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Cross-correlating cosmic microwave background (CMB) lensing and galaxy clustering has been shown
to greatly improve the constraints on the local primordial non-Gaussianity (PNG) parameter fNL by
reducing sample variance and also parameter degeneracies. To model the full use of the 3D information of
galaxy clustering, we forecast fNL measurements using the decomposition in the spherical Fourier-Bessel
(SFB) basis, which can be naturally cross-correlated with 2D CMB lensing in spherical harmonics. In the
meantime, such a decomposition would also enable us to constrain the growth rate of structure, a probe of
gravity, through the redshift-space distortion (RSD). As a comparison, we also consider the tomographic
spherical harmonic (TSH) analysis of galaxy samples with different bin sizes. Assuming galaxy samples
that mimic a few future surveys, we perform Fisher forecasts using linear modes for fNL and the growth-
rate exponent γ, marginalized over standard Λ cold dark matter (ΛCDM) cosmological parameters and
two nuisance parameters that account for clustering bias and magnification bias. Compared to TSH
analysis using only one bin, SFB analysis could improve σðfNLÞ by a factor of 3 to 12 thanks to large radial
modes. With future wide-field and high-redshift photometric surveys like the LSST, the constraint
σðfNLÞ < 1 could be achieved using linear angular multipoles up to lmin ≃ 20. Compared to using galaxy
autopower spectra only, joint analyses with CMB lensing could improve σðγÞ by a factor of 2 to 5 by
reducing degeneracies with other parameters, especially the clustering bias. For future spectroscopic
surveys like the DESI or Euclid, using linear scales, γ could be constrained to 3% precision, assuming the
GR fiducial value.
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I. INTRODUCTION

In many large-scale cosmological surveys, the observ-
ables can be classified as tracers of the matter field, the
main ingredient of which is the invisible and mysterious
dark matter [1] that is known to be interacting with
baryonic matter through gravity. The 3D large-scale struc-
ture (LSS) of the matter field can be traced with photons
emitted directly from baryonic matter—e.g., in galaxy
redshift and line-intensity mapping (LIM) surveys (see,
e.g., Refs. [2,3]). On the other hand, a 2D map of the line-
of-sight (LOS) integral of the matter field can also be
reconstructed up to a distant light source through the weak
gravitational lensing effect [4]. The light source can be
luminous matter at different redshifts [5] or the cosmic
microwave background (CMB) traveling from the epoch of
recombination [6].
The lensing convergence signal reconstructed from

CMB temperature and polarization maps is the LOS

integral of the matter field up to redshift z ∼ 1100, and
therefore should correlate with any galaxy-clustering obser-
vations. These cross-correlations have been detected in
several previous works using different CMB lensing and
galaxy-clustering datasets—see, e.g., Refs. [7,8] for the
first two detections. With the cross-correlation, CMB
lensing and galaxy clustering can also be further combined
to construct other statistics like EG [9–13] to probe gravity.
Joint analysis of CMB lensing and galaxy clustering has

been shown to be powerful in improving the constraint on
the local primordial non-Gaussianity (PNG) parameter fNL
[14–18]. CMB lensing is an unbiased tracer of the matter
field, while galaxy clustering has a bias that could be scale
dependent due to PNG [19,20]. This difference in bias of
the two tracers makes the joint analysis useful in reducing
the sample variance and mitigating the degeneracies
between fNL and other cosmological parameters.
In previous joint analyses, the galaxies in a redshift bin

are usually projected in the radial direction to make
an angular map to be cross-correlated with the CMB
lensing map, typically in spherical harmonic (SH) space.*yucheng.zhang@nyu.edu
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However, the radial information of the 3D galaxy field
could be lost in the projection. Even if we split the redshift
coverage of a galaxy sample into many bins and perform
the tomographic spherical harmonic (TSH) analysis with
the covariances between redshift bins fully included, it is
still uncertain how well the radial information could be
recovered for different scales that are mixed—see, e.g.,
Ref. [21] for a recent discussion on this. The standard 3D
analysis of galaxy clustering is usually based on the
Cartesian Fourier transform. However, this makes it diffi-
cult to do the cross-correlation with the SH coefficients
of 2D angular maps given the different bases. Also, for
analysis in Cartesian coordinates, large scales are quite
challenging given the spherical geometric boundaries
of the survey and also LOS effects like redshift-space
distortion (RSD) [22].
The positions of the galaxies are measured in spherical

coordinates, for which the spherical Fourier-Bessel (SFB)
decomposition would be a natural choice for power-spec-
trum analyses. SFB analysis decomposes a 3D field in the
spherical eigenfunctions of the Laplacian, which are spheri-
cal harmonics and spherical Bessel functions. There have
been a number of studies about SFB analysis of galaxy
clustering, which can be traced back to Refs. [23,24]. Here
we list some of the recent discussions with further references
cited therein. Reference [25] suggested the proper radial
basis function to be used in spherical shells, which is a more
optimal choice for surveys that do not start from redshift
zero. References [26,27] developed the SFB power-spectrum
estimators. Reference [28] compared SFB and tomographic
analyses in parameter constraints, and found that SFB
analysis is more robust to systematics in galaxy-clustering
bias. Reference [29] discussed cross-correlations of 2D
photometric and 3D spectroscopic galaxy surveys.
Reference [30] proposed a hybrid-basis inference by com-
bining SFB and Cartesian Fourier analyses on different
scales. Besides galaxy clustering, SFB formalism has also
been discussed for LIM in power-spectrum analysis [31] and
full-sky lensing reconstruction [32].
In this work, we consider the joint analyses of 2D CMB

lensing and 3D galaxy clustering, which are decomposed in
SH and SFB bases, respectively. The same angular basis
function makes it straightforward to cross-correlate 2D and
3D fields using their SH and SFB coefficients. In this SFB
formalism of galaxy clustering, we discuss the expressions
for power spectra, including modifications due to PNG,
RSD, and also magnification bias. Then we perform Fisher
forecasts for the constraints on fNL and the growth-rate
exponent γ, with a set of standard Λ cold dark matter
(ΛCDM) cosmological parameters and two nuisance
parameters accounting for galaxy-clustering bias and mag-
nification bias being marginalized. We assume a few galaxy
sample setups that mimic the designed specifications of
some future spectroscopic and photometric surveys, includ-
ing the Dark Energy Spectroscopic Instrument (DESI) [33],

the Euclid satellite mission [34], the Legacy Survey
of Space and Time (LSST) [35] of the Vera C. Rubin
Observatory, and the Spectro-Photometer for the History of
the Universe, Epoch of Reionization, and Ices Explorer
(SPHEREx) [36]. We consider only linear modes that are
quantified with SFB and TSH power spectra directly, which
we show to be better defined than converting a 3D wave
number to an angular mode in 2D harmonic space, as is
typically done. For fNL, it would be interesting to check the
improvement with large radial scales, which should not
only contribute more information but also help in reducing
sample variance. Thanks to the SFB transform in fully
including radial information on all scales, we are able to
constrain γ simultaneously. For these two parameters that
appear in galaxy clustering only, we investigate how CMB
lensing could contribute to the constraints by mitigating the
degeneracies with other cosmological or nuisance param-
eters. As a comparison with the SFB approach, we also
consider the TSH analysis of the galaxy samples and study
how the information from linear modes depends on differ-
ent bin sizes.
The paper is organized as follows: First, we briefly

review the CMB lensing and galaxy number density fields
in Sec. II, where modifications to the galaxy field due to
PNG, RSD, and magnification bias are also discussed. The
angular SH and 3D SFB decomposition and power spectra
of these fields are described in Sec. III, including the
well-known noises in autopower spectra. In Sec. IV, details
of fiducial CMB lensing and galaxy redshift surveys are
introduced. For these surveys, we perform Fisher forecasts
on parameter constraints, with the setup described in
Sec. V. We present and discuss the results in Sec. VI,
and we conclude in Sec. VII. In this work, we assume a
flat ΛCDM cosmology with Planck 2018 CMB TT, TE,
EEþ lowE best-fit parameters [37] as fiducial values.

II. TRACERS OF THE MATTER FIELD

In this section, we briefly review the observables in
CMB lensing and galaxy redshift surveys, and their
connection to the matter field.
Since the photons take a finite time to travel to us, we are

actually observing the past light cone instead of the 3D
matter field at z ¼ 0. For both CMB lensing and galaxy
surveys, the matter field traced at radial comoving distance
rðzÞ ¼ R

z
0 dz

0c=Hðz0Þ is the status of the field at redshift z,
which uniquely corresponds to the time that the light was
emitted. In linear perturbation theory, the redshift evolution
of the matter field can be described with

δmðr; zÞ ¼ DðzÞδm;0ðrÞ; ð1Þ

where δmðr; zÞ is the 3D matter field at redshift zðrÞ,
r≡ ðr; r̂Þ, where r̂≡ ðθ;ϕÞ denotes the angular coordi-
nates, DðzÞ is the linear growth factor normalized to
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Dðz ¼ 0Þ ¼ 1, and δm;0ðrÞ denotes the 3D matter field at
redshift z ¼ 0.

A. CMB lensing map

The CMB lensing signal reconstructed from CMB
temperature and polarization maps traces the integral of
the matter field along the line-of-sight direction:

κðr̂Þ ¼
Z

rCMB

0

drWκðr; rCMBÞδmðr; zÞ; ð2Þ

where rCMB is r at redshift zCMB ≃ 1100, and the lensing
kernel is

Wκðr; r⋆Þ ¼
3Ωm;0H2

0

2c2
ð1þ zÞr

�
1 −

r
r⋆

�
; ð3Þ

with the light source being the CMB and located at
r⋆ ¼ rCMB in this case.

B. Galaxy-clustering catalog

1. Number density

LSS galaxy or quasar surveys construct catalogs that
include the angular positions and redshifts of a large
number of point sources that are selected for clustering
analyses. Assuming uniform angular target selection, the
number density field can be written as

nðr; r̂Þ ¼ n̄VϕgðrÞ½1þ δgðr; r̂Þ�; ð4Þ

where the average volume number density n̄V ¼ N=V is
given by the ratio of the total number of targets and the
comoving volume of the survey, ϕgðrÞ is the radial
selection function of the survey, and δgðr; r̂Þ is related to
the matter field through

δgðr; r̂Þ ¼ bgðzÞδmðr; zÞ; ð5Þ

where bgðzÞ is the galaxy-clustering bias, which is usually
redshift dependent and can also be scale dependent
(e.g., due to primordial non-Gaussianity, discussed below).
Given the number density field constructed from the
catalogs, we can define an overdensity field

δðr; r̂Þ≡ nðr; r̂Þ − n̄V
n̄V

ð6Þ

and leave ϕg in the relation to δg,

δðr; r̂Þ ¼ ϕgðrÞδgðr; r̂Þ þ ϕgðrÞ − 1: ð7Þ

To get ϕgðrÞ for the survey, we first define the normalized
redshift distribution

fgðzÞ≡ 1

N
dN
dz

; ð8Þ

which can be directly constructed with all the redshifts in
the catalog—e.g., by making a histogram. The relation
between ϕgðrÞ and fgðzÞ can be derived by considering the
number of targets in a thin radial slice

Z
Ω
dΩr2drnðr; r̂Þ ¼ NfgðzÞdz; ð9Þ

which gives

n̄VϕgðrÞr2dr ¼ n̄ΩfgðzÞdz; ð10Þ

where n̄Ω ¼ N=Ω is the average angular number density—
i.e., the number of targets per solid angle. With this relation,
ϕgðrÞ and fgðzÞ can be used interchangeably in describing
the radial distribution of galaxies.
Similarly to the 3D field δðr; r̂Þ, the projected 2D galaxy

overdensity map gðr̂Þ is usually constructed as

gðr̂Þ≡
R
nðr; r̂Þr2dr − n̄Ω

n̄Ω
: ð11Þ

Combining Eqs. (4) and (10), g is related to δg through

gðr̂Þ ¼
Z

dr
HðzÞ
c

fgðzÞδgðr; r̂Þ; ð12Þ

where dr ¼ cdz=HðzÞ has been used.
To summarize, uniform 3D galaxy overdensity fields can

be simply connected to the matter perturbation field with
Eq. (5). However, due to the target selections in real surveys
and depending on how the fields are constructed given the
data, additional calibration functions like ϕgðrÞ or fgðzÞ
may have to be applied. For the 3D and 2D overdensity
fields constructed from observed catalogs using Eqs. (6)
and (11), ϕgðrÞ and fgðzÞ are included in the corresponding
theoretical modeling in Eqs. (7) and (12). Of course, if we
change how the fields were constructed from data, these
analytic modelings would have to be modified accordingly.

2. Redshift-space distortion

The observed galaxy redshifts include contributions
from not only the Hubble expansion but also the peculiar
velocities of the targets due to gravity. This causes a
radial distortion (i.e., RSD) in the observed galaxy field
compared with the true field. In linear perturbation theory,
the modification to δgðr; r̂Þ due to RSD can be described
with [38–40]

Δδgðr; r̂ÞjRSD ¼ fðzÞRδmðr; zÞ; ð13Þ
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where fðzÞ ¼ d lnDðzÞ=d ln a is the linear growth rate,
defined as the logarithmic derivative of the growth factor
with respect to the scale factor, and the RSD operator
R ≃ ∂2=∂r2∇−2, which results in a second-order derivative
of the spherical Bessel function in the LOS integral, as we
will see below. In GR and some modified gravity models,
the linear growth rate depends on the matter fraction
through fðzÞ ¼ ΩmðzÞγ [41]. The exponent γ ≃ 0.55 for
GR, and this value could vary for different gravity models.

3. Primordial non-Gaussianity of local type

Measuring PNG is a promising method to constrain
models of inflation in the early Universe, which sources the
primordial density fluctuations, and therefore the LSS of
the matter field observed today. PNG of local type is
introduced to the primordial Gaussian potential ψðxÞ
through ΨNGðxÞ ¼ ψðxÞ þ fNLðψ2ðxÞ − hψ2iÞ, with the
non-Gaussian term proportional to the scale-independent
fNL parameter. The standard single-field slow-roll inflation
predicts a fNL that is smaller than unity, while in other
models like multifield inflation, fNL could be significantly
higher (see, e.g., Ref. [20] and references therein).
It was found that this local PNG a leaves fingerprint on

LSS tracers like galaxies by introducing a scale-dependent
modification to the clustering bias [19]:

bgðz; kÞ ¼ bgðzÞ þ fNLΔbgðz; kÞ; ð14Þ

where

Δbgðz; kÞ ¼ 3ðbgðzÞ − 1Þ Ωm;0δc
k2TðkÞD̃ðzÞ

�
H0

c

�
2

; ð15Þ

with D̃ðzÞ being the linear growth factor normalized to
ð1þ zÞ−1 for matter domination—i.e., D̃ðzÞ ¼ D̃ð0ÞDðzÞ.
This bias correction is more significant on larger scales
(∝ k−2) and at higher redshissfts [∝ DðzÞ−1], with a simple
illustration in Fig. 1.

4. Magnification bias

Just as the CMB photons are lensed by the matter field all
the way from the last scattering surface to us, our observed
galaxies are also lensed by the foreground matter field. This
weak gravitational lensing could change the flux of an
individual target and also magnify the angular distribution
of the targets. The corresponding distortion to δgðr; r̂Þ is
given by [42,43]

Δδgðr; r̂Þjlensing ¼ ð5s − 2Þκgðr; r̂Þ; ð16Þ

where s is the magnification bias parameter, and the weak
lensing convergence up to r is given by

κgðr; r̂Þ ¼
Z

r

0

dr0Wκðr0; rÞδmðr0; z0Þ; ð17Þ

where the lensing kernel Wκ is given in Eq. (3), with the
first and second parameters being the comoving distance to
the lensing and the light source, respectively. A subscript g
is added just to distinguish it from κ, which specifically
refers to the CMB lensing in this paper. For galaxy samples
with a faint-end cutoff target selection, the magnification
bias is given by [42]

s ¼ d log10 Nðm < m�Þ
dm

����
m¼m�

; ð18Þ

where m is the apparent magnitude, and Nðm < m�Þ is the
number of targets that appear to be brighter than the survey
faint limit m�.

III. POWER SPECTRA

In this section, we start with a brief review on the
spherical Fourier analyses of 2D and 3D fields, which also
defines the conventions of transforms in this work.
Applying these decompositions to the CMB lensing and
galaxy overdensity fields, we derive the formalism for the
auto- and cross-power spectra.

A. Fourier decomposition in spherical coordinates

A 2D field aðr̂Þ defined on a sphere can be decomposed
in spherical harmonic space as

aðr̂Þ ¼
X
lm

almYlmðr̂Þ; ð19Þ

where Ylmðr̂Þ are the spherical harmonics that are ortho-
normal,

R
dΩYlmðr̂ÞYl0m0 ðr̂Þ ¼ δKll0δ

K
mm0 by definition. The

coefficients are given by the inverse transform

FIG. 1. Redshift and scale dependence of the clustering bias
correction due to PNG of local type, shown as the fractional
change to the fiducial bias bgðzÞ assuming fNL ¼ 1. Lines are
plotted for bgðzÞ ¼ 1=DðzÞ (solid) or bgðzÞ ¼ 1þ z (dashed),
which represent two typical types of redshift dependence.
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alm ¼
Z

dΩaðr̂ÞY�
lmðr̂Þ; ð20Þ

with dΩ ¼ sin θdθdϕ being the differential solid angle.
A 3D field fðr; r̂Þ expressed in spherical coordinates

can be similarly decomposed in the SFB basis, which is a
natural extension to the angular case above with the radial
coordinate included. In general, the radial basis function for
a shell volume could be written as [25]

J lðklnrÞ≡ jlðklnrÞ þ AlnylðklnrÞ; ð21Þ

where jl and yl are the spherical Bessel functions of the
first and second kinds, respectively. The discrete wave
numbers kln and corresponding factors Aln indexed by n
for each l are determined by the Dirichlet boundary
conditions. If the field is defined in a sphere out to a
certain radius, then Aln would always be zero, and J l
would simply reduce to jl. If the field were defined in a
shell with a nonzero lower radius limit, we could have
nonzero Aln factors. The galaxy samples we will consider
include both of these sphere and shell cases. With this radial
eigenfunction, the SFB decomposition reads

fðr; r̂Þ ¼
X
lmn

flmðklnÞJ lðklnrÞYlmðr̂Þ; ð22Þ

with the coefficients

flmn ≡ flmðklnÞ

¼ τ−1ln

Z
dr

Z
dΩr2fðr; r̂ÞJ lðklnrÞY�

lmðr̂Þ: ð23Þ

The normalization factors τln for different radial bounda-
ries are derived in Appendix A. With Eq. (23), the power
spectra in SFB basis can be related to the two-point
correlation function (2PCF) or the power spectra of fðrÞ
in 3D Cartesian coordinates; see more details in
Appendix B.

B. Auto- and cross-power spectra of matter field tracers

In what follows, we derive the SH and SFB power
spectra for the 2D and 3D tracers of the matter field,
whose homogeneous and isotropic power spectrum today,
Pm;0ðkÞ, is defined through

hδm;0ðkÞδ�m;0ðk0Þi ¼ ð2πÞ3δDðk − k0ÞPm;0ðkÞ: ð24Þ

The Fourier transform of the matter field δm;0ðrÞ in 3D
Cartesian coordinates,

δm;0ðrÞ ¼
Z

d3k
ð2πÞ3 e

ik·rδm;0ðkÞ; ð25Þ

and the plane wave expansion in spherical coordinates,

eik·r ¼ 4π
X
lm

iljlðkrÞYlmðr̂ÞY�
lmðk̂Þ; ð26Þ

will be used. We also assume the linear evolution of the
matter field in Eq. (1).
For the 2D CMB lensing and galaxy projected over-

density maps, the corresponding SH coefficients κlm and
glm are given by Eq. (20). The angular power spectrum is
defined through

halma0�l0m0 i ¼ δKll0δKmm0Caa0
l : ð27Þ

With the two fields a and a0 being either κ or g, which
are related to the matter field through Eqs. (2) and (12), we
can get

Caa0
l ¼ 2

π

Z
dkk2Pm;0ðkÞΔa

lðkÞΔa0
l ðkÞ; ð28Þ

where Δa
l denotes the transfer function of the 2D matter

field tracer a. For κ and g, we have

Δκ
lðkÞ ¼

Z
drWκðrÞDðzÞjlðkrÞ ð29Þ

and

Δg
lðkÞ ¼ Δgd

l ðkÞ þ Δgr
l ðkÞ þ Δgn

l ðkÞ þ Δgm
l ðkÞ; ð30Þ

which include contributions from the main Gaussian over-
density signal (gd), and also the modifications due to RSD
(gr), PNG (gn), and magnification bias (gm). These galaxy
transfer function components are

Δgd
l ðkÞ ¼

Z
r;g

bgðzÞDðzÞjlðkrÞ; ð31Þ

Δgr
l ðkÞ ¼ −

Z
r;g

fðzÞDðzÞj00lðkrÞ; ð32Þ

Δgn
l ðkÞ ¼ fNL

Z
r;g

Δbgðz; kÞDðzÞjlðkrÞ; ð33Þ

Δgm
l ðkÞ ¼ ð5s − 2Þ ×

Z
r;g

Z
r

0

dr0Wκðr0; rÞDðz0Þjlðkr0Þ;

ð34Þ

where for simplicity we define a shorthand notation

Z
r;g

≡
Z

dr
HðzÞ
c

fgðzÞ: ð35Þ

Similar expressions have also been derived in some
previous work—see, e.g., Refs. [20,43,44].
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As shown above in Eq. (22), the 3D SFB transform is a
natural extension to the 2D SH transform in Eq. (19), with
the same angular eigenfunctions indexed by lm. Thus, SH
coefficients alm in Eq. (20) can be cross-correlated with
SFB coefficients flmn in Eq. (23) of any radial mode
indexed by n:

hal0m0f�lmni ¼ δKll0δKmm0C
af
ln; ð36Þ

which gives

Caf
ln ¼

2

π

Z
dkk2Pm;0ðkÞΔa

lðkÞΔf
lnðkÞ; ð37Þ

where Δf
lnðkÞ is the transfer function of fðr; r̂Þ, a 3D tracer

of the matter field like δ in this work. Similarly, the
correlation between two 3D fields in SFB basis reads

hflmnf0�l0m0n0 i ¼ δKll0δKmm0C
ff0
lnn0 ; ð38Þ

with

Cff0
lnn0 ¼

2

π

Z
dkk2Pm;0ðkÞΔf

lnðkÞΔf0
ln0 ðkÞ: ð39Þ

where in general, the radial modes are not orthonormal due
to the radial selection and evolution of the fields. In this
case, for each l, the power spectrum is a covariance matrix
of the radial modes. Similarly to that for the projected
galaxy map gðr̂Þ, for the 3D overdensity field δðr; r̂Þ in
Eq. (7), the transfer function is given as

Δδ
lnðkÞ ¼ Δδd

lnðkÞ þ Δδr
lnðkÞ þ Δδn

lnðkÞ þ Δδm
lnðkÞ; ð40Þ

with

Δδd
lnðkÞ ¼

Z
r;δ

bgðzÞDðzÞjlðkrÞ; ð41Þ

Δδr
lnðkÞ ¼ −

Z
r;δ

fðzÞDðzÞj00lðkrÞ; ð42Þ

Δδn
lnðkÞ ¼ fNL

Z
r;δ

Δbgðz; kÞDðzÞjlðkrÞ; ð43Þ

Δδm
lnðkÞ ¼ ð5s − 2Þ ×

Z
r;δ

Z
r

0

dr0Wκðr0; rÞDðz0Þjlðkr0Þ;

ð44Þ

with the shorthand notation

Z
r;δ

≡ τ−1ln

Z
drr2ϕgðrÞJ lðklnrÞ: ð45Þ

Notice that the ϕgðrÞ − 1 term in Eq. (7) is independent of
the angular direction and thus only contributes to the

monopole (l ¼ 0), which along with the dipole (l ¼ 1)
will not be included in the Fisher analyses in this work.
The numerical computation of the transfer functions

requires the line-of-sight integrals over the highly oscil-
latory spherical Bessel functions jlðkrÞ and ylðkrÞ, for
which we include more details in Appendix D. In this work,
we use Colossus [45] and CAMB [46,47] to calculate the
required cosmological functions, including the 3D matter
power spectrum.

C. Noise in autopower spectra

In this work, we consider both auto- and cross-power
spectra. Usually, the noise in one observable is not
correlated with the signal and noise in another different
observable; thus, being independent of noise is one
advantage of cross-correlation. Below, we consider the
well-known noise expressions in the autopower spectra,
including the lensing reconstruction noise for CMB lensing
and the shot noise for galaxy overdensity.

1. CMB lensing reconstruction noise

Weak lensing of the CMB induces correlations between
different Fourier modes of the CMB temperature and
polarization fields. As a result, estimators of the κ field
can be constructed out of linear combinations of terms
quadratic in different modes of observed temperature and
polarization fields [48]. Indeed, almost all the CMB lensing
analyses to date have relied upon such quadratic estimators.
Recently, Ref. [49] showed that the well-known Hu and
Okamoto [50] estimator is not the most optimal quadratic
estimator that can be constructed out of the temperature and
polarization maps, as was previously thought. They instead
derive the global-minimum-variance (GMV) estimator built
out of all possible quadratic combinations of T, E, and B
(temperature, and E- and B-mode polarization). Here, we
use the GMV estimator to estimate the noise of the
reconstructed Cκκ

l denoted by Nκκ
l .

Nκκ
l ¼ 2

Z
Ξijðl1; l2ÞΞpqðl1; l2ÞCip

l1
Cjq
l2
; ð46Þ

where Ξijðl; l0Þ is a 3 × 3 symmetric matrix corresponding
to weights applied to the T-, E-, and B-mode pairs and is
derived in Ref. [49], and Cij

l are CMB power spectra. The
CMB lensing signal and the reconstruction noise (with
survey specifications in Sec. IVA) are shown in Fig. 2.
Reference [15] divides the noise coming from the “EB”
estimator by a factor of 2.5, to approximately match
the noise level expected by the iterative reconstruction
process. We find that this results in an overall noise
reduction by a factor of ∼2 for the minimum variance
coming out of the Hu and Okamoto estimator. Here we
assume that a similar reduction of a factor of 2 will take
place for the GMVestimator as well, and we thus divide the
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minimum-variance noise from the GMVestimator by 2, as
shown in Fig. 2.

2. Galaxy shot noise

Galaxy shot noise is induced by the discrete nature of
the point targets. Assuming Poisson sampling [51], the shot
noise ϵnðrÞ contribution to the 2PCF of the number density
field nðr; r̂Þ is shown [52] to be

hϵnðrÞϵnðr0Þi ¼ n̄VϕgðrÞδDðr − r0Þ; ð47Þ

from which the shot noise power spectra in a spherical basis
can be derived for the 2D and 3D overdensity fields starting
from the definitions of SH and SFB coefficients.
For the 2D overdensity field gðr̂Þ defined in terms of

nðr; r̂Þ in Eq. (11), the corresponding angular shot noise is
ϵgðr̂Þ≡ R

drr2ϵnðrÞ=n̄Ω. The shot noise power spectrum is
given by

hϵglmϵg�l0m0 i ¼ δKll0δ
K
mm0N

gg
l ; ð48Þ

with

Ngg
l ¼ n̄V

n̄2Ω

Z
drr2ϕgðrÞ ¼

1

n̄Ω

Z
dzfgðzÞ ¼

1

n̄Ω
; ð49Þ

which is simply the inverse of the average angular number
density that is a constant for all the angular modes and
independent of the redshift distribution.
Similarly, for the 3D overdensity field δðr; r̂Þ defined in

Eq. (6), the shot noise field ϵδðrÞ≡ ϵnðrÞ=n̄V has the power
spectrum

hϵδlmnϵ
δ�
l0m0n0 i ¼ δKll0δ

K
mm0Nδδ

lnn0 ; ð50Þ

with

Nδδ
lnn0 ¼

τ−1lnτ
−1
ln0

n̄V

Z
drr2ϕgðrÞJ lðklnrÞJ lðkln0rÞ; ð51Þ

where in general we could have nonzero shot noise for the
cross-correlation between different radial modes. For top-
hat ϕgðrÞ [i.e., ϕgðrÞ ¼ 1 in the survey coverage; otherwise
0], the orthogonality relation (see Appendix A) could be
used, and the rhs of Eq. (51) reduces to δKnn0τ

−1
ln=n̄V .

However, this is usually not the case for real galaxy
surveys.

IV. FIDUCIAL SURVEYS

In this section, we describe the fiducial survey setups for
the Fisher forecasts.

A. CMB lensing survey

For the CMB lensing survey, we consider the CMB-S4
[53] level precision with the white noise of the detector
given by ΔT ¼ 1 μKarcmin and ΔP ¼ ffiffiffi

2
p

ΔT . The lensing
reconstruction noise level is shown in Fig. 2.

B. Galaxy redshift surveys

We consider a few fiducial galaxy samples that mimic
the designed specifications of some future spectroscopic
surveys. Although we simply use the names of the surveys
to denote the samples in this work and omit the “-like”
suffix for brevity, it is worth being reminded that the real
data from these surveys could be more or less different.
In our analysis, each survey or its subsamples can be
completely described with the total number of targets Ng,
the fractional sky coverage fsky, the redshift distribution
fgðzÞ, and a redshift-dependent clustering bias model bgðzÞ.
Some details of the galaxy samples below are summarized in
Table I, and the redshift distributions are shown in Fig. 3.
The spectroscopic surveys we consider include DESI

[33] and the redshift survey of the Euclid satellite mission
[34]. For DESI, we include the two largest subsamples, the
bright galaxy sample (BGS), and the emission line galaxy
(ELG) sample. The expected redshift distributions are
given by Tables 2.3 and 2.5 in Ref. [54], and we assume
the fiducial redshift-dependent bias bgðzÞjBGS ¼ 1.34=DðzÞ
[54] and bgðzÞjELG ¼ 0.84=DðzÞ [55]. For Euclid [56,57],
number densities are taken from Table 3 in Ref. [58], and
we assume the reference case (i.e., the n2 column). We take
a fiducial bias bgðzÞjEuclid ¼ 0.76=DðzÞ [59]. The galaxy
redshifts in the spectroscopic surveys are measured to very
high accuracy, whose uncertainties correspond to scales
that are much smaller than the scales we consider in this
work. Thus, for these samples, we shall just ignore the
redshift uncertainty.
Besides this, we also consider one photometric and

another spectrophotometric survey which could have
non-negligible redshift uncertainties. The photometric

FIG. 2. CMB lensing convergence power spectrum and the
lensing reconstruction noise discussed in Sec. III C 1.
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one is the LSST [35] survey, which is expected to have a
redshift distribution given by [60]

d2N
dzdΩ

¼ n̄LSSTΩ;tot β

z�Γ½ðαþ 1Þ=β� ×
�
z
z�

�
α

exp

�
−
�
z
z�

�
β
�
deg−2;

ð52Þ

with α ¼ 2.0, β ¼ 1.0, z� ¼ 0.5, and a total projected
number density n̄LSSTΩ;tot ¼ 50 arcmin−2. We consider the
redshift depth up to z ¼ 5, which encloses more than
99.7% of the total targets. The bias model is assumed to be
bgðzÞjLSST ¼ 0.95=DðzÞ [59]. The LSST redshift coverage
is really wide, and in this work, we divide the LSST sample
into two subsamples, with one covering lower redshift
z ¼ 0–2 and the other covering higher redshift z ¼ 2–5.
The spectrophotometric one is the SPHEREx [36] survey.
SPHEREx provides forecasts of galaxy number density and
bias for five subsamples based on the redshift uncertainty
[61]. We use the three samples with σ̃z ≤ 0.03, denoted as
SPHEREx f1; 2; 3g. The number density distribution and

bias functions are interpolated from data in this public
products repository [62].
Since we are doing joint analyses of these galaxy

samples with CMB lensing, before performing Fisher
forecasts we can do a quick check on the cross-correlation
strength, which can be quantified with coefficients

rl ¼ Cκg
l

½ðCκκ
l þ Nκκ

l ÞðCgg
l þ Ngg

l Þ�1=2
; ð53Þ

where g is the projected overdensity map of the galaxy
sample over its whole redshift coverage, and noises are
added to the corresponding autopower spectra. These cross-
correlation coefficients are shown in Fig. 4. In general,

FIG. 3. Redshift distributions of the galaxy samples, the
integrals of which are normalized to 1 in the redshift range
covered. Note that the LSST high-z sample extends to z ¼ 5,
though we truncate the plot at z ¼ 3 for better clarity.

TABLE I. Specifications of the galaxy survey samples considered, including the total number of targets Ng,
fractional sky coverage fsky, redshift coverage z, radial comoving width rwidth, average comoving volume density
n̄V , and redshift uncertainty σ̃z ≡ σz=ð1þ zÞ. More details are discussed in Sec. IV B.

Sample Ng [M] fsky [%] z rwidth [Mpc] n̄V [×10−3 Mpc−3] σ̃z

DESI BGS 9.8 33.9 0–0.5 1954 0.92 � � �
DESI ELG 17 33.9 0.6–1.7 2561 0.12 � � �
Euclid 61 36.4 0.6–2.1 3177 0.26 � � �
LSST low-z 2801 48.5 0–2 5314 9.2 0.05
LSST high-z 865 48.5 2–5 2631 1.2 0.05
SPHEREx 1 24 75 0–1.4 4292 0.096 0.003
SPHEREx 2 76 75 0–1.4 4292 0.31 0.01
SPHEREx 3 147 75 0–1.4 4292 0.59 0.03

FIG. 4. Cross-correlation coefficients of CMB lensing and the
galaxy samples, which are calculated with Eq. (53) by projecting
each galaxy sample into a 2D angular map.
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the coefficients peak at different angular scales, with
galaxy samples covering lower redshifts peaking at larger
angular scales and vice versa. With the same CMB lensing
reconstruction noise, the overall amplitude is mainly deter-
mined by the galaxy shot noise, and also the redshift overlap
with the CMB lensing kernel that peaks around z ¼ 2.

V. FISHER FORECAST SETUP

In this section, we discuss the setups for the Fisher forecast
on parameters of interest with the joint analysis of CMB
lensingandgalaxyoverdensity fields, forwhichbothSFBand
TSH analyses will be considered for a comparison.

A. Parameters

The parameters of primary interest are the PNG amplitude
fNL and the RSD exponent γ. We assume fiducial values
fNL ¼ 0 (i.e., no PNG) and γ ¼ 0.55, the GR prediction.
We also include a few free nuisance parameters that

account for the uncertainties in some galaxy properties. For
the fiducial clustering bias model, we assume that the
redshift dependence is well known in the redshift range
covered while introducing a constant parameter Ab, which
is free for tuning the overall amplitude around the fiducial
value Ab ¼ 1. Another free parameter is the foreground
magnification bias s, for which we take a fiducial value
s ¼ 0.4 assuming no distortion; see Eq. (16). It is important
to notice that unlike fNL, γ, or other cosmological param-
eters, Ab and s depend on the particular galaxy sample. The
derivatives of power spectra from one sample with respect
to these two parameters of another sample would simply be
zero. For example, if we have two galaxy samples in the
joint analysis, then besides other parameters, the free
parameter set will include fA1

b; A
2
b; s

1; s2g, with 1 and 2
denoting the two samples. The power spectra of sample 1
should be independent of A2

b and s2.
The parameters above are all associated with the galaxy

field, and they appear only in the galaxy transfer functions
[Eqs. (30) and (40)]. In addition, we also consider the
dependence of the matter field—i.e., its power spectra today
Pm;0ðkÞ and its linear growth factorDðzÞ, on the background
cosmological parameters fH0;Ωm;0;Ωb;0; σ8; nsg, which are
also included in the Fisher analyses. We assume a flat
ΛCDM cosmology with Planck 2018 CMB TT, TE,
EEþ lowE best-fit results [37] as fiducial values. It would
also be helpful to include the Planck constraints as prior
information in our Fisher analyses, with more details in
Sec. V E. Notice that CMB lensing depends on these
background cosmological parameters but not on fNL or γ,
which can help in reducing the degeneracy, and this is one of
the motivations for the joint analyses.

B. Linear SFB and TSH modes

Some of the theoretical or fiducial models discussed
above—e.g., the linear evolution of the matter field, the

scale-independent galaxy-clustering bias, and the RSD
correction, etc.—are valid only on large linear scales. In
what follows, we discuss the linear SFB and TSH modes
that will be included in our Fisher analyses.
There have been several ways of quantifying the 3D

threshold k3DmaxðzÞ between linear (or quasilinear) and non-
linear Fourier modes based on the linear matter power
spectrum Pmðk; zÞ. For example, we may simply set a
limit to the dimensionless matter power spectrum
Δ2

mðk; zÞ≡ k3Pmðk; zÞ=ð2π2Þ, whose value is monotoni-
cally increasing with k. Some previous work defines the
linear scales as those satisfying Δ2

mðk; zÞ < 1. Another
slightly more complicated way that has been widely
used is to evaluate the variance of the smoothed matter
field σ2ðR; zÞ ¼ R

d3k
ð2πÞ3 W

2ðkRÞPmðk; zÞ, where WðkRÞ ¼
3½sinðkRÞ − kR cosðkRÞ�=ðkRÞ3 for a top-hat filter function
in real space [63]. This variance is decreasing with R, and
by requiring σ2ðR; zÞ < 1, we could get the minimum
radius Rmin and the corresponding k3Dmax ¼ 1=Rmin. One
more criterion is based on the impact of the nonlinear
correction (e.g., with a halofit model in Ref. [64]) to linear
Pmðk; zÞ. The threshold can be quantified by requiring the
fractional impact of the correction to be within, e.g., 10%.
All three methods above can be used to determine

k3DmaxðzÞ. Then, a very natural idea is to convert this
threshold on the 3D wave number to the limit on SFB
and TSH modes. However, these conversions are not
clearly defined, for a few reasons. First, the power spectra
of SFB and TSH modes are given by the integral over 3D
wave numbers, as shown in Eqs. (28) and (39). The
contributions of different 3D wave numbers to these
integrals depend on the boundary condition for SFB (see
Appendix B) and the bin size for TSH, and also the
redshift-dependent functions. Even just for a single bin
with SH analysis, Limber approximation, which picks out a
particular k ≃ l=r, only works for high l’s and wide bins,
which is not always satisfied in our TSH analyses. On the
other hand, for TSH analysis, besides the l for each bin,
which is usually approximated with kr, we still need to
determine the bin size. However, we find it hard to properly
determine a pair of the lmax value and the tomographic bin
size that corresponds to a given k3DmaxðzÞ.
Given these issues and inspired by the third method for

determining k3DmaxðzÞ above, we quantify the linear modes
for SFB and TSH analyses independently. We evaluate
Eqs. (28) and (39) using a linear and nonlinear matter
power spectrum Pmðk; zÞ for TSH and SFB analysis,
respectively. The highest possible value of lmax for a given
z and redshift bin width in the TSH analysis (or kln for a
given l for the SFB analysis) is then determined such that
the fractional difference in the evaluation of the power
spectrum between using a linear and a nonlinear matter
power spectrum is less than 10%. These are the linear
modes used for the Fisher analysis. In the meantime, the
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lowest kln available for each l for the SFB analysis are
determined by the radial coverage (i.e., shell or sphere) and
the Dirichlet boundary condition. With their linear modes
being determined independently, it is not guaranteed that
the modes corresponding to the same scales will be
included for SFB and TSH analyses, which are hard to
do, since they behave differently in mixing 3D wave
numbers. To better illustrate our linear mode selection,
as an example, here we show the diagrams for the Euclid
sample. In Fig. 5, the linear SFB modes are shown in the
ðkln;lÞ space. The maximum kln values lie between k3Dmax
at redshifts z ¼ 0.6 and z ¼ 2.1. Similarly, we have Fig. 6
for the TSH modes. We can see that as the bin size becomes
much smaller—e.g., from 0.01 to 0.005—we have more
bins, but the linear lmax value for each bin becomes
significantly lower. This is expected, since with smaller
bin sizes, more nonlinear scales are being mixed in the
integral, and high-l modes that become more nonlinear are
excluded. Then it is interesting to check how the total
information—e.g., in terms of the signal-to-noise ratio
(SNR) or constraints on different parameters—will change
accordingly. It should be expected that with only the linear
modes being selected, the information would stop increas-
ing as the bin size is decreased to a certain level. As will be
discussed in Secs. VI D and VI B, we find that for
spectroscopic samples, TSH analysis with a bin size around
Δz ¼ 0.01 gives the highest overall SNR for power spectra
and the tightest constraints on parameters.
For (spectro)photometric samples with non-negligible

redshift uncertainties, a spectral window function [32]

AðklnÞ¼
π

4

�
sinc

�
klnσr−π

2

�
þsinc

�
klnσrþπ

2

��
ð54Þ

is applied to the galaxy transfer functions [Eq. (40)] in SFB
analyses, where σr ¼ cσ̃zð1þ zÞ=HðzÞ is the radial interval
that corresponds to the redshift uncertainty. As an example,
we show AðklnÞ with σr ¼ 50 Mpc in Fig. 7. In TSH
analyses, we use bin sizes that are larger than the redshift
uncertainty.

C. Gaussian likelihood and Fisher matrix

The likelihood function LðD̂jθÞ describes the proba-
bility of having the observed data vector D̂ given the set of
parameters θ, or vice versa. For brevity, we adopt a
frequently used shorthand notation for the partial derivative
with respect to parameters, □;α ≡ ∂□=∂θα. The elements
of a Fisher matrix are defined as

FIG. 5. Linear modes in SFB analysis of the Euclid galaxy
sample, where each mode is specified by the angular multipole l
and the discrete radial wave number kln. The blue line shows the
lowest kln we could have for each l under the boundary
condition, while the orange line denotes the highest kln deter-
mined by the linear requirement. Thus, all the linear modes that
will be included in the Fisher analysis are covered by the enclosed
orange area. As a reference, we also show the maximum 3D linear
wave number k3Dmax, which evolves with redshift, in the gray
shaded area. See Sec. V B for more details.

FIG. 6. Linear modes in TSH analysis of the Euclid galaxy
sample, where each mode is specified by the redshift bin size and
the angular multipole l. Each line labeled by the tomographic
redshift bin size shows the maximum l for each bin determined
by the linear requirement. As a reference, we also show
k3DmaxðzÞrðzÞ, which is usually used to convert k to l for a single
redshift bin. See Sec. V B for more details.

FIG. 7. Spectral window function [Eq. (54)] multiplied to the
galaxy SFB modes. The example line is shown for a redshift
uncertainty σr ¼ 50 Mpc, which roughly corresponds to σ̃z ¼
0.01 centered at z ¼ 0.7 (e.g., the SPHEREx 2 sample).
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Fαβ ≡ h−ðlnLÞ;αβi; ð55Þ

whose inverse gives the Gaussian covariance matrix of the
parameters:

Covðθα; θβÞ ¼ ðF−1Þαβ: ð56Þ

Then, the uncertainty of a parameter with all the other
parameters being marginalized is simply given by the
diagonal elements

σðθαÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðF−1Þαα

q
: ð57Þ

Excluding parameters (i.e., fixing these parameters) in Fisher
analysis is convenient, and we only need to remove the
corresponding rows and columns without any further com-
putation being required. The extreme case is the conditional
uncertainty of a parameter given by ðFααÞ−1=2. Unless
otherwise specified, the constraints on the parameters in
this work are always the marginal uncertainties.
Assuming the data vector D̂ to be Gaussian, the like-

lihood function reads

LðD̂jθÞ ¼ 1

ð2πÞdimðD̂Þ=2 ffiffiffiffiffiffijCjp

× exp

�
−
1

2
ðD̂ −DÞ†C−1ðD̂ −DÞ

	
; ð58Þ

where dimðD̂Þ is the length of D̂, with the ensemble
average D≡ hD̂i and covariance matrix

C≡ hðD̂ −DÞðD̂ −DÞ†i ¼ hD̂D̂†i −DD†; ð59Þ

whose determinant is denoted as jCj. Then the explicit
expression of the Fisher matrix given the Gaussian like-
lihood can be written as

Fαβ ¼
1

2
Tr½C−1C;αC

−1C;β� þD†
;αC−1D;β: ð60Þ

D. Data vector

In our Fisher analyses, we take the SH or SFB coef-
ficients of the 2D or 3D fields as the data vector. CMB
lensing and galaxy overdensity fields have a constant
ensemble average (e.g., zero, depending on the definition)
and hence the second term in Eq. (60) vanishes. We ignore
the possible mode coupling of the angular multipoles l’s
and simply use the fractional sky coverage fsky to account
for the loss of information due to partial sky survey
footprint. This approximation is reasonable given the large
sky coverages with regular geometries that we consider. In
general, this coupling could be reduced by binning the

modes or removed with the mode-coupling matrix given
the angular mask of the survey [65]. Then, each l
contributes independently to the Fisher matrix, and the
total information can be written as a summation:

Fαβ ¼
X
l

ð2lþ 1Þfsky
2

Tr½C−1
l Cl;αC

−1
l Cl;β�; ð61Þ

where the 2lþ 1 factor results from the number of
equivalent m modes for each l, since the covariances of
the coefficients are the power spectra, which do not depend
onm as shown in Sec. III B. This is the explicit form that is
used in the Fisher analyses in this work. Next, let us look
into D̂lm and the corresponding Cl for the two ways of
decomposing 3D galaxy fields, TSH and SFB analyses.
First, we consider the joint analysis of κ and tomographic

g maps from one or multiple galaxy samples. For each l
and m, the data vector reads

D̂lm ¼ ðκ̂lm; fĝijlmgÞT; ð62Þ

where the set fĝijlmg includes all the galaxy samples
considered, indexed with i, and for each sample, j denotes
the redshift bins. Notice that different galaxy samples or
redshift bins could have different maximum l’s given our
discussion in Sec. V B about the linear modes being
included in the analysis, and hence the number of sam-
ples/bins included in D̂lm could vary for different l’s. It is
slightly messy but still straightforward to understand, since
different l modes contribute independently to the Fisher
information, and we should have the freedom to decide
what data to use for each l as long as the choice is
consistent for all the Fisher matrix elements.
The formalism is similar in SFB analysis, except that for

each galaxy sample we have multiple discrete radial modes
instead of tomographic redshift bins. The data vector can be
written as

D̂lm ¼ ðκ̂lm; fδ̂ilmngÞT; ð63Þ

where i denotes galaxy samples and n is the index for
discrete radial wave numbers as discussed in Sec. III A.
For both TSH and SFB analyses, we consider the full

covariance matrix of D̂lm. The power spectra for any pair
of SH or SFB coefficients in D̂lm are computed using the
expressions in Eqs. (28), (37), and (39). For each l, the
galaxy samples included and the number of radial modes
for each sample could be different.
We use the Fisher matrix in Eq. (61) for the analyses in

this work, while it is also helpful to implement an
equivalent form as a double check, which is given as

Fαβ ¼
X
l

d†l;αMl
−1dl;β; ð64Þ

JOINT ANALYSES OF 2D CMB LENSING AND 3D GALAXY … PHYS. REV. D 104, 103523 (2021)

103523-11



where dl is a vector consisting of all the power spectra—
i.e., a stack of the upper triangular elements in Cl—andMl
is the Gaussian covariance matrix of dl, where a similar
ð2lþ 1Þfsky sampling factor is included, as shown in
Eq. (C3). Equation (64) is sometimes referred to as the
Fisher matrix at power spectra level, and it is mathemati-
cally equivalent to Eq. (61); see more discussion in
Refs. [66,67]. It is worth being reminded that Eq. (64) is
not given by taking the power spectra vector (i.e., dl) as the
Gaussian data vector in the general Gaussian Fisher matrix
in Eq. (60), where the first term would not vanish, sinceMl
is also a function of the parameters. The reason that
Eq. (64) is not preferred for all the analyses in this work
is that the size ofMl could be very large, and the inversion
would take a much longer computational time than the
inversion of Cl. For example, for a certain l, consider the
joint analysis of δ with n radial modes and κ. Then,
dimðClÞ¼ðnþ1Þ×ðnþ1Þ, dimðdlÞ¼ðnþ1Þðnþ2Þ=2,
and dimðMlÞ ¼ dimðdlÞ × dimðdlÞ. In our analyses, n
can be of order ∼100. Thus, we only use Eq. (64) as a
double check and run it for a few cases.

E. Prior information

For the five background cosmological parameters con-
sidered, fH0;Ωm;0;Ωb;0; σ8; nsg, it would be helpful to
include the prior information from Planck 2018 CMB
temperature and polarization data. We use the Planck TT,

TE, EEþ lowE constraints [37], and the covariance matrix
for a subset of original and new derived parameters is
reconstructed from the Monte Carlo chains provided at
Ref. [68]. We do not use the Planck results including CMB
lensing to avoid double-counting information, since we
have lensing in our Fisher analyses. Using GetDist [69,70],
the covariances for the five parameters are estimated, and
these are shown in Fig. 8. As prior information, elements in
the inverse of this covariance matrix are added to the
corresponding Fisher matrix elements.

VI. RESULTS AND DISCUSSIONS

In this section, we present and discuss the main results of
our Fisher analyses.

A. Power spectra

First, as a simple check on our theoretical expressions,
and also the numerical computations of the power spectra
and noises for both the SFB and TSH analyses, we estimate
the total signal-to-noise ratio (SNR), which is given by

SNRðCxyÞ ¼
hX

l
ðCxy

l ÞTCov−1l Cxy
l

i
1=2

; ð65Þ

where we sum over all the l modes included in Fisher
analyses, Cxy

l is the signal vector (i.e., without noise), and
Covl is the Gaussian covariance matrix of Cxy

l , with a
general expression given by Eq. (C3). The pair of fields xy
can be κδ or κg for the CMB lensing and galaxy (in the SFB
or TSH basis) cross-power spectra, where for each l, Cxy

l is
a 1D vector that consists of the power spectra of all the
radial modes or redshift bins. The fields xy can also be δδ or
gg for the galaxy autopower spectra, which are matrices for
each l, and the vector Cxy

l is a stack of the upper triangular
elements. Notice that Eq. (65) is in a similar form to

FIG. 8. Planck 2018 CMB TT, TE, EEþ lowE constraints on
the five background cosmological parameters considered in this
work, recompiled from Monte Carlo chains provided using
GetDist [69,70]. Contours show 68% and 95% confidence re-
gions. The corresponding covariance matrix will be used as prior
information in our Fisher analyses; see Sec. V E.

TABLE II. Total SNR of power spectra given by Eq. (65) for
the galaxy samples decomposed in the SFB or TSH basis. For
TSH analyses of spectroscopic samples, a bin size Δz ¼ 0.01 is
used, while for (spectro)photometric samples, the bin sizes are
limited by the redshift uncertainties (except for SPHEREx 1).
These include the same linear modes that are used in the Fisher
analyses, as discussed in Sec. V B.

SNR

Cκδ Cκg Cδδ Cgg

DESI BGS 22 21 263 251
DESI ELG 94 78 887 793
Euclid 140 116 1451 1330
LSST low-z 21 21 73 71
LSST high-z 38 37 178 156
SPHEREx 1 89 72 749 608
SPHEREx 2 78 78 583 513
SPHEREx 3 32 32 133 127
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Eq. (64), which is equivalent to Eq. (61). Therefore, for δδ
and gg, where Covl can be too large, instead of Eq. (65),
we use its equivalent expression in Eq. (61) to speed up the
computation. The results are summarized in Table II. We
can see that with their own linear modes, the SFB basis
gives higher SNRs than TSH for both the autopower
spectra of galaxies and the cross-power spectra with
CMB lensing.
Of course, the SNRs of TSH power spectra could depend

on the number of tomographic redshift bins. We take the
Euclid galaxy sample as an example and try different bin
sizes, with the resulting SNRs shown in Fig. 9. It is
interesting that for the galaxy autopower spectrum, instead
of continuously increasing, the SNRs of TSH spectra with
different bin sizes peak around Δz ¼ 0.01, which is still
lower than the SNR of SFB. This is mainly due to the linear
requirement which excludes more nonlinear modes when

very small TSH bin sizes are used, as shown in Fig. 6.
For the cross-power spectrum with CMB lensing, TSH
has similar SNRs to SFB for most bin sizes, which then
decreases for very small bin sizes. The SNR only tells us
the overall strength of the power spectra signal, and a
higher SNR does not guarantee better constraints on certain
parameters, which could change the power spectra in
different ways instead of simply tuning the amplitude. In
the following sections, we will discuss the constraints on
different parameters, and how those given by TSH analyses
depend on the bin size.

B. Constraints on parameters

We summarize the Fisher constraints on the two param-
eters of primary interest, fNL and γ, in Table III for three
scenarios: galaxy only, joint analyses with CMB lensing,
and further adding the prior information from the Planck
CMB temperature and polarization. For the (spectro)photo-
metric samples with high redshift uncertainties, we do not
report the poor constraints on γ, which are not comparable
to the constraints given by spectroscopic samples. The only
exception is the SPHEREx 1 sample, whose redshift
uncertainty is actually low enough to be treated as a
spectroscopic sample. As mentioned in Sec. VA, these
are the constraints with other parameters being margin-
alized, including five background cosmological parame-
ters, fH0;Ωm;0;Ωb;0; σ8; nsg, and two nuisance parameters,
fAb; sg. Besides these marginal constraints on fNL and γ,
to further look into the correlations between any pair of
free parameters in the Fisher analysis, as an example, we
show the full constraints with the Euclid galaxy sample
in Fig. 10.

FIG. 9. SNRs of TSH power spectra Cgg and Cκg with different
bin sizes for the Euclid galaxy sample. SNRs of SFB power
spectra Cδδ and Cκδ are also shown as horizontal dashed lines for
reference.

TABLE III. Fisher forecasts of marginal constraints on the PNG parameter fNL and the RSD exponent γ for three progressive
scenarios: galaxy only, joint analyses with CMB lensing, and further adding the Planck CMB temperature and polarization prior
information. Results for galaxy samples analyzed in both SFB and TSH bases are included. For spectroscopic samples, a TSH bin size
Δz ¼ 0.01 is used. For (spectro)photometric samples (except for SPHEREx 1), the constraints on γ are very poor due to redshift
uncertainties and are thus not included. See Sec. VI B for more discussion. Note that lmin ¼ 2 is used for these analyses; we discuss the
dependence on lmin in Sec. VI C.

Galaxy only × CMB lensing þ Planck prior

σðfNLÞ σðγÞ σðfNLÞ σðγÞ σðfNLÞ σðγÞ
SFB TSH SFB TSH SFB TSH SFB TSH SFB TSH SFB TSH

DESI BGS 45.1 44.9 0.19 0.22 40.1 40.4 0.038 0.043 33.9 34.2 0.029 0.033
DESI ELG 7.9 8.2 0.067 0.078 7.6 7.8 0.021 0.026 7.2 7.4 0.017 0.020
DESI BGSþ ELG 7.8 8.0 0.038 0.049 7.0 7.2 0.019 0.024 6.7 6.9 0.015 0.018
Euclid 4.6 4.7 0.034 0.040 4.4 4.5 0.015 0.019 4.2 4.3 0.012 0.014
LSST low-z 6.2 6.5 � � � � � � 3.3 3.4 � � � � � � 2.6 2.6 � � � � � �
LSST high-z 1.2 1.3 � � � � � � 0.9 1.0 � � � � � � 0.6 0.6 � � � � � �
LSST all 0.8 0.9 � � � � � � 0.7 0.7 � � � � � � 0.5 0.5 � � � � � �
SPHEREx 1 4.8 5.0 0.043 0.055 3.9 4 0.019 0.028 3.8 3.8 0.018 0.026
SPHEREx 2 2.9 3.0 � � � � � � 2.5 2.6 � � � � � � 2.3 2.4 � � � � � �
SPHEREx 3 5.4 5.8 � � � � � � 3.0 3.2 � � � � � � 2.5 2.6 � � � � � �
SPHEREx 1–3 2.2 2.3 � � � � � � 1.9 2.0 � � � � � � 1.9 1.9 � � � � � �
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In Table III, besides the results for the individual galaxy
samples listed back in Table I, we also show the results
given by combining samples from the same survey (e.g.,
DESI BGS and ELG) in the data vector in Eq. (62) for TSH
and in Eq. (63) for SFB. The covariances between samples
are fully included, since samples from the same survey are
observing the same angular patch of the sky. For samples
with different sky coverages, Fisher information for over-
lapping and nonoverlapping regions should be calculated
separately with and without covariances, and then com-
bined. However, the footprint overlap between different

surveys depends closely on the observation details of these
future surveys, which are not very clear at this stage.
Therefore, here we do not discuss the combination of
galaxy samples from different surveys.
For fNL, we notice that TSH analyses give similar

constraints to SFB. This means that the bin size should
be small enough in recovering large radial scales where
PNG is more significant, and we discuss more about this in
Sec. VI D. Recall that one of our motivations is to check
how radial information contributes to constraining fNL. The
extreme cases are SFB analysis where radial information is

FIG. 10. Fisher constraints on the PNG parameter fNL, the RSD exponent γ, five background cosmological parameters
fH0;Ωm;0;Ωb;0; σ8; nsg, and two nuisance parameters fAb; sg with the Euclid-like galaxy sample. The contours shown are 1σ
(68%) confidence regions. We consider the constraints with galaxy only in the SFB basis (blue), a joint analysis with CMB lensing
(orange), and further adding the Planck CMB TT, TE, EEþ lowE prior (green). Note that the CMB prior (dashed red lines) only
contains information for the five background cosmological parameters.
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fully considered, and TSH analysis with only one bin where
most if not all radial information is lost in the projection.
For all the galaxy samples considered, compared to the
TSH analysis with only one bin, SFB could be better by a
factor of 3 to 12. We also try TSH with two bins, and
σðfNLÞ gets much tighter compared to the one-bin case,
while SFB could still be better by a factor of 2 to 3. These
improvement factors vary for different surveys, while the
general conclusion is that large radial scales do contribute
significantly to constraining fNL. Joint analysis with CMB
lensing improves σðfNLÞ more when the cross-correlation
(Fig. 4) is stronger at low l’s—e.g., for DESI BGS. Besides
these marginal constraints, in Fig. 10, we can see that the
covariances between fNL and other parameters are not
strong. This is one of the reasons that we do not see
improvements with CMB lensing as significant as those
shown in Ref. [15]. Instead of considering background
cosmological parameters, the authors of Ref. [15] intro-
duced a fake fNL parameter to the matter power spectrum
that mimics the real fNL in scale dependence. This resulted
in a degeneracy that is much stronger than it should be,
and therefore CMB lensing became more important in
reducing that.
For constraining γ, with CMB lensing included, we find

significant improvements by a factor of 2 to 5 for different
samples depending on their redshift ranges and scales
included in the Fisher analyses. These improvements on
σðγÞmainly come from the mitigation of degeneracies with
other parameters, which can be seen from the shapes and
orientations of the confidence regions shown in Fig. 10.
With galaxy only, γ is strongly correlated with the cluster-
ing bias Ab, which is the well-known RSD-bias degeneracy,
since it is roughly the sum of fσ8 and bgσ8 that determines
the overall amplitude of the power spectrum. Both γ and Ab
are also correlated with some of the background cosmo-
logical parameters. After CMB lensing is included, these
covariances are reduced, especially between γ and Ab. On
the other hand, for the comparison between SFB and TSH
methods, we get better constraints on γ with SFB. This
indicates that even with a small enough bin size, linear TSH
modes still contain less radial information than SFB. More
discussions are included in Sec. VI D below.
For the background cosmological parameters, the con-

straints are also improved with the joint analysis with CMB
lensing, and also the addition of CMB temperature and
polarization prior information. Another interesting point
to notice is that the galaxy magnification bias is almost
not degenerate with any other parameters. As a result, for
the samples at lower redshifts, we do not observe much
difference with s being fixed or marginalized, even with
different fiducial s values we tried in the range 0.1–0.7. The
only exception is the LSST high-z sample which covers
redshift 2 < z < 5, for which we do observe relative
differences of dozens of percent in σðfNLÞ with different
fiducial s values being used. This is understandable,

considering that magnification bias is caused by the fore-
ground lensing, to which galaxy samples at higher redshifts
might be more sensitive. With CMB lensing included,
however, σðfNLÞ becomes much less dependent on s, which
is another advantage of the joint analysis.

C. Dependence on the minimum angular multipole

In our main analyses, we use the minimum angular
multipole lmin ¼ 2 for all the surveys, which is reasonable
given the large sky coverage (fsky in Table I) of these
surveys. However, even though spatially accessible, these
very large scales have always been challenged by system-
atics, which excludes them from practical analyses.
Therefore, in this part we discuss the dependence of the
parameter constraints on the lmin used in Fisher analyses.
In Fig. 11, taking the LSST sample (which gives the best

constraint on fNL) as an example, we show the dependence
of σðfNLÞ on lmin used in the Fisher analyses. We can see
that fNL is very sensitive to low-l modes (i.e., large scales)
given its k−2 scale dependence. Using lmin ¼ 50 could
increase the uncertainty in fNL by a few factors (e.g., 3 for
this LSST example) compared to using lmin ¼ 2. Thus, for
future surveys dedicated to constraining fNL, it would be
very helpful to identify and reduce large-scale systematics.
For the growth-rate exponent γ, the constraint is less
sensitive to lmin. For spectroscopic surveys like the
Euclid sample, using lmin ¼ 100 only increases σðγÞ by
around 20%.

D. Dependence of TSH constraints on the bin size

As discussed in Sec. V B, the modes included in Fisher
analyses are determined based on the linear requirement
of the SFB and TSH power spectra. For TSH analysis, the
maximum linear angular multipoles also depend on the bin
size, as shown in Fig. 6 for the Euclid sample as an
example. In the discussions above, we use the bin size
Δz ¼ 0.01 in TSH analyses, and here we discuss how this
optimal value is found. Figure 12 shows the TSH con-
straints on parameters with different bin sizes, where the
values are shown as ratios to the SFB constraints. Similar to

FIG. 11. Dependence of σðfNLÞ on the minimum multipole
lmin used for Fisher analyses, shown for the LSST sample (joint
analyses with CMB lensing and with Planck prior added) as an
example.
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the SNR of the galaxy power spectrum that peaks around
Δz ¼ 0.01 as shown in Fig. 9, the tightest constraints on
the parameters given by TSH are also achieved around
Δz ¼ 0.01. Given that RSD is a purely radial effect, σðγÞ is
more sensitive to the bin size than other parameters. On the
other hand, compared with other parameters, σðfNLÞ
requires fewer bins to reach the SFB constraint, since it
is more sensitive to large scales, and the additional
information from very small bins does not contribute a
lot. A similar discussion in a simplified cubic box geometry
can be found in Ref. [71], where it is shown that analyzing a
3D survey as a 2D map will lose a factor greater than 2 in
SNR, consistent with our results.
Figures 12 and 9 are shown for the Euclid sample, but the

bin size dependence and the optimal bin size are similar for
the DESI BGS, ELG, and SPHEREx 1 galaxy samples we
consider. For other (spectro)photometric samples, the opti-
mal bin sizes cannot be achieved, since they are smaller than
the redshift uncertainties. The optimal bin size depends on
many details of the survey, including the number density,
which determines the shot noise level, and also the redshift
distribution. We try finer sampling of the bin size, and the
optimal values are not exactly the same for different surveys.
For example, for DESI BGS, the optimal Δz is closer to
0.008, which is smaller than 0.01, while for DESI ELG and
Euclid, the finer optimal values are slightly lower than 0.01.
We also tune the number density with other configurations
kept fixed and notice that the advantage of SFB is stronger
when the shot noise is lower.

E. Covariances between radial modes in
SFB or redshift bins in TSH

In this part, we consider the importance of the cova-
riances between radial modes in SFB or redshift bins

in TSH. In principle, all the covariances should be included
as part of the total information, while sometimes people
might ignore them for simplicity. Therefore, it is worth
discussing how the constraints on parameters of interest
would change with or without the covariances.
In the TSH basis, the cross-correlations between tomo-

graphic redshift bins contain wealthy information from the
radial direction. Therefore, excluding these covariances in
the Fisher analysis could result in worse constraints on the
parameters. The significance of off-diagonal elements in a
covariance matrix C can be quantified with the correlation
matrix, whose elements are given by

CorrðCÞij ¼
Cijffiffiffiffiffiffiffiffiffiffiffiffiffi
CiiCjj

p ; ð66Þ

where in this case Cij corresponds to Eqs. (28) and (39) for
TSH and SFB galaxy power spectra, respectively. As an
example, we show the correlation matrices of TSH power
spectra of the Euclid galaxy sample for a few l’s in Fig. 13.
We can see that there are non-negligible correlations
between redshift bins for both high and low l’s,
given the small bin size Δz ¼ 0.01 we use. For the galaxy
samples, we consider, with the covariances removed, we
notice that both σðfNLÞ and σðγÞ could be larger by a factor
of approximately 1.5 to 2.5. Therefore, as expected, it is
crucial to consider the covariances in tomographic analysis
in order to make use of the valuable radial information.
In SFB analysis, however, it is not straightforward to

analytically predict how the covariances between discrete
radial modes would change the constraints. We show a few
correlation matrices in Fig. 14. Those nonzero off-diagonal

FIG. 12. The ratios between parameter constraints given by
TSH and SFB analyses of the Euclid-like galaxy sample, with
CMB lensing included. To get a more straightforward idea about
the dependence of background cosmological parameters on the
bin size Δz in TSH analysis, the Planck CMB prior is not added.
See Sec. VI D for more details.

FIG. 13. Correlation matrices of TSH galaxy power spectra for
l ¼ 10, 500, 700, assuming the Euclid sample. The upper-left
corner corresponds to lower redshift bins.

FIG. 14. Similar to Fig. 13, but for SFB galaxy power spectra.
The upper-left corner corresponds to lower-kln modes.
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covariances are mainly caused by the redshift dependence
of the galaxy field and also the boundary condition, where
the orthogonality relations of the radial basis functions no
longer hold. For the galaxy samples we consider, σðfNLÞ
could be larger by 10% to 40% due to these covariances.
For γ, which is more sensitive to the radial information,
though, the constraints could be either better or worse by
dozens of percent depending on the specific sample. Thus,
it is important to consider the covariances between radial
modes in SFB power spectra analysis, given the significant
impact on the parameter constraints.

VII. CONCLUSIONS

As observables tracing the same matter field, cross-
correlating CMB lensing and galaxy clustering is powerful
in reducing the sample variance on large scales and also
mitigating the degeneracies between galaxy-only and stan-
dard ΛCDM cosmological parameters. Compared with
Cartesian PðkÞ analysis, a decomposing 3D spherical galaxy
field in the SFB basis is amore natural choice for large scales.
This also makes it straightforward to be cross-correlated with
a 2D CMB lensing map in the SH basis. Motivated by this
SFB analysis that maintains the radial information, we
investigate the constraints on the PNG parameter fNL and
theRSDexponent γ by performingFisher forecasts for galaxy
setups that mimic a few future surveys. In these Fisher
analyses, we also marginalize over fiveΛCDM cosmological
parameters and two nuisance parameters that account for
clustering bias and magnification bias.
We consider the linear modes that are defined based on

their own power spectra in SFB and TSH analyses. We
avoid doing these by converting from the 3D linear scale as
has been done in some previous work, since 3D wave
numbers are actually mixed in SFB and TSH analyses, and
it is hard to perform the conversion accurately. For TSH
analysis, a direct result is that for a much smaller bin size,
the maximum l for each bin would be lower, since those
modes that become more nonlinear due to the small bin size
are excluded. In general, we find that SFB works better than
TSH in maintaining the linear modes and therefore gives
more information in constraining parameters.
For fNL, thanks to the contribution from large radial

scales, SFB gives tighter constraints by a factor of 3 to 12
compared to TSH analysis with only one bin, where radial
information is mostly lost. Since PNG is only significant on
large scales, decreasing the bin size in TSH analysis could
improve σðfNLÞ but would not give better results than SFB
analysis where large radial scales are clearly included. We
also notice that in SFB analysis or TSH analysis with a
large number of bins, CMB lensing does improve σðfNLÞ,
but not significantly, since fNL is only weakly degenerate
with other cosmological parameters, and radial scales also
contribute more modes to reducing the sample variance
than CMB lensing. For the galaxy samples considered,
compared with analyzing galaxy only, a joint analysis with

CMB lensing could improve σðγÞ by a factor of 2 to 5. This
is mainly contributed by reducing the degeneracies between
γ and other parameters, especially the clustering bias.
For the magnification bias s due to foreground lensing,

its degeneracies with other parameters are found to be very
weak while different fiducial values could change σðfNLÞ
by dozens of percent for analyzing high-redshift galaxy
samples. However, using the joint analysis with CMB
lensing, σðfNLÞ becomes more robust, and these changes
due to fiducial s values reduce to only a few percent.
Therefore, for analyzing high-redshift galaxy datasets, it
might be necessary to consider a free s parameter in a
proper prior range if CMB lensing is not included.
Both the SFB and TSH methods have their own advan-

tages and limitations. In the SFB basis, it is more convenient
to decompose a 3D field without losing information,
especially for large radial scales. However, the sacrifice is
that the information from different redshifts is mixed in the
radial integral, which is an inevitable result of observing the
light cone. In the TSH basis, it is easier to study the redshift
evolution of the field, but the radial information may not be
well reconstructed even with a large amount of modes.
Therefore, which method to use depends on the parameters
of interest. For example, if the primary goal is to constrain
fNL, then TSH analysis with a moderate number of bins
should suffice. Besides, it is worth mentioning that for
constraining fNL in the 3DPðkÞ analysis, an optimal redshift
weighting method has been shown to be helpful in reducing
the uncertainty (see, e.g., Refs. [72–74] for the application
on the eBOSS data). This might also be an interesting aspect
to consider when the SFB formalism is used to analyze
observed data in the future.
In general, our Fisher forecasts show that joint analyses

of future CMB lensing and galaxy surveys in the SFB basis
are very promising in constraining PNG and RSD, which
are probes of inflation and gravity models, respectively. For
future large spectroscopic surveys like DESI BGSþ ELG
or Euclid, we would be able to constrain γ to∼3% precision
using their linear scales. For high-redshift photometric
samples like LSST, σðfNLÞ < 1 can be achieved as long
as lmin ≃ 20 are free of possible large-scale systematics.
However, to use either SFB or TSH formalism for data
analyses of future surveys, besides the estimator that has
been discussed in Refs. [26,27], it is still necessary to
improve the numerical algorithm of computing the theo-
retical power spectra, since they would have to be evaluated
at each MCMC step. Besides the FFTLog algorithm men-
tioned in Appendix D, another promising solution is to
extend the emulators (see, e.g., Refs. [75,76]) to the SFB
power spectra.
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APPENDIX A: ORTHOGONALITY RELATIONS

In this appendix, we present a brief review of the
orthogonality relations satisfied by the radial basis functions
in SFB decomposition. Following the discussion in
Ref. [23], we derive the normalization factors under different
boundary conditions (BCs). The spherical Bessel functions
are defined through the differential equation

1

r
d2

dr2
½rflðkrÞ� ¼

�
lðlþ 1Þ

r2
− k2

�
flðkrÞ; ðA1Þ

where flðkrÞ can be any linear combination of jlðkrÞ and
ylðkrÞ, the spherical Bessel functions of first and second
kind. Applying the operation

Z
r2

r1

drr2flðk0rÞ ðA2Þ

to both sides of Eq. (A1) and removing the symmetric terms
in k and k0 by doing the subtraction with k and k0
interchanged, we are left with

Z
r2

r1

drr2flðkrÞflðk0rÞ

¼ r2½k0flðkrÞf0lðk0rÞ − kflðk0rÞf0lðkrÞ�jr2r1
k2 − k02

; ðA3Þ

where r1 and r2 are the lower and upper radial boundaries.
We can see that for discrete k ¼ kln and k0 ¼ kln0 values
determined with either Dirichlet

flðklnr1;2Þ ¼ 0 ðA4Þ

or Neumann

f0lðklnr1;2Þ ¼ 0 ðA5Þ

BCs, the numerator of Eq. (A3) evaluated at the boundaries
is zero. Then, Eq. (A3) can be written as a orthogonality
relation

Z
r2

r1

drr2flðklnrÞflðkln0rÞ ¼ τlnδ
K
nn0 ; ðA6Þ

where the normalization factor τln for n ¼ n0 can be
determined by taking the limit k → k0 on the rhs of
Eq. (A3), which gives

τln ¼
r3

2

�
½f0lðklnrÞ�2 −

flðklnrÞf0lðklnrÞ
klnr

− flðklnrÞf00lðklnrÞ
	����

r2

r1

: ðA7Þ

Now, we could explicitly write down the following nor-
malization factors for different BCs:
(1) For a sphere, r1 ¼ 0, fl ¼ jl,

(a) with Dirichlet BC,

τln ¼
r32
2
½jlþ1ðklnr2Þ�2: ðA8Þ

(b) with Neumann BC,

τln ¼
r32
2

�
1 −

lðlþ 1Þ
ðklnr2Þ2

�
½jlðklnr2Þ�2: ðA9Þ

(2) For a shell, 0 < r1 < r2 and fl ¼ J l,
(a) with Dirichlet BC,

τln ¼
r3

2
½J lþ1ðklnrÞ�2

����
r2

r1

: ðA10Þ

(b) with Neumann BC,

τln ¼
r3

2

�
1 −

lðlþ 1Þ
ðklnrÞ2

�
½J lðklnrÞ�2

����
r2

r1

: ðA11Þ

APPENDIX B: SFB AND 3D CARTESIAN
POWER SPECTRA

Here we discuss the relation between SFB and 3D
Cartesian power spectra. We assume that fðrÞ is a sta-
tistically homogeneous and isotropic 3D field, whose auto-
power spectrum in Cartesian coordinates is given through

hfðkÞf�ðk0Þi ¼ ð2πÞ3δDðk − k0ÞPfðkÞ: ðB1Þ

The SFB coefficient with or without boundary conditions
(BCs) can be written in a general form as

flmðkrÞ ¼
Z

drr2F ðkr; rÞ
Z

dΩfðrÞY�
lmðr̂Þ; ðB2Þ

where F ðkr; rÞ includes the factor and radial eigenfunction,
and kr denotes the radial wave number in the SFB basis.
By transforming fðrÞ to fðkÞ and using the plane wave
expansion in Eq. (26), the inner angular integral can be
written as an integral over the 3D wave vector

Z
dΩfðrÞY�

lmðr̂Þ ¼
il

2π2

Z
d3kfðkÞjlðkrÞY�

lmðk̂Þ; ðB3Þ
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and Eq. (B2) becomes

flmðkrÞ ¼
il

2π2

Z
d3kfðkÞY�

lmðk̂Þ
Z

drr2F ðkr; rÞjlðkrÞ:

ðB4Þ

Without any BCs, kr is continuous, and

F ðkr; rÞ ¼
ffiffiffi
2

π

r
kjlðkrrÞ; ðB5Þ

where the choice of the normalization factor is not
important here and may vary depending on the convention.
Then the integral over r from 0 to þ∞ gives δDðkr − kÞ,
and the autocorrelation turns out to be

hflmðkrÞf�l0m0 ðk0rÞi ¼ δKll0δ
K
mm0δDðkr − k0rÞPfðkrÞ; ðB6Þ

i.e., we have Cf
lðkrÞ ¼ PfðkrÞ, and the radial wave number

is exactly the 3D wave number.
With a shell or sphere BC, the kr’s are discrete kln

values, and we have

F ðkln; rÞ ¼ τ−1lnJ lðklnrÞ: ðB7Þ

The autocorrelation now reads

δKll0δ
K
mm0C

f
lnn0 ¼ hflmðklnÞf�l0m0 ðkl0n0 Þi

¼ δKll0δKmm0
2

π
τ−1lnτ

−1
ln0

×
Z

dkk2PfðkÞIlnðkÞIln0 ðkÞ; ðB8Þ

where we define

IlnðkÞ≡
Z

r2

r1

drr2J lðklnrÞjlðkrÞ: ðB9Þ

Since k is arbitrary, this integral over r would no longer
reduce to the delta function.

APPENDIX C: GAUSSIAN COVARIANCES
BETWEEN POWER SPECTRA

In this appendix, we briefly discuss the Gaussian
sampling covariances for SH and SFB power spectra based
on the pseudo-Cl (PCL) estimator. Note that although the
expressions below are written for 3D SFB coefficients, the
derivation is the same for SH coefficients, and thus any 3D
field fðr; r̂Þ can be replaced with a 2D field aðr̂Þ by simply
erasing the corresponding radial wave number index n.
The PCL estimator is constructed based on the equiv-

alence of all the m modes:

Ĉff0
lnn0 ¼

1

ð2lþ 1Þfsky
Xl
m¼−l

f̂�lmnf̂
0
lmn0 ; ðC1Þ

i.e., the estimate for each l mode is given by the average
over all the 2lþ 1 m modes, fsky is the fractional sky
coverage, and we ignore the coupling between multipoles
for simplicity, as also assumed in the main text. Assuming
the fields fi to be Gaussian, with Wick contraction

hf1f2f3f4i ¼ hf1f2ihf3f4i
þ hf1f3ihf2f4i þ hf1f4ihf2f3i; ðC2Þ

we can show that the sample covariance reads

CovðĈf1f2
ln1n2

; Ĉf3f4
l0n3n4

Þ
¼

D

Ĉf1f2
ln1n2

− Cf1f2
ln1n2

�

Ĉf3f4
l0n3n4

− Cf3f4
l0n3n4

�E

¼ δKll0

ð2lþ 1Þfsky


Cf1f3
ln1n3

Cf2f4
ln2n4

þ Cf1f4
ln1n4

Cf2f3
ln2n3

�
; ðC3Þ

where Cf1f2
ln1n2

are measured power spectra that include
possible noises. As mentioned in the main text, in this work
we consider the lensing reconstruction noise and shot noise
in CMB lensing and galaxy-clustering autopower spectra,
respectively. Besides the simplified fsky description of
partial sky coverage, Ref. [77] presented a full discussion
of the PCL estimator, and also the corresponding Gaussian
covariance matrix for SH power spectra with angular masks
included. Similar discussion and expressions should also
work for the joint analyses of SH and SFB, since there is no
difference in their angular multipole descriptions—see,
e.g., Refs. [28,78] for discussions about the impact on
SFB power spectra. A recent work on the SFB power-
spectrum estimator [27] also presents more detailed dis-
cussions about the analytical covariance matrix.

APPENDIX D: NUMERICAL COMPUTATION
OF POWER SPECTRA

This appendix includes some details on the numerical
computation of the power spectra. In our formalism
discussed in Sec. III B, there are mainly two steps. First,
for tracers of the matter field—e.g., CMB lensing and
2D projected or 3D galaxy overdensity—we need to the
compute their transfer functions given by the line-of-sight
integrals over radial distance r. Then, these transfer
functions can be combined with the matter power spectrum
in the integral over 3D wave number k to get the SH or SFB
power spectra. The numerical evaluation of the line-of-sight
integrals is nontrivial given the highly oscillatory jlðkrÞ
functions, and the Limber approximation [79,80]
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Z
dxfðxÞjlðxÞ ≃

Z
dxfðxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π

2lþ 1

r
× δDðlþ 1=2 − xÞ

ðD1Þ

is usually used to speed up the computation. However, this
approximation work well only for high l’s, an integral
range that is much wider than the oscillation period of
jlðxÞ, and fðxÞ should also vary slowly compared with
jlðxÞ. These requirements may not hold in our case. First,
we are interested in large scales, and very low l’s are
included. Also, the redshift slice (i.e., the integral range)
could be very narrow given the large number of bins in TSH
analysis. Besides this, for SFB analysis, we have the radial
basis function J lðklnrÞ ¼ jlðklnrÞ þ AlnylðklnrÞ in the
line-of-sight integral, which is also oscillating very fast as
jlðkrÞ. Given these issues, we are not able to use Limber
approximation in our analyses. Instead, we evaluate the

integral in a brute-force but exact way with a large number
of sampling points. A significant fraction of time is spent
on getting the spherical Bessel functions jlðkrÞ or
J lðklnrÞ, which are computed recursively. To speed this
up, we tabulate these on the 2D ðk; rÞ or ðkln; rÞ sampling
grids for each l in advance, which can then be loaded
wherever needed. In Fisher analysis, since we only need to
evaluate these power spectra a few times, the computational
time is acceptable. But for a MCMC fitting of the analytic
power spectra to the estimates from real data, it would be
necessary to make some improvements, since the brute-
force computation is too slow for each step in the MCMC
chains. For angular power spectra, the FFTLog algorithm
[81] has been used to optimize the computation—see, e.g.,
Refs. [17,82]. For future work, it would be useful to check
if this algorithm could also be applied to the SFB power
spectra given the radial basis functions in the integral.
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