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In this paper, we first analyze the horizon structure of the acoustic charged black hole in curved
spacetime and then study its acoustic shadow as well as the near-horizon characteristics including the
quasinormal mode (QNM) frequencies and analog Hawking radiation. We find that the radius of the
acoustic shadow for an acoustic charged black hole is larger than that for a Reissner-Nordström (RN) black
hole, and both of them are suppressed by increasing the black hole charge because their related outer
horizons become smaller. Then the QNM frequencies under scalar field perturbation and its eikonal limit
are computed via numeric method and acoustic shadow, respectively. We find that the acoustic charged
black hole is stable under the perturbation and the QNM frequencies are much weaker than that for the
astrophysical black hole. Moreover, as the tuning parameter increases, the perturbation oscillates more
mildly and its damping time becomes longer, while as the charge increases, the oscillation is enhanced
slightly and the perturbation decays a little faster which is different from that in a RN black hole. Finally, we
numerically study the analog Hawking radiation. We find that the gray-body factor and energy emission
rate are suppressed by the angular number and the charge, but they do not monotonically depend on the
tuning parameter in the acoustic charged black hole. The behavior of the energy emission rate affected by
the parameters could be explained by the dependent behavior of the Hawking temperature. We expect that
our results could shed light to the study of black holes in both theoretical and experimental perspectives.
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I. INTRODUCTION

Astrophysical observation on black holes is one of the
most significant missions in gravitational and cosmolo-
gical physics. The landmark observation of GW150914 [1]
published by the LIGO and Virgo Collaboration was
the first gravitational wave event from the merger of a
binary system of black holes. Besides, the Event Horizon
Telescope Collaboration published an image of the shadow
of the black hole at the center of the galaxy M87 [2–7].
They are major breakthroughs in gravitational physics
especially for the development of black hole physics.
These two observations are the direct evidence of the
existence of black holes in our Universe, and they open a
bright window to further study the properties of black
holes. Though past decades witnessed remarkable progress
on black hole physics, more important and interesting

characteristics of black holes deserve further investigation,
especially its near-horizon properties. For instance, quasi-
normal modes (QNMs) [8,9] and Hawking radiation
[10,11] are important features of black holes which could
help us understand general relativity, thermodynamics,
statistics, and quantum mechanics. However, the observa-
tion of these features of black holes has encountered great
challenges due to technical limitations and theoretical
accuracy requirements.
To improve the situation, a remarkable attempt is to

establish analogous black holes in the laboratory which
provides potential connection between astrophysical phe-
nomena and the tabletop experiments. Unruh first proposed
the acoustic black hole model in the normal nonrelativistic
fluid and studied the black hole evaporation as well [12].
Later on, plenty of physical phenomena were examined to
find the effective geometry and mimic some astrophysical
scenarios; see, for examples, Refs. [13–23] and therein.
More recent extension on the analog Hawking radiation
has been discussed in [24–27]. The thermodynamiclike
description of the two-dimensional acoustic black hole can
be seen in [28]. The particle dynamics in the acoustic
spacetime was also studied in [29]. Meanwhile, from the
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view of experiments, Lahav constructed a sonic black hole
in a Bose-Einstein condensate system [30]; then the analog
Hawking radiation and corresponding Hawking temper-
ature were observed [31,32]. Also analogous black holes
have been realized in optical systems [33–35] and other
mechanics systems [36–38] experimentally.
More recently, physicists have constructed acoustic black

holes from relativistic fluids with the starting of the Abelian
Higgs model [39–44]. Especially, Ge et al. studied the
acoustic black hole in the curved geometry by considering
the relativistic Gross-Pitaevskii theory and Yang-Mills
theory [44]. They constructed the acoustic black hole in
general curved spacetime. Then in Ref. [45] we studied the
near-horizon properties of the acoustic Schwarzschild black
hole and proposed the acoustic shadow of the acoustic
black hole. The study of the acoustic black hole in a curved
background is more realistic and significant because the
black holes in our Universe could be in the bath of some kind
of superfluid or just the cosmological microwave, suggesting
a richer and more complex structure and properties in the
near-horizon region. Moreover, the presence of an acoustic
horizon could affect the nature of the near-horizon region,
which should shed light to the observations of astrophysical
black holes.
In this paper, we shall extend the study of curved

acoustic black hole into charged case and focus on its
near-horizon properties which connect the observable
quantities of the analog black hole. Firstly, we investigate
the acoustic black hole shadow via analyzing the null
geodesic in the acoustic charged black hole. Black hole
shadow optically depends on the gravitational lensing [46].
In Ref. [45] we firstly extended the optical shadow into
the acoustic shadow in the acoustic black hole in curved
spacetime, which is described by a dumb region for the
listener. Then, we compute the QNM frequencies of the
acoustic charged black hole under the scalar field pertur-
bation. We also study the frequencies in eikonal limit via its
relation with the acoustic shadow. We find that the acoustic
charged black hole is stable under the scalar field pertur-
bation, though the behavior of QNM complexly depends
on the model parameters. Finally, we study the analog
Hawking radiation, and the gray-body factor and its related
energy emission rate are numerically investigated, which
gives more information about the near-horizon structure of
the acoustic charged black hole.
The structure of the present work is organized as follows.

In Sec. II, we first briefly review the acoustic black hole in
curved spacetime and then analyze the metric as well as the
horizon for the acoustic charged black hole. In Sec. III, we
study the acoustic shadow of the analog black hole by
analyzing the null geodesic. In Sec. IV, we consider the
covariant scalar field and analyze its effective potential in
the background. In Secs. V and VI, we investigate the
stability by computing the QNM frequencies and its
eikonal limit and then explore the Hawking radiation via

calculating the gray-body factor and energy emission rate
of the acoustic charged black hole. The last section is
devoted to our conclusions and discussions.

II. SETUP OF BACKGROUND

In this section, we shall briefly review the process of
constructing the acoustic black hole in general curved
spacetime. Then we will derive the metric of acoustic
charged black hole and then analyze its horizon structures.

A. Review of acoustic black hole
in curved spacetime

The acoustic black hole in the general curved space-
time has been constructed by Ge et al. starting from
relativistic Gross-Pitaevskii (GP) theory [44]. In this sub-
section we shall briefly review their construction and show
how the curved acoustic black hole emerges from the GP
theory. One could start with the action for a complex scalar
field φ as

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
j∂μφj2 þm2jφj2 − b

2
jφj4

�
; ð1Þ

where in GP theory b is a constant and m2 is a parameter
depending on temperature viam2 ∼ ðT − TcÞ. The equation
of motion for φ derived from the above action is

□φþm2φ − bjφj2φ ¼ 0: ð2Þ

Considering that the scalar field propagates in a fixed
static background spacetime

ds2bg ¼ gttdt2 þ grrdr2 þ gϑϑdϑ2 þ gϕϕdϕ2: ð3Þ

One could further set the form of scalar field as φ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρðx⃗; tÞp

eiθðx⃗;tÞ with ρ ¼ ρ0 þ ϵρ1 and θ ¼ θ0 þ ϵθ1, where
ðρ0; θ0Þ could be treated as the background solution in the
fixed spacetime while ðρ1; θ1Þ is the fluctuations. Then the
Klein-Gordon equation (2) in the long-wavelength limit
leads to series of equations with different orders of ϵ.
Among them, the leading order is for the background scalar
field

bρ0 ¼ m2 − gμν∂μθ0∂νθ0 ≡m2 − vμvμ; ð4Þ

where vμ are defined as v0 ¼ −∂tθ0 and vi ¼ ∂iθ0
(i ¼ r; ϑ;ϕ). The subleading order is a relativistic equation
which governs the propagation of the phase fluctuation

1ffiffiffiffiffiffiffi
−G

p ∂μð
ffiffiffiffiffiffiffi
−G

p
Gμν∂νθ1Þ ¼ 0: ð5Þ

Subsequently, one could extract and derive an effective
metric Gμν from (5) as
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Gμν ¼
csffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2s − vμvμ
q

0
BBB@

gttðc2s − viviÞ ..
.

−vivt
� � � � � � � � � � � � · � � � � � � � � � � � � � � � � � �

−vivt ..
.

giiðc2s − vμvμÞδij þ vivj

1
CCCA; ð6Þ

where the speed of sound is defined as c2s ≡ bρ0
2
. It is obvious that both the background spacetime ds2bg and the background

four velocity of the fluid vμ are encoded in the metric Gμν. For simple cases with va ¼ 0ða ¼ ϑ;ϕÞ; vt ≠ 0; vr ≠ 0 and
gttgrr ¼ −1, one could reform (6) into the line element of a static, spherical symmetric acoustic black hole as

ds2 ¼ cs
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2s − vμvμ

q �
c2s − vrvr

c2s − vμvμ
gttdt2 þ

c2s
c2s − vrvr

grrdr2 þ gϑϑdϑ2 þ gϕϕdϕ2

�
; ð7Þ

where the coordinate transformation dt → dt −
vtvr

gttðc2s−vrvrÞ dr was employed.

B. Acoustic charged black hole:
Metric and acoustic horizon

In this paper, we are interested in the acoustic charged
black hole in curved spacetime. Thus we shall take account
into the static spacetime background (3) as the RN black
hole

ds2bg ¼ gttdt2 þ grrdr2 þ gϑϑdϑ2 þ gϕϕdϕ2

¼ −fðrÞdt2 þ dr2

fðrÞ þ r2ðdϑ2 þ sin2 ϑdϕ2Þ; ð8Þ

where fðrÞ ¼ 1 − 2M
r þ Q2

r2 . Here we consider the black
hole mass M and charge Q satisfying M ≥ Q where the
equality indicates the extremal RN black hole. Then one
could consider a vortex orbit which is falling radially from
infinity to the RN black hole; subsequently, the RN black

hole could be in the bath of the relativistic fluid. Thus, for a
static observer with radial position r, the radial velocity of
the fluid, vr, should not be smaller than the escape velocity,

which is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2M=r −Q2=r2Þ

p
, so that the relativistic fluid

could escape from the strong attraction of the background
black hole. For this consideration, we define the radial

component velocity as vr ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2M=r −Q2=r2Þξ

p
, where

the tuning parameter ξ is required to satisfy ξ ≥ 1 such
that the relativistic fluid could move safely outside the
background black hole. Moreover, following Ref. [44],
we could also work at the critical temperature of GP
theory such that m2 ∼ ðT − TcÞ in the action (1) vanishes.
Then Eq. (4) reduces to vμvμ ¼ −2c2s . Further rescaling
vμvμ → vμvμ=2c2s gives us vμvμ ¼ −1, which could
be fulfilled when the time component of the velocity is

vt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞ½1þ ð2M=r −Q2=r2Þξ�

p
. Subsequently, the

static, spherical symmetric metric of the acoustic charged
black hole reduced from Eq. (7) is

ds2 ¼
ffiffiffi
3

p
c2s

�
−F ðrÞdt2 þ dr2

F ðrÞ þ r2ðdϑ2 þ sin2ϑdϕ2Þ
�
;

with F ðrÞ ¼
�
1 −

2M
r

þQ2

r2

��
1 − ξ

�
2M
r

−
Q2

r2

��
1 −

2M
r

þQ2

r2

��
; ð9Þ

where the valid regime of the tuning parameter for the
existence of acoustic charged black holes will be dis-
cussed later. Note that, as ξ → 0, the metric (9) recovers
the RN metric (8). While ξ → þ∞, the acoustic charged
black hole should fill the whole spacetime because the
escape velocity vr reaches infinity. It also means that in this
limit the event horizon of the acoustic black hole goes to
infinity as we will show soon. In addition, as Q → 0, the
radial component is vr ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Mξ=r

p
, and then the outcome

reproduces that in acoustic Schwarzschild spacetime dis-
cussed in Refs. [44,45].
Let us then analyze the horizon structure of the

whole spacetime in our setup. For convenience we shall

then set
ffiffiffi
3

p
c2s ¼ 1. The vanishing of the metric function

F ðrÞ ¼ 0 has six roots: The vanishing of the first term
ð1 − 2M

r þ Q2

r2 Þ ¼ 0 gives us the optical event horizon rh ¼
M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
and Cauchy horizon rc¼M−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2−Q2

p
,

while the vanishing of the second term 1 − ξð2Mr − Q2

r2 Þð1 −
2M
r þ Q2

r2 Þ ¼ 0 gives us another four solutions:

ra1 ¼
Mξ

2
−
1

2
MΞ −

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xξ − Yξ

p
; ð10Þ

ra2 ¼
Mξ

2
−
1

2
MΞþ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xξ − Yξ

p
; ð11Þ
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ra3 ¼
Mξ

2
þ 1

2
MΞ −

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xξ þ Yξ

p
; ð12Þ

ra4 ¼
Mξ

2
þ 1

2
MΞþ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xξ þ Yξ

p
; ð13Þ

where Ξ, Xξ and Yξ are defined, respectively, as

Ξ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 − 4ξ

p
; ð14Þ

Xξ ¼ 2M2ξ2 − 4M2ξ − 2ξQ2; ð15Þ

Yξ ¼
8M3ξ3 − 8Mξð4M2ξþ ξQ2Þ þ 32MξQ2

4MΞ
: ð16Þ

These four solutions are real only if ξ ≥ 4, and when ξ ¼ 4
one has ra4 ¼ ra2 > ra1 ¼ ra3 which could be treated as
the extremal case of the acoustic charged black hole.
We show the six roots as a function of ξ in Fig. 1 with

fixedM ¼ 1 andQ ¼ 1=2. In the left plot, the black dashed
line represents the event horizon rh while the green dotted
line represents the Cauchy horizon rc, which are indepen-
dent of ξ. Obviously, the solutions ra1 and ra3, which are
enlarged in the right plot, are always smaller than Cauchy
horizon radius. This means that these two solutions cannot

exist stably because the astrophysical black hole will
destroy those acoustic structures. The radius ra4 and ra2
are outside the optical event horizon as expected, both of
which are physical. So we could treat ra2 as the inner
acoustic horizon while ra4 as the outer one which we
discuss more later, and they are coincident in the extremal
case with ξ ¼ 4. However they behave differently as the
tuning parameter increases; namely, when ξ increases,
the inner acoustic horizon decreases and converges to
the Cauchy horizon as ξ → þ∞, while the outer acoustic
horizon increases and finally goes to infinity, i.e., ra4 →
þ∞ as ξ → þ∞. This suggests that, as ξ → þ∞, the sound
wave could not escape from the whole spacetime as we
mentioned previously. Moreover, the dependence of vari-
ous solutions on the charge is shown in the left plot of
Fig. 2. When Q ¼ 0, the model reduces to the acoustic
Schwarzschild black hole. As Q becomes nonzero, the
Cauchy horizon rc emerges and grows to rh in the extreme
caseQ ¼ M ¼ 1 as we all know. ra1 and ra3 increases asQ
increases but they are always smaller than the Cauchy
horizon and not physical. Similar as the optical event
horizon rh, both ra2 and ra4 also decrease as Q increases
and ra4 > ra2 > rh always holds.
It is worthwhile to point out that the existence of the

inner acoustic horizon ra2 and outer acoustic horizon ra4

rc

ra1
ra3

0 2 4 6 8 10

0.126

0.128

0.132

0.130

0.134

r

FIG. 1. Left: The image corresponds to event horizon rh, Cauchy horizon rc and the roots Eqs. (10)–(13) for the vanishing redshift
function F ðrÞ ¼ 0 as a function of ξ. Right: The enlarged roots rc, ra1 and ra3 as a function of ξ. We set M ¼ 1 and Q ¼ 1=2.

=0
=5

rh ra2 ra4

0 2 4 6 8 10 12 14

3

2

1

0

1

r

F(r)

FIG. 2. Left: the six roots as a function of Q with fixed M ¼ 1 and ξ ¼ 5. Right: the profile of the metric function F ðrÞ with
M ¼ 1; Q ¼ 1=2. The blue curve is for the RN black hole while the red curve is for the acoustic charged black hole with ξ ¼ 5.
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indeed exhibit colorful structure of the acoustic charged
black hole. By definition, the casewhen the sound velocity is
equal to the fluid velocity describes the acoustic horizon
[13,21], indicating that the metric function F ðrÞ vanishes.
Then the positive value of F ðrÞ implies that the speed of
sound exceeds the fluid velocity, so that the sound waves
could travel freely in this region, while for the region with
negative F ðrÞ, the sound waves will be trapped and cannot
be detected by the outside world. In the right plot of
Fig. 2, we show the profile of the metric function. It is
interesting to note that ra2 could be treated as the horizon of
the acoustic white hole for the observer located in the region
rh < r < ra2. Specifically, since the fluid flow is moving
from the supersonic region (ra2 < r < ra4), cross thehorizon
ra2, and then enter the subsonic region (rh < r < ra2) where
the observer is located.As a consequence, the soundwaves in
the subsonic region cannot propagate against the fluid flow
into the supersonic region, while the other way around is
allowed, and so it is reasonable to regard ra2 as the horizon of
the acoustic white hole for this observer.
In addition, the metric function in the right plot of Fig. 2

also behaves differently in the vicinities of ra2 and ra4. In
the vicinity of r < ra2, F ðrÞ > 0 while F ðrÞ < 0 in the
vicinity of r > ra2, indicating that the inner acoustic
horizon shares certain properties with the Cauchy horizon
of a real black hole. This similarity could suggest that more
analog properties of the inner acoustic horizon deserve
further study, for instance its stability. On a contrary, the
metric function in the vicinity of the outer acoustic horizon
behaves as F ðrÞ > 0 for r > ra4, while F ðrÞ < 0 for
r < ra4, which is like the feature of the event horizon of
the real black hole.
Thus, from all above considerations, we conclude that, in

the parameter region ξ ≥ 4, the acoustic charged black hole
is constructed and the spacetime thereby could be divided
into four regions: Region I with r < rh is inside the RN
black hole where neither the light nor the sound wave can
escape; region II with rh < r < ra2 where light can escape
and the sound waves can also escape but cannot be detected
by the observer outside this region; region III with ra2 <
r < ra4 where light can escape but the sound wave cannot;
and region IV with r > ra4 where both the light and the
sound wave can escape. Moreover, it is also reasonable to
consider the outer horizon as the acoustic horizon, i.e.,
rac ¼ ra4. Then in the following, we shall investigate
various characteristics near this acoustic horizon, including
the circle null geodesic, QNM frequencies, the gray-body
factor and their connections. We shall fix M ¼ 1 without
loss of generality.

III. ACOUSTIC BLACK HOLE SHADOW

Black hole shadow is one of the fingerprints of the
geometry around the black hole horizon. It describes
the black hole properties which depend on the gravita-
tional lensing of the nearby radiation. Readers can see

Refs. [46,47] as nice reviews. Moreover, the Event Horizon
Telescope group detected the black hole images with the
use of the shadow properties [2,6,7] and attracted plenty of
attention. As a first attempt, in Ref. [45] we have studied
the acoustic shadow of the curved acoustic black hole.
Theoretically, the acoustic shadow is a region of the
listener’s sky that is left dumb, if there are sonic sources
distributed everywhere but not between the listener and the
acoustic black hole. Acoustic shadow describes the near-
acoustic-horizon properties of the sound waves. Thus, from
the above analysis of horizon structure in the acoustic
charged black hole, there could exist the optical shadow
around the event horizon describing the visual boundary
that light cannot escape from the event horizon by viewers
and also exists the acoustic shadow which describes the
audible boundary of the sound waves detected by static
listeners. The former for the RN black hole has been
studied in Refs. [48,49]. Thus, in this section we will focus
on the acoustic shadow by analyzing the null geodesic in
the acoustic charged black hole.
The geodesic motion of a null particle is governed by the

Hamiltonian

H ¼ 1

2
Gμνpμpν ¼ 0; ð17Þ

where the metric is described in (9). The null geodesic gives
two conserved quantities,

E ¼ −pt; L ¼ pϕ; ð18Þ

and the orbit equation is reduced as�
dr
dϕ

�
2

¼ Veff ; ð19Þ

where the effective potential reads

Veff ¼ r4
�
E2

L2
−
F ðrÞ
r2

�
: ð20Þ

The circular null geodesic describes the “acoustic sphere”
when the conditions Veff ¼ 0 and V 0

eff ¼ 0 are fulfilled.
Then it is easy to derive that the radius of acoustic sphere
rah is determined by the equation

dh2ðrÞ
dr

¼ 0; ð21Þ

where hðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2=F ðrÞ

p
. Then for a distant static listener

locating at rL, the detected radius of the acoustic shadow
could be defined as [50]

rsh ¼
hðrahÞrL
hðrLÞ

: ð22Þ
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Assuming the static listener is located at infinity far away
from the acoustic black hole, we have the relation rL

hðrLÞ ≈ 1

such that rsh ¼ hðrahÞ. It means that once we have rah in
hand after solving Eq. (21), we can evaluate the acoustic
shadow for a distant listener. Since the analog black hole we
considered has spherical symmetry, we shall set rsh ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ β2

p
and draw the acoustic shadow image in the

ðα; βÞ plane, which is shown in Fig. 3. In the left plot, with
fixed Q ¼ 1=2, the radius of the acoustic shadow is
enhanced dramatically as we increase the tuning parameters
ξ. Meanwhile, in the right plot, with fixed ξ ¼ 4, the radius
of the acoustic shadow becomes smaller as we increase the
charge Q which is similar as the optical shadow for RN
black hole observed in Refs. [48,49].
The behavior of the acoustic shadow is reasonable

according to the behavior of the radius of acoustic sphere
shown in Fig. 4. In the left plot, the radius of the acoustic

sphere increases as ξ increases due to the increasing of the
acoustic horizon. This behavior was also observed in the
neutral case [45]. In the right plot, the radius of the acoustic
sphere decays slightly with the increasing of Q. So the
acoustic shadow is the smallest when the acoustic charged
black hole is in the double extremal case with Q ¼ 1
and ξ ¼ 4.

IV. COVARIANT SCALAR FIELD EQUATION AND
THE EFFECTIVE POTENTIAL

In the above discussions, besides clarifying the location
of the acoustic horizon and its structure in charged back-
ground, we also analyze the shadow image of the analog
black hole. In order to understand more basic character-
istics, such as QNM frequencies, gray-body factor and
energy emission in the analog Hawking radiation, we
consider a test scalar field to probe the near-horizon

=4 =6 =8 =10

60 40 20 0 20 40 60
60

40

20

0

20

40

60
Q=0.5

Q=1/10 Q=1/2 Q=3/4 Q=1

15 10 5 0 5 10 15

15

10

5

0

5

10

15

=4

FIG. 3. The shadow image with different tuning parameters ξ (left panel with Q ¼ 1=2) and black hole charge Q (right panel with
ξ ¼ 4).

Q=1/2

Q=1
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40
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=5

=4

0.0 0.2 0.4 0.6 0.8 1.0

17
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19

20

21

22

23

24

Q

rsh

FIG. 4. Left: the shadow radius rsh as the function of the tuning parameter ξ. The blue solid line is for fixed Q ¼ 1=2 while the red
dashed line is for the extreme case (i.e., rh ¼ rc) withQ ¼ 1. Right: the shadow radius rsh as the function of the chargeQ. The blue solid
line is for fixed ξ ¼ 5 while the red dashed line is for the extreme case (i.e., ra2 ¼ ra4) with ξ ¼ 4.
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geometrical structure. The covariant equation of the mass-
less scalar field is

1ffiffiffiffiffiffiffi
−G

p ∂μð
ffiffiffiffiffiffiffi
−G

p
Gμν∂νψðt; r; θÞÞ ¼ 0; ð23Þ

where Gμν denotes the metric components in (9). With the
formula

ψðt; r; θÞ ¼
X
lm

e−iωt
ΨðrÞ
r

YlmðθÞ; ð24Þ

the covariant equation reduces to a Schrödinger-like
equation

d2Ψ
dr2�

þ ðω2 − VðrÞÞΨ ¼ 0 ð25Þ

in the tortoise coordinate r� ¼
R
1=F ðrÞdr, and the effec-

tive potential is

VðrÞ ¼ F ðrÞ
�
lðlþ 1Þ

r2
þ F 0ðrÞ

r

�
: ð26Þ

The behaviors of the effective potential (26) are shown
in Fig. 5. The main plots in all cases show that, as r
approaches to the near-horizon region from infinity, the
effective potential presents a barrier and then decays
rapidly to zero at the acoustic horizon rac. The dependence
of VðrÞ on the parameters of the analog black hole are also
obvious. Note that here we could mainly focus on the effect
of the model parameters on the effective potential near
the acoustic horizon, but we also reproduce the effective
potentials near the event horizon for a RN black hole with
the same parameters (see the red line in the left plot and the
insets in the middle and right plots) and do a comparison. In
detail, in the left plot with fixed l ¼ 0 and Q ¼ 1=2, the
potential for the RN black hole (red curve with ξ ¼ 0)
shows one barrier near the event horizon, while for the
acoustic black holes with ξ ≥ 4, the potential barrier
emerges both near the event horizon and the acoustic
horizon. In addition, the barrier near the event horizon is
higher than that near the acoustic horizon, which is

magnified in the inset. Moreover, as ξ increases, both
the acoustic horizon and the peak of the potential move to
larger r and the peak also becomes gentler. In the middle
plot with fixed l ¼ 0 and ξ ¼ 5, as Q increases, both the
zero potential and barrier near the acoustic horizon locate at
smaller r. This is because the location of the zero potential
represents the acoustic horizon which decreases slightly as
Q increases as shown in Fig. 2. This Q-dependent rule is
similar to that for the effective potential in a RN black hole,
though whose barrier is higher as shown in the inset. With
fixedQ ¼ 1=2 and ξ ¼ 5 in the right plot, we also show the
profile of the potential with l. For larger l, the potential
barrier near the acoustic horizon is higher, which is also
consistent with the rule of the potential for a RN black hole
shown in the inset. All these behaviors of the effective
potential near the acoustic horizon with different param-
eters would be reflected by the near-acoustic-horizon
characteristics as we will discuss soon.

V. QUASINORMAL MODE FREQUENCIES

In this section, we will study the QNM frequencies of the
acoustic charged black holes. We shall first compute
the QNM frequencies in a numerical way. We mainly
employ the semianalytical WKB method [51] and then use
the asymptotic iteration method (AIM) [52] to verify the
accuracy of the calculations. Then we shall investigate the
QNM frequencies in the eikonal limit in terms of a black
hole shadow with the proposal in Ref. [53].

A. The numerical result

To solve the master equation of the scalar field [Eq. (25)],
we choose the following boundary conditions:

Ψ ∼ e�iωqnmr� ; r� → �∞; ð27Þ

which means that the wave is incoming at the acoustic
horizon while it is outgoing at infinity.
Firstly we study the QNM frequencies for small ξ with

different angular numbers l and overtone numbers n as
samples when we set Q ¼ 1=2. Table I shows the data for
n ¼ 0, l ¼ 0 and n ¼ 0, l ¼ 1, and Table II shows the
results for n ¼ 1, l ¼ 1 and n ¼ 1, l ¼ 2, respectively.
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As can be seen from the tables, the real part of QNM
ReðωqnmÞ is positive and the imaginary part ImðωqnmÞ is
negative, which means that the acoustic charged black hole
is in a stable state under the perturbation for small tuning
parameters. Comparing to a RN black hole with ξ ¼ 0, the
acoustic charged black hole has much smaller magnitudes
of the QNM frequency. This indicates that the signal of the
QNM frequency of the acoustic black hole is much weaker
than the astrophysical black hole. It means that comparing

to an astrophysical black hole, the QNMs of acoustic black
holes oscillate more slowly and also have a slower decay
rate which makes it more likely to be detected.
In addition, as ξ increases, ReðωqnmÞ attenuates, indicat-

ing that the strength of the oscillations is suppressed, while
the magnitude of ImðωqnmÞ decreases, meaning that the
decay of the scalar field becomes slower. This behavior
could be attributed to the suppression of the effective
potential by larger ξ (see Fig. 5). We need to point out that,

TABLE I. The QNM frequency of an acoustic charged black hole with the mode l ¼ n ¼ 0 and n ¼ 0, l ¼ 1. We
set Q ¼ 1=2.

ωqnm (n ¼ 0, l ¼ 0) (n ¼ 0, l ¼ 1)

ξ WKB AIM WKB AIM

0 0.115596–0.105813i � � � 0.306561–0.098799i � � �
4 0.028671–0.019075i � � � 0.083298–0.017409i � � �
5 0.023608–0.016584i 0.0236989–0.0166143i 0.064572–0.015934i 0.0645715–0.0159340i
6 0.019679–0.014728i 0.0196933–0.0147308i 0.052768–0.014044i 0.0527682–0.0140436i
7 0.016784–0.013118i 0.0167651–0.0130978i 0.044647–0.012421i 0.0446466–0.0124199i
8 0.014758–0.011704i 0.0145748–0.0117209i 0.038707–0.011089i 0.0387065–0.0110885i
9 0.012895–0.010669i 0.0128813–0.0105895i 0.034169–0.009997i 0.0341686–0.0099966i
10 0.011531–0.009722i 0.0115443–0.0096513i 0.030587–0.009092i 0.0305868–0.0090916i

TABLE II. The QNM frequency of an acoustic charged black hole with the mode n ¼ 1, l ¼ 1 and n ¼ 1, l ¼ 2.
We set Q ¼ 1=2.

ωqnm (n ¼ 1, l ¼ 1) (n ¼ 1, l ¼ 2)

ξ WKB AIM WKB AIM

0 0.279599–0.308859i � � � 0.487308–0.298818i � � �
4 0.077742–0.053456i � � � 0.135049–0.052147i � � �
5 0.061333–0.048742i 0.0613362–0.0487346i 0.104644–0.047929i 0.1046442–0.0479291i
6 0.049943–0.043194i 0.0499384–0.0431891i 0.085225–0.042314i 0.0852247–0.0423140i
7 0.042035–0.038331i 0.0420429–0.0383265i 0.071908–0.037455i 0.0719082–0.0374548i
8 0.036277–0.034302i 0.0362887–0.0343130i 0.062207–0.033459i 0.0622076–0.0334588i
9 0.031902–0.030978i 0.0319051–0.0309759i 0.054822–0.030176i 0.0548223–0.0301761i
10 0.028468–0.028212i 0.0284683–0.0282138i 0.049009–0.027453i 0.0490095–0.0274526i
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FIG. 6. The QNM frequency as a function of ξ for different overtone numbers and angular numbers. The solid lines represent
ReðωqnmÞ and dashed lines represent ImðωqnmÞ. In the left plot we fix l ¼ 1. The red, blue, orange and gray lines show the cases n ¼ 0,
1, 2, 4, respectively; in the right plot, we fix n ¼ 0. The red, blue, orange and gray lines show the cases l ¼ 0, 1, 2, 3, respectively.
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in both tables, the magnitude of ImðωqnmÞ decays mono-
tonically. It would be necessary to compute the QNMs
for larger ξ to further check if it crosses the horizonal
axis or not. That is to say, we have to further check the
(in)stability of the acoustic charged black hole with
large ξ.
In Fig. 6, we study the QNMs as the function of the

tuning parameter ξ with different overtone numbers n and
angular numbers l, respectively. The solid lines represent
ReðωqnmÞ and the dashed lines show ImðωqnmÞ. It is
obvious that all lines approach to zero with the increasing
of ξ but never change their sign, which indicates that the
acoustic black hole is stable under the perturbations. In
detail, in the left plot with fixed l ¼ 1, the imaginary part is
more noticeable, whereas the real part is more slightly
different for small ξ. It is shown that both ReðωqnmÞ and
ImðωqnmÞ are suppressed for larger n, indicating that the
perturbation for larger n dies off more quickly. In the right
plot with fixed n ¼ 0, the real part is obvious for different l
and the slight difference of ImðωqnmÞ is enlarged in the
inset. Moreover, both ReðωqnmÞ and ImðωqnmÞ are
enhanced with the increasing of l. This implies that the
perturbation decays faster for smaller angular number l.
Here the effect of l and n on ωqnm is qualitatively consistent
with that in a RN black hole [54].
We also study the effect ofQ on the QNM frequency with

fixed ξ ¼ 5 and n ¼ l ¼ 0. The result is shown in Fig. 7, in
which the blue and red curves represent the real part and
imaginary part of the QNM frequency, respectively. The
adjustment of Q will not change the sign of ReðωqnmÞ or
ImðωqnmÞ, meaning the stability should not be destroyed.
But the increasing ofQ can slightly enhance the magnitudes
of QNM frequency. This indicates that the oscillation
frequency is enhanced and the perturbation dies out quicker.
Note that the effect of Q on the QNM frequencies in an
acoustic black hole is very different from that in a RN black
hole, in which the QNM frequencies does not change
monotonically with Q [54–56].

B. QNM frequencies in eikonal limit
and acoustic shadow

In Ref. [53], Cardoso et al. proposed that the QNM
frequencies in the eikonal limit (l ≫ 1) for a stationary,
spherically symmetric black hole with redshift function
fðrÞ in flat spacetime can be determined by

ωl≫1 ¼ lΩc − i

�
nþ 1

2

�
jλj; ð28Þ

with Ωc ¼
1

rsh
; λ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrphÞ½2fðrphÞ − r2phf

00ðrphÞ�
2r2ph

s
;

ð29Þ
where n is the overtone number. Here the angular velocity
Ωc and the Lyapunov exponent λ are parameters of the
unstable circular null geodesics around the black hole,
which can be evaluated via the radius of photon sphere rph
and black hole shadow rsh. An extended study can be seen
in Refs. [57–61] and therein.
In this subsection, as a first attempt we shall employ the

above proposal to evaluate the QNM frequencies in the
eikonal limit (l ≫ 1) of the acoustic charged black hole
which is also stationary, spherically symmetric. This study
is motivated from two aspects. On one hand, the numeric
results in Fig. 6 show that, as l increases, the imaginary part
of QNM frequency tends to the horizonal axis. So it is
important to check the (in)stability of the acoustic charged
black hole in the eikonal limit. On the other hand, analog to
the study of the optical black hole, we have studied the
acoustic sphere and acoustic shadow of our background in
Sec. III. So we are well prepared; i.e., we could treat in (29)
rph as the radius of acoustic sphere rah, and rsh as the radius
of acoustic shadow for the acoustic charged black hole with
fðrÞ ¼ F ðrÞ as defined in (9).
Then by substituting rah and rsh evaluated in Sec. III into

the expression (29), we show the QNM frequencies with
n ¼ 0 in the eikonal limit in Fig. 8. The dependence of
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ωqnm in the eikonal limit on the tuning parameter is
consistent with numerical result in Fig. 6, namely, that
as ξ increases, both ReðωqnmÞ and ImðωqnmÞ approach to
the horizonal axis. More importantly, they could not cross
the axis or change sign. Note that here we set Q ¼ 1=2, but
other valid Q will not affect the qualitative behavior. Thus,
the result in eikonal limit further indicates that the acoustic
charged black hole keeps stable under the scalar field
perturbation.

VI. ANALOG HAWKING RADIATION

To further study the near-horizon features, we shall study
the analog Hawking radiation for our acoustic charged
black hole. Similar to the case of an astrophysical black
hole, there is analog Hawking radiation which emits a
thermal flux of particles, and the gradient of the velocity
field at the acoustic horizon gives the acoustic temperature.
Basically, the Hawking radiation process is related to a
scattering problem, because the particles emitted from the
black hole in the vicinity of the horizon cannot penetrate
the potential barrier if they do not have enough energy and
only part of them can be observed far away from the near-
horizon area. Note that the effective potential barrier decays
monotonically at both acoustic horizon and infinity just
shown in Fig. 5; thus, it is convenient to use the WKB
approach to study the gray-body factor which would give
us the transmission of particles through the effective
potential and the energy radiation rate of the acoustic
black hole.
To proceed, we shall solve the wave equation (25) by

considering the scattering boundary condition which allows
incoming waves from infinity:

Ψ ¼ Te−iωr� ; r� → −∞; ð30Þ

Ψ ¼ e−iωr� þ Reiωr� ; r� → þ∞: ð31Þ

Here R and T are the reflection and transmission coef-
ficient, respectively, which satisfy jTj2 þ jRj2 ¼ 1. For
each angular number l, the gray-body factor can be given
by the transmission coefficient as [62]

jAlj2 ¼ 1 − jRlj2 ¼ jTlj2 and jTlj2 ¼ ð1þ e2iπKÞ−1;
ð32Þ

where K is determined by

K ¼ i
ω2 − V0ffiffiffiffiffiffiffiffiffiffiffiffi
−2V 00

0

p −
Xi¼6

i¼2

ΛiðKÞ: ð33Þ

In the above equation, V0 denotes the maximum value of
the effective potential and V 00

0 represents its second-order
derivative with respect to the tortoise coordinates;Λi are the
higher WKB corrections which depend on the maximum of
the 2ith order derivatives of K and the potential [62–64].
As addressed in Ref. [11], one can obtain the energy

emission rate in term of the gray-body factor via

dE
dt

¼
X
l

NljAlj2
ω

eω=TH − 1

dω
2π

; ð34Þ

where the Hawking temperature is defined as TH ¼
−F 0ðracÞ=4π and, for the scalar field, the multiplicities
satisfy Nl ¼ 2lþ 1. Then, we employ the sixth-order
WKB method to calculate the gray-body factor and energy
emission rate of the analog Hawking radiation as the
function of frequency. Then we shall study the effects of
different parameters on the analog Hawking radiation.
In Fig. 9, with fixed ξ ¼ 5 and Q ¼ 1=2, we show the

gray-body factor and related energy emission with dif-
ferent angular numbers l. In the left plot, higher frequency
represents larger energy of the particles; they are more
likely to penetrate the potential barrier and this fact explains
why the gray-body factor monotonically increases with the
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frequency. Moreover, a lower angular number would lead
to faster saturation of the gray-body factor as we show. This
behavior is easy to understand as the effective potential
barrier grows as l increases shown in right panel of Fig. 5,
which means that particles need more energy to penetrate
the potential barrier. In the right plot, we find that the mode
l ¼ 0 dominates the analog Hawking radiation, and the
contribution of higher order of l is very small whose log
plot is inserted. It is obvious that the contributions of
higher order of l decay exponentially and could benegligible.

This behavior is consistent with the results in the acoustic
Schwarzschild black hole case [45].
In Fig. 10, by fixing l ¼ 0 and Q ¼ 1=2, we show the

effect of the tuning parameter ξ. The results are consistent
with the analysis of the effective potential shown in the
middle panel of Fig. 5. In the left plot, the gray-body factor
is enhanced when the tuning parameter ξ increases; this is
because the potential barrier decreases with the increasing
of ξ. In the right plot, the energy emission rate at the low-
frequency region is also enhanced by increasing ξ. But in
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the higher-frequency region, this behavior will change
because of the dependence of the Hawking temperature.
From the left panel of Fig. 11, one can observe that the
Hawking temperature goes from zero at ξ ¼ 4 and reaches
the maximum at ξ ¼ 5.334, and then the falloff of the
Hawking temperature causes the suppression of the energy
emission rate.
We then move on to study the effect of black hole charge

Q on the gray-body factor and related energy emission rate
by fixing l ¼ 0 and ξ ¼ 5. The left panel of Fig. 12 shows
the behavior of the gray-body factor as the function of
frequency ω, which is suppressed slightly by the larger Q.
The energy emission rate is consistent with the gray-body
factor; its peak decreases with the increase of Q in the low-
frequency region. Moreover, we also discuss the Hawking
temperature as the function of Q when it is shown that the
extreme black hole with Q ¼ 1 has the minimal analog
Hawking temperature in the right of Fig. 11. The mono-
tonic behavior of the Hawking temperature supports the
behavior of the energy emission rate.

VII. CONCLUSION AND DISCUSSION

In this paper, we constructed the “curved” acoustic black
hole with charges and then explored the near-horizon
characteristics after analyzing its horizon structures.
Firstly, we studied the acoustic black hole shadow as
analog with the optical shadow in astrophysical black
holes. Our results show that the radius of the acoustic
shadow is enhanced with the increasing of the tuning
parameter ξ but is suppressed by the black hole charge Q.
The increase of acoustic shadow almost linearly increases
with tuning parameter ξ. This is reasonable because the
acoustic horizon is larger for larger ξ.
We then investigated the QNM frequency and the analog

Hawking radiation by considering a massless scalar field as
the perturbation of the acoustic charged background. It was
shown that the acoustic charged black hole is stable under
the scalar field perturbation as the imaginary part of QNM
frequency is always negative. As we increase the tuning
parameter ξ, both the positive real part and negative
imaginary part of QNM frequency approach to zero but
never change signs, which suggests that the oscillation of
the perturbation is suppressed while the damping time of
the perturbation is longer for larger ξ. The signal of the
acoustic black hole QNM frequency is much weaker than
the astrophysical black hole. This indicates that it is more
likely to observe the signal of the acoustic horizon in the
Universe. We also studied the effect of the black hole
charge Q. As Q increases, the oscillation is enhanced
slightly and the perturbation decays a little faster. This
behavior is very different from that in a RN black hole as
disclosed in Refs. [54–56] that the QNM frequencies
presented a nonmonotonic behavior as Q.
Moreover, we also computed the QNM frequencies in

the eikonal limit in terms of the acoustic shadow by

following Cardoso et al.’s proposal in Ref. [53]. It was
found that, in the eikonal limit, the QNM frequencies
approach to zero but never change their sign as ξ increases.
This phenomenon holds for different black hole charges Q,
meaning further that the acoustic charged black hole is
stable under the scalar perturbation. It is noted that, to
further study the near-horizon properties and test the (in)
stability, other perturbations such as gravitational pertur-
bation or electromagnetic perturbation have to be consid-
ered, which we shall present elsewhere.
Finally, we studied the analog Hawking radiation of the

acoustic charged black hole. Both the gray-body factor and
the energy emission rate are suppressed by larger angular
number l or black hole charge Q which is attributed to
the growing of the effective potential barrier. Meanwhile,
as the tuning parameter ξ increases, the gray-body factor is
enhanced, but the energy emission rate is not monotonic
depending on the frequencies, which results from the
nonmonotonicity of the analog Hawking temperature on ξ.
It is noticed that, in last decades, significant progress

about the analog black holes emerged from Minkowski
spacetime have been made in both theoretical and exper-
imental sides. Further experimental simulation of the
acoustic black hole could help us to understand the
astrophysical phenomena and the near-horizon properties
of the real black holes. Theoretically, the acoustic black
hole in curved spacetime is attracting widespread attention
and interest as it is more realistic; especially some analog
research has been done in the acoustic Schwarzschild
black hole [44,45,65]. Along this line, besides the current
study, more interesting outcomes in curved acoustic black
holes deserve further investigations, for instance, (i) further
consider the electromagnetic and analog gravitational
perturbations and test their (in)stability; (ii) it is natural
to extend the curved acoustic black hole into a rotating case
and study the properties of a curved acoustic rotating black
hole; (iii) another attempt is to discuss the curved acoustic
black hole in the wormhole background; (iv) it was
addressed in Ref. [66] that the acoustic black hole can
also be realized by the holographic approach—this gives
more interest to relate the curved acoustic black hole with
the holographic principle [67] and holographic vortex
[68–72]; (v) next but not the last interesting issue is how
to mimic the charge in the experiment since, in the current
theoretical setup, the fluid is not charged and the “charge”
is introduced in its velocity.
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