 0 0
—g1WwiWi Wllf%z_gllw%z ﬂ(an%z —911W%2)
(A44)
and
fd® + A g —wing' —wing* — iwng?
. 11 11
—f2d' —wng' —=32q* - 2524
. f2 r2
o | A —age 20
VvV = . 2, 2,
. —wiag' =22 - Ae g
—f12W11é1 - f12W12‘.]2 - ﬂf12W125]3
—W11W12511 - W%z‘f - AW%ZC'IS
—f12W%1"I1 - f12W11W12512 - ﬁf12W11W12513
(A45)
Clearly, since wy; 2, — g; w3, # 0, Wl(»f; does not possess a

nontrivial null eigenvector. The algorithm ends.
To summarize, in this case, we have four constraints,

d, M P2 $3) | given in Eqs. (A34), (A35), (A36) and
(A42), and one gauge identity G\¥) given in Eq. (A15). Asa
result, there are no dynamical degree of freedom.

6. Case 3: Level 1

From Eqgs. (A16) and (Al7), the two independent
constraints at level 0 are

“ (0 . . . .
¢(1 ) = —flqu - leq] - szq2 - W23513’ (A46)
“ (0 . . . .

¢§ ) = —f138" = wisg" — wasq? — wisdP. (A47)

In “case 3,” the enlarged vector of equations of motion is

_ D) (1)
=W, ;@ +V,’, (A48)

iy

with
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g1 0 0
0 0 0
(1) _
wl=1 0 0 0 (A49)
—fi2 0 0
—fi3 0 0
and
f@+ 136 —wiig' =wing* —wig
—f126'11 —leql —szqz —w23q3
1 )
Vf'l /= —f13¢" —wi3q' =wasg* —w3q? (A50)

.1 .2 .3
—Wi2g —Wag~—Wiq

.l .2 .3
—Wi3qd —Wx3gq~ —W33q

In this case Wl(llj possesses two nontrivial null eigenvectors:

Vi, o(1 . .
”<1 )”51('[) =—gnwng' + ([, — 91w2)§®
+ (f12f13 = 911w23) @ — frawn g

_fIZleqz _f12W13q3 (A52)
and
Diy o(1 . .
’4<2 : ]51('1) =—guwisg' + (f13/12 = 91w23) 4>
+ (13 — 9uwss)@® — frswn g’
_f13W12q2 —f13w|3q3. (AS53)

We need to check whether uﬁl) i 51(-11) and ugl) i 51(-11) lead to
new constraints or identities. To this end, together with ¢(10>
and ¢\ in Egs. (A16) and (A17), we write

1

q
(0)
fi2 fi3 ¢; : g
0
0 ¢2 6'13
1 A = MM , (A54)
“(1 L= o[ “gz)l —1 o (AS1) u(ll)z,glgll) g!
. 2
911 ”(21)1155'11) q
0 g11 q3
Contracting ui?l and “(2%:')1 with 5511) yields with the 4 x 6 matrix
—f12 0 0 W2 —W —W3
MO = —f13 0 0 —Wi3 —W23 —Ws33 AS5
2 (AS5)
—911W12 f12 — 911w Sifiz—gnuws  —fown —fown —fiawis
—guwiz  fiaf13 — gniwas f%3 — 911W33 —fiswin —fiswiz —fizwis

Then the question is equivalent to checking the rank of
MO For later convenience, we define the submatrix

Siaf13 = giniwas

2
f13 — g11W33

2
S = guwn

A = ( ) (A56)
Si2f13 = gniwas

for which the determinant is

detA = gy [—fTws3 + 2f 12f 13W23 — fHwn

+ g11(Waaws3 — w3s)]. (A57)

a. Two identities (impossible)

First we shall show that it is impossible to have two
identities. In fact, in order to have two new identities, we
have to require that the entries of the submatrix A in
Eq. (A56) are vanishing identically. This can also be
understood in that since there are neither ¢> nor ¢’ terms

in (/)50), (/)gz), as long as at least one of the coefficients of i]2

|
.3 (i o1 iy o(1) I

or ¢ in ul )”551) and u$ )”5,(»1) is not vanishing, we get a

new constraint. To conclude, the necessary conditions to

have two new identities are

2 2
J12 w :flszS’ W3=£.

23 3 (A58)
g1 g1 g11

On the other hand, comparing this with Egs. (A11)—(A14),
we have to require

Siowiz = fiswp #0 (A59)

in order not to go back to “case 2.” | '
With these considerations, ugl)"gl(l) and ug)”é’gll)
reduce to

iy (1 -
ul) '5,(»1) = —guwng' = fwng'

—f12w12q2 —f12W13lI3, (A60)
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1)i | .
u )”551) = —guwi3q' = fiswig'

—f13W12(]2 —f13W13CI3- (A61)

In order to have two identities among the four equalities
(0. . u(ll)"é’l(-ll), u(zl)l‘é'g]l)} ~ 0 we have to make sure
that the rank of the 4 x 4 matrix

2

_ _ _Jn _Jufi
f12 Wiz g1 g1
_ _ _fufs _h
f13 Wi3 g g (A62)
—guwiz  —fiown —fuwin  —fiawis
—guwiz —fuswn —fiswin —fizwis

is 2. However, the determinant of the above 4 x 4 matrix is

—(f13wi2 — frawi3)? #0, (A63)

since we must have Eq. (A59). Therefore it is impossible to

have two independent constraints {qﬁg()),qﬁgo)} at level 0,
and in the meanwhile to have two new gauge identities

(G, GV} at level 1.

—f12 0 0

M = —f13 0 0
—guWi @ wn
—g1uwiz wn 0"72

and our question thus reduces to checking if it is possible to
have rankM(!) = 3.
One can show that the necessary condition to have

rankM(") = 3 is to require

D) = —w(f13wia —f12W13)2

w11
+ @ | (qwiy —wi3)? — g—(ﬂfn - f13)?
11

=0. (A67)
If
Sizwiz — fawis =0, (A68)
then we need to require
fizs—nfr2#0, (A69)

and Eq. (A67) yields

b. Case 3.1: One constraint and one identity

The necessary condition is that the submatrix A defined
in Eq. (A56) is degenerate but not identically vanishing,
ie.,

rankA = 1. (A64)

This is because

(a) if the rankA =2, there will be two new con-
straints, and

if the rankA =0 (then A =0), according to the
analysis in Sec. 6a, either there are still two new
constraints when Eq. (A59) is satisfied or we go back
to “case 2.1.”

Without loss of generality, the submatrix A can be written

in the form
1
!
non

with w,  being constants. Note that we require @ # 0 in
order to have rank A = 1. With Eq. (A65), M (M) reduces to

(b)

(A65)

—w o=f1, no—fif13
12 9gn g1
_ no—fif13 wo—f1,
W13 gn g1 5 (A66)
—frwn —fiwin —fwis
—fuswn —fiswin —fizwis
/W
Wiy = M (A70)
V911
On the other hand, if
Sizwia = frawiz # 0, (A1)

Eq. (A67) also implies one constraint among the coef-
ficients. In both cases we have rankM(!) = 3,

To conclude, it is possible to have rank M) = 3 so that
we get one constraint and one gauge identity on level 1.
Without loss of generality, we may choose the new
constraint to be

PV = Ve ~ 0, (A72)
The gauge identity must be the form
GV = agl” + bl — gl +uiEL,  (AT3)
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where the constants a, b are not vanishing simultaneously.
a and b are determined by the concrete form of the null

eigenvector of M), which we do not show here explicitly.

c. Case 3.2: Two new constraints

Generally, one of the following applies:
(1) detA #0,

(2) rankA =1, DY £0 [with DY defined in
Eq. (A67)], or
(3) A=0and fizw, — frowiz #0,
and we have two constraints at level 1:
PUPIER (a74)
and
¢y = uye (A75)

7. Case 3.1: Level 2
By appending ¢") [with ¢(") given in Eq. (A72)] to £}’

we have
(2 _ w2 (2)
gi2 —_— Wizj qj + Viz ) (A76)
with
911 0 0
0 0 0
0 0 0
W =
» —f12 0 0
—f13 0 0
—911W12 f%z—gnwzz S12f13 — griwa
(A77)
Since

= g1iwn #0.

W( ) has no nontrivial null eigenvector. The algorlthm ends

In this case, we have three constraints ¢1 ,¢2 ,andq[)
given in Egs. (A16), (A17) and (A72) and one gauge

identity G'!) given in Eq. (A73). Therefore there are no
dynamical degree of freedom.

8. Case 3.2: Level 2
From Eqgs. (A74) and (A75), by appending qb(
to 5,(-11> we get

D and ¢

£ = wlg 4 v,

5] J

(A78)

with
gn 0 0
0 0 0
0 0 0
W=\ ~fo 0 0
—f13 0 0
—gnuWiz f%z — 911w fraf1i3 = guwas
—guwiz  fi13f12 = 9uwn f%3 — 911W33
(A79)
and
Fo@+ 38 —wing' =wing* —wisg?
124" =winq' =wng* —wrq’
—f13q" =wi3q" =wa3q* —was g’
ngz) = —Wwig' = wng® —wid’ (A80)

.1 .2 .3
—Wi3q —W3qT —W33qg

.1 -2 -3

=fiwngq —fiawig”—fiawiszg

.1 .2 -3

=fiswngq —fi3wig”—fizwisq

)

We have to examine whether W ; possesses new nontrivial

null eigenvectors. According to the rank of the matrix A in
Eq. (A56), we have to discuss three subcases.

a. Case 3.2.1: det A #0

In this case, clearly there are no nontrivial eigenvectors
of W ) . The algorithm ends.

b. Case 3.2.2: rankA=1 and DV # 0

In this case det A = 0 but A # 0. Similar to the dis-
cussion in Sec. 6 b, we make use of the form (A65) and

keep in mind that @ # 0. Then Wl( ) reduces to

g 0 0
0 0 0
0 0 0
W ~f, 0 0 (A81)
—fiz 0 0
—guWwp o wn
—guwiz on o

W,(fj) possesses a single nontrivial null eigenvector, which
can be chosen to be
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—nwix + wiz

(A82)

oS O O O

-n
1

Contracting u!? with 5522) yields

iy
i £(2 ; ]
ul? 2552) = (nfowi = Fiswn)@' + (Frowis — fiswn)@®
+n(f12wi3 —]013W12)Q3

+ wi (w12 — wiz)g' + wi(mwiy — wi3)g?

+wis(mwi, —wi3)g. (A83)

Comparing this with ¢E0>, ¢§0) in Eqs. (A16) and (A17) and
gb(ll), gbgl) in Egs. (A74) and (A75), after some manipu-
lations, one finds that in this case u@ig 522) always leads to a
new constraint at “level 2”:

2) . (i e
PP = uPg % 0. (A84)
c. Case 3.2.3: A=0

In this case cleal;ly there are two new nontrivial null
eigenvectors for W ;:

Wi wi3
0 0
0 0
uy i 0 ’ ugzl)z - 0 (ASS)
0 0
1 0
0 1
Contracting ufi)z and u<221)2 with 8522) yields
2)i (2 . :
M<1 )251('2) = ~fowng' + winfis = fawis)d’
—wiwing' =whg —wipwig® (A86)
and
2)i (2 . :
’4<2 : Zgz('z) =—fiawng' + wisfio = fiswi)d’
—wiswi1g' = wizwng® = wisg’. (A87)

Since we have already assumed A = 0, Eq. (A59) must be
satisfied, i.e., W12f13 —f12W13 ?é 0.

Comparing this with the constraints ¢§O), qbgo) in
Egs. (A16) and (A17), ¢\", ¢ in Egs. (A74) and
(A75), since the determinant of the 6 x 6 matrix [after
making use of Eq. (A58)]

~f1a 0 0 —wp -ih fube
2
—f13 0 0 W13 _% o
—911Wi2 0 0 —frwn  —fiowin —fwis (A88)
—911W13 0 0 —fiswn —fizwi —fizwis
—frawn 0 winf13 = f12wiz —wiwy —W%z —WiWis
—fiswin wisfi2 = fizwi 0 —WisWir —WiWi —W%3
1s
~(Winf13 = frawiz)’ #0, (A89)
u(12)i251(_22) and ugz)izgl(zz) lead to two new constraints at level 2:
2 ._ Qi)
¢y =u N E RO, (A90)
(2) . (2Qie2)
P2 = PR 0, (A91)
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From Eq. (A84), we have

with

and

i3]

9. Case 3.2.2: Level 3

ey

3

g1
0

0

—fi2
—f13
—g11W12
—gnuwis

nfwn — fizwn

=Wyl + v,

3J 3

R o o o o o

wn

Siowiz = f1zwin

S O O O O

wn

C()V]z

’7(f12W13 - f13W12)

Fd* + 3¢ =wig' —wing* —wisg’®

2 _fZ 3 _ .
7 (o—f1,) +4 (ng]{12f13) _f12q] _ leql

¢ (no—f12f13) + 7 (Po—f3,

an

n ) — f13¢" =wizq'

an

Plo=f) | Pow—Ffofis) _ .1
91 + 91 W29

Plo=finfiz) | £Po=fiy) _ -1
gn + 9n wisq

—f12W11Q1 - flelzé]2 - f12W13513
—f13W11Q1 - f13leq2 - fl3W13513

W11q1(’7W12 - W13) + W1292<’7W12 - W13) - W1393(W13 - ’7W12>

®)

There is one nontrivial null eigenvector for W; ;, which can be chosen to be
0
0
0
®) g‘}-ﬁ” (frawis = frawiz) + who(n — JT;)
3 = 2
’ 0
Siswi = frawis
0

)

for f1, #0, and to be
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0
0
0
O 0
" gu 72 (frowis = fswi) + o7 (f12 = f13)
f13wia — fawiz
0
a)
(A96)
for f13 #0, and to be
0
0
0
0
I A97
W= (497)
0
0
1

for f1, = f13 = 0. In all cases, the contraction of ut¥ with

i3

SE? can be shown to be a new constraint at “level 3,”

PO = uded) 0, (A98)

since the 6 x 6 matrix M) defined by

<
.
S
=2
i

w

(A99)

—

)

|
@
QR R Qe

u3is 51(3)

always possesses a nonvanishing determinant.

10. Case 3.2.2: Level 4

There is no nontrivial null eigenvector of Wl(jj) The
algorithm ends.

To summarize, we have six constraints, d)(lo), ¢§0), gb(ll),

¢§1), ¢(2), ¢(3), and thus there is no dynamical degree of
freedom.

11. Case 3.2.3: Level 3
From Egs. (A90) and (A91), by appending ¢> and ¢
to 5522), we get

£0) — wlgi 4 y©

i3 i3j iy

(A100)

with [we have used Eq. (A58) to replace w,,, wy3 and wis]

g1 0 0
0 0 0
0 0 0
—f12 0 0
3
wil=1 —fi 0 0
—g11W12 0 0
—911W13 0 0
—fiawn 0 winf13 — f12wi3
—fiwin wisfi2 —fizwi 0
(A101)
and
fd® + fd —wing' —wing* —wig®
2 .
_flqu - leql - %qz - fﬁf” 613
. 72
—f13q" —wisq' — flgzljjls q* - ;‘fq‘%
o —wing! Rt el g
N g . . 2
L —w13q1 _f];ﬁlf& q2 _%qi%
—flenq1 - flzwlzf']2 _f12W13q3
—f13W11q1 - flSWIZQZ _f13W13q3
—W12W116.11 - W%ch - lewwél3

.1 %) 2 -3
—WpWiiqg — WisWiegt — wizq

(A102)

Since wi,f13 — f1owis # 0, there is no nontrivial eigen-
fjj) The algorithm ends.

To summarize, in this case, we have six constraints: (/550),
o) in Egs. (A16) and (A17), ¢\, ¢'" in Eqs. (A74) and
(A75), and ¢\, ¢'? in Egs. (A90) and (A91). Therefore
there is no dynamical degree of freedom.

vector for W

12. Summary

The classification of Lagrangians with one dynamical
and two auxiliary variables is summarized in Table I.
According to the types of constraints/identities as well as to
that at which level these constraints/identities arise, there
are in total eight cases (in some sense eight types of
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TABLE I. Classification of the quadratic Lagrangians with one
dynamical and two auxiliary variables. Here - - - indicates that
there are neither constraints nor gauge identities available at the
corresponding level.

Level 0 Level 1 Level 2 Level 3 #por
0 0 .. .
Case 1 Gg )’ Gg> 1
Case 2.1 0, GO G 0
Case 2.2.1 ) 1
Case 2.2.2 ¢ e s 0
Case 3.1 ¢<0) ¢(20) o, G 0
Case 3.2.1 1
Case 3.2.2 ¢$1)’ ¢§1) e sl 0
Case 3.2.3 ¢(2)’ g2> . 0

theories). Counting the number of degrees of freedom in the
Lagrangian approach is discussed in [93-96], which is
given by the simple formula [97]

1
#DOF :N—5(1+g+6), (A103)

in which NV, [ and g are the total numbers of the variables, the
Lagrangian constraints and the gauge identities, respectively.
e is the total number of the gauge parameters plus its
successive derivatives. With this classification, it is trans-
parent that the linear scalar perturbations in GR belong to
“case 3.1.” While what we explored in this work corresponds
to “case 3.2.2” and “case 3.2.3” (together with case 3.1).
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