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k essence is a minimally coupled scalar field whose Lagrangian density L is a function of the field value
ϕ and the kinetic energy X ¼ 1

2
∂μϕ∂μϕ. In the thawing scenario, the scalar field is frozen by the large

Hubble friction in the early Universe, and therefore initial conditions are specified. We construct thawing
k-essence models by generating Taylor expansion coefficients of Lðϕ; XÞ from random matrices. From the
ensemble of randomly generated thawing k-essence models, we select dark energy candidates by assuming
negative pressure and nongrowth of subhorizon inhomogeneities. For each candidate model the dark
energy equation of state function is fit to the Chevallier-Polarski-Linder parametrization
wðaÞ ≈ w0 þ wað1 − aÞ, where a is the scale factor. The thawing k-essence dark models distribute very
nonuniformly in the ðw0; waÞ space. About 90% of models cluster in a narrow band in the proximity of a

slow-roll line wa ≈ −1.42ðΩm
0.3Þ0.64ð1þ w0Þ, where Ωm is the present matter density fraction. This work is a

proof of concept that for a certain class of models very nonuniform theoretical prior on ðw0; waÞ can be
obtained to improve the statistics of model selection.

DOI: 10.1103/PhysRevD.104.103533

I. INTRODUCTION

The cosmological concordance Lambda cold dark matter
(ΛCDM) model, where Λ stands for the cosmological-
constant interpretation of dark energy, provides a remark-
ably good fit to most of the current cosmological data sets
[1–4]. Although the recent debates on Hubble tension [5]
raise some doubts, ΛCDM is at least confirmed to be a
good phenomenological approximation to reality.
If the constantΛ term in Hilbert-Einstein action is indeed

a phenomenological approximation, then one may wonder
whether a similar but dynamic scalar degree of freedom
could be a more accurate description of reality. Because
high-derivative theories typically suffer from Ostrogradsky
instability [6], it is often assumed that the scalar-field
Lagrangian density is a function of the field value ϕ and the
kinetic energy X ¼ 1

2
∂μϕ∂μϕ. Such minimal scalar-field

models, or in modern terminology, k-essence models were
initially proposed to resolve the coincidence problem of
dark energy, which questions why the dark energy density
is close to the matter density at present epoch [7]. The
proposed models contain carefully tuned parameters that
lead to attractor solutions, where dark energy evolves
dynamically since the early Universe and settles down to
a density that is close to the matter density today. It was
later understood that k essence is not a very successful
solution of coincidence problem, as it requires additional
fine-tuning, and the basins of attraction represent only a

small region of the phase space [8]. The philosophy here
now is to take k essence as a phenomenological extension
of Λ. Now that attractor solutions are no longer our pursuit,
the most natural assumption might be the absence of early
Universe dynamics. The so-called thawing scenario, where
the scalar field is frozen by the large Hubble friction in
the early Universe, will be implicitly assumed throughout
this work.
Many future cosmological surveys aim to reconstruct the

Chevallier-Polarski-Linder (CPL) parametrization of the
dark energy equation of state (EOS) [9,10]

wðaÞ ¼ w0 þ wað1 − aÞ; ð1Þ

where a is the scale factor normalized to unity today. The
CPL parametrization can be regarded as a truncated Taylor
expansion at redshift zero, which may not work well at high
redshift. However, it is a useful approximation, because
in the standard scenario dark energy is negligible at high
redshift. In this view, the intercept parameter w0 approx-
imates the present value of dark energy EOS, and the slope
parameter wa represents the low-redshift running. Many
dark energy models are then projected, in most cases
approximately, onto the w0 − wa chart before they are
confronted with observational data. The cosmological
constant maps to ðw0; waÞ ¼ ð−1; 0Þ, for instance. In most
applications, independent and uniform priors are applied to
w0 and wa. For a specific class of models, however, w0 and
wa may be correlated. For instance, when a canonical scalar
field (quintessence) slowly rolls down from a flat potential,
its current kinetic energy (∼1þ w0) is correlated with its*huangzhq25@mail.sysu.edu.cn
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recent rolling history (∼wa). Indeed, approximate func-
tional forms of wðaÞ for slow-roll quintessence have been
obtained in Refs. [11–15]. For non-slow-roll quintessence
or more general k essence, the complexity arises and only
very few simple cases were studied [16,17]. Because for k
essence it becomes impractical to find a definitive func-
tional form of wðaÞ, we take a step back and look for a
statistical description. Our work is similar in approach to
Refs. [18–20], which studied the statistics of quintessence
models rather than k essence.
Throughout the paper we work with natural units c ¼

ℏ ¼ 1 and a spatially flat Friedmann-Robertson-Walker
(FRW) background metric with scale factor aðtÞ, where t is
the cosmological time. Derivative with respect to t is
denoted as an overhead dot. The Hubble parameter
is defined as H ≡ _a

a, whose current value, the Hubble
constant, is denoted as H0 or 100h km s−1Mpc−1. We
define the reduced Planck mass Mp ≡ 1ffiffiffiffiffiffiffiffiffi

8πGN

p , where GN is

Newton’s gravitational constant. The dimensionless density
parameters Ωm, Ωγ , Ωνi (i ¼ 1, 2, 3), and Ωϕ are defined
as the present fractional background density of matter,
radiation, ith neutrino, and the thawing k-essence dark
energy, respectively. The critical energy density is given by
ρc ≡ 3H2

0M
2
p.

II. STATISTICS OF CPL FITTINGS

We start with a general two-variable function L ¼
pðϕ; XÞ. In action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
pðϕ; XÞ; ð2Þ

varying the field value ϕ yields its equation of motion
(EOM)

1ffiffiffiffiffiffi−gp ∂μ

� ffiffiffiffiffiffi
−g

p ∂p
∂X ∂μϕ

�
−
∂p
∂ϕ ¼ 0; ð3Þ

where g is the determinant of the spacetime metric gμν.
The EOM is equivalent to

∂p
∂X□ϕþ

�∂2p
∂X2

∂μ∂νϕ∂νϕþ ∂2p
∂X∂ϕ ∂μϕ

�
∂μϕ −

∂p
∂ϕ ¼ 0;

ð4Þ

where □ is the four-dimensional covariant Laplacian
operator.
In the cosmological context, the EOM can be split into a

background component,

ϕ̈þ 3Hc2s _ϕþ Sðϕ; XÞ ¼ 0; ð5Þ

and a perturbation component that describes how the
inhomogeneities of ϕ evolve. The source term in Eq. (5)
is given by

Sðϕ; XÞ≡
∂ρ
∂ϕ
∂ρ
∂X

; ð6Þ

where

ρðϕ; XÞ ¼ 2X
∂p
∂X − p ð7Þ

is the energy density of k essence. The effective sound
speed squared is defined as

c2s ¼
∂p
∂X
∂ρ
∂X

: ð8Þ

We do not consider models with c2s < 0, which implies
ultraviolet instability.
On subhorizon scales, we may approximately use the

linear perturbation equation in a perfect FRW background,

δ̈ϕþ
�
3Hc2s þ

∂S
∂X _ϕ

�
_δϕþ

�∂S
∂ϕ −

c2s
a2

∇2

�
δϕ ¼ 0 ð9Þ

to qualitatively describe the clustering behavior of dark
energy. In practice, we evolve Eq. (9) for a pivot scale
kpivot ¼ 0.05h Mpc−1 and discard the models where the

growth factor of dark energy density perturbations (j δρρ j,
initially normalized to unity) exceeds 100. The pivot scale
and the cutoff of density growth do not correspond to a
particular observational constraint. Our philosophy here is
to exclude models with large subhorizon inhomogeneities,
which typically cannot be approximately treated as a
w0 − wa model and hence is beyond the scope of the
present work.
We now assume that pðϕ; XÞ can be expanded in Taylor

series of X,

pðϕ; XÞ ¼ ρc
X∞
i¼0

piðϕÞ
i!

�
X
ρc

�
i
: ð10Þ

It follows that the energy density is

ρðϕ; XÞ ¼ ρc
X∞
i¼0

ð2i − 1ÞpiðϕÞ
i!

�
X
ρc

�
i
: ð11Þ

The k-essence action is invariant under a change of
variable, in particular, a translation ϕ → ϕþ const. With-
out loss of generality, we take the early time field value as
the zero point and set the thawing initial conditions
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ϕjt→0 ¼ _ϕjt→0 ¼ 0: ð12Þ

The initial conditions (12) does not guarantee the thawing
scenario. We still need to discard the cases where the
early Universe Hubble friction is not large enough to
freeze the field. In practice, we discard the models with
1þw¼1þpðϕ;XÞ=ρðϕ;XÞ>0.01 at any redshift beyond
zCMB ¼ 1089.
We now expand piðϕÞ (i ¼ 0; 1; 2;…), which is dimen-

sionless, as

piðϕÞ ¼
X∞
j¼0

Vij

j!

�
ϕffiffiffi
3

p
Mp

�
j
: ð13Þ

A model can then be constructed by randomly generating
the matrix Vij. In practice, we work with a truncated finite-
size matrix Vij (0 ≤ i; j < n), where the integer n ≫ 1 is a
truncation order.
In the FRW universe, the Hubble parameter is given by

H
H0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωma−3 þ

�
Ωγ þ

X3
i¼1

Ων;i

Iρðmν;ia
TCNB

Þ
Iρð mν;i

TCNB
Þ
�
a−4 þ ρðϕ; XÞ

ρc

vuut ;

ð14Þ

where mν;i is the neutrino mass of the ith specie, and
TCNB ¼ 1.95 K is the effective temperature for neutrino
momentum distribution. The neutrino density integral is

IρðλÞ≡ 1

2π2

Z
∞

0

x2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ λ2

p

ex þ 1
dx: ð15Þ

Three neutrino species with masses 0.05, 0.009, 0.001 eV
are assumed by default.
We use the second Friedmann equation

ä
a
¼ −

H2
0

2

�
Ωma−3 þ

ρðϕ; XÞ þ 3pðϕ; XÞ
ρc

þ
�
2Ωγ þ

X3
i¼1

Ων;i

Iρðmν;ia
TCNB

Þ þ 3Ipðmν;ia
TCNB

Þ
Iρð mν;i

TCNB
Þ

�
a−4

�
ð16Þ

to evolve the scale factor, where the neutrino pressure
integral is given by

IpðλÞ≡ 1

6π2

Z
∞

0

x4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ λ2

p
ðex þ 1Þ dx: ð17Þ

The first Friedmann equation [i.e., Eq. (14)] is an energy
conservation equation that can be used to check the
numeric accuracy. We tune the numeric step size such that
the relative error of Eq. (14) is controlled below 10−4.
In the numeric code we evolve H

H0
as a function of

redshift. Energy conservation does not guarantee that both

sides of Eq. (14) are equal to unity, as they should be, when
we stop the evolution at redshift zero. In other words, the
model parameters Vij (0 ≤ i; j < n) contain a redundant
degree of freedom that need to be tuned to guarantee self-
consistency. It follows from Eqs. (11)–(13) that the early
dark energy density ρjt→0 ¼ −V00ρc. For dark energy
model without early dynamics, the early dark energy
density ρjt→0 should not be too many orders of magnitude
away from the current dark energy density ∼Oð1Þρc. Thus,
we choose V00 as the parameter to be tuned. In practice, we
numerically solve V00 with a logarithmic binary search
method in a range −102 < V00 < −10−2.
In summary, our numeric scheme to generate dark

energy candidates is as follows:
(1) Randomly generate Vij (0 ≤ i; j < n, but excluding

V00) from independent Gaussian distributions

PðVijÞ ∝ e−V
2
ij=ð2σ2Þ, where σ ≳Oð1Þ is a fixed

sampling width.

FIG. 1. EOS of randomly sampled thawing k-essence dark
energy candidates. Each panel contains 100 random samples.
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(2) Using initial conditions (12), EOM (5) and self-
consistency requirement (HH0

jz¼0 ¼ 1), numerically
solve V00. If no solution exits, discard the model and
go back to step 1.

(3) From the background solution compute wðaÞ and
c2sðaÞ. If w > − 1

3
or c2s < 0 at any time, or j1þ wj >

0.01 at any early time (redshift z > zCMB ¼ 1089),
then discard the model and go back to step 1.

(4) Evolve the perturbation Eq. (9). If the growth factor
of dark energy density perturbations at pivot scale
exceeds 100 at any redshift, discard the model and
go back to step 1.

(5) Fit wðaÞ ¼ w0 þ wað1 − aÞ (a ∈ ½alate; 1�) with a
least-square method.

A sample Fortran code is shared at http://zhiqihuang.top/
codes/scan_kessence.tar.gz to allow for the reproduction of
our results.

In Fig. 1 we plot some typical wðaÞ trajectories for ðσ ¼
3; n ¼ 10Þ and ðσ ¼ 10; n ¼ 20Þ, respectively. We observe
similar patterns of wðaÞ trajectories in the two cases. The
typical smoothness of wðaÞ trajectories permits CPL fitting
at low redshift, as we do and present in Fig. 2. The similar
distributions of ðw0; waÞ under a variety of combination of
sampling and linear-fitting parameters (n ¼ 5, 10, 20;
σ ¼ 1, 5, 10; alate ¼ 1

2
; 2
3
) reveal that the qualitative pattern

of wðaÞ trajectories is independent of the sampling scheme.
The result shows a universal clustering behavior in the
ðw0; waÞ space. About ∼ 90% of the randomly generated
thawing k-essence dark energy models cluster around a
narrow band that is close to a slow-roll line, given by

wa ≈ −1.42
�
Ωm

0.3

�
0.64

ð1þ w0Þ: ð18Þ

FIG. 2. CPL fittings of randomly sampled thawing k-essence models. Each panel contains 1000 random samples. The orange line in
each panel is the slow-roll approximation given by Eq. (18).
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The dependence of the slow-roll line on Ωm is demon-
strated in Fig. 3, where we enlarge the slow-roll region by
only keeping CPL fittings from models with j1þ wj < 0.2.
Equation (18) can be understood semianalytically. In the

slow-roll limit, we may keep the lowest order terms in the
Lagrangian L ≈ V00 þ V01ϕþ V10X. A redefinition of the
field ϕ → ϕffiffiffiffiffiffiffi

jV10j
p casts the model into a quintessence form

L ≈ X − fðϕÞ (if V10 < 0) or a phantom form L ≈ −X −
fðϕÞ (if V10 > 0), where fðϕÞ ¼ −V00 −

V01ffiffiffiffiffiffiffi
jV10j

p ϕ.

Reference [14] shows that in both cases wðaÞ approxi-
mately has a functional form

wðaÞ ¼ −1þ 2ϵs
3

F2

�
a

�
1 −Ωm

Ωm

�
1=3

�
; ð19Þ

where ϵs is a constant (for quintessence ϵs > 0 and for
phantom ϵs < 0), and

FðxÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x3

p

x3=2
−
ln ½x3=2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x3

p
�

x3
: ð20Þ

The unknown parameter ϵs cancels out in the ratio between
wa ≈ − dw

da ja¼1 and 1þ w0 ≈ 1þ wja¼1. We finally obtain

wa

1þ w0

≈
−2ð1−Ωm

Ωm
Þ1=3F0½ð1−Ωm

Ωm
Þ1=3�

F½ð1−Ωm
Ωm

Þ1=3� : ð21Þ

In Fig. 4 we show that Eq. (18) is a good numeric
approximation to Eq. (21), especially in the proximity
of Ωm ∼ 0.3.

III. STATISTICS OF THE EXPANSION
COEFFICIENTS OF LAGRANGIAN

We now turn our attention to the distribution of the Vij
coefficients. Figure 5 shows the distribution of w0, wa, V00,
and a few selected Vij coefficients of 5000 thawing
k-essence dark energy models generated with Ωm ¼
0.31; σ ¼ 3; n ¼ 10; alate ¼ 2=3, and a broader scanning
range ½−1000;−0.001� for V00.
When the present dark energy density ρϕ0 ¼ Ωϕρc is

fixed, the early dark energy density ρϕ;early ¼ −V00ρc is
strongly correlated with w0 and wa. If ρϕ;early > ρϕ0 (i.e.,
V00 < −Ωϕ), then dark energy density tends to be a
decreasing function of time, which corresponds to a
quintessence-like solution (1þ w0 > 0). If ρϕ;early < ρϕ0
(i.e., V00 > −Ωϕ), then dark energy density tends to be a
increasing function of time, which corresponds to a
phantomlike solution (1þ w0 < 0). Moreover, very few
thawing k-essence dark energy models can be generated
from V00 ≲ −2 (i.e., ρϕ;early ≳ 3ρϕ;today), which typically
corresponds to a fast-roll scenario that either violates the
thawing assumption or fails to produce cosmic acce-
leration. Consequently, the scanning range of V00,
½−100;−0.01�, or a broader one, does not have a significant
impact on our results.
The amplitude of jV01j gives the leading contribution to

the driving force Sðϕ; XÞ in Eq. (5). Statistically speaking, a
larger driving force (∼jV01j) leads to a larger kinetic energy
(∼j1þ w0j), making the butterfly shape distribution of
ðw0; V01Þ in Fig. 5.
The sign of V10 determines the sign of the leading kinetic

term in the Lagrangian. Therefore, a positive V10 typically
leads to a quintessencelike solution where 1þ w0 > 0, and
a negative V10 typically leads to a phantomlike solution
where 1þ w0 < 0. These features can be clearly seen in the
ðw0; V10Þ panel of Fig. 5.

FIG. 3. CPL fittings of randomly sampled thawing k-essence
models with j1þ wj < 0.2, for Ωm ¼ 0.25 (200 skyblue dots)
and Ωm ¼ 0.4 (200 orange dots), respectively. The solid lines are
the slow-roll approximation given by Eq. (18).

FIG. 4. Comparison between Eq. (21) and its numeric approxi-
mation Eq. (18).

STATISTICS OF THAWING k-ESSENCE DARK ENERGY … PHYS. REV. D 104, 103533 (2021)

103533-5



Our approach does not resolve the fine-tuning problem
of dark energy, because we have already used the unnatu-
rally small ρc as a unit to expand the Lagrangian density of
k essence. The typical ∼Oð1Þ values of Vij parameters in
Fig. 5 indicate that our approach does not require additional
fine-tuning beyond the usual one.

IV. DISCUSSION AND CONCLUSIONS

The CPL parametrization (1) is used in the standard
measure of figure of merit for future dark energy surveys.
However, dark energy models are degenerate in the

ðw0; waÞ space. For example, in certain dynamical regimes
an equivalence can be made between k essence and
quintessence [21]. Nonclustering dark energy models with
similar or identical homogeneous evolution may predict
different horizon-scale perturbations, which, however due
to cosmic variance, are difficult to observationally distin-
guish. In this work we seek a novel way to improve the
statistics of model selection. Imagine that if ðw0; waÞ
measured by future surveys is far away from the clustering
band shown in Fig. 2, thawing k-essence models would be
disfavored at ∼90% confidence level, and further including

FIG. 5. The marginalized 68.3%, 95.4%, 99.7% confidence-level contours of w0, wa, V00, and a few selected Vij coefficients.
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information from horizon-scale perturbations may allow us
to reject thawing k-essence models.
For technical reasons (e.g., the algorithm to solve V00)

we restrict the study in the thawing scenario. A thorough
investigation of more complicated scenarios and many
other dark energy models, and forecasts of dark-energy
model selection for planned future surveys, would all be
good exercises beyond the scope of this work.
As Fig. 1 shows, phantomlike (w < −1) solutions

naturally arise in the randomly generated thawing
k-essence models, which may ease the tension between
CMB and distance-ladder measurements of the Hubble
constant [15,22–26]. However, when BAO data are
included, late Universe phantomlike models, with or with-
out the prior w0 − wa distribution discussed in this work,
cannot resolve the Hubble tension. This is because, as
Ref. [27] pointed out, Hubble tension is essentially a

tension between the supernova absolute magnitude inferred
from inverse distance ladder [28,29] and that from the local
distance ladder, which does not involve the modeling of the
late Universe.
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