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Classical and quantum Friedmann-Lemaître-Robertson-Walker universes filled with noninteracting
radiation and dust fluids are considered in the framework of Hořava-Lifshitz gravity theory. The Hořava-
Lifshitz theory is set in its projectable version and without the detailed balance condition. Canonical
quantization is performed in the Wheeler-DeWitt approach of quantum cosmology for a minisuperspace
model in light of the de Broglie–Bohm interpretation of quantum mechanics. The main results are
analytical solutions for nonsingular quantum bounce and cyclic universes for open and closed spatial
sections in terms of the parameters of Hořava-Lifshitz theory.
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I. INTRODUCTION

The standard model of particle physics successfully
describes electroweak and strong interactions, which oper-
ate at the quantum level. General Relativity (GR), which is
a classical theory of space-time and matter, is the most
successful theory of gravitation. A first principles descrip-
tion of nature seems to be quantum mechanical, making it a
natural way to assume that gravity must be described by a
quantum theory as well.
Applying the canonical quantization scheme to GR, we

achieve the so-called canonical quantum gravity theory [1],
which is a constrained system governed by the Wheeler-
DeWitt equation [2]. The solution of the Wheeler-DeWitt
equation yields the quantum state of the 3-geometry and
matter fields by a wave functional (on superspace), which
describes the entire Universe. However, this formulation
faces some drawbacks. First, we expect the wave function to
constrain the dynamics of the Universe, but the absence of a
momentum which is canonically conjugate to the time
variable implies that the wave function is static. This is
called the problem of time [3]. Second, the wave function
describes no particular metric, but all spacelike metrics
(superspace). Both issues compromise the definition and
identification of space-time singularities. Finally, measure-
ment demands a collapse of the wave function by an external
observer, which is a feature of the Copenhagen interpretation
of quantum theory. This is called the measurement problem.
In order to circumvent these issues, we may consider the

de Broglie–Bohm (dBB) interpretation of quantum theory
[4,5] instead of the orthodox one. The time degree of
freedom can now be defined from matter degrees of
freedom if it is described by a hydrodynamical perfect

fluid. This can be done using the Schutz formalism [6],
where the time variable is associated with the fluid’s
potentials. We can also define a metric which evolves in
time according to guidance equations. The measurement
problem is either eliminated, because in the ontological
interpretation the evolution of the Universe is deterministic
and does not demand a collapse of the wave function, or the
action of an external observer. Therefore, the dBB inter-
pretation of canonical quantum gravity [7–11] is a suitable
way to establish a quantum cosmology theory. In this
context, one can define contraction/expansion as well as
singularities in space-time.
In order to solve the Wheeler-DeWitt equation in a

simple form, we restrict the superspace to the minisuper-
space [12–14], where the degrees of freedom are reduced to
a finite number while still preserving the main qualitative
aspects of the full picture. This is a reasonable framework
for developing quantum cosmology.
Quantum cosmology models in minisuperspace in the

dBB interpretation are vast in the literature [7,15–28]. In
particular, bouncing models are a very relevant feature of
quantum cosmology, where quantum effects are respon-
sible for avoiding the big bang (and eventually big crunch)
singularity. In this context, the authors of Refs. [19,28–30]
presented bouncing models for perfect fluids using the
Schutz formalism, whereas in Ref. [31] a scalar field is
considered as the matter content. In the case of perfect
fluids, a very interesting result is given in Ref. [30], which
is the quantum version of the Friedmann-Lemaître-
Robertson-Walker (FLRW) universe filled with radiation
and dust, where radiation dominates around the bounce and
dust dominates in the contraction and expansion phases far
from the bounce. Cyclic universe solutions are also present
for a closed spatial section, where multiple bounces are
present. These results will be very important in this work.*gustavo@fat.uerj.br
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It is important to mention that a cosmological bounce can
solve the standard cosmological puzzles [32], like the
horizon and flatness problems, and are also robust for
generating primordial cosmological perturbations with an
almost scale invariant spectrum [28,32]. However, although
an inflationary phase can be avoided for these models, in
principle, it can still happen. Finally, dark matter has been
also considered in this context through the dynamics of a
scalar field [33].
Recently, a new theory of gravity was proposed by

Hǒrava [34,35] which was based on the introduction of an
anisotropic scaling between space and time. The theory
was inspired by Lifshitz’s work on critical exponents in
phase transitions in the context of condensed matter
physics, then referred to as Hǒrava-Lifshitz (HL) theory.
The anisotropy is introduced in order to generalize GR in
the high energy ultraviolet (UV) scale while recovering
GR in the low energy infrared (IR) scale. This generali-
zation is due to Lorentz symmetry breaking in the UV
scale through a Lifshitz-like process, while this symmetry
is preserved in the IR scale. Because of the anisotropy in
space and time, HL theory is usually represented in the
Arnowitt-Deser-Misner (ADM) formalism [36], which
splits the 4-metric gμν into a 3-metric hij, a shift 3-vector
Ni, and a lapse function N, where the last item para-
metrizes time.
There are two important issues to consider in HL theory.

First, the variables in the ADM formalism may depend on
both space and time. However, Hǒrava pointed out [34] that
the lapse function N should depend only on time, which is
reasonable in the cosmological setting. This is called the
projectable condition. On the other hand, some authors
have considered the general case in which N depends on
both space and time, i.e., a nonprojectable condition. Both
projectable and nonprojectable theories suffer from prob-
lems such as ghost scalar modes and instabilities [37–39].
However, a consistent projectable HL gravity theory with a
local Uð1Þ symmetry can be shown to eliminate the ghost
scalar modes [40,41] so that instability and strong coupling
does not happen in the gravitational sector. On the other
hand, nonprojectable HL gravity theories can also be
consistent whether the local Uð1Þ symmetry is present
[42–44] or not [45], where the latter theory is the so-called
healthy extension. A review of the aforementioned issues is
given in Ref. [37]. From another point of view, in the
cosmological setting, it seems risky to impose the condition
that the lapse function depend only on time. However, in
this case the Hamiltonian constraint is no longer local but
instead integrated over all spatial volume. This result
corresponds to Friedmann equations with an additional
cold dark matter–like component [46]. However, in homo-
geneous models these spatial integrals are simply the
spatial volume then the additional matter content vanishes
[47,48]. These considerations can be extended to the
quantum realm in minisuperspace cosmology models

[49,50], which is described by the projectable version of
HL theory. It is then reasonable to consider the projectable
HL in this context. It is important to mention that the
aforementioned theory with local Uð1Þ symmetry can also
be applied to the cosmological setting [51].
Second, Hǒrava also considered a simplification in order

to reduce the number of terms of his theory which is called
the detailed balance condition. However, although the
detailed balance is a simplifying assumption, it is not
really necessary [47,48]. Therefore, in this paper I consider
the projectable version of HL theory without the detailed
balance condition.
Nonsingular classical HL cosmological models have

been considered in the literature for the matter bounce
scenario [52], where the nonsingular behavior is due to the
presence of spatial curvature. However, nonsingular
classical cosmologies can also be achieved by other
mechanisms, such as from matter contents [53] and other
modified gravity theories [54]. On the other hand, in
addition to the aforementioned quantum nonsingular cos-
mologies in minisuperspace in the dBB interpretation, the
literature is vast for nonsingular quantum cosmological
models [55] and also heuristically motivated ones [56]. In
particular, there is also a great literature for quantum
nonsingular cosmologies in the framework of Loop
Quantum Cosmology [57–61].
Hǒrava-Lifshitz quantum cosmology in minisuper-

space has already been considered in the literature
[47,49,50,62–65]. In particular, exact solutionswere obtained
in Refs. [62,63] for perfect fluids for some values of the
equation of state parameter and for some of the parameters of
HL theory. In this work, I present exact solutions for non-
singular universes in the cases of closed and open FLRW
quantum cosmologies in HL theory, where thematter content
is composed of noninteracting radiation and dust fluids.
This paper is organized as follows. In Sec. II, I introduce

the FLRW cosmology in HL gravity in the ADM formalism
and the Schutz formalism for the matter content. The
gravitational and matter Hamiltonians are presented and
the full Hamiltonian for a universe filled with noninteract-
ing radiation and dust fluids is obtained. In Sec. III,
classical FLRW cosmology in HL theory is considered
and analytical solutions for the scale factor are presented
for open and closed universes. Some particular cases are
also shown. These solutions contain all parameters of HL
theory except the cosmological constantlike term, which is
neglected in this work. In Sec. IV, I obtain nonsingular
solutions for quantum FLRW cosmology in HL theory,
which are the results of this paper. From the canonical
quantization of the Hamiltonian, a Wheeler-DeWitt equa-
tion is obtained and analytically solved. From the solutions
for the wave function, using the dBB interpretation of
quantum mechanics, I obtain analytical solutions for the
scale factor for noninteracting radiation and dust fluids for
open and closed universes. Single (contracting/expanding)
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bounce universe solutions were obtained as well as (multi-
ple bounce) cyclic ones. The analytical quantum potential
was also derived for these solutions, which is responsible
for the occurrence of nonsingular behavior in the scale
factor evolution. In the Appendix, the motivation for the
initial condition used in Sec. IV is discussed. Finally, the
concluding remarks and future perspectives are presented
in Sec. V. Throughout this work, I am using the natural
units system, in which c ¼ ℏ ¼ 1.

II. FLRW COSMOLOGY IN HǑRAVA-LIFSHITZ
GRAVITY

The FLRW metric for a homogeneous and isotropic
space-time is written as

ds2 ¼ −NðtÞdt2 þ aðtÞ2
�

dr2

1 − kr2
þ r2dΩ2

�
; ð2:1Þ

where NðtÞ is the lapse function, aðtÞ is the scale factor,
dΩ2 is the line element of a 2-sphere with unitary radius,
and k is the curvature constant of spatial sections, which is
k ¼ 1, 0, and −1 for closed, flat and open universes,
respectively.1 The 4-metric is defined as gμν, where greek
indices run from 0 to 3, and the spatial 3-metric is defined
as hij, where the latin indices run from 1 to 3.
In the following subsections, I introduce the Hamiltonian

densities for the gravitational and matter sections in HL
theory.

A. Gravitational Hamiltonian

In HL theory, an anisotropic scaling between space and
time is introduced as

t → bzt; x⃗ → bx⃗; ð2:2Þ

where b is a scale parameter and z is a dynamical critical
exponent. While the UV sector requires z ¼ 3, which
breaks Lorentz invariance, in the IR sector it is recovered
for z ¼ 1 (see Refs. [34,35] for details).
The gravitational action of HL theory is composed of

kinetic and potential parts. The former generalizes the
Einstein-Hilbert action and is given in terms of the extrinsic
curvature (and derivatives) and a free parameter λ, which
reduces to the GR kinetic term in the limit λ → 1. On the
other hand, the potential part depends only on the 3-metric
(and spatial derivatives). The detailed balance condition
refers to the choice of potential part, which simplifies the
theory by reducing the number of terms and facilitating its

renormalization. However, Sotiriou et al. [47,48] showed
that one should avoid this condition.
Following the lines of Refs. [62–64], in this paper I

consider the projectable HL gravity without the detailed
balance condition, for z ¼ 3 in (3þ 1) dimensions [49],
whose action reads

SHL ¼ M2
Pl

2

Z
M

d3xdtN
ffiffiffi
h

p
½KijKij − λK2þ

− g0M2
Pl − g1R −M−2

Pl ðg2R2 þ g3RijRijÞþ
−M−4

Pl ðg4R3 þ g5RRi
jR

j
i þ g6Ri

jR
j
kR

k
iþ

þ g7R∇2Rþ g8∇iRjk∇iRjkÞ�

þM2
Pl

Z
∂M

d3x
ffiffiffi
h

p
K; ð2:3Þ

whereMPl ¼ 1=
ffiffiffiffiffiffiffiffiffi
8πG

p
is the Planck mass, hij is defined on

the boundary ∂M of the 4-dimensional manifold M, h is
the determinant of hij, Kij is the extrinsic curvature tensor,
K is the trace of Kij, Rij is the Ricci tensor, R is the Ricci
scalar, and λ and gi (i ¼ 0;…; 8) are HL parameters
involved in corrections to GR.
In the case of FLRW space-time, the metric and the

action are given by Eqs. (2.1) and (2.3), respectively. From
the results of Ref. [62], the Lagrangian density in HL
theory reads

LHL ¼ N
�
−
a _a2

N2
þ gcka − gΛa3 −

grk2

a
−
gsk
a3

�
; ð2:4Þ

where the HL parameters are defined as [68]

gc ¼
2

3λ − 1
; gΛ ¼ 2Λ

3ð3λ − 1Þ ;

gr ¼
4ð3g2 þ g3Þ
ð3λ − 1ÞM2

Pl

; gs ¼
8ð9g4 þ 3g5 þ g6Þ

ð3λ − 1ÞM4
Pl

; ð2:5Þ

and the parameter gc is positive definite. The subscripts refer
to the fluidlike behavior of each term: ðgc; gΛ; gr; gsÞ ¼
(curvature, cosmological constant, radiation, stiff matter)–
like terms.
We note that the scale factor is the only variable in

Eq. (2.4). In order to obtain the Hamiltonian formulation,
we must compute Pa, the momentum canonically con-
jugated to a, which reads

Pa ¼
∂LHL

∂ _a ¼ −
2a _a
N

: ð2:6Þ

Using the definition of Pa, the Hamiltonian density reads

HHL ¼ N

�
−
P2
a

4a
− gckaþ gΛa3 þ

grk2

a
þ gsk

a3

�
: ð2:7Þ

1I will not discuss the possibility of the Universe being open or
closed. However, Refs. [66,67] provide more details about the
possibility of a closed Universe.
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The lapse function N appears in HHL as a Lagrangian
multiplier (there is no momentum canonically conjugated
to N). RewritingHHL asHHL ¼ NHHL, when we varyHHL
with respect to N, we obtain [11] HHL ≈ 0 (≈ means
weakly zero). This is called the super-Hamiltonian
constraint.

B. Matter Hamiltonian

A perfect fluid can be described by a Hamiltonian using
the Schutz formalism [6]. The action for a perfect fluid in
this formalism reads

Sm ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ð16πpÞ; ð2:8Þ

where g is the determinant of gμν and p is the pressure of the
fluid. The equation of state for a perfect fluid is written as

p ¼ ωρ; ð2:9Þ

where ρ is the energy density and ω is the equation of state
parameter, which is subject to −1 ≤ ω ≤ 1.
The Schutz formalism consists of writing the fluid

4-velocity Uμ in terms of six velocity potentials, where
in FRLW cosmology these potentials are reduced to three.
Substituting the FLRWmetric (2.1) into the Sm action (2.8)
and identifying the canonical variables and performing
some canonical transformations [69], we obtain a simple
Hamiltonian for a single perfect fluid which reads

Hm ¼ N
PT

a3ω
; ð2:10Þ

where PT is the momentum canonically conjugated to the
fluid degree of freedom T, which can be interpreted as a
time variable. The Hamiltonian Hm can also be written as
Hm ¼ NHm, where Hm is a Lagrangian multiplier similar
to HHL of the gravitational part.

C. Full Hamiltonian

From the gravitational and matter Hamiltonians,
Eqs. (2.7) and (2.10), respectively, the minisuperspace
Hamiltonian for a single perfect fluid in HL theory reads

H ¼ N
�
−
P2
a

4a
− gckaþ gΛa3 þ

grk2

a
þ gsk

a3
þ PT

a3ω

�
;

ð2:11Þ
from which we can also define the super-Hamiltonian
constraint H ¼ HHL þHm, which satisfies

H ≈ 0: ð2:12Þ

In the following sections, I will show that this constraint
leads to the Friedmann equation in the classical level,

whereas at the quantum level it gives the Wheeler-DeWitt
equation. In the latter, the super-Hamiltonian constraint is
essential in the procedure of canonical quantization.
In this work, I will consider a HL quantum FLRW

universe filled with noninteracting radiation (ω ¼ 1=3) and
dust (ω ¼ 0) fluids. However, Eq. (2.11) is valid only for a
single fluid. I will set ω ¼ 1=3 in order to describe a
radiation fluid and, following Ref. [30], I will also include
dust as a second decoupled fluid by introducing another
term of the type of Eq. (2.10) for ω ¼ 0. From these
considerations, the Hamiltonian for radiation and dust
fluids in HL theory reads

Hrd ¼ NHrd ¼ N

�
−
P2
a

4a
− gckaþ gΛa3

þ grk2

a
þ gsk

a3
þ PT

a
þ Pφ

�
; ð2:13Þ

where Pφ is a constant stemming from Eq. (2.10) for ω ¼ 0

and Hrd is the super-Hamiltonian related to Hrd.
Additionally, for the potential part of HL theory, I will

consider from now on the particular case of no cosmo-
logical constantlike term (gΛ ¼ 0).

III. CLASSICAL DYNAMICS HǑRAVA-LIFSHITZ
COSMOLOGY

In this section, I consider analytical solutions of the HL
classical cosmology in minisuperspace for noninteracting
radiation and dust fluids. The equations of motion for each
system variable and its canonically conjugate momentum
are then obtained from the evaluation of the Poisson
brackets of each of them with the Hamiltonian.
The HL super-Hamiltonian constraint containing radia-

tion and dust fluids, Eq. (2.13), together with the equation
for Pa, Eq. (2.6), result in the classical Friedmann equation,

�
_a
a

�
2

¼ N2

�
gsk
a6

þ grk2

a4
−
gck
a2

þ PT

a4
þ Pφ

a3

�
: ð3:1Þ

From the Hamiltonian, Eq. (2.13), the equations of motion
for T and φ read

_T ¼ fT;Hrdg ¼ N
a
→ adT ¼ Ndt;

_φ ¼ fφ; Hrdg ¼ N → dφ ¼ Ndt:

One needs to choose a gauge, which corresponds to
choosing the lapse function N in order to define the time
variable. In principle, both T and φ can be the time variable.
If we choose N ¼ 1, φ is the cosmic time, whereas for
N ¼ a we obtain the result that T is the conformal time.
Analytical solutions of the Friedmann equation, Eq. (3.1),
can be obtained only for the latter, so I will consider the
gauge N ¼ a throughout this paper, which means that
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T ¼ η, where η is the conformal time. Therefore, Eq. (3.1)
now reads

�
a0

a2

�
2

¼ gsk
a6

þ grk2

a4
−
gck
a2

þ Pη

a4
þ Pφ

a3
; ð3:2Þ

where the prime denotes the derivative with respect to
conformal time.
The analytical solutions for Eq. (3.2) with the initial

condition að0Þ ¼ 0 read

aðηÞ ¼

8>>><
>>>:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gs
gc

q
sin ð2 ffiffiffiffiffi

gc
p

ηÞ þ ðPηþgrÞ
gc

sin2ð ffiffiffiffiffi
gc

p
ηÞ

r
þ Pφ

2gc
½1 − cos ð ffiffiffiffiffi

gc
p

ηÞ�; k ¼ 1;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jgsj
gc

q
sinh ð2 ffiffiffiffiffi

gc
p

ηÞ þ ðPηþgrÞ
gc

sinh2ð ffiffiffiffiffi
gc

p
ηÞ

r
þ Pφ

2gc
½cosh ð ffiffiffiffiffi

gc
p

ηÞ − 1�; k ¼ −1;
ð3:3Þ

where gc and the product gsk are both positive definite.
The latter is positive when gs > 0 (gs < 0) for k ¼ 1
(k ¼ −1). From now on, the notation gsk ¼ jgsj will
represent the case gs < 0; k ¼ −1 or both the gs >0;k¼1
and gs < 0; k ¼ −1 cases when the results for both k ¼ 1
and k ¼ −1 can be written in a single expression. From
Eq. (3.2), the stiff matterlike term involving gs initially
dominates near the singularity at η ¼ 0, followed by
radiation dominance, which consists of a radiation fluid
plus a “HL radiation” term involving gr. Far from the
singularity, radiation domination is followed by dust
domination and ends up with domination of the curvature
term involving gc. If the cosmological constant term were
not neglected, as in the Hamiltonian given by Eq. (2.13),
far from the singularity it would dominate after the
curvature term.
Now I consider some particular cases. In the limit where

the curvaturelike term is negligible (gc → 0), Eqs. (3.3)
read

aðηÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ffiffiffiffiffiffiffi
jgsj

p
ηþ ðPη þ grÞη2

q
þ Pφη

2

4
; ð3:4Þ

which is valid for both k ¼ 1 and k ¼ −1. Also, when we
additionally consider that the stiff matterlike time is
negligible (gs → 0), the latter result reduces to

aðηÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pη þ grk2

q
ηþ Pφ

4
η2: ð3:5Þ

The remaining term from HL theory is the radiationlike
constant, gr, which adds up to usual radiation. When k ¼ 0
or in the limit gr → 0, HL reduces to GR and one obtains a
flat universe filled with radiation and dust fluids, where
radiation dominates near the singularity and dust dominates
far from it.
On the other hand, when stiff matter like time is

negligible (gs → 0) in Eqs. (3.3), one obtains

aðηÞ ¼

8>><
>>:

ffiffiffiffiffiffiffiffiffiffiffiffi
ðPηþgrÞ

gc

q
sin ð ffiffiffiffiffi

gc
p

ηÞ þ Pφ

2gc
½1 − cos ð ffiffiffiffiffi

gc
p

ηÞ�; k ¼ 1;ffiffiffiffiffiffiffiffiffiffiffiffi
ðPηþgrÞ

gc

q
sinh ð ffiffiffiffiffi

gc
p

ηÞ þ Pφ

2gc
½cosh ð ffiffiffiffiffi

gc
p

ηÞ − 1�; k ¼ −1.
ð3:6Þ

In the following, I will consider the HL quantum
solutions.

IV. QUANTUM DYNAMICS HǑRAVA-LIFSHITZ
COSMOLOGY

In this section, I consider analytical solutions of the HL
quantum cosmology in minisuperspace for noninteracting
radiation and dust fluids. The cyclic and bounce universe
solutions presented in this section are obtained for the
first time for HL theory for nonzero gc, gr, and gs and for
radiation and dust fluids.
The HL super-Hamiltonian constraint containing radia-

tion and dust fluids, from Eq. (2.13), reads

Hrd ¼ −
P2
a

4a
− gckaþ grk2

a
þ gsk

a3
þ Pη

a
þ Pφ ≈ 0; ð4:1Þ

where I have considered the lapse function N ¼ a and
gΛ ¼ 0 as in Sec. III. Using the Dirac formalism for
constrained systems, the super-Hamiltonian constraint is
promoted to an operator, which annihilates the quantum
wave function of the Universe, Ψ, in the form

ĤrdΨ ¼ 0: ð4:2Þ

This is the so-called Wheeler-DeWitt equation. From
Eqs. (4.1) and (4.2), one obtains
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i∂ηΨ ¼
�
1

4
∂2
a − gcka2 þ grk2 þ

gsk
a2

− ia∂φ

�
Ψ; ð4:3Þ

where P̂a ¼ −i∂a, P̂η ¼ −i∂η, and P̂φ ¼ −i∂φ (see
Refs. [30,69]) and Ψ ¼ Ψða;φ; ηÞ. However, two impor-
tant considerations must be made. First, there is an
operator-ordering ambiguity in the Wheeler-DeWitt equa-
tion, which is related to the choice of measure in the path
integral in the canonical quantization procedure when one
replaces the momentum Pa with its corresponding operator
[70]. In order to account for this ambiguity, one must
rewrite the kinetic term properly. Second, in order to get rid
of the derivative ∂φ, following Ref. [30] I will consider that
the wave function Ψ is an eigenstate of the dust matter
operator, such that P̂φjΨi ¼ PφjΨi, which implies that
dust matter is conserved.2 Therefore, the wave function Ψ
in an eigenstate of P̂φ with eigenvalue Pφ and the wave
function Ψ ¼ Ψða;φ; ηÞ can be written as

Ψða;φ; ηÞ ¼ Ψða; ηÞeiPφφ: ð4:4Þ

From these considerations, Eq. (4.3) now reads

i∂ηΨða; ηÞ ¼
�
−
1

4
∂2
a þ

α

4a
∂a

þ gcka2 − grk2 −
gsk
a2

− Pφa

�
Ψða; ηÞ; ð4:5Þ

where the parameter α represents the ambiguity in the
ordering of a and Pa in the kinetic term of Eq. (4.1) and the
transformation η → −η is also considered. The appropriate
choice of α will be useful in the following calculations,
although the results must not depend on it. On the other
hand, the sign change in the time variable was done in order
to write the Wheeler-DeWitt equation as a Schrödinger-
type equation (except for the term involving α at this point).

A. De Broglie–Bohm interpretation

The wave function Ψ can be written in the polar form as
Ψ ¼ ReiS, such that the imaginary and real parts give
evolution equations for R and S, respectively, which are real
functions. In order to introduce the dBB interpretation, I
write the Lagrangian for Eq. (4.5), which reads

Lrd ¼ a−α
�
iΨ�∂ηΨ −

1

4
∂aΨ�∂aΨ − VΨ�Ψ

�
; ð4:6Þ

where

V ¼ gcka2 −
gsk
a2

− grk2 − Pφa ð4:7Þ

is an external classical potential. From Noether’s theorem
[71], one knows that the invariance of Ψ under internal
symmetry (Ψ → eiθΨ) results in a conserved charge ρ and a
conserved current J which are related by the following
continuity equation:

∂ηða−αR2Þ þ ∂a

�
a−αR2

∂aS
2

�
¼ 0; ð4:8Þ

where ρ ¼ a−αR2 and J ¼ a−αR2ð∂aSÞ=2. This equation
is the exact imaginary part of Eq. (4.5) mentioned before
and is interpreted as the equation of conservation of
probability.
In the dBB interpretation, particles have a deterministic

trajectory, which is given by aðηÞ in the present case.
Therefore, an equation of motion must be postulated. This
equation can be built out of J ¼ ρv, where v ¼ a0 is the
velocity of the particle. Therefore,

a0 ¼ ∂aS
2

; ð4:9Þ

which is known as the guidance equation.3 From the
knowledge of S and an initial condition for a, one can
integrate it to obtain aðηÞ. Also, one can notice the
trajectory of the particle is independent of the choice of α.
On the other hand, the real part of Eq. (4.5) in terms of R

and S reads

∂ηSþ ð∂aSÞ2
4

þ V þQ ¼ 0: ð4:10Þ

This equation is a Hamilton-Jacobi-type equation, where
the last term,

Q ¼ −
1

4

∂2
aða−αRÞ
ða−αRÞ ; ð4:11Þ

is the so-called quantum potential. Therefore, from
Eq. (4.10), one concludes that deterministic trajectories
are subject to classical and quantum potentials.
Therefore, in order to obtain a solution for aðηÞ from

Eq. (4.9), one needs to solve both Eq. (4.8) and Eq. (4.10),
which are coupled equations for R and S.

B. Analytical results

The main goal of this paper is to present analytical
solutions for Eq. (4.5). There is a solution for a similar
problem in the literature, which can be adapted to the

2As a first attempt, I consider this simple case, where the
evolution is nonunitary. However, one can manage to obtain a
unitary solution in which dust matter creation is possible [30].

3For arbitrary lapse function N and equation of state parameter
ω, and undoing the transformation η → −η, a0 ¼ − N

2a ð∂aSÞ.
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present case. However, some changes of variables must
be done in order to use this solution. These details will
be presented in the following. From the analytical
solutions of the Wheeler-DeWitt equation, analytical
solutions can be obtained for the scale factor, thereby
solving Eq. (4.9).
The aforementioned solution is given in Ref. [30]. This

solution was given for the particular case of Eq. (4.5) when
gc ¼ 1, gr ¼ 0, and gs ¼ 0. Additionally, Falciano et al. set
α ¼ 0. TheWheeler-DeWitt equation for this case [Eq. (25)
from Ref. [30]] reads

i∂ηψða; ηÞ ¼
�
−

1

2m
∂2
a þ

mω2
0

2
a2 − Pφa

�
ψða; ηÞ:

ð4:12Þ

This is a one-dimensional Schrödinger equation for a
particle with mass m and a potential which contains
a harmonic oscillator term with a frequency ω0 and a
constant force Pφ. In order to use this solution for the
present case, one needs to reduce Eq. (4.5) to Eq. (4.12)
while performing some changes of variables. One also
needs to set α ≠ 0, which is in fact the key point here
and, as shown in Sec. IVA, it does not affect the result
for the scale factor.
I consider the following change of variables for the wave

function of Eq. (4.5):

Ψða; ηÞ ¼ eigrk
2ηaα=2μða; ηÞ; ð4:13Þ

where α ¼ −1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 16gsk

p
. Both values of α are suitable

to absorb the term gs=a2. I choose

α ¼ −1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 16gsk

p
; ð4:14Þ

where one obtains α → 0 when gs → 0. The term −grk2 is
also absorbed into the complex exponential. From these
changes of variables, Eq. (4.5) is now an equation for
μða; ηÞ which reads

i∂ημða; ηÞ ¼
�
−
1

4
∂2
a þ gcka2 − Pφa

�
μða; ηÞ: ð4:15Þ

This equation is exactly Eq. (4.12) for the particular case
when

m ¼ 2; ð4:16Þ

ω0 ¼
ffiffiffiffiffiffiffi
gck

p
: ð4:17Þ

For these values of ω0 and m, the analytical result for the
wave function given by Eq. (41) of Ref. [30] reads

μða; ηÞ

¼
�
8σ̄

π

�
1=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

cosð ffiffiffiffiffiffiffi
gck

p
ηÞ
h
1þ iσ̄

tanð
ffiffiffiffiffi
gck

p
ηÞffiffiffiffiffi

gck
p

i
vuuut

× exp

�
i

ffiffiffiffiffiffiffi
gck

p
tanð ffiffiffiffiffiffiffi

gck
p

ηÞ

×
�
a2 −

�
a − Pφ

2

½1−cosð
ffiffiffiffiffi
gck

p
ηÞ�

gck

	
2

cosð ffiffiffiffiffiffiffi
gck

p
ηÞ2

h
1þ iσ̄

tanð
ffiffiffiffiffi
gck

p
ηÞffiffiffiffiffi

gck
p

i

þ aPφ
1 − cosð ffiffiffiffiffiffiffi

gck
p

ηÞ
gck cosð

ffiffiffiffiffiffiffi
gck

p
ηÞ

þ P2
φ

2gck

�
η
tanð ffiffiffiffiffiffiffi

gck
p

ηÞffiffiffiffiffiffiffi
gck

p −
1 − cosð ffiffiffiffiffiffiffi

gck
p

ηÞ
gck cosð

ffiffiffiffiffiffiffi
gck

p
ηÞ
��


: ð4:18Þ

The solution for μða; ηÞ was obtained using the propagator
of the forced quantum harmonic oscillator using the
following initial state:

μ0ða; 0Þ ¼
�
8σ̄

π

�
1=4

e−σ̄a
2

; ð4:19Þ

where σ̄ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 − gsk

p
þ i

ffiffiffiffiffiffiffi
gsk

p
. Notice that both the sol-

ution and its initial condition contain the parameter gs in
the constant σ̄, although there is no term involving gs in
Eq. (4.15). In fact, only the parameters σ and Pφ, which are
related to radiation and dust fluids, respectively, were
expected. Additionally, the dynamics for this matter content
is radiation domination near η ¼ 0 and dust domination far
from it. Therefore, an initial condition at η ¼ 0 must
involve only the parameter σ. However, the full problem
considered in this section before the changes of variables
involves a gs term, which, from the classical dynamics of
Sec. III, behaves as a stiff matterlike fluid and dominates
over radiation near η ¼ 0. One should then expect that an
initial condition for this problem uniquely involves gs.
Nonetheless, owing to the fact that the gs term does not
represent a fluid, radiation fluid degrees of freedom must
also be present in the initial condition, i.e., this term must
be a function of both gs and σ. In other words, although
changes of variables are performed and gs is no longer
explicit in Eq. (4.15), the gs information is encoded in σ̄ due
to its relevance near η ¼ 0. In the Appendix, I derive an
ansatz solution for the case of a radiation dominated
quantum FLRW universe in the framework of HL theory
where only the gs parameter is nonzero. The obtained
ansatz justifies this choice of initial condition. Analogously,
the gr radiation fluidlike term is encoded in the radiation
fluid degree of freedom, σ.
From this analytical result, the expression for Ψða;φ; ηÞ

from Eqs. (4.4), (4.13), and (4.14) reads

QUANTUM HǑRAVA-LIFSHITZ COSMOLOGY IN THE DE … PHYS. REV. D 104, 103525 (2021)

103525-7



Ψða;φ; ηÞ ¼ eigrk
2ηeiPφφað−1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ16gsk

p
Þ=2μða; ηÞ; ð4:20Þ

where μða; ηÞ is given by the solution of Eq. (4.18).

From Eq. (4.20), one can obtain Sða; ηÞ and substitute it
into Eq. (4.9). Solving this equation for the initial condition
að0Þ ¼ aB, one obtains

aðηÞ ¼

8>>><
>>>:

aB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2ð ffiffiffiffiffi

gc
p

ηÞ þ
ffiffiffi
gs
gc

q
sin ð2 ffiffiffiffiffi

gc
p jηjÞ þ σ2

gc
sin2ð ffiffiffiffiffi

gc
p

ηÞ
r

þ Pφ

2gc
½1 − cos ð ffiffiffiffiffi

gc
p

ηÞ�; k ¼ 1;

aB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh2ð ffiffiffiffiffi

gc
p

ηÞ þ
ffiffiffiffiffi
jgsj
gc

q
sinh ð2 ffiffiffiffiffi

gc
p jηjÞ þ σ2

gc
sinh2ð ffiffiffiffiffi

gc
p

ηÞ
r

þ Pφ

2gc
½cosh ð ffiffiffiffiffi

gc
p

ηÞ − 1�; k ¼ −1.
ð4:21Þ

These are quantum bounce solutions in which, in contrast
to the classical solutions, the squared trigonometric and
hyperbolic cosine novel terms play the role of avoiding
singularities. These results enable the study of the back-
ground quantum cosmology for this model from an
analytical perspective.
The positive spatial section solution represents a cyclic

universe (no big bang or big crunch singularities), whereas
the negative spatial section solution has a unique bounce
which connects a contraction and an expansion phase.
However, one must consider some limits for the constants
gc and gs in order to appreciate the overlap of these effects.
Some plots will be presented later in this section in order to
illustrate the behavior of these solutions for different values
of its constants.
Comparing Eqs. (4.21) to the classical solutions,

Eqs. (3.3), one obtains that in the classical limit σ2 ¼
Pη þ grk2, which means that σ is a degree of freedom related
to a radiation fluid. Therefore, gr contributes only to an
effective radiation fluid density and does not appear explic-
itly in aðηÞ. Also, the classical behavior is obtained when

j tan ð ffiffiffiffiffi
gc

p
ηÞj

j tanh ð ffiffiffiffiffi
gc

p
ηÞj



≫

ffiffiffiffiffi
gc

p ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jgsj þ σ2

p
−

ffiffiffiffiffiffiffijgsj
p Þ

σ2
ð4:22Þ

for k ¼ 1 and k ¼ −1, respectively. In the limit where
gc → 1 and gs → 0, these results reduce to 1=σ for both
values of k, where σ contains the grk2 term.Also, both results
reduce to jηj ≫ 1=σ when one additionally considers the
limit k → 0 (see Ref. [30]).

One must draw attention to the module jηj in the terms
involving gs in Eqs. (4.21). This is because the wave
function given in Eq. (4.18) was obtained by the propa-
gation of the initial condition only for negative values of η.
Therefore, one needs to also solve for positive values of η
[setting η → −η in both Eq. (4.9) and Eq. (4.18)] and
incorporate it into the solutions. Owing to the presence of
odd trigonometric and hyperbolic sines, the module ensures
that the solution is symmetric, which can be confirmed
from the classical solutions of Sec. III. This observation
was not necessary in the calculations of Ref. [30], because
only even functions appear in the results for aðηÞ.
As in Sec. III, I will consider some particular cases of

Eqs. (4.21). In the limit where gc → 0, for both values of k
it reduces to

aðηÞ ¼ aB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

ffiffiffiffiffiffiffi
jgsj

p
jηj þ σ2η2

q
þ Pφη

2

4
: ð4:23Þ

Also considering in the latter equation the limit where
gs → 0, it reduces to

aðηÞ ¼ aB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ σ2η2

q
þ Pφη

2

4
; ð4:24Þ

where now σ̄ ¼ σ. This result resembles the case of a
FLRW flat universe in GR with radiation and dust [30],
except for the HL radiation term correction for k ≠ 0. When
k ¼ 0, HL theory reduces to GR and the results are exactly
the same.
On the other hand, when gs → 0, Eqs. (4.21) reduce to

aðηÞ ¼

8>><
>>:

aB
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2ð ffiffiffiffiffi

gc
p

ηÞ þ σ2

gc
sin2ð ffiffiffiffiffi

gc
p

ηÞ
q

þ Pφ

2gc
½1 − cos ð ffiffiffiffiffi

gc
p

ηÞ�; k ¼ 1;

aB
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh2ð ffiffiffiffiffi

gc
p

ηÞ þ σ2

gc
sinh2ð ffiffiffiffiffi

gc
p

ηÞ
q

þ Pφ

2gc
½cosh ð ffiffiffiffiffi

gc
p

ηÞ − 1�; k ¼ −1.
ð4:25Þ

These results are qualitatively similar to those of Ref. [30] when gc ¼ 1, which are given by

aðηÞ ¼
(
aB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2ðηÞ þ σ2sin2ðηÞ

p
þ Pφ

2
½1 − cosðηÞ�; k ¼ 1;

aB
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh2ðηÞ þ σ2sinh2ðηÞ

p
þ Pφ

2
½coshðηÞ − 1�; k ¼ −1.

ð4:26Þ
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In order to illustrate the results, I present some plots of
the scale factor for representative values, which capture
the effect of each constant in its evolution. I will consider
Pφ ¼ 0 for all plots and focus on the effects of gc and gs,
which are introduced by HL theory. Additionally, in all
plots there is a gray curve which corresponds to the
solution with respect to GR, where the HL parameters
are null, that is given by Eq. (4.24).
In Fig. 1, the scale factor is considered in the limit where

gs → 0, which is given by Eqs. (4.25). In Fig. 1(a), one
notices that for k ¼ 1 nonzero values of gc produce
oscillating universes which are cyclic and which have
multiple bounces. Starting from gc ¼ 0, for increasing
values of gc the oscillation frequency grows and the
oscillation amplitude becomes smaller. In Fig. 1(b), for
k ¼ −1, increasing values of gc make the bounce more
curved.

In Fig. 2, the scale factor is considered in the limit where
gc → 0, which is given by Eq. (4.23). In this case, for both
values of the spatial section, the bouncing universes
become more curved for increasing values of gs. This is
qualitatively similar to the case gs → 0 for k ¼ −1 of
Fig. 1(b), where it is the increase of gc that progressively
curves the universes. However, their difference is that in
the present case aðηÞ=aB ≈ 1þ ffiffiffiffi

gs
p jηj þOðη2Þ near the

bounce, whereas aðηÞ=aB ≈ 1þ ðgc þ σ2Þη2=2þOðη3Þ in
Fig. 1(b). Therefore, the bounce solution is more abrupt
in the present case.
In Fig. 3, the scale factor is considered for nonzero

values of both gc and gs, which are given by Eqs. (4.21).
The effects are overlapping, which is the more general case.
In Fig. 3(a), where k ¼ 1, one notices that the oscillatory
behavior due to nonzero values of gc is affected by nonzero
values of gs in two aspects: (i) in the oscillatory regime, the
frequency and the oscillation amplitude increase (far from
the bounce), and (ii) the bounce around η ¼ 0 is linear,
whereas the other bounces are qualitatively similar and
deeper. In Fig. 3(b), where k ¼ −1, the effects of both
increasing values of gc and gs, as I show in Fig. 1(b) and
Fig. 2, make the bounce more curved. Therefore, the effects
add up. However, near the bounce the scale factor reads
aðηÞ=aB ≈ 1 þ ffiffiffiffi

gs
p jηj þ ðgc − jgsj þ σ2Þη2=2 þ Oðη3Þ,

which means that gs dominates near the bounce, whereas as
we move away from the bounce both effects become
relevant and gc eventually dominates over gs.
From the solution for the wave function, Eq. (4.20), one

can also obtain the quantum potential, Eq. (4.11), which is
responsible for the quantum effects. The full analytical
expression is lengthy, but one can obtain a reasonable
approximation while noticing from Eqs. (4.21) that the
dust fluid contribution dominates only far from the bounce.
The quantum effects are present in the entire evolution for
k ¼ 1 when gc ≠ 0, but the dust fluid contribution does not

FIG. 2. Analytical scale factor in quantum HL theory as a
function of the conformal time in the limit gc → 0. The plots are
given for aB ¼ 1, Pφ ¼ 0, σ ¼ 0.5, and certain representative
values of gs. The plots are valid for both spatial sections, k ¼ �1,
where gs > 0 ðgs < 0Þ for k ¼ 1 ðk ¼ −1Þ.

(a) (b)

FIG. 1. Analytical scale factor in quantum HL theory as a function of the conformal time in the limit gs → 0. Plots are given for
aB ¼ 1, Pφ ¼ 0, σ ¼ 0.5, and certain representative values of gc. In (a) and (b), the spatial sections k ¼ 1 and k ¼ −1, respectively, are
considered.
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significantly affect the qualitative quantum potential
behavior. Therefore, it is a good approximation to consider
Eqs. (4.21) when Pφ is negligible. From these consider-
ations, the quantum potential, Eq. (4.11), reads

QðηÞ ¼ a2B½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 − jgsj

p
− 4a2Bðσ2 − jgsjÞ�

aðηÞ2 ; ð4:27Þ

where aðηÞ is given by Eqs. (4.21) for negligible Pφ. This
result is a generalization of Eq. (22) of Ref. [63]. One
explicitly notices that when aB ¼ 0, i.e., the universe is
singular, the quantum potential vanishes.
In Fig. 4, one can notice that the behavior of QðηÞ for

both spatial sections is in agreement with the panels of
Fig. 3. For k ¼ 1, the cyclic universe solutions with
multiple bounces show that the quantum potential is also
oscillatory and non-negligible in the entire time evolution.
On the other hand, for k ¼ −1 there is a unique bounce at
η ¼ 0 that is dominated by the gs effect, which becomes
more curved as we increase the values of gc and gs.

V. CONCLUSIONS

In this work, I presented a quantum minisuperspace
model of FLRW cosmology in the framework of the HL
theory of gravity. For this purpose, I considered the HL
theory in its projectable version and without the detailed
balance condition. The Universe is filled with noninteract-
ing radiation and dust fluids, which were introduced using
the Schutz approach. Canonical quantization was then
performed and a Wheeler-DeWitt equation, Eq. (4.5),
was obtained. Performing a separation of variables and a
suitable choice of parameters, an analytical solution of
Eq. (4.5) for the wave function was first obtained in this
context for nonzero values of gc, gr, and gs present in the
HL Hamiltonian, Eq. (2.13). I set gΛ ¼ 0, which will be
considered in a future work.
From the solution of the wave function, I considered the

dBB interpretation of quantummechanics in order to derive
analytical solutions for the scale factor, which are given by
Eqs. (4.21). These are quantum bounce solutions in the
cases of closed and open FLRW quantum cosmologies in
HL theory. The closed universe solutions are cyclic and
have multiple bounces which avoid big bang and big
crunch singularities. On the other hand, the open universe
solutions are contracting/expanding unique bounce solu-
tions, which get more curved as one increases the values of
the gc and gs HL parameters.
I also obtained the quantum potential, Eq. (4.27),

whose qualitative behavior confirms its role in the
quantum evolution of each solution, i.e., that it is
responsible for the avoidance of the singularities.
Classical results were also presented in Sec. III, which
were important for identifying σ̄ and constructing the
quantum results with a well-defined classical limit. In the
Appendix, an ansatz for the wave function was derived in
the case where only the radiation fluid degree of freedom
and the gs parameter of HL gravity are nonzero, which
confirms the value of σ̄.

FIG. 4. Quantum potential in HL theory as a function of the
conformal time for both k ¼ 1 and k ¼ −1. Plots are given for the
representative values aB ¼ 1, Pφ ¼ 0, and σ ¼ gc ¼ jgsj ¼ 0.5.

(a) (b)

FIG. 3. Analytical scale factor in quantum HL theory as a function of the conformal time for representative values of gc and gs. The
plots are given for aB ¼ 1, Pφ ¼ 0, and σ ¼ 0.5. In (a) and (b), the spatial sections k ¼ 1 and k ¼ −1, respectively, are considered.
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As future perspectives, these results will be important
for studying gravitational particle production and baryo-
genesis in this context. On the other hand, it would
also be interesting to consider a stiff matter fluid
(ω ¼ 1) in this context as well as when gΛ ≠ 0, as
previously mentioned.
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APPENDIX: ANSATZ SOLUTION FOR
A QUANTUM FLRW UNIVERSE FILLED
WITH RADIATION AND NONZERO gs

HL PARAMETER

In this section, I consider the quantum cosmology for HL
theory in the particular case where gc ¼ gr ¼ 0 and gs ≠ 0
(except for gΛ, which is neglected in this paper) filled with a
radiation fluid. This case corresponds to a particular case of
Eq. (4.5) which reads

i∂ηΨða; ηÞ ¼
�
−
1

4
∂2
a þ

α

4a
∂a −

gsk
a2

�
Ψða; ηÞ: ðA1Þ

A solution for this equation can be obtained from the
following ansatz:

Ψansatzða; ηÞ ¼ aα=2fðηÞe−gðηÞa2 ; ðA2Þ

where fðηÞ and gðηÞ are arbitrary functions of η. From
Sec. IV, the quantum analytical solution for this case,
where the choice α ¼ −1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 16gsk
p

was considered, is
given by

aðηÞ ¼ aB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

ffiffiffiffiffiffiffi
gsk

p
jηj þ σ2η2

q
: ðA3Þ

The expressions for fðηÞ and gðηÞ of the wave-function
ansatz which reproduce this analytical solution read

fðηÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ iσ̄η

p ; gðηÞ ¼ σ̄

1þ iσ̄η
; ðA4Þ

where σ̄ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 − gsk

p
þ i

ffiffiffiffiffiffiffi
gsk

p
. In terms of these func-

tions, the ansatz results as follows:

Ψansatzða; ηÞ ∝ að−1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ16gsk

p
Þ=2 e−

σ̄a2
1þiσ̄ηffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ iσ̄η
p : ðA5Þ

From the ansatz, the initial condition at η ¼ 0 reads

Ψansatzða; 0Þ ∝ að−1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ16gsk

p
Þ=2e−σ̄a2 : ðA6Þ

Comparing this result to Eqs. (4.13) and (4.18), this is the
exact initial dependence on the scale factor a. One can also
notice the presence of the parameter σ̄ in the exponential.
Therefore, Eq. (4.19) is the appropriate initial condition, as

we notice that the term að−1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ16gsk

p
Þ=2 was factorized by a

previous change of variables.
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