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The Copernican principle ðCPÞ, i.e. the assumption that we are not privileged observers of the Universe,
is a fundamental tenet of the standard cosmological model. A violation of this postulate implies the
possibility that the apparent cosmic acceleration could be explained without the need of a cosmological
constant, dark energy or covariant modifications of gravity. In this paper we present a new test of the CP
relating the distance and the expansion rate, derived via Noether’s theorem, which is complementary to
other tests found in the literature. We also simulate fiducial data based on upcoming stage IV galaxy
surveys and use them to reconstruct the Hubble rate HðzÞ and the angular diameter distance dAðzÞ in order
to forecast how well our null test can constrain deviations from the cosmological constant model. We find
that our new test can easily rule out several scenarios based on the Lemaître-Tolman-Bondi void model at
confidence of ≳3σ at middle to high redshifts ðz > 0.5Þ.
DOI: 10.1103/PhysRevD.104.103532

I. INTRODUCTION

The standard cosmological paradigm is based on two
fundamental assumptions: first, that the dynamics of space-
time are governed by Einstein’s field equations and second,
that the Universe is homogeneous and isotropic at scales
larger than ∼100 Mpc, a hypothesis normally referred to as
the cosmological principle, which is considered to be a
generalization of the Copernican principle (CP). The latter is
one of the pillars ofmodern cosmology, stating thatwe donot
occupy a special place in theUniverse, or in other words, that
any point in space must be equivalent to any other [1]. This
leads to the framework of an homogeneous and isotropic
background spacetime governed by the Friedmann-
Lemaître-Robertson-Walker (FLRW) metric, which des-
cribes the geometry of the universe in terms of the scale
factor aðtÞ, which obeys the Friedmann equation [2].
Clearly, any violations of the CP would disprove

homogeneity and would provide an explanation for the
observed accelerated expansion of the Universe without the
need for a dark energy component. The latter could in fact
have several possible explanations, such as modified
gravity theories, global inhomogeneities such as a void
model or novel dark fluid components currently unob-
served in the laboratories [3–5].
Voidmodels have the particularity that they do not employ

any form of dark energy component as the accelerating
expansion of the Universe is interpreted from the fact that we

live close to the center of a large underdense region, thus
having the observer in a special place in the local Universe
[6], or with backreaction which might mimic acceleration
via the nonlinear effect of inhomogeneities [7,8].
As of now, the CP has been tested with different

observations such as radio-astronomy [9], time drift of
cosmological redshift [10], using type Ia supernovae
[6,11], the integrated Sachs Wolfe effect [12], galaxy
correlations and the baryon acoustic oscillations [13], the
Hubble parameter [14], machine learning and cosmological
distance probes [15], peculiar velocities [16], the cosmic
microwave background (CMB) temperature and polarization
spectrum [17], the spectral distortion of the CMB spectrum
[18], galaxy surveys [19], the first order anisotropic kinetic
Sunyaev Zel’dovich (kSZ) effect [20,21] and finally with a
plethora of cosmological data that can be used to constrain
spatial homogeneity [22]. Finally, for a representation of the
current state of constraints on LTBmodels using various data
see Ref. [23].
The simplest inhomogeneous models of the Universe are

given by a spherically symmetric distribution of matter,
which is mathematically described by a Lemaître-Tolman-
Bondi (LTB) spacetime [24], which has been shown it can
produce a Hubble diagram which in the past was consistent
with observations, see Ref. [25] for a broad overview and
Refs. [26,27] for some more recent constraints, but with
more recent data it has been realized that simple void
models cannot be used as an alternative to dark energy.
Specifically, LTB models where decaying modes are not
present produce a large kSZ signal [20,28,29], while
models with large decaying modes, and correspondingly
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a small kSZ signal, are not viable due to y distortions [30].
Specific cases where the void LTB models can be viable
require fine-tuned initial conditions, thus leading to ques-
tions about the naturalness of these models.
Since in the near future we are going to have sufficiently

good and rich cosmological data we will use the LTB
models as a check for our null test to show how they can be
ruled out with high confidence. Probing for deviations from
the cosmological constant model ðΛCDMÞ is nontrivial in
the absence of guiding principles or laboratory data [31].
Thus, over the years several consistency tests of the ΛCDM
have appeared in the literature. In general these tests are
constructed so that possible deviations from ΛCDM at any
redshift are apparent and easy to quantify in the form of null
tests. These are formulated such that they can be computed
using reasonably directly observable quantities at any
redshift, thus by computing the consistency test using data
from multiple redshifts, one can examine the validity of the
basic assumptions of the cosmological standard model. If
these assumptions hold, the null test should be independent
of redshift.
In this work we present a complementary test to the well-

known curvature test of Ref. [1] that can be used to falsify the
CP. This null test depends solely on distance andHubble rate
observations and is derived with the aid of Noether’s
theorem. The advantage of our new test is that it does not
suffer from divergences and provides tighter constraints at
high redshifts, as we will discuss in later sections.
Our paper is organized as follows: In Sec. II we present

the theoretical formalism, our null test named OðzÞ and a
description of the LTB models used to check the consis-
tency test. In Sec. III we describe our simulated data based
on an optimistic Stage IV galaxy survey and the machine
learning (ML) algorithm used to reconstruct the data,
namely the genetic algorithms [32]. Finally, in Sec. IV
we present our results and in Sec. V we summarize our
conclusions.

II. ANALYSIS

Under the assumption of a Friedmann-Lemaître-
Robertson-Walker (FLRW) metric, the luminosity distance
can be written as

dLðzÞ ¼
cð1þ zÞ
H0

ffiffiffiffiffiffiffiffiffi
−Ωk

p sin

� ffiffiffiffiffiffiffiffiffi
−Ωk

p Z
z

0

dz0
H0

Hðz0Þ
�
; ð1Þ

where Ωk is the curvature parameter today and HðzÞ is the
expansion rate. The luminosity distance dLðzÞ is related
to the angular diameter distance dAðzÞ through the
Etherington relation, i.e. dLðzÞ ¼ ð1þ zÞ2dAðzÞ. Using
the comoving angular diameter distance DðzÞ, defined as
DðzÞ ¼ H0

c ð1þ zÞdAðzÞ, we can regroup Eq. (1) to solve
for the curvature parameter Ωk in terms of HðzÞ and DðzÞ
as [1]

Ωk ¼
½EðzÞD0ðzÞ�2 − 1

½DðzÞ�2 ; ð2Þ

where EðzÞ≡HðzÞ=H0 is the dimensionless Hubble
parameter and the prime is a derivative with respect to
the redshift 0 ¼ d=dz. The above relation allows us to
estimate the spatial curvature parameter from distance and
Hubble rate observations, without having to assume any
particular dark energy model or other model parameters. It
also allows us to test the curvature at any single redshift as it
has been reconstructed in several works, see for instance
Refs. [1,15,31,33–39]. Since the curvature parameter Ωk
does not depend on redshift, we can differentiate this to
obtain a relation that must always equal zero. This can be
expressed as [1]

CðzÞ ¼ 1þ EðzÞ2ðDðzÞD00ðzÞ −D0ðzÞ2Þ
þ EðzÞE0ðzÞDðzÞD0ðzÞ; ð3Þ

where CðzÞ has to be zero at all redshifts in any model
described by a FLRW metric, as was originally shown in
Ref. [1]. In Sec. IV we will present constraints on this test
with an upcoming Stage IV survey along with a comple-
mentary CP test inspired from Noether’s theorem. The
advantage of using Noether’s theorem to make a comple-
mentary test is that by taking into account the symmetries
of the system of equations that describe the expansion of
the Universe, we can reduce the order of the differential
equations that appear in the final test. This allows us to keep
the errors of the reconstructions smaller, as higher order
derivatives of noise data tend to make the reconstructions
less robust at high redshifts, as we demonstrate in what
follows.

A. Lagrangian formalism and null test

We now present a complementary test of CðzÞ to probe
the CP. Using Eq. (2) we can solve for D0ðzÞ2, which will
be given by

D0ðzÞ2 ¼ 1þDðzÞ2Ωk

EðzÞ2 ; ð4Þ

and inserting this relation into Eq. (3) we have

D00ðzÞ þ E0ðzÞ
EðzÞ D

0ðzÞ − Ωk

EðzÞ2DðzÞ ¼ 0: ð5Þ

To find a null test that involves the distance measure DðzÞ,
we will make use of the Lagrangian formalism. The first
step is to find a Lagrangian for Eq. (5) and, with the help of
Noether’s theorem, to find an associated conserved quan-
tity. For a description of the Noether symmetry approach
and applications for null tests see [40,41].
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In a nutshell, if we assume that the Lagrangian can be
written as L ¼ Lðz;DðzÞ; D0ðzÞÞ. Then, the Euler-
Lagrange equations are

∂L
∂D −

d
dz

∂L
∂D0 ¼ 0: ð6Þ

So, let us assume a Lagrangian of the form

L ¼ T − V; ð7Þ

T ¼ 1

2
f1ðz; EðzÞÞD0ðzÞ2; ð8Þ

V ¼ 1

2
f2ðz; EðzÞÞDðzÞ2; ð9Þ

where the f1 and f2 are arbitrary functions that need to be
determined so that the resulting equation after implement-
ing the Euler-Lagrange Eq. (6) is exactly Eq. (5). Therefore,
substituting the former Lagrangian in the Euler-Lagrange
Eq. (6) and comparing the result with Eq. (5) we are able to
get the two functions f1 and f2 and consequently to build
the Lagrangian L of the system:

L ¼ 1

2
EðzÞD0ðzÞ2 þ 1

2

Ωk

EðzÞDðzÞ2: ð10Þ

It is easy to see that substituting Eq. (10) into Eq. (6) results
exactly to Eq. (5). Now that we have a Lagrangian we can
use Noether’s theorem to find a conserved quantity that will
be later translated to the null test. So, if we have an
infinitesimal transformation X with a generator

X ¼ αðDÞ ∂
∂Dþ dαðDÞ

dz
∂

∂D0 ; ð11Þ

dαðDÞ
dz

≡ ∂α
∂DD0ðzÞ ¼ α0ðzÞ; ð12Þ

such that for the Lie derivative of the Lagrangian we have
LXL ¼ 0, then

Σ ¼ αðzÞ ∂L∂D0 ð13Þ

is a constant of “motion” for the Lagrangian of Eq. (10).
From Eq. (13) we get that

Σ ¼ αðDðzÞÞEðzÞD0ðzÞ; ð14Þ

while from the Lie derivative we also obtain

αðzÞ ¼ α0e
−
R

z

0

ΩkDðxÞ
EðxÞ2D0ðxÞdx; ð15Þ

where α0 is an integration constant. Then, the constant Σ
becomes

Σ ¼ EðzÞD0ðzÞ
D0ð0Þ e

−
R

z

0

ΩkDðxÞ
EðxÞ2D0ðxÞdx; ð16Þ

where we absorbed α0 into Σ and normalized the above
equation so that the null test must be equal to unity for all
values of z.
Finally, to write the above null test only as a function of

EðzÞ and DðzÞ we substitute Ωk from Eq. (2) into Eq. (16),
then the null test is given by

OðzÞ ¼ EðzÞD0ðzÞ
D0ð0Þ e

−
R

z

0

EðxÞ2D0ðxÞ2−1
EðxÞ2DðxÞD0ðxÞdx: ð17Þ

B. LTB model

An alternative explanation, besides the cosmological
constant Λ, for the current phase of accelerated expansion
of the Universe is the idea of inhomogeneous universe
models, where this expansion can be seen as an effective
acceleration induced by our special position as observers
residing inside a huge underdense region of space. These
models violate the CP and a simple toy model which has
been studied extensively in the literature is the spherically
symmetric Lemaître-Tolman-Bondi model [24,42,43]
(LTB) which describes a local void. It actually represents
a family of models coming from a spherically symmetric
solution of Einstein equations exerted by pressureless
matter and no cosmological constant, as one still needs
to provide a matter density profile [10]. The metric for our
model of interest is given by

ds2 ¼ −dt2 þ X2ðr; tÞdr2 þ A2ðr; tÞdΩ2; ð18Þ

where dΩ2 ¼ dθ2 þ sin2 θdϕ2 and the function Aðr; tÞ is
analogous to the scale factor of the FLRW metric, albeit it
also has a dependence on both time and the radial
coordinate r. One can find a relation between Xðr; tÞ
and Aðr; tÞ through the 0 − r component of the Einstein
equations, i.e Xðr; tÞ ¼ A0ðr; tÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − kðrÞp
, where a prime

denotes a derivative with respect to the coordinate r and
kðrÞ represents an arbitrary function, being similar to the
role of the spatial curvature parameter.
This model can be totally described by the matter density

ΩmðrÞ and the Hubble expansion rate HðrÞ. We will check
our consistency test with a particular LTB model known as
the GBH parametrization [25]. In this case the matter and
Hubble parameter profiles are given by

ΩmðrÞ¼ΩoutþðΩin−ΩoutÞ
1− tanh ½ðr−r0Þ=2Δr�

1þ tanh½r0=2Δr�
; ð19Þ

H0ðrÞ ¼ H0

 
1

ΩkðrÞ
−

ΩmðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩkðrÞ3

p sinh−1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩkðrÞ
ΩmðrÞ

s !
; ð20Þ
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where ΩkðrÞ ¼ 1 −ΩmðrÞ, Ωout is the value of the matter
density at infinity, Ωin is the value of the matter density at
the center of the void, r0 is the size of the void and Δr
represents a scale that characterises the transition to
uniformity. In Table I we show the four GBH parameters
used in our analysis, which correspond to characteristic
voids of sizes of a few Gpc, as suggested in Ref. [25].
Note however, that in Ref. [23] the LTB model, albeit

with a different profile than that of Eq. (19) and including a
cosmological constant, was confronted against a plethora of
cosmological data, including the Planck measurements of
the CMB spectrum, BAO data, the Pantheon compilation
of type Ia supernovae, local H0 measurements, the HðzÞ
cosmic chronometers and finally, the Compton y distortion
and kinetic Sunyaev-Zeldovich effect. In summary, it was
found that the aforementioned data can tightly constrain the
LTB model, almost at the cosmic variance level. In
particular, on scales of ∼100 Mpc structures can have a
small non-Copernican contrast of just δ ∼ 0.01.

III. RECONSTRUCTIONS

We now describe both the mock data used and the
machine learning process used to reconstruct the null test,
namely the genetic algorithms.

A. Mock data

Our mock baryon acoustic oscillations (BAO) data for
the angular diameter distance dAðzÞ and the Hubble rate
HðzÞ are based on a future upgrade of dark energy
spectroscopic instrument (DESI) [44]. DESI is a survey
with the goal of probing the expansion rate and large-scale
structure (LSS) of the universe and can complement other
future BAO surveys by extending the probed redshift
range [45].
The DESI survey, whose operations started at the end of

2019, is expected to obtain optical spectra for tens of
millions of galaxies and quasars up to redshift z ∼ 4, which
will allow for BAO and redshift-space distortion cosmo-
logical analyses. Our forecast data will cover the redshift
range z ∈ ½0.05; 3.55�, but their precision will also depend
on the target population. The blue galaxies (BGs) will cover

the redshift range z ∈ ½0.05; 0.45� in five equispaced red-
shift bins, the luminous red galaxies (LRGs) and emission
line galaxies (ELGs) will focus on z ∈ ½0.65; 1.85� with 13
equispaced redshift bins, while the Ly-α forest quasar
survey will cover z ∈ ½1.96; 3.55� with 11 equispaced
redshift bins [44]. The difference in the redshift distribu-
tions of the various targets (BGs, ELGs, quasi-stellar
objects, etc.) are due to the fact that each of these targets
needs different selection methods to accumulate suffi-
ciently large samples of spectroscopic targets from photo-
metric data, see for example Sec. III in Ref. [44].
To create the mocks we assume the HðzÞ and dAðzÞ are

uniformly distributed in the range z ∈ ½0.1; 3.55�, divided
into 20 equally spaced binds of step dz ¼ 0.2. The HðziÞ
and dAðziÞ function was estimated as its theoretical value
from the different cosmological models plus a Gaussian
error (which can be either negative or positive) and
assigning an error of 0.5% of its value to HðzÞ and for
dAðzÞ an error of 0.28% for z < 1.1 and 0.39% for z > 1.1,
which is in agreement with a similar setup to [46]. We
further assume these measurements to be uncorrelated.
Finally, we have assumed a fiducial cosmology of a flat

ΛCDM model with matter density Ωm;0 ¼ 0.3 and Hubble
constant of H0 ¼ 70 kms−1 Mpc−1.

B. Genetic algorithms

In this section we explain the implementation of the
genetic algorithms (GAs) in our analysis. They have
successfully been applied in cosmology for several recon-
structions on a wide range of data, for further details see
Refs. [15,47–56]. Other applications of the GA cover
particle physics [57–59] and astronomy and astrophysics
[60–62]. Also, other symbolic regression methods applied
in physics and cosmology can be found at [63–70].
The GA can be seen as a particular type of ML methods

mainly constructed to perform unsupervised regression of
data, i.e. it carries out nonparametric reconstructions
finding an analytic function of one or more variable that
describes the data extremely well.
The GA operates by simulating the notion of biological

evolution through the principle of natural selection, as
conveyed by the genetic operations of mutation and cross-
over. Essentially, a set of test functions evolves as time goes
by through the effect of the stochastic operators of cross-
over, i.e the joining of two or more candidate functions to
form another one, and mutation, i.e a random alteration of a
candidate function. This procedure is then repeated thou-
sands of times so as to ensure convergence, while different
random seeds can be used to further explore the func-
tional space.
Due to the construction of the GA as a stochastic

approach, the probability that a population of functions
will give rise to offspring is normally assumed to be
proportional to its fitness to the data, where in our analysis
is given by a χ2 statistic and conveys how good every

TABLE I. The parameters for the LTB models, where in all
cases Ωm;out ¼ 1 and H0 ¼ 77 km=s=Mpc. Note that the actual
value of the Hubble rate today as measured by a comoving
observer at z ¼ 0, depends on the specific profile used. Here we
assume the constrained GBH LTB profile of Ref. [25], given by
Eqs. (19) and (20).

Ωm;in r [Gpc] Δr [Gpc] LTB models

0.298 1.0 0.30 LTB1
0.197 1.5 0.45 LTB2
0.156 1.8 0.54 LTB3
0.200 2.0 0.60 LTB4
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individual agrees with the data. For the simulated data in
our analysis we are assuming that the likelihoods are
sufficiently Gaussian that we use the χ2 in our GA
approach. In the GA, the probability to have offspring
and the fitness of each individual is proportional to the
likelihood, causing an evolutionary pressure that favors the
best-fitting functions in every population, hence driving
the fit towards the minimum in a few generations.
In our analysis we reconstruct the Hubble rate HðzÞ and

the angular diameter distance dAðzÞ from the mock data
created, and the course of action to its reconstruction is as
follows. First, our predefined grammar was formed on the
following functions: exp, log, polynomials etc. and a set of
operations þ;−;×;÷; see Table II for the complete list.
As a prior for our HðzÞ reconstruction we imposed that

Hðz ¼ 0Þ ¼ H0 and for the dAðzÞ reconstruction we
assumed that dAðz ≪ 1Þ ¼ c=H0zþOðz2Þ, where both
priors have been motivated by physical reasons, namely
the fact that the value of the Hubble parameter today is the
one that we actually infer from observations and the Hubble
law respectively. However, we make no assumptions on the
curvature of the Universe or any modified gravity or dark
energy model. Furthermore, in order to avoid overfitting or
any spurious reconstructions we required that all functions
reconstructed by the GA are continuous and differentiable,
without any singularities in the redshift probed by the data.
Once the initial population has been constructed, the

fitness of each member is computed by a χ2 statistic, using
the HðzÞ and dAðzÞ data points directly as input. Then,
using a tournament selection process, see Ref. [47] for
more details, the best-fitting functions in each generation
are selected and the two stochastic operations of crossover
and mutation are used. To guarantee convergence, the GA
operation is repeated thousands of times and with various
random seeds, to explore properly the functional space.
The final output of the code is a set of functions of HðzÞ
and dAðzÞ that describes the Hubble rate and the angular
diameter distance respectively.
The error estimates of the reconstructed function are

obtained via the path integral approach, originally imple-
mented in Refs. [49,50]. This approach consists of having
an analytical estimate of the error of the reconstructed
quantity by computing a path integral over all possible
functions around the best fit GA that may contribute to the

likelihood, and it has been shown that this can be performed
whether the data points are correlated or uncorrelated. This
error reconstruction method has been exhaustively exam-
ined and tested against a bootstrap Monte Carlo by
Ref. [49]. More explicitly, given a reconstructed function
fðxÞ from the GA, the path integral approach of Ref. [49]
gives us the 1σ error δfðxÞ. This can be also compared to
error propagation if one assumes that the error in a quantity
is taken as σf ¼ f0ðpÞδp, where p would represent a
parameter. We have extensively compared our approach
finding that this assumption is appropriate for the data set
used here.
Finally, the reason we need the GA is that traditional

inference approaches, such as Markov chain Monte Carlo
simulations require a specific model for the expansion
history, e.g. ΛCDM, to fit the data and the choice of this
model will clearly bias the results or even miss critical
features of the data. The main advantage of the GA is that,
given some data, we allow the algorithm to determine the
best-fit model, thus we can remain theory agnostic, as we
do not have to assume a dark energy model.

IV. RESULTS

In this section we present our GA fits to the simulated
data and the corresponding consistency test obtained from
our reconstructions on HðzÞ and dAðzÞ. We want to stress
that the aim of this work is not simply to rule out LTB void
models as contenders of dark energy models, which has
already been done so, but to present a complementary
consistency to test of the CP in a nontrivial but still
interesting setting.
In Fig. 1 we show our new null test OðzÞ given by

Eq. (17) and the CðzÞ test given by Eq. (3), both of which
can be used to find deviations from the CP through our
reconstructions on the Hubble rate HðzÞ and the angular
diameter distance dAðzÞ. Our reconstructed functions start
at z ¼ 0.1 which is the redshift of our first mock data point.
In both cases the black solid line and the gray region
correspond to the GA best fit and its 1σ error respectively.
The black dashed line represents the flat ΛCDMmodel and
we see that our reconstructions recover well the null
hypothesis of the FLRW metric used to make the mocks.
Recall that the ΛCDM curves are theoretical and so are
precisely at OðzÞ ¼ 1 and CðzÞ ¼ 0. The colored lines
represent the four different theoretical LTB models, con-
cretely defined in Table I.
In the left panel of Fig. 1 we show our OðzÞ test and as

can be seen, it is a good discriminator of all LTB models at
high and intermediate redshifts, i.e. z ∼ 0.6 and beyond, as
the errors remain consistently low at all redshifts. On the
other hand, in the right panel of Fig. 1 we present the CðzÞ
test which can discriminate the LTB model from ΛCDM at
intermediate redshifts 0.5 < z < 1.5 but at low redshifts
ðz < 0.3Þ and high redshifts above z ∼ 1.5 the values of

TABLE II. The grammars used in the GA analysis. Other
complex forms are automatically produced by the mutation and
crossover operations as described in the text.

Grammar type Functions

Polynomials c, x, 1þ x
Fractions x

1þx
Trigonometric sinðxÞ, cosðxÞ, tanðxÞ
Exponentials ex, xx, ð1þ xÞ1þx

Logarithms logðxÞ, logð1þ xÞ
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CðzÞ of the fiducial LTB models asymptote to zero, thus
being dominated by the errors.
Therefore, by comparing both panels we may infer that

our test manages to detect deviations from the CP par-
ticularly well and consistently at middle to high redshifts,
when the traditional CðzÞ test does not perform equally
well. Hence, our null test presented serves as a comple-
mentary consistency check of the CP and is especially
useful at high redshifts.

V. CONCLUSIONS

In summary, we have presented a new consistency test of
the Copernican principle, which is complementary to the
curvature test of Ref. [1]. In particular, we used the
Noether’s theorem approach in order to obtain a conserved
quantity that can be written in terms of the Hubble rate
HðzÞ and the comoving distance DðzÞ.
In order to forecast how well our new test, given by

Eq. (17), can constrain deviations from the Copernican
principle at large scales, we created mock datasets based on
specifications of the DESI survey and using the ΛCDM
model for the fiducial cosmology, for a variety of different
profiles. This approach allows us to quantify any deviations
using forecast mock data and plausible scenarios.
Then, to reconstruct the OðzÞ statistic given by Eq. (17)

from the mock data, we preferred to use the machine
learning approach, namely the GA, as this will allow us to
obtain nonparametric and theory agnostic reconstructions
of the data, in the form of HðzÞ and DðzÞ, that we can in

turn use to reconstruct OðzÞ. With the same functions we
also reconstructed the CðzÞ function of Ref. [1] given
by Eq. (5).
Following this approach, we find that the GA with the

OðzÞ statistic can correctly predict the underlying fiducial
cosmology at all redshifts covered by the data, as seen in
the left panel of Fig. 1 and can easily rule out several LTB
scenarios at confidence of ≳3σ at middle to high redshifts
ðz > 0.5Þ. On the other hand, the CðzÞ statistic, while it
successfully rules out the same LTB profiles at small
redshifts at a confidence of ∼8σ at intermediate redshifts
ð0.5 < z < 1.0Þ, it does not fare equally well at higher
redshifts ðz > 1.5Þ as the errors become larger and the
value of CðzÞ asymptotes to zero, thus diminishing its
predictive power.
To conclude, we find that the OðzÞ test provides

complementary to other tests, information on possible
deviations of homogeneity at different redshift regimes
and can help test one of the fundamental assumptions of the
standard cosmological model at high redshifts, something
which is the goal of several current and upcoming surveys
in the coming years.
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