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We consider a scenario of modified gravity, which is generic to late-time acceleration, namely, acceleration
in the Jordan frame and no acceleration in the Einstein frame. The possibility is realized by assuming an
interaction between dark matter and the baryonic component in the Einstein framewhich is removed by going
to the Jordan frame using a disformal transformation giving rise to an exotic effective fluid responsible for
causing phantom crossing at late times. In this scenario, past evolution is not distinguished from ΛCDM but
late time dynamics is generically different due to the presence of phantom crossing that causes a monotonous
increase in the expansion rate giving rise to distinctive late-time cosmic feature. The latter can play a crucial
role in addressing the tension between the observed value of Hubble parameter by CMB (cosmic microwave
background) measurements and the local observations. We demonstrate that the Hubble tension significantly
reduces in the scenario under consideration for the chosen scale factor parametrizations. The estimated age of
the universe in the model is well within the observational bounds in the low and high redshift regimes.
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I. INTRODUCTION

The National Academy of Sciences, IndiaConsistency of
the standard model of the Universe necessarily asks that the
hot big bang model be complemented by two phases of
accelerated expansion, namely, inflation and late time
acceleration [1]. Observation reveals that the age of certain
well-known objects in the Universe exceeds the age of the
Universe estimated in the model assuming presence of
standard matter in the Universe [2–6]. Since most of the
contribution to the age of the Universe comes from late time
evolution, thereby, invoking the late time cosmic acceler-
ation slows down the rate of Hubble expansion such that it
takes more time to reach a given observed value of the
Hubble parameter, in particular, H0 [7]. And the latter
provides with a known resolution of the puzzle. A possibility
to ease such a H0 tension in case of scalar tensor theories
was first proposed in [8,9]. Later, for nonminimally coupled
scalar-tensor theories in Horndeski gravity, the tension is
studied in light of the CMB and BAO datasets [10]. It is
interesting to note that the late time cosmic acceleration as
consistency requirement of hot big bang is supported by

direct as well as by the indirect observations [11–27], though
such a confirmation is yet to be awaited for inflation.
Broadly, there are two ways to achieve late time cosmic

acceleration, namely, by adding a source term with large
negative pressure (dubbed dark energy) to the energy
momentum tensor in the Einstein equations [28–43] or by
modifying geometry of space time á la modified gravity. As
for dark energy, a plethora of viable candidates, including
quintessence, phantom fields, rolling tachyons and others
have been investigated in the literature, see Ref. [28] for
details. The simplest model of dark energy based upon
cosmological constant dubbed ΛCDM (where Λ is the
cosmological constant and CDM is the cold dark matter)
is under scrutiny at present and there are strong reasons to
look beyond [44]. The modified theories of gravity, can
generally be thought of as Einstein theory plus extra degrees
of freedom; fðRÞ gravity, massive gravity and Horndeski
provide examples of alternative theories of large scale
modification of gravity extensively discussed in the literature
[45]. Thus, according to the standard paradigm, late time
acceleration is either sourced by the presence of an exotic
matter or large scale modification of gravity.
A third possibility that does not invoke extra degrees of

freedom or exotic matter, was proposed in [46], see also
Ref. [47] on the related theme. In this framework, interaction
between dark matter (DM) and baryonic matter (BM) is
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assumed in the Einstein frame, thereby, no acceleration in
this frame as the total matter still behaves as non-negative
pressure fluid.1 However, an interesting situation arises in the
Jordan frame connected to Einstein frame by a disformal
transformation. In the Jordan frame, interaction between DM
and BM is removed allowing them to adhere to conservation
separately. However, an effective term gets generated in the
Jordan frame which mimics an exotic fluid providing a
possibility to account for late time acceleration. In this
picture, one naturally realizes a phantom crossing at late
times. Interestingly, conformal coupling is disfavored by the
stability considerations whereas maximally disformal cou-
pling can account for cosmic acceleration in Jordan frame
but deceleration in Einstein frame [46]. As a result, in this
scenario, the presence of phantom phase in Jordan frame
gives rise to sudden future singularity which however could
be delayed to distant future by suitably parametrizing the
disformal transformation [47]. Let us emphasize that the said
framework gives rise to late time acceleration generic to
large scale gravity modification: Acceleration in Jordan
frame and no acceleration in Einstein frame [48,49]. It may
be noted that fðRÞ theories fail to satisfy this criteria if local
screening is properly implemented [50–56].2
As mentioned before, the ΛCDM is faced with a puzzle,

namely, the disagreement of the value of H0 estimated in it
using the CMB likelihood with the local measurements.
There are several proposals in the literature where the
Hubble tension is addressed from different perspectives
using early time or late time cosmology [57–120]. The
latter yields higher values of the Hubble parameter compared
to the ones predicted by Planck measurement which assumes
ΛCDM to be the background model. The scenario under
consideration conforms to ΛCDM in the past and causes
phantom crossing around the present epoch which gives rise
to monotonously increasing Hubble parameter around the
present epoch. It is interesting to note that the recently
carried out model independent investigations, using com-
bined cosmological data, are in agreement with late time
phantom crossing. Let us stress that this behavior is a
distinguished feature of the model based upon the aforesaid
disformal coupling which might naturally provide us with a
possibility to address the Hubble tension.

The plan of the paper is as follows. In Sec. II, first we
describe the basics of cosmological dynamics of disformal
coupling between the DM and BM followed by discussion
on the parametrizations of the scale factor. In Sec. III, we
describe the technical details of the analyses done using the
Monte Carlo Markov Chains (MCMC) simulations using
observational data. There we have shown the evidence for
the proposed model of ours with respect to the standard
ΛCDM cosmology using the Bayesian information criterion
(BIC) technique. Finally a summary and the conclusions of
this work are given in Sec. IV.

II. DISFORMAL COUPLING BETWEEN KNOWN
COMPONENTS OF MATTER

In this section, we briefly describe the framework which
includes mechanism of interaction between BM and DM in
the Einstein frame which is then transformed to the Jordan
frame using a disformal transformation. Let us consider the
following action in the Einstein frame [46],

S¼
Z

d4x

�
1

16πG
ffiffiffiffiffiffi
−g

p
RþLDMfgμνgþLBMfg̃μνg

�
; ð1Þ

where g̃μν and gμν designate the Jordan and Einstein frame
metric, respectively. Also, the energy momentum tensors in
the Jordan and Einstein frames are defined through varia-
tional derivatives of matter actions with respect to g̃μν and
gμν, respectively. In what follows, quantities with a over-
head tilde would be associated with Jordan frame. The
construct in Eq. (1) implies coupling between DM and BM
in the Einstein frame; obviously, their energy densities do
not conserve separately but their sum does and exhibits
behavior of standard matter. Consequently, in the frame-
work under consideration, evolution would have deceler-
ating character in the Einstein frame. The Jordan frame
metric, g̃μν, would be constructed from gμν and parameters
that characterize the dark matter; we shall use disformal
transformation between Einstein and Jordan frames.
For simplicity, we assume dark matter to be a perfect

fluid which then can be represented by a single scalar field,

LDM ¼ ffiffiffiffiffiffi
−g

p
PðXÞ; X ≡ −gμν∂μΘ∂νΘ; ð2Þ

where Θ denotes the dark matter field. As stated above, the
energy momentum tensor Tμν of DM can be obtained by
varying the Einstein frame DM action SDM with respect to
gμν as

Tμν ≡ 2ffiffiffiffiffiffi−gp δSDM

δgμν
¼ 2P;X ∂μΘ∂νΘþ Pgμν: ð3Þ

The above expression can be written in the standard perfect
fluid form, i.e.,

1If individual matter components are assumed to be of cold
dark matter type then sum of both the components behaves as
zero pressure fluid.

2Using a conformal transformation, fðRÞ gravity can be
transformed to Einstein gravity plus a scalar degree of freedom
nonminimally coupled to matter. Since Einstein theory has been
tested to great accuracy in solar system, the extra degree of
freedom should locally be screened, it should only show up at
large scales to account for late time acceleration. Unfortunately,
proper local screening leaves no scope for late time acceleration
in this framework.
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Tμν ¼ ðρDM þ PDMÞuμuν þ PDMgμν; ð4Þ

if we identify ρDM, PDM, and uμ as follows:

ρDM ¼ 2P;X ðXÞX − PðXÞ; PDM ¼ PðXÞ;

uμ ¼ −
1ffiffiffiffi
X

p ∂μΘ: ð5Þ

The BM energy momentum tensor, on the other hand, is
defined as

T̃μν
BM ¼ 2ffiffiffiffiffiffi

−g̃
p δSBM

δg̃μν
: ð6Þ

Note that in the Jordan frame, the matter components are
not coupled to each other, though the dynamics might look
complicated, the energy momentum tensors of both the
components are separately conserved. In particular,

∇̃μT̃
μν
BM ¼ 0: ð7Þ

The coupling between DM and BM is accomplished through
Jordan frame metric g̃μν [appearing in LBM, Eq. (1)] which
can be constructed from the Einstein frame metric and dark
matter field. The Jordan and Einstein frame metrics are often
thought to be related with the each other through conformal
transformation between two frames. However, such a trans-
formation is excluded by the stability considerations. A
general relation between g̃μν, gμν, and Θ could be of
disformal type,

g̃μν ¼ R2ðXÞgμν þ SðXÞ∂μΘ∂νΘ;

SðXÞ≡ R2ðXÞ −Q2ðXÞ
X

; ð8Þ

with R andQ being the arbitrary functions of X. Varying the
action with respect to gμν, we obtain Einstein equations,

Gμν ¼ 8πGTeff
μν ð9Þ

Teff
μν ¼ TDM

μν þQR3T̃kλ
BMðR2gkμgλν þ ð2RR;X gkλ

þ S;X ∂kΘ∂λΘÞ∂μΘ∂νΘÞ; ð10Þ

where the energy momentum tensor for dark matter, TDM
μν

is given in (3). The second term in the expression of
effective energy momentum tensor, includes coupling of
dark matter and baryonic matter. The effective energy
momentum tensor reduces to the sum of energy momen-
tum tensors of the two matter components in absence of
coupling, i.e., Q ¼ R ¼ 1. Let us note that Teff

μν is con-
served though the energy momentum tensors of individual
matter components do not, thus no exotic behavior is
expected in the Einstein frame.

A. The FRW evolution equations

Let us now specialize to spatially homogeneous and
isotropic background,

ds2 ¼ −dt2 þ a2ðtÞðdx2 þ dy2 þ dz2Þ ð11Þ

In this case, the coupling functions Q(X) and R(X) depend
upon scale factor such that the Jordan frame metric takes
following form,

g̃μν ¼ diagð−Q2ðaÞ; R2ðaÞa2; R2ðaÞa2; R2ðaÞa2Þ: ð12Þ

Einstein equations (10) then give rise to the following
evolution equations in the FRW Universe,

3H2 ¼ 8πGρTot ≡ 8πG

�
ρeqDM

ffiffiffiffiffiffiffi
X
Xeq

r �
aeq

a

�
3

−PþQR3ρ̃b

�
;

ð13Þ

and

2
ä
a
þH2 ¼ −8πGðPþ PbÞ; ð14Þ

where the superscript “eq” represents the quantity at
the matter-radiation equality epoch and PðPb) denotes
the pressure of DM(BM) in the Einstein frame, such that
Pb ≡QR3P̃b. We assume matter to be pressureless,
namely, P̃b ≃ 0 and P ≪ 2XP;X. Since baryonic matters
adheres to conservation in the Jordan frame, we have,

ρ̃b ¼
ρeqb
R3

�
aeq

a

�
3

: ð15Þ

Under the said assumptions on P̃b and P, the right-hand
side (rhs) of (14) vanishes which implies that background
in the Einstein frame is matter dominated, i.e., aðtÞ ∼ t2=3

throughout. The total matter density in the Einstein frame
then acquires the form,

ρTotðaÞ ¼
�
ρeqDM

ffiffiffiffiffiffiffi
X
Xeq

s
þQðXÞρeqb

��
aeq
a

�
3

; ð16Þ

where the quantity within the brackets should be constant
for an arbitrary function QðXÞ as the background in the
Einstein frame is matter dominated as it should be.
Let us note that coupling is conformal if Q ¼ R other-

wise it is disformal. It turns out that system is plagued with
instability in case of conformal coupling [46]. In what
follows, without the loss of generality, we shall adhere to
the maximally disformal case, namely, QðaÞ≡ 1 leaving
with a single function R to deal with. The function, RðaÞ,
should be such that the thermal history, known to great
accuracy, be left intact. Thereby, the physical scale factor
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ã ¼ RðaÞa should agree with a throughout the entire
history and should grow sufficiently fast only at late stages
such that the physical scale factor ã in Jordan frame
experiences acceleration.3 In what follows, we shall use
convenient the parametrizations for the scale factor, keep-
ing in mind, the mentioned phenomenological features.

B. Scale factor: Polynomial parametrization

In order to proceed further, we need to specify the
function RðaÞ that conforms to the said requirements. To
this effect, we shall use the following parametrizations,
namely, the polynomial and exponential ones, for a con-
crete realization,

aðãÞ ¼ ãþ αã2 þ βã3 ðPolynomialÞ; ð17Þ

aðãÞ ¼ ãeαã ðExponentialÞ ð18Þ

where α and β are real parameters.
In the analysis to follow, we present the cosmological

parameters in terms of redshifts in both frames [47],4

ã ¼ ã0
1þ z̃

; a ¼ a0
1þ z

; ð19Þ

Using (19), the Hubble parameter, in case of model (17)
can be cast in terms of redshift z̃ as,

H̃ðz̃Þ ¼ H̃0FðpolÞðα; β; z̃Þ≡ H̃0

ð1þ αþ βÞ12ð1þ 2αþ 3βÞð1þ z̃Þ92
½ð1þ z̃Þ2 þ αð1þ z̃Þ þ β�12½ð1þ z̃Þ2 þ 2αð1þ z̃Þ þ 3β� ; ð20Þ

which can be written through effective fractional density parameters (see Appendix). The corresponding effective (total)
equation of state parameter is given by,

w̃effðz̃Þ ¼ −
2 _̃H

3H̃2
¼ αð5þ 6αþ 5z̃Þð1þ z̃Þ2 þ βð14þ 23αþ 14z̃Þð1þ z̃Þ þ 18β2

3fð1þ z̃Þ2 þ αð1þ z̃Þ þ βgfð1þ z̃Þ2 þ 2αð1þ z̃Þ þ 3βg : ð21Þ

The dark energy (DE) equation of state w̃de can then be obtained from the following relation:

w̃effðz̃Þ ¼ w̃MΩ
ð0Þ
Meff þ w̃deðz̃ÞΩð0Þ

DE ⇒ ω̃deðzÞ ¼ ω̃effðz̃Þ=Ωð0Þ
DE: ð22Þ

where Ωð0Þ
Meff and Ωð0Þ

DE are the effective matter and DE
density parameters, respectively, whereas, w̃Mðw̃M ¼ 0Þ is
the equation of state parameter for matter. It is also important
to mention that for α ¼ −0.1523 and β ¼ −0.0407, the
equation of state parameter for this parametrization ap-
proaches its ΛCDM limit i.e., wde → −1 at the present
epoch.

C. Scale factor: Exponential parametrization

The Friedmann equation and the effective equation
of state parameter for parametrization (18), can be
written as

H̃ðz̃Þ ¼ H̃0ð1þ αÞð1þ z̃Þ5=2
1þ z̃þ α

exp

�
3z̃α

2ð1þ z̃Þ
�

≡H0FðexpÞðz̃; αÞ; ð23Þ

w̃effðz̃Þ ¼
5αð1þ z̃Þ þ 3α2

3ð1þ z̃Þ½ð1þ z̃Þ þ α� : ð24Þ

Let us note that in both cases, the dark energy equation of
state parameter might assume super negative values at late
times with a generic behavior embodied with phantom
crossing. It is worth noting that such a phenomenon cannot
be realized by quintessence field; one needs at least two
scalar fields to mimic the phantom crossing. It is interesting
that the presence of disformal coupling between known
components of matter inevitably gives rise to the mentioned
behavior. It should also be emphasized that the coupling
between DM and BM is removed in the Jordan frame but the
Einstein-Hilbert action gets modified. However, the modi-
fication of gravity under consideration is not accompanied
by extra degree(s) of freedom but allows to realize super
acceleration at late times. Last but not least, acceleration in
this framework is generically caused by modification of

3Recall that we desire to have acceleration in the Jordan frame,
( ̈ã > 0) and deceleration in the Einstein frame (ä < 0). If R is
concave up, the growth of R at late times might compensate the
effect of deceleration in aðtÞ making ̈ã positive in the expression,
̈ã ¼ R̈aþ 2 _R _aþRä.

4Let us note that the physical scale factor can be normalized to
one, ã0 ¼ 1, however, a0 ¼ 1þ αþ β ≠ 1 (Polynomial paramet-
rization (17)) and a0 ¼ eα ≠ 1 (Exponential parametrization, (17)).
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gravity á la acceleration in Jordan frame and deceleration
in Einstein frame.

III. METHODOLOGY AND ANALYSIS

In this section, we shall perform the parametric estimation
for both parametrizations (17) and (18) using the late time
observational data. In order to do so, and to predict the
physical significance for both the parametrizations, one needs
to consider the standard form of the Friedmann equations.
Since, the parametrization (17) is already formulated in the
standard form (See appendix), it is also necessary and
desirable to obtain the similar form for the parametrization
(18). However, in this case, due to the exponential function, it
is not tenable and therefore, we resort to the following anzats
for the Friedmann equation,�

H̃ðz̃Þ
H̃0

�
2

¼ ð1þ αÞAð1þ z̃Þ3 þ BeCz̃; ð25Þ

H̃ðz̃Þ ¼ H̃0FðexpÞðz̃; αÞ; ð26Þ

where A, B, and C are constants. Note that here we can
identify ð1þ αÞA as the effective matter density

(Ωð0Þ
Meff ¼ ð1þ αÞA) and B to be the effective DE density

(B ¼ Ωð0Þ
DE) at the present epoch. Also, the condition

Ωð0Þ
Meff þΩð0Þ

DE ¼ 1, implies that ð1þ αÞA þ B ¼ 1. By
expressing B in terms of A, we are finally left with only
A and C to fit Fexpðz̃; αÞ with (25). Let us note that the fitting
is such that at the present epoch one gets back H̃ðz̃Þ ¼ fH0, as
usual. Whereas, at any z̃ ≠ 0, one always sees the presence of
α in the Friedmann equation. Using numerical techniques (in
particular, nonlinear model fitting in the Mathematica soft-
ware), we obtain A ¼ 3.4185 and C ¼ 0.2896.
In Fig. 1, we plot the relative error between the fitted

parametrization (25) with respect to the Eq. (23). In
particular, we plot the error function Err≡ ðEfit − EÞ=E

(where E≡ H̃=H̃0). In this plot we can see that the fitting is
reasonably good at least up to redshift (z̃ ≤ 2) for different
possible values of α.
After formulating the Friedmann equation (23) in the

standard form (25), we can extract out the effective DE
equation of state w̃deðz̃Þ from Eq. (22) and can constrain it
by using the observational data. Since, we have already
expressed the effective equation of state of the system [see
Eq. (24)], then it follows that

w̃deðz̃Þ ¼ −
αe−0.2896z̃½αþ 1.6667ðz̃þ 1Þ�

½ðαþ 1Þ3.4185 − 1�ðz̃þ 1Þðαþ z̃þ 1Þ ; ð27Þ

where we have used the fitted value of B and C for Ωð0Þ
DE.

Note that for α ¼ −0.3896, the exponential parametrization
approaches its ΛCDM model, i.e., w̃deð0Þ ¼ −1 at the
present epoch.

A. Data

We have combined three set of data for our analysis. We
have taken into account the distance modulus measurement
of type Ia supernovae (SNIa), observational Hubble data
(OHD) and angular diameter distances measured using water
megamasers. The analysis is done in the following way:

1. Supernova Type-Ia Pantheon sample

In [121], Reiss et al. had presented Hubble rate
EðziÞ ¼ HðziÞ=H0.

5 data points for six different redshifts
in the range z ∈ ½0.07; 1.5� effectively compressing the
information of the Pantheon compilation [122] and 15
Sn1a at z > 1 of the CANDELS and CLASH Multi-
Cycle Treasury (MCT) programs obtained by the Hubble
Space Telescope (HST), 9 of which are at 1.5 < z < 2.3. We
have used this data and is enlisted in Table I. Following the
arguments given in [123] we have also omitted the data point
at z ¼ 1.5 from the Table 6 in [121].
Theoretically, the dimensionless Hubble rate h̃ is defined

as H̃ðz̃ÞeH0

and hence χ2 for the supernova data is calculated as

χ2SN ¼
X
i;j

ðEi − h̃iÞ · c−1ij · ðEi − h̃iÞ; ð28Þ

where cij is the correlation matrix given in Table I.

2. Observational Hubble Data (OHD)

We use the observational measurements of Hubble param-
eter at different redshifts in the range 0.07 < z <
1.965. In particular, we consider a compilation of 31 HðzÞ

FIG. 1. The figure shows the relative error between fitted and the
exact Friedmann equation with z ∈ ½0; 2� for different values of α.

5Since, we use (e) to denote our Jordan-frame cosmological
parameters, therefore, in our analysis the observed redshift is
denoted as z̃ and the observed Hubble rate can be expressed as
Eðz̃iÞ ¼ H̃ðz̃iÞ=H̃0.
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measurements obtained from the cosmic chronometric
method [124] and the compiled dataset is presented in
Table II.

Theoretically we calculate Hubble parameter at different
redshifts for our models in different parametrizations as
H̃ðz̃Þ ¼ fH0 × Eðz̃Þ, where fH0 is the present value of the
Hubble parameter. We rescale the present value of the Hubble
parameter fH0 to h̃ where h̃ ¼ fH0=ð100 km sec−1 Mpc−1Þ
and treat h̃ as a free parameter in our analysis. The χ2 for the
Hubble parameter measurements is

χ2H ¼
X
i

�
Hth

i −Hobs
i

σHi

�
2

ð29Þ

whereHobs is the observed data from the cosmic chronometer
measurements and galaxy distribution measurements given in
Table II,Hth is the Hubble parameter of our model, σHi is the
standard deviation at different redshift in Table II.

3. Masers data

We have also used the angular diameter distances
measured by Megamaser Cosmology Project using water
megamasers. The Megamaser data we have used in this
analysis is given in Table 5 of [131]. For the sake of
completeness we repeat the table here III. χ2masers is defined
conventionally as

χ2mas ¼
X
i

�
Dth

Ai −Dobs
Ai ðziÞ

σDi

�
2

where Dth
A is the angular diameter distance for the cosmo-

logical model calculated using definition:

DAðzÞ ¼
1

1þ z

Z
z

0

dz0

Hðz0Þ ð30Þ

B. Analysis

We have performed the statistical analysis with the
Bayesian inference technique, which is extensively used
for parameter estimation in cosmological models.
According to this statistics the posterior probability
distribution function of the model parameters is propor-
tional to the likelihood function and the prior probability
of the model parameters. To estimate the parameters, the
likelihoods used are commonly multivariate Gaussian
likelihoods given by.

TABLE I. z versus EðzÞ data together with the correlation
matrix between data points obtained from the Supernovae Type-
1a Pantheon data [123].

z EðzÞ Correlation matrix

0.07 0.997� 0.023 1.00
0.20 1.111� 0.020 0.39 1.00
0.35 1.128� 0.037 0.53 −0.14 1.00
0.55 1.364� 0.063 0.37 0.37 −0.16 1.00
0.90 1.52� 0.12 0.01 −0.08 0.17 −0.39 1.00

TABLE III. Megamaser data.

Maser Redshift Constraint Ref.

UGC 3789 z ¼ 0.0116 DAð0.0116Þ
Mpc ¼ 49.6� 5.1 [132]

NGC 6264 z ¼ 0.0340 DAð0.0340Þ
Mpc ¼ 144� 19 [133]

NGC 5765b z ¼ 0.0277 DAð0.0277Þ
Mpc ¼ 126.3� 11.6 [134]

TABLE II. Observational hubble data Hobs in the units of
km s−1 Mpc−1 with their corresponding uncertainties σH for
various redshifts.

z Hobs σH Reference

0.07 69 19.6 [125]
0.09 69 12 [126]
0.12 68.6 26.2 [125]
0.17 83 8 [126]
0.179 75 4 [124]
0.199 75 5 [124]
0.2 72.9 29.6 [125]
0.27 77 14 [126]
0.28 88.8 36.6 [125]
0.352 83 14 [124]
0.38 81.9 1.9 [127]
0.3802 83 13.5 [128]
0.4 95 17 [126]
0.4004 77 10.2 [128]
0.4247 87.1 11.2 [128]
0.4497 92.8 12.9 [128]
0.47 89 50 [129]

z Hobs σH Reference

0.4783 80.9 9 [128]
0.48 97 62 [129]
0.51 90.8 1.9 [127]
0.593 104 13 [124]
0.61 97.8 2.1 [127]
0.68 92 8 [124]
0.781 105 12 [124]
0.875 125 17 [124]
0.88 90 40 [129]
0.9 117 23 [126]
1.037 154 20 [124]
1.3 168 17 [126]
1.363 160 33.6 [130]
1.43 177 18 [126]
1.53 140 14 [126]
1.75 202 40 [126]
1.965 186.5 50.4 [130]
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LðΘÞ ∝ exp
�
−
χ2ðΘÞ
2

�
; ð31Þ

where Θ is a set of model parameters. In this analysis we
have used a uniform prior. So the posterior probability is

proportional to exp½− χ2ðΘÞ
2

�. Thus a minimum χ2ðΘÞ will
ensure a maximum likelihood or a maximum posterior
probability. In our analysis the Gaussian likelihood is
given by

L ∝ exp

�
−
χ2TOT
2

�
; ð32Þ

where χ2TOT ¼ χ2SN þ χ2H þ χ2masers.
We have constrained different set of parameters for each

parametrizations in our analysis. For the polynomial
parametrization the constrained parameters are α, β,
and h̃. Similarly for the exponential parametrization we
have constrained h̃ and α. As mentioned earlier in this
analysis we have used uniform priors. We have enlisted
the priors that we have used for each parametrizations in
Table IV. We have used Markov Chain Monte Carlo
(MCMC) method to make the parameter estimation. For
this purpose we have used MCMC sampler, EMCEE,
[135,136] in PYTHON. We have studied these MCMC
chains using the program GetDist [137].

C. Constraints on Hubble parameter and dark energy
equation of state parameter: Phantom crossing and

Hubble tension

From the obtained values of parameters α, β, and h̃, from
our MCMC simulation, up to 2σ (shown in Fig. 2), we can
plot the evolutionary profiles of H̃ðz̃Þ and w̃deðz̃Þ.6
In Fig. 2, we have plotted the obtained parametric

dependence between α, β, and h̃ using OHD and its
combination with Pantheon and Masers. From this figure,
one can note that the combination of all dataset signifi-
cantly reduces the errors bars on h̃ as compared to only
OHD dataset. The obtained results are given in Table V
where we show that only OHD dataset gives h̃ significantly
larger than the combined dataset. In particular, we have not

found any significant Hubble tension for OHD, even for the
combined dataset, the tension reduces to 1.3σ level.
The reduction of this tension can be attributed to the
phantom crossing taking place in case of the polynomial
parametrization.
The corresponding evolution of w̃deðz̃Þ and H̃ðz̃Þ upto 1σ

are shown in Figs. (3) and (4), respectively. In the Fig. 3,
one can see that due to large 1σ deviations, the only OHD
dataset does not show a tension with the Riess et al. [138]
and BOSSLy-α [139,140], whereas the combined dataset
by giving rise to comparatively small h̃ shows a significant
tension with the Riess et al. (Fig. 3). On the other hand, in
Fig. 4, we show that both of the datasets give rise to a
consequential amount of phantom crossing at present
epoch. It is interesting to note that this feature, without
adding any extra degrees of freedom, is solely happening
due to the coupling between two components of matter
(BM and DM).
We also perform the similar analysis for the second

parametrization, where in this case we show the parametric
dependence between α and h̃ for two sets of data in Fig. 5
and the resulted constraints are shown in Table V. Here, the
value of the Hubble constant is consistent rather with the
DESþ BAOþ Planck combined data in the 1-σ level (see
Table 2 and Eq. (45) of [141]). Thus, there is no reduction
of the tension to significant order. This is expected as in the
case of exponential parametrization, there is no phantom
crossing (before the present epoch) thus the model mimics
the ΛCDM. The Friedmann equation of the latter can be
written as: H̃ðz̃Þ ¼ 100h̃ðΩ̃Mð1þ z̃Þ3 þ 1 − Ω̃MÞ where
Ω̃M is the matter density parameter.
Let us note that from the two considered parametriza-

tions, the polynomial case is much better suited to address
the Hubble tension. And this can also be understood from
the perspective of statistical significance which is discussed
in details in the subsection III E.
From Fig. 6, we see that unlike the polynomial case, the

combined dataset agrees both with Riess et al. and
BOSSLy-α, which is not the case when using only OHD
dataset. Moreover, from the Fig. (7), one can notice that the
phantom crossing of w̃deðz̃Þ does not happen. In Fig. 8, we
explicitly show the dependence of model parameters on the
w̃de. In Fig. 8(a), we show that in order to give obtain the
phantom crossing both α and β should be negative,
similarly, for the exponential case the dependence of w̃de
on parameter α is shown in Fig. 7.

D. Age of objects in the Universe

In case of quintessence, the lower bound on its equation of
state parameter ωq ¼ −1. When effective equation of state
reaches this limit, wq is close to −1. The late time
acceleration is essential for the consistence of hot big bang
with observation on the age of universe. Indeed, as accel-
eration commences (z̃ ∼ 0.5), the Hubble expansion rate
slows down, thereby, it takes more time to reach a particular

TABLE IV. Priors for the MCMC parameters.

Parameters

Priors

Exponential Polynomial

α ½−1; 0� ½−0.5; 0�
β � � � ½−0.2; 0�
h̃ [0.55, 0.85] [0.55, 0.85]

6While plotting the desired functional profile we have again
run the simulation where the parameters are not kept fixed to their
best fits, but instead by using their values up to 3σ level.
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value of the Hubble parameter, for instance, H̃0 and this
substantially improves the age of Universe compared to its
counterpart estimated in absence of late phase of accelerated
expansion. In our framework, we have phantom crossing,
and compared to the quintessence, in this case, we expect
further improvement in age estimate till we cross quintes-
sence lower bound. However, after phantom crossing, the
Hubble parameter starts increasing and might match with the
one obtained from local observations. But the latter might

somewhat suppress the age compared the estimate obtained
in the presence of quintessence. Second, there are few
observations on the age of high redshift objects and since
the model under consideration not very different from
quintessence or ΛCDM in the past, it is expected that it
would well reconcile with said data. It is therefore necessary
to check, how well, the age of universe in the scenario
compares with both the high and low redshift data, Planck
and Globular cluster data, respectively.

FIG. 2. Polynomial: 2σ contour levels between α, β and h̃ for OHD and its combinations with PantheonþMasers.

TABLE V. Best fits with their 1σ levels for polynomial and exponential parametrizations, and for the ΛCDM
model from OHD and OHDþ PantheonþMasers datasets.

Parametrizations

Polynomial Exponential

Observational dataset Best fit (�1σ) Best fit (�1σ) ΛCDM

OHD h̃ ¼ 0.7279þ0.05
−0.05 h̃ ¼ 0.671þ0.029

−0.029 h̃ ¼ 0.6770þ0.030
−0.030

α ¼ −0.101þ0.07
−0.077 α ¼ −0.299þ0.043

−0.042 Ω̃M ¼ 0.3249þ0.064
−0.059

β ¼ −0.078þ0.051
−0.049 � � �

OHDþ PantheonþMasers h̃ ¼ 0.689þ0.015
−0.015 h̃ ¼ 0.677þ0.007

−0.007 h̃ ¼ 0.6683þ0.026
−0.026

α ¼ −0.145þ0.078
−0.051 α ¼ −0.335þ0.016

−0.017 Ω̃M ¼ 0.3440þ0.061
−0.054

β ¼ −0.041þ0.029
−0.047 � � �
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The age of the Universe, for both parametrizations (17)
and (18), is given by,

t̃ðz̃Þ ¼
1

H̃0

Z
∞

z̃

dz̃
Fðz̃Þ ð33Þ

where the function F reads as follows,

Fðz̃Þ¼
�FðpolyÞðα;β;z̃Þ Polynomialparametrization

FðexpÞðz̃;αÞ Exponential parametrization
ð34Þ

where FðpolyÞ and FðexpÞ are given in Eqs. (25) and (20)
respectively.
From the obtained constraints, we have found the age of

the universe t̃deðz̃Þ and the corresponding constraints on
t̃deð0̃Þ as shown in Table VI for both parametrizations (17)
and (18). Figures 9 and 10 show the age of the Universe at a

given redshift for the two parametrizations. These figures
also include data points of two high redshift galaxies and
the quasar B1422þ 231 along with the globular cluster and
Planck’18 results [2–7] for comparison. Our results for
both the cases are consistent with the requirement that the
Universe be older than any of its constituents at a given
redshift.

E. Comparison with ΛCDM
To compare the two parametrizations, polynomial (17)

and exponential (18) with the vanilla ΛCDM model, one
needs to take care of the introduction of the extra degrees
of freedom with respect to the standard model. In case of
polynomial, we have two extra degrees of freedom and in
case of exponential, we have one extra degree of freedom.
Thus, a detailed Bayesian information criterion (BIC)
[142,143] (following [144]) is calculated to take care of

(a) (b)

FIG. 3. Polynomial: Figs. 3(a) and 3(b) depicts the evolution of H̃ðz̃Þ=ð1þ z̃Þ with z̃ ∈ ½0; 4� for the datasets OHD and
OHDþ PantheonþMasers, respectively. The dark line represents the best fit and the shaded region corresponds to the 1σ limit.

(a) (b)

FIG. 4. Polynomial: Figs. 4(a) and 4(b) depicts the evolution of w̃deðz̃Þ with z̃ ∈ ½0; 4� for the datasets OHD and
OHDþ PantheonþMasers, respectively. The dark line represents the best-fit and the shaded region corresponds to the 1σ limit.

LATE-TIME ACCELERATION DUE TO A GENERIC … PHYS. REV. D 104, 103534 (2021)

103534-9



that. BIC analysis penalizes a model with extra number of
degrees of freedom. Thus, to have strong evidence in
support of the model with extra degrees of freedom means
much better agreement with observation with respect to
the model with less number of degrees of freedom. Under
the assumption that the model errors are independent and
obey a normal distribution, then the BIC can be rewritten
in terms of Δχ2 as BIC ≈ Δχ2 þ df: lnðnÞ, where, df is
the number of degrees of freedom in the test and n is the
number of points in the observed data. The details of our
findings are given in the Table VII. One can see from
Table VII, the polynomial parametrization has clearly
strong evidence with respect to the standard ΛCDM
scenario. Any evidence where ΔBIC ≥ 10 reflects very

strong evidence for the new model postulated with respect
to the standard one. While, the exponential case has
positive evidence in the case of the combined data, there
is no significant evidence of it when the OHD data is only
considered. For the polynomial parametrization, we find
strong evidence for both OHD as well as combined data.

IV. CONCLUSION AND FUTURE PERSPECTIVES

In this paper, we have investigated the observational
viability and generic implications of the dark matter and
baryonic matter interaction in the Einstein frame, which is
caused by a general disformal transformation between the
Jordan and the Einstein frames. In particular, the phenome-
non is based upon the assumption that dark matter follows
the Einstein frame geodesics, whereas, the baryonic matter
obeys Jordan frame trajectories. Consequently, under the
standard disformal transformation, a coupling is induced
between both the matter components which spoils their
individual energy conservation in the Einstein frame.
As the geodesics of both frames are not equivalent (due

to the disformal transformation between them), we choose
two different parametrizations to relate the scale factors of
both the frames in the standard FRW space-time. In
particular, we resort to the polynomial and exponential
parametrizations and find the constraints on the model
parameters in the Jordan frame considering it to be the
physical frame (as the underline mechanism assumes the
baryonic matter to follow its trajectories in the Jordan frame
and hence all the observations are being done in this frame).
In case of the polynomial parametrization Eq. (17), the
best-fit values of Hubble parameter for two different data
combinations is such that it significantly reduces the so-
called “Hubble tension.” For OHD data, the tension is
insignificant in case of polynomial parametrization, as the
computed value of h̃ ¼ 0.7279þ0.05

−0.05 1-σ consistent with

FIG. 5. Exponential: 2σ contour levels between α and h̃ for
OHD and its combinations with PantheonþMasers.

(a) (b)

FIG. 6. Exponential: Figs. 6(a) and 6(b) depicts the evolution of w̃deðz̃Þ with z̃ ∈ ½0; 4� for the datasets OHD and
OHDþ PantheonþMasers, respectively. The dark line represents the best fit and the shaded region corresponds to the 1σ limit.
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Riess et al., whereas for the combined OHDþ Pantheonþ
Masers data, the tension is reduced to 1.3-σ level. We
would like to once again emphasize that this is related to the
fact that, in this particular parametrization, the dark energy
equation of state crosses from quintessence to phantom
region. Hence, we see a strong evidence in support of this
parametrization while performing the ΔBIC analysis which
is quoted in Table VII.

As for the exponential parametrization [Eq. (18)], we have
not found any significant reduction of Hubble-tension (see,
Fig. 5) with both the data combinations and this can be
attributed to the fact that, the model exhibits quintessencelike
behavior with w̃deðz̃Þ ≥ −1 around the present epoch. Thus
as expected, in the exponential case, we only find some
positive evidence in combined data scenario but not signifi-
cant enough when only OHD is considered (see Table VII).

(a) (b)

FIG. 8. Exponential: Figs. 8(a) and 8(b) shows the variation of the two model parameters with equation of state of the dark
energy (wDE).

(a) (b)

FIG. 7. Exponential: Figs. 7(a) and 7(b) depicts the evolution of w̃deðz̃Þ with z̃ ∈ ½0; 4� for the datasets OHD and
OHDþ PantheonþMasers, respectively. The dark line represents the best-fit and the shaded region corresponds to the 1σ limit.

TABLE VI. Age of the Universe with their 1σ levels for polynomial and exponential
parametrizations for OHD and OHDþ PantheonþMasers datasets.

Parametrizations

Polynomial Exponential

Observational dataset Best fit (�1σ) Best fit (�1σ)

OHD t̃ð0Þ ¼ 13.657þ0.428
−0.421 Gyr t̃ð0Þ ¼ 13.698þ0.307

−0.308 Gyr

OHDþ PantheonþMasers t̃ð0Þ ¼ 13.917þ0.366
−0.369 Gyr t̃ð0Þ ¼ 13.526þ0.237

−0.237 Gyr
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However, the desired behavior is achieved in case of the
polynomial parametrization where phantom crossing takes
place. To this effect, a universal Bayesian evidence calcu-
lation could robustly support our claim.
In the framework under consideration, the behavior of

the Hubble parameter at late times is generically different
from quintessence which is also reflected on the estimate of
age of Universe. While for checking the consistency with
the globular clusters, Planck 2018 results and the high
redshift data, we find an excellent agreement with obser-
vations for both the parametrizations [see Figs. 9(a), 9(b)
and 10(a), 10(b)].

It is worth emphasizing that the scenario based upon
interaction between DM and BM admits late-time cosmic
acceleration without invoking any exotic fluid and it is
compatible with observation. One of the most important
and generic implications of the interaction at the back-
ground level includes the presence of phantom crossing
which is supported by most of the observations at present.
It will be interesting to address the issues like Hubble

tension using the different dynamical realizsation of the
early time acceleration, say, “warm” inflation [145,146] in
this framework. Also in case of noncanonical realization of
inflation [147], one observes nonstandard sound speed (cs)

(a) (b)

FIG. 9. Polynomial: Figures 9(a) and 9(b) depict the evolution of t̃deðz̃Þ with z̃ ∈ ½0; 4� for the datasets OHD and
OHDþ PantheonþMasers, respectively. The dark line represents the best fit, the green and yellow shaded region corresponds to
the 1σ and 2σ limits, respectively.

(a) (b)

FIG. 10. Exponential: Figs. 10(a) and 10(b) depicts the evolution of t̃deðz̃Þ with z̃ ∈ ½0; 4� for the datasets OHD and
OHDþ PantheonþMasers, respectively. The dark line represents the best fit, the orange and yellow shaded region corresponds
to the 1σ and 2σ limits respectively.
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which then can have implications on the measured value of
H̃0 from CMB. The baryon asymmetry of the Universe can
be studied also in this framework based on the ideas
proposed in [148–151]. In our opinion, this is an interesting
investigation to be carried out within the framework of the
model considered here. Last but not least, it would be
interesting to consider perturbations and study matter
power spectrum in the presence of disformal coupling
between DM and BM following Refs. [152,153]. We would
like to address all these issues in our upcoming endeavors.
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APPENDIX: FRACTIONAL DENSITY
PARAMETERS

As we have acceleration in the Jordan frame by virtue of
a disformal coupling, it would be convenient to express
(20) in the conventional form by isolating the term propor-
tional to ð1þ z̃Þ3 á la the effective fractional density of cold
matter and remaining terms can be assigned the role of dark
energy.

H̃2

H̃2
0

¼ Aðα; βÞð1þ z̃Þ3 þ Aðα; βÞfðz̃Þ; ðA1Þ

where

Aðα; βÞ ¼ ð1þ αþ βÞð1þ 2αþ 3βÞ2; ðA2Þ

fðz̃Þ ¼ −5ð1þ z̃2Þα − αð49α2 − 48βÞ þ ð1þ z̃Þð17α2 − 7βÞ

þ ð1þ z̃Þα6 − 5ð1þ z̃Þα4β þ α5β þ 6ð1þ z̃Þα2β2 − 4α3β2 − ð1þ z̃Þβ3 þ 36αβ3

ðα2 − 4βÞðð1þ z̃Þ2 þ ð1þ z̃Þαþ βÞ

þ

128ð1þ z̃Þα6 − 64α7 − 720ð1þ z̃Þα4β þ 576α5β þ 864ð1þ z̃Þα2β2
−1512α3β2 − 135ð1þ z̃Þβ3 þ 918αβ3

ðα2 − 4βÞðð1þ z̃Þ2 þ 2αð1þ z̃Þ þ 3βÞ

þ

128ð1þ z̃Þα8 − 960ð1þ z̃Þα6β þ 192α7β þ 2160ð1þ z̃Þα4β2 − 1296α5β2

−1512ð1þ z̃Þα2β3 þ 2376α3β3 þ 162ð1þ z̃Þβ4 − 1053αβ4

ðα2 − 4βÞðð1þ z̃Þ2 þ 2αð1þ z̃Þ þ 3βÞ2 : ðA3Þ

The Friedmann equation in the Jordan frame can be cast in terms of fractional energy densities,

H̃2 ¼ H̃2
0½Ωð0Þ

Meffð1þ z̃Þ3 þΩð0Þ
DEFðz̃Þ�; ðA4Þ

where, Ωð0Þ
Meff ≡ A and Ωð0Þ

DE ≡ Afð0Þ and Fðz̃Þ≡ fðz̃Þ=fð0Þ.

TABLE VII. The evidence in support of polynomial and exponential parametrizations for OHD and
OHDþ PantheonþMasers datasets with respect to the standard ΛCDM scenario.

Observational dataset
Polynomial
(Δ BIC)

Polynomial
evidence

Exponential
(Δ BIC)

Exponential
evidence

OHD 9.63 Strong 0.62 Not worth
OHDþ PantheonþMasers 8.88 Strong 4.01 Positive
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tension in light of vacuum dynamics in the Universe, Phys.
Lett. B 774, 317 (2017).

[108] A. Gómez-Valent and J. Solà, Relaxing the σ8-tension
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