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The Minkowski functionals are useful statistics to quantify the morphology of various random fields. They
have been applied to numerous analyses of geometrical patterns, including various types of cosmic fields,

morphological image processing, etc. In some cases, including cosmological applications, small deviations
from the Gaussianity of the distribution are of fundamental importance. Analytic formulas for the expectation
values of Minkowski functionals with small non-Gaussianity have been derived in limited cases to date. We
generalize these previous works to derive an analytic expression for expectation values of Minkowski
functionals up to second-order corrections of non-Gaussianity in a space of general dimensions. The derived
formula has sufficient generality to be applied to any random fields with weak non-Gaussianity in a
statistically homogeneous and isotropic space of any dimensions.
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I. INTRODUCTION

Statistical analyses of random fields are of importance in a
broad range of research fields. For example, cosmic struc-
tures observed in the Universe, such as the temperature
fluctuations of the cosmic microwave background, the
density fields in the large-scale structure, weak lensing
fields, and so forth, are considered as realizations of random
fields. Only the statistical properties of the fields can be
predicted using cosmological theories of the very early
Universe, such as the theory of inflation [1-4]. Although
numerous inflationary theories have been proposed to date
[5], it is still not clear which theory is relevant to our
Universe. Alternatives to the theory of inflation, such as an
ekpyrotic scenario [6], have also been proposed. Different
theories predict different statistical properties of the initial
density field, and thus the observational constraints against
properties of cosmic fields are crucial in discriminating
between the theories of the very early Universe.

The maximal extraction of statistical information from the
observed fields is one of the most important challenges in
cosmology. The most fundamental statistic is the spatial
correlation function, or its Fourier counterpart, the power
spectrum, which characterizes the clustering strength of
random fields as a function of scale [7]. The two-point
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correlation function (or the power spectrum) completely
characterizes the statistical information of Gaussian random
fields. However, much of the information in generally non-
Gaussian random fields cannot be captured solely using this
statistic. Specifically, while simple models of single-field
inflation with a minimal kinetic term and a smooth potential
predict a negligible level of non-Gaussianities [8,9], various
other inflationary models can predict various types of
non-negligible non-Gaussianities [5,10]. Therefore, it is
crucial to determine whether non-Gaussianities are contained
in the initial density field or not and the type of non-
Gaussianity if it exists. Even if the initial density field is
purely Gaussian, gravitationally nonlinear evolution induces
the non-Gaussianity in the cosmic fields, from which one
can also extract information on the evolution of the Universe.
For these reasons, non-Gaussianities, which cannot be
probed using the correlation function or the power spectrum,
play important roles in cosmology.

Straightforward statistics beyond the two-point correlation
function are the higher-order correlation functions, such as
the three-point correlation function, four-point correlation
function, and so on [7]. The Fourier counterparts of higher-
order correlation functions are the polyspectra, such as the
bispectrum, trispectrum, and so on [11]. All the statistical
information of random fields is contained in the hierarchy of
these higher-order statistics. It is relatively straightforward to
theoretically predict the polyspectra of a given model of non-
Gaussian cosmic fields. Higher-order correlation functions
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have many arguments because they represent spatial corre-
lations among many separations. Therefore, it is challenging
to measure their accurate functional forms based on obser-
vational data.

Statistical tools for probing non-Gaussianities of random
fields are not confined to higher-order correlation functions
and the polyspectra. Among various statistical approaches,
the characterization of the morphological structures of
random fields is a unique way to probe non-Gaussianities.
The Minkowski functionals [12,13] comprise a set of
statistics that quantitatively characterize the stochastic geom-
etry. According to Hadwiger’s theorem [14,15], the d + 1
numbers of the Minkowski functionals in d spatial dimen-
sions completely characterize the global morphological
properties that satisfy motional invariance and additivity.

The Minkowski functionals were first introduced into
cosmology by Mecke et al. [16] for the analysis of point
sets, such as the positions of galaxies in the Universe. Later,
Schmalzing and Buchert [17] consider the Minkowski
functionals of excursion sets in smoothed cosmic fields.
One of the Minkowski functionals is the Euler character-
istic, or equivalently, the genus statistic of isocontours.
Prior to the introduction of the Minkowski functionals
in cosmology, the genus statistic [18] was applied to
smoothed cosmic fields such as the distribution of galaxies
[19-33], fluctuations of the cosmic microwave background
[34-40], weak lensing fields [41,42], intergalactic medium
[43-45], and the x-ray remnant of supernovae [46].
Applications of the Minkowski functionals to cosmology
are currently quite popular, including the analyses of the
large-scale structure [47-57], cosmic microwave back-
ground [58-70], weak lensing fields [71-83], reionization
epochs [84-91], and so forth.

The Minkowski functionals are also applied to
other fields of research, such as in morphological image
analysis [92], to describe porous media and complex
fluids [93,94], magnetic resonance imaging [95,96], the
structure of human radial peripapillary capillaries [97],
mammary gland tissue [98], spinodal decomposition [99],
quantum motion in billiards [100], regional seismicity
realizations [101], microemulsions [102], thin polymer
films [103], the internal structure of bimetallic nano-
composites [104], the thermodynamics of two-phase
systems [105], and many others.

A striking feature of the Minkowski functionals of
smoothed fields is that the shapes of the functional depend-
encies of the isocontour threshold are universal for Gaussian
random fields. Analytic expressions of the Minkowski
functionals for Gaussian random fields were derived by
Tomita [106]. Deviations from Tomita’s formula imply the
non-Gaussianity of the distribution. Thus, the Minkowski
functionals are considered as probes for non-Gaussianities in
cosmic fields. Analytic expressions of the Minkowski func-
tionals for weakly non-Gaussian random fields in two- and
three-dimensional space were derived by one of the authors

of this paper [107,108]. The expressions can be generalized
to include the anisotropic effects of redshift-space distortions
of the large-scale structure [109,110]. These formulas
assume that the non-Gaussianity is sufficiently weak and
the non-Gaussian corrections are given by linear terms of
the skewness parameters. We refer to these lowest-order
corrections due to the skewness parameters as first-order
corrections of non-Gaussianity. The next-order corrections,
which we call second-order corrections of non-Gaussianity,
are given by quadratic terms of the skewness parameters and
linear terms of the kurtosis parameters. Analytic expressions
of the Minkowski functionals with second-order corrections
of non-Gaussianity in a two-dimensional space were also
derived by one of the authors of this paper [111]. Analytic
expressions of the genus statistic with second-order correc-
tions in two- and three-dimensional spaces were derived in
Refs. [110,112,113]. Remarkably, formal expressions of
the genus statistic in two- and three-dimensional spaces
using the Gram-Charlier expansion to all orders are also
known [112,113].

The purpose of this paper is to derive analytic expres-
sions of the Minkowski functionals with first- and second-
order corrections of non-Gaussianity in general dimensions
for the first time. In a previous paper, Ref. [108], analytic
expressions of the Minkowski functionals with first-order
corrections of non-Gaussianity in general dimensions were
conjectured based on results for two and three dimensions.
We provide a proof of this conjecture in this paper. In
addition, we derive the second-order corrections in general
dimensions for the first time. The derived formula is given
by Eq. (91) in the following, which is the main result of this
paper. The known formulas in the literature indicated above
are reproduced as special cases of the general formula.

In cosmology, the newly derived formula with second-
order corrections in three dimensions should be useful
for future applications. Mathematically, it is interesting that
there exist analytic expressions in general dimensions.
Moreover, the approach used for the derivation in this study
is instructive. It is straightforward to derive formulas for
third- and higher-order corrections of non-Gaussianity using
the method presented in this work.

The authors are preparing an accompanying paper [114],
where an equivalent formula to this paper is mathematically
derived by an approach different from the one used in this
paper. The parametrizations of the formula in these two
approaches are also different. We have confirmed that the
two expressions are actually equivalent, and thus the derived
formula is cross-checked in two independent ways.

This paper is organized as follows. In Sec. II, a theory to
derive non-Gaussian correction terms for a given statistic is
reviewed. In Sec. III, the general properties and formulas for
the Minkowski functionals are reviewed. After necessary
preparations in the preceding sections, we describe the
calculation of the non-Gaussian corrections of Minkowski
functionals and present the main result of this paper in
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Sec. IV. The main conclusions are summarized in Sec. V.
Appendixes A and B are devoted to the proofs of important
formulas that are used in this work.

II. A GENERAL THEORY OF NON-GAUSSIAN
CORRECTIONS TO A MEAN VALUE

In this section, a theory to derive non-Gaussian correction
terms for a given statistic is reviewed. The same method is
already described in Ref. [108].

We consider a function F(f,) which depends on the field
value f(x) and its spatial derivatives up to the second order

(fﬂ):(f’fi’fij)’ (1)

where f; = 0f/0x;, fij = 0*f/0x;0x; (i <)), and x; are
the spatial coordinates. In d dimensions, the number of
elements of the vector f, is N=1+d+d(d+1)/2 =
(d+1)(d+2)/2. We assume that the field f has a zero
mean, (f) = 0, which implies (f,) = 0. The joint proba-
bility distribution function of the variables f, is denoted by
P(f), and the partition function is defined by

z(J) = / " dNf P(f)e, 2)

where J = (J#) is an N-dimensional vector. According to
the cumulant expansion theorem [115], we have

o 5 N N
In Z(J Z;_Z Zfﬂl' fu ) S g (3)
=0 —1 —1

where (- - -), denotes the cumulant. Denoting the covariance
of f as an N x N matrix M with components given as

M;w = <f/4fl/>c’ we have

1
Z(J)=exp (——JTMJ

) S J"n). (4)

.....

Applying the inverse transform of Eq. (2), and substitut-
ing into the preceding equation, we obtain

dJ .

P() - / SeR A
{Z _ ff>ﬁ Polf).
)

where

N

Ps(f) = /_wéT)JNexp <—iJ f- %JTMJ>

1 1
- (ZE)N/Z /det M Mexp <_ EfTM_lj.) (6)

is the multivariate Gaussian distribution function of f with
the covariance matrix M, and the repeated indices of
Ui, ..., 4, are assumed to be summed without summation
symbols. Using the expression of Eq. (5), the mean value
(F) of an arbitrary function F(f) is formally given by

(F) - / : d"fE(F)P(f)
— <exp <§%<‘fﬂl - 'fﬂn>cﬁ>ﬂf)>o’
(7)
where
<...>G:/_:de~--PG(f> (8)

denotes averaging over the Gaussian distribution function.
Assuming the higher-order cumulants are small, Eq. (7) is
formally expanded as

(F) = (Flo +§ Unfunfu)e(

a%
afﬂl afﬂzafm >G

! O'F
+ <fl41fl42f/‘3fﬂ4>c<afﬂ1 8fﬂ28fﬂgafﬂ4>0

<fﬂ|fﬂ2flh> <f/‘4f/’if/46>

« < O°F > + 9)
afﬂl afﬂzafﬂs afmafﬂsafﬂo G
It is useful to define dimensionless fields

f X fi X fl ( )

ar) =L ) =L g L) g
(0} (a3} (o)
where o6, are spectral parameters that are defined as

oir = (f(=L)/f), (11)

and A = 0°/0x;0x; is the Laplacian operator. In particular,
60> = (f?) is the variance of the field. We denote the set of
dimensionless variables as

(X,M) =

In most of the physical applications, it is often the case that

the m-point cumulant of X, has the order of 60" 2,

(0‘,’11'74:1']')- (12)
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<XM1 U Xﬂm>c

~ O(0y"2). (13)

This ordering is called hierarchical ordering. We assume
this type of ordering throughout this paper. In this case, the
normalized cumulants

<X L X m>0
= (14)

(m)
Cﬂl M
0oy

have order 1 in terms of 6,. Changing the variables from
fu to X, in Eq. (9), we have a series expansion

_ L) O°F Lo oF
<F> = <F>G+6Cﬂ]”2ﬂ3<ax ax ax 60+ 24Cll|ﬂzﬂ3ﬂ4 aXﬂlaXyzaXmaXm G

86
+= 72 Cﬂleﬂs CE‘ALS/% <

0X,,0X,,0X,.0X,,0X,.0X,

III. MINKOWSKI FUNCTIONALS

In this section, we define Minkowski functionals and
briefly review their properties and relations to the Euler
characteristic. The Minkowski functionals comprise d + 1
numbers that characterize the morphological properties of
random fields in a domain D of d-dimensional space. For
an excursion set F,, a set of all points x with a(x) > v, we
denote the Minkowski functionals per unit volume as

V,@(v), where k 0,1,...,
as V0 () = (Vi ).

For k =0, the Minkowski functional V(() ) corresponds to
the volume fraction of the excursion set,

(d)v—L x:L xOfa(x) —v
V') =y [ =) [ delate) o). (16)

where |D]| is the entire volume of the domain D. The other
Minkowski functionals with k =1,...,d correspond to
surface integrals of the boundary 0F, of the excursion set

d, and their mean values

k |D|/ di- 'ka (v,x), (17)

where v,((d)(u,x) are the local Minkowski functionals

defined by

d 1 d
o (v,x) = w—deiJl (v.x), (18)

and

k2

= T2 1) (19)

is the volume of the unit ball in k& dimensions. On the

boundary hypersurface, x € 0F,, K 5,[,1 ) (v, x) is the invariant
obtained from the inverse radii of curvature R, R,, ...R;_,

> :|602 + O(0y?). (15)

of the hypersurface orientated toward the lower density
regions [116]. That is,

1 1

(d)
Kn' (v,x) =
d—lcm

. (20)

where ) denotes the symmetric summation over ,_,C,, =
(d—1)!/n'(d=m—1)! combinations of m different
components of (R, R,,...,R,_;). For example, in two-
dimensional space with d = 2,

kY =1, kP =— (1)

and, in three-dimensional space with d = 3,

1/1 1 1
= (—+—)., KV=—v— (22
2\R, "R, RiR,

Substituting Egs. (20) and (21) into Egs. (18) and (17),
we obtain the formulas for the Minkowski functionals
presented in Refs. [117,118], respectlvely

The quantity KEZ_)I =R,'R,™"---R,_,~" corresponds
to the Gauss total curvature. Due to the Gauss-Bonnet
theorem [119], the density of the Euler characteristic of F,
is given by

kY =1, kY

1 1

— | %k w.x). (23
a)dd|D| oF, d- 1( ) ( )

)(<d)(fu) =

Therefore, the Minkowski functional with k = d corre-
sponds to the d-dimensional Euler characteristic,

V((jd) = 9. For analytic evaluations of the Minkowski
functionals of an excursion set in random fields,
Crofton’s formula [117,120,121] in integral geometry
serves as a powerful tool. This formula states that

Wy

VO = [ (B O(F 0 D). (24

Dg_ D
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where E is an arbitrary k-dimensional hypersurface and
7 is the density of the Euler characteristic of the
intersection F, N E in k dimensions. This quantity is

integrated over the space E,((d) of all conceivable hyper-

surfaces, and the integration measure du,(E) is normal-

ized to give fgw) du,(E) = 1. Using Crofton’s formula of
k

Eq. (24), and assuming statistical isotropy and homo-
geneity, the expectation values of the Minkowski func-
tionals are given as

G O(F, 0 E) =

(k)
Vi ()., (25)
W4 Dy k

ir(d
7w =

D gD

where V,(Ck) (v) = y®(F, N E) is the kth-order Minkowski
functional of the intersection F, N E. The expectation
value of Vﬁck) does not depend on the choice of the
hypersurface E due to the statistical isotropy and homo-
geneity. Using this relation, the expectation values of the
Minkowski functionals for each order can be estimated by
only evaluating expectation values of the Euler character-
istic in the spaces of lower dimensions.

It is convenient to use the Morse theorem [119,121,122]
to evaluate the expectation value of the Euler characteristic.
The Euler characteristic y(F,) is given by an alternating
sum of the number of critical points,

i d " C”l l/) (26)

m=0

where C,, is the number of critical points that satisfy f; =
0f/0x; = 0 of index m, and the index m is the number of
negative eigenvalues of the matrix f;; = 0f/ Ox;0x; at
each critical point.

To count the number of critical points, we first consider
the d-dimensional delta function §¢(x —x,) around the
critical point x,. Applying the Taylor expansion, we have

P £ + 5 Foe) (e = xe) Oy = xe7). - (27)

up to the second order. The first-order term does not appear
because a critical point x. satisfies f;(x.) = 0. Taking
spatial derivatives of this equation, we have

ni(x) = j—jmxc)(xj — x). (28)

Therefore, the delta function of the critical point is given by

Sa-x) = (2) swlae. (9

1

near the critical point x.. When the right-hand side (rhs) is
expanded to include the entire space, the left-hand side (lhs)

should be replaced by a summation of delta functions for all
the critical points. From the definition of index m, we have
|det{| = (—1)"det {. Thus, we have

0)

(=1)dm5t(x—x) = (=1)? <—

(g

d
) & (n) det¢,

(30)

critical points: i

where m; is the index of the ith critical point x£i>. Due to
Eq. (26), the expectation value of the preceding equation
with constraint a(x.) > v corresponds to the density of the

Euler characteristic of the body F,,

oo\ d
0 =0 (2) et vt ). 61
1
where ©(x) is the Heaviside step function.

IV. NON-GAUSSIAN CORRECTIONS TO THE
MINKOWSKI FUNCTIONALS

A. Gaussian averages for derivatives
of the Euler characteristic

The density of the Euler characteristic n)(( )( ) of F, in
the d-dimensional space is given by Eq. (31). Instead of the
Euler characteristic, we take the function F in Sec. Il as a
differential Euler characteristic density —(d/dv)n,(v), i.e.,

F=(-1)/ <@> dé(a —0)3(n) dete,  (32)

0]

so that the integral of the expectation value (F) by v should
give the Euler characteristic density 7, (v),

n,(v) = / " du(F). (33)

In order to evaluate Eq. (15), we only need to calculate a
Gaussian average of the function F and its derivatives
with respect to X,. The Gaussian statistics are characterized
only by the covariance matrix M,, = (X,X,). Assuming
statistical isotropy and rotational invariance of the field
variables, they are given by [123]

1

(@) =1 {am) =0, (aly) ==Ly, (nm)) =~y
) =0, (yfaa) = gy O+ Budy + )
(34)

where
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2
y=-L (35)

0002 '

It is convenient to define a new variable
d
Z; E;Cij + 0, (36)

instead of {;;. The covariances of a new set of variables
(a,n;, Z;;) are given by

(@®) =1, (an;) =0,

1
<’7i’7j> = —551']', <77iij> =0,

(ZijZi) = =061 + (801 + 01 + 80k )

(d+2)y?
(37)

so that the variables a, 1;, and Z;; are independent of each
other for Gaussian statistics. In Eq. (15), we need to
evaluate the Gaussian average of a type

am0+2m1+mz F

<8amoam] - 8;11-2/”[ aé_,’jlkl .. .82_,’]-”,21(”12 >G
(N P\ ()
= dU() a’?i, PN anizml G d
d\ mo 0™ det (I/I - Z)
X <— E) |:<5(a - V)>G<azjlkl . 0Z >G] ’

jmz kﬂlz
(38)

where [ is a d X d unit matrix and Z is a d X d symmetric
matrix with Z;; = Z;;. Since the Gaussian distribution
functions of the variables a and #; are given by

_a2/2 d d/z
PO(a) = © %Mb(ﬁ 2 (39)

V2 2w
we have
e—u2/2
Sla—v = , 40
(bl =)o =" (40)
aZml 5d dd/2+m|
(’1> = d/2 Hi el (0)’ (41)
87]:‘1 . anizm G (271.) / 1 Domy
where
H; ., (x)=ekl/? " e~lI/2 (42)
tm ox; - 0x;

is the multivariate Hermite polynomial. In particular,

Hi1~~~i2m (0> = Hzm(0)5( (43)

iy " 5i2m—li2m)’
where H,,,(0) = (=1)"(2m —1)!! is the zero-point
value of the (probabilists’) Hermite polynomial,
H, ) = e"/*(=d/dv)"e /2, and the round brackets
in the indices of the Kronecker delta represent symmet-
rization of the indices inside the brackets.

B. A useful formula of Gaussian averages for
derivatives of the determinant

Now, we consider the last factor of Eq. (38),

o det(ul — 2)
<3Zj,kl”'5z‘ k >G’ @)

Ty Koy

For m, = 0, there is a simple identity
(det(vl = Z))g = Hy(v). (45)

The proof of this equation is given in Appendix A.

For m, > 1, the partial derivatives 9/9Z,;; are performed
under the condition that the variables with i < j are the set
of independent variables in Eq. (38). It is convenient to
introduce a redundant set of independent variables

v =10 . 46
=1 (46)

which is a symmetric tensor, Y;; =Y ;. Considering the
variables Y;; as independent variables, the partial deriva-
tives with respect to Z;; are given by the partial derivatives
with respect to Y;; as

) o (i =J),
ij ar; Tar, (i <J).

In Eq. (15), a type of differential operator,

9 b y
;j 10z, ; VoY, ij
appears, where C;; is an arbitrary symmetric tensor with
C;j=Cj;, and
as (i=1)
j_1(_9 9 1.0 ..
D7 =5 = 35—, (i<}]), 49
) <8Yij + 3in> 20z, (E<J) (49
1.0 .
20z, ((>))

is a symmetric differential operator, and the summation
over repeated indices is assumed in the last expression
of Eq. (48).
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Thus, when Eq. (38) is summed with the weight of the
cumulants, we generally have

SO Y (@

ioeelomy J15ky Jmy <k

Mig, Siky "

c
my

Ciyhny)
6m0+2m1 +my

X
<6a'”“8;7i| e a’?iz,,,] Ok, '3C~jmzkmz >G

1 o, d Y —niy
= d™ H,, (0)( %
(2”)(d+l)/2 (\/300> ml( )<d>
d\mo
X <amo|n|2mlé‘jlkl e gjmzkm2>c (— E)

iy i1k
X |:€ D/2<Djzl Lo,

D" det(vl — z))G] , (50)

where both the indices of ¢, on the rhs are summed over
ji-ki =1, ...,d (without constraints j; < k;).

The partial derivatives 0/0Z;; always appear with
cumulants C,(f.?.ﬂm in Eq. (15). These cumulants are tensors
that consist of the Kronecker delta with spatial indices.
Applying the property of Eq. (48), we only need a form
(Tr(D™)---Tr(D,")detA); to evaluate Eq. (15),
where my,...,m;, and k are non-negative integers.
There is a remarkable identity,

(TH(Dy™) - Tr(Dy™) det(vl - Z))g
_1)\k
= (2;n1—)k ﬁl_]d—m (U)’ (51)

where m = m; + - -- + m,. Equation (45) is a special case
of m =k =0 of this identity. The proof of Eq. (51) is
given in Appendix B. This formula plays a central role in
this paper.

C. Evaluations of each order

1. The Gaussian term

The first term on the rhs of Eq. (15) corresponds to the
Gaussian contribution and is immediately calculated by
applying Eq. (45). Putting my = m; = m, = 01in Eq. (50),
this term is given by

1 (o3} d )
(Flg = (2m) @2 <\/300) e P H,(v).  (52)
2. The first-order term

The second term on the rhs of Eq. (15) corresponds to the
first-order contribution. We should evaluate

OPF
W(l) = CI(ZL u <—> ()
2\ 0X, 0X,.0X,./

~ (28 e ()
+3Z anij). <8agj:3’7;>
+3;; aijCui)e <8a§cf:3Ckl>
+3,Zj:; (nimiCia. <a;7,gni9§k1>
+;;; CiiCulpa)e <agugk,c’)§pq> &

The cumulants with odd numbers of spatial indices are zero
for rotational symmetry. The cumulants are independent of
the spatial position, thus we have

0
o) (aza ,/> = —26—2 (aa,,»a,j>c

< 2§z]> = _2y<a7]i;7j>c
(54)

in the second term of the rhs. Due to Eq. (50), the
summation in the fourth term reduces to

OPF
22 (adiu). <aaa¢,,a¢k,>

i<j k<l

1 o1 \4(r\?
e (@0) (3) (@il

x (— %) (e /2(DYDY det(vl — Z))g).  (55)

The cumulant in this equation reduces to

o)0

(aliiCu)e = —rnimiCu). — % (ania i), (56)

The last term on the rhs of this equation does not contribute
in Eq. (55). This property is seen as follows: due to the
relation of Eq. (B3), ( DJD¥ detA) can be replaced by
€ikiyiy€jljz-jy <A,'3j3 s de>G/(d 2) in Eq (55) Since
the last factor is antisymmetric with respect to (j, /), while
@ ji; 1s symmetric, the last term of Eq. (56) does vanish in
Eq. (55), and only the first term of Eq. (56) survives. In the
same manner, it is observed that the last term of Eq. (53)
does not contribute. In fact, the cumulant of the corre-
sponding term is given by

3

(€iiCulpg). = _Z_;)3(<a,ia,jkla.pq>c @ jpg).).  (57)
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Because the terms on the rhs are symmetric with respect to
(j, 1) or (j, q), all the terms of Eq. (57) vanish when they
are substituted in the last term of Eq. (53).

Therefore, the only cumulants we need to evaluate are
(@), (ann;)e, and (nn;Cx).. For rotational symmetry,
these cumulants are parametrized as

. 1~
(@) = 50, (aninj)e = 35(1)517007
Vg (2
niniCu)e = 7 57 )5'j5kl + 35 )Aij;kl}go’ (58)
where
1
Ajjg = 5 (6ubj1 + 6ud)i).- (59)
From the identity
miniCu)e + mmlie)e + mimli)e =0, (60)

we have a relation
5P 450 —o. (61)
Substituting Egs. (54) and (56)—(58) into Eq. (53),

omitting the vanishing terms as indicated above, and using
Egs. (50) and (51), we finally derive the expression

1 o d
() — ! —2/2
w 27) @2 (\/360) €
x [SOH ,5() +2dSWH 4, (v)
+d(d=1)SP Hyy (v))oo, (62)

where we introduce a set of parameters

50 =50 g) =

| W
[oN
@

~ 3 ~(2
s, S(2>E—§S§) (63)
for an aesthetic reason.

3. The second-order terms

The second-order terms of Eq. (15) are evaluated similar
to the first-order term. We define

@) _ 4 *F 2
Wi = Cuopsp < > o0, (64)
R axmaxﬂz axﬂ_% axlm G
6
@ _ A3 A0 PF
wy'=C C
2 HiHaH3 ™~ HalsHe <8X,41 aXMZ 8XM3 aXM4 aXMS aXM6> o

(65)

The evaluation of these terms is similar to the first-
order case and is straightforward by applying the same

techniques. The four-point cumulants that are required to

2

evaluate W™ are parametrized as

B 1.
n d
[K52>5ij5k1 + f{gz)Aij;kl]Uoz,

(a*), = K0qy?, (a®nim;)e KWs,;002,
14

d2

<”i”j€kl€pq> d3 K( )5 5k15pq

1.
+5 ) K( )( ij;kl‘qu + Aij;ﬂq‘skl)

+ K Ay + KA 6%, (66)

ij;kl;pq
where

A

ijiktipg = g (0jx01p0qi + 0x0146pi + 810k p0gi + 0j61g0pi

0| —

+ 8u81p04; + Oud1gBp; + SudipSq; + 8uBkg0p;)-
(67)

Other cumulants are given by the above ones as

(@Cij)e = =3y(a’nim;).e.
(@%CiiCu)e = —2y{amm;Cu)e + -+
(aliiCulpg)e = =rniniCulpge +
(nimmon)e = =3y~ {anin Cu)e. (68)
where +--- represent terms that do not contribute in
Eq. (50). The cumulant ({;;4,¢ 48 ,s). does not contribute

in Eq. (50), because of the same reason we described
around Eq. (57). From the identity,

MiniCulpg)e +
= <ni’7j(:qu.:lp>c

<’7j’7kCilZ.:pq>c
<’7j’7kz.:iqz:lp>c’ (69)

i i pg). +
+ il jgSip). +
we have a relation,
48 12k — 2k — kP =0 (70)
for d > 2.
The calculations of Eqgs. (64) and (65) are similar to the

first-order case and are straightforward using Eqgs. (50) and
(51) but tedious. The results are

@ 1 or \* —uZ/z{ (0)

w® = KO
G (i) © ol
3d
+—[(d—2)1(§2

+3dKH 4, (1) '+ dKH o ()

rd(d-1)(d-2)KOH,_ 2(1/)}002, (71)
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and
R JEN RSO Hyg(v) +4dSO)S
2 7 20 @2\ Vs, € a+6V

WHy4(v) +2d(d = 1)SOSPH, 5 (v)

+4d(d—2) (S Hy»(v) +4d(d—1)(d-4)SDSPH,(v) +d(d—1)(d=2)(d=T7)(S?)*H (V) }oo>,  (72)

where we introduce a set of new parameters,

KO =gO g =20, K(12) = 2I~((12),
kY =2k, k@ =280 -k, (73)
for an aesthetic reason.
Equation (15) is given by
LED RN SRC) B )
(F>:<F)G+6W —|-24W +72W2 . (74)

Substituting Egs. (62), (71), and (72), into Eq. (74), and
using the integral

/oo due_”z/zH,,(V) = €_U2/2Hn+1(’/)’ (75)

v

one obtains the result for the expression of 1, (v) of Eq. (33).

D. Skewness and kurtosis parameters

The skewness and kurtosis parameters can be explicitly
given in the form of rotationally invariant averages of field
variables. By taking all the possible contractions of spatial
indices in Egs. (58) and (66) and solving the resulting linear
equations, one obtains

o0 _ (e ) _ 3V
S oo’ st 2 6y’0,%
=3d_(|VfIPAf).
2 —
9= 20d-1) o 76)
and
o~ e ey o PIVIP)
006 ’ () 612 '
(0 =2 A2V + (VS
b d+2)d-1) oo’oy ’
2 _ —2d  (d+2){fIVfPAf)c + d{|Vf]*).
2 _(d+2)(d—1) 6()2614 ’
e 2P (VIR = (VSRS
T ([d-1)(d-2) ° '
(77)

The parameters K gz) and ng) are undetermined in the

case of d = 1, since only the combination K <12) - ng) can

|
be determined. In this case, by noticing that (f,?) =

_3<ff12f11>’ we have

2 4
32:216?3’ (d=1), (78)

K-k =

which is substituted into Eq. (71) in the case of d = 1.
The parameter K () is undetermined in the cases of d = 1,
2, but does not appear in Eq. (71). We can ignore the term
of K@ in these cases.

In Eq. (76), the third-order cumulants are the same as
the third-order mean values, (f3). = (f?), (f|Vf]*). =
(FIVFI?), (IVFPAf)e = ([VfPAf) because the mean
values are zero, (f) = (f;) = (f;;) = 0. In Eq. (77), the
fourth-order cumulants are related to the fourth-order mean
values by

(e = () 3", (79)
(PINFR) = (PIVFE) ool (80)
UISFRAR. = FIVFEAS 4ot (81
(Vs = (% - 260 @)
(IVFR(ATP), = (VFRAFR) — oo, (83)

<|Vf|2fijfij>c 0] 0227 (84)

(VFIPSfifi) =

which are followed by the definition of cumulants and the
fact that mean values with an odd number of spatial
derivatives vanish because of rotational symmetry.

E. Minkowski functionals

From Crofton’s formula, Eq. (23), the kth Minkowski
functional in d dimensions, expectation values of the
Minkowski functionals are given by Eq. (25), and (V,((k>>
is the expectation value of the density of the Euler character-
istic. Because the formula for the Euler characteristic we
have derived thus far is for general d dimensions, the last
quantity <V,((k>> can simply replace n,(v) with d =k,
assuming that all the parameters are calculated in k-dimen-
sional subspace. As such, the parameters in the derived

formula oy, 01, S, ..., K ... should be replaced by the
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corresponding parameters in the k-dimensional subspace in
d-dimensional space.

We denote the corresponding parameters as ‘o, %o,
ks© .. kK©) ... These parameters are represented by
corresponding ones in d-dimensional space as

fo0® = (f?) = o0’ (85)

k k
kf712 :_<fAkf> = —k<ff11> :—3<fﬁf> 26—1012, (86)

where /\; is the Laplacian operator in k-dimensional sub-
space. Similarly, we have

kg(0) — (e (e _ (@) — §(0)

= , 87
== (87)

ks(l) :§<f|ka|2>c :§ k<ff12>c _ §d<a7712>c _ S(])

2 %oy*ke2 20y (k/d)? 2 oy ’

(88)

|
V(d)(y) _ 1 Wq ( 0] )ke_pz/z HH W) + [

¢ (2”)(k+1)/2 WD D \/300 o

1 k

1
- {ﬁ (SOVH,, s(v) + <ﬁ KO + —S(O)S(1)>Hk+3(v) +k [— KW 4=~ 5052 4

18

k
=SOH 5 (v) + 3 SVH(v) +

kg(2) — —3k <‘ka|2Akf>c _ -3k k<f12Akf>c
C2(k—=1) kgt - 2(k=1) (k/d)*c,*
-3d*> 6,%0,

:2(1(—1) o [<’712C”>C+<k_1)<’712C22>c]:S(2>,

(39)

where V, is the gradient in the subspace, and Eq. (58) is
applied to derive the last expressions. For the kurtosis
parameters, similar calculations show that

O = kO kg = g kgl = g2
P = g kB = KO, (90)

Combining Egs. (33), (62), (71)—~(75), and (85)-(90), a
weakly non-Gaussian formula for the density of Minkowski
functionals is finally derived as

k(k—1)
6

3 S(Z)Hk—z@)} 0o

1 k—1 k=2

L 2P| i)

k—2 k k—1)(k—4
+k{—16 K§2)+—16K§2>+—( 1)3(; )S(I)S(z)]Hk—l(V)
1 (3) k=1 (2)\2 2 3
+k(k—1)(k—2) ﬁK +7(S ) Hk_3(l/) () +O(00) . (91)

This is the main result of this paper. We confirm that
specific cases of this general result agree with all the known
results in the literature. The lowest-order term, i.e., the
Gaussian part, agrees with Tomita’s formula [106]. The first-
order term (O(o) is in exact agreement with the result
of Ref. [108], which is a conjectured equation suggested
by lower-dimensional calculations. Therefore, the newly
obtained result is a proof of this conjecture for general
dimensions. The second-order term O(6,?) in d = 2 dimen-
sions is in exact agreement with the result of Ref. [111]. The
second-order term of Vfid) (v), which is equivalent to the
genus statistic up to the overall amplitude, exactly agrees
with theresults of Ref. [110]in d = 2, 3 dimensions, after the
conversion of the cumulants in this reference to the skewness

and kurtosis parameters in this paper.

F. Spectral representation of parameters

In cosmological applications of Minkowski functionals,
it is convenient to represent the parameters in the derived
formula in terms of the power spectrum P(k), bispectrum

|

B(k,,k,,k5), and trispectrum T'(ky,k,,k3,k4) of the field
f, because these polyspectra can be directly predicted
from theories such as the higher-order perturbation theory
of nonlinear gravitational evolution, etc. Although the
relations are relatively straightforward, we explicitly pro-
vide the relations in the following for convenience.

Denoting the Fourier transform of the field as

70 = [ atxe o), (92)
the polyspectra up to fourth order are defined as
(FH)F(K)e = n)*6"(k + K)P(k).  (93)

(f(ky)f(ka) f(K3))e = (27)8 (k1 + ks + k3)B(ky ks k),
(94)

(f(ky) [ (ko) f (K3) f(Kes))
= (27)*8"(ky + ky + k3 + ky)T (k. ks, k3. ky).  (95)
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The parameters defined by Egs. (11), (76), and (77) are
represented by these spectra as

dk .
2= K Pp(k), 96
o = [ G kP@) 9
g) _ 1 /ddkl dky dik;,
00t %02 | (27) (2m)4 (2m)¢
x (27)264(ky + ky + k3) s\ (ky ko, k) B(ky ky, k3),
(97)
K@ — 1 /ddk1 d%, dk; dk,
‘ 606> | (2n)! (2x)* (27)* (27)?
x (2m)46" (ky + ky + k3 + ky)
x k9 (ki ky. ks, k)T (ky ey ks k), (98)
where
RONY s<1>:_%k1.k2,
3d
@ =_ ki ko Va2
0 =1, kM) = -2k, - ky,
- 2 )2kt k
K (d+2)(d—l)<1 2)[( + )3 + 3 4]7
O = 2 V(e Dk + dks k
K (d+2)(d—1)(1 D)(d+2)ks" + dk;s - ky],
242
G = — = (k- ky)[ks2ks2 — (ks - ka)?].
K (d_l)(d_z)(l 2)[ks*ky® — (k3 - ky)? (99)

Once the functional forms of the power spectrum,
bispectrum, and trispectrum in a model are given, the
parameters of the model can be calculated by the above
equations. The dimensionality of the integrals of Eqs. (97)
and (98) are too large to evaluate straightforwardly in
higher-dimensional spaces. For the nonlinear perturbation
theory of gravitational evolution [11] in three-dimensional
space, one can in principle apply a technique developed in
Refs. [124-127] to reduce the dimensionality of multidi-
mensional integrations of perturbation kernels.

V. CONCLUSIONS

In this paper, we present a method to analytically
calculate the non-Gaussian corrections of the Minkowski
functionals for the excursion set of smoothed fields in
general dimensions. We explicitly derive analytic formulas
for first- and second-order corrections of non-Gaussianity
for the Minkowski functionals, Eq. (91), which is the main
result of the paper. In the derivation, the formula of Eq. (51)

plays a central role. It is straightforward to generalize our
calculations to higher-order corrections.

The findings of this paper are quite general. Non-Gaussian
corrections to the expected Minkowski functionals of an
excursion set is generally given in arbitrary dimensions d,
based on the assumptions of statistical homogeneity and
isotropy of space only. In cosmology, the cases d =1, 2, 3
are of particular interest for the analyses of cosmic fields.
The formulas for the first-order corrections with d = 1, 2, 3,
which were derived in a previous work [107,108], are
reproduced from our general formula as special cases.
The formulas for second-order corrections with d = 2,
which have been reported in a previous work [111], are
also reproduced as a special case. Moreover, the formulas for
the second-order corrections for the Euler characteristic with
d = 2, 3, which were derived in a previous work [110], are
also reproduced as special cases of the general formula.
Thus, our formula contains all the previously known for-
mulas as special cases and unifies them into a single formula,
generalizing them to arbitrary dimensions.

The non-Gaussian corrections to the Minkowski func-
tionals are parametrized by the skewness and kurtosis
parameters defined by Eqs. (76) and (77). In cosmic fields,
these parameters can be theoretically predicted in princi-
ple, provided that the bispectrum and trispectrum are
known. The relations are given by Egs. (96)—(98). They
involve multidimensional integrations that are not easy to
evaluate numerically in a straightforward manner, espe-
cially for the kurtosis parameters in higher-dimensional
space. In practice, one can apply a technique developed in
Refs. [124—-127] to reduce the dimensionality of integra-
tion, and the multidimensional integration is reduced to be
evaluated by one-dimensional fast Fourier transforms with
FFTLOG developed by Hamilton [128]. Future work should
focus on an approach along this line to theoretically
predict the skewness and kurtosis parameters for the case
of cosmic fields, such as the three-dimensional density
field, two-dimensional weak lensing fields, and so on,
with bispectra and trispectra predicted from various
theoretical models.

The derived formula relies on the weak field expansion
with a small parameter o,. It is mathematically difficult to
see if the expansion converges to the true value, as is always
the case with the weak field expansions. However, the
expansion is asymptotic if the probability distribution
function of derivative fields f, exists and is bounded and
the derivative fields have finite moments. The asymptotic
nature of the expansion is mathematically described in a
separate paper [114].

Comparisons of the predicted Minkowski functionals with
those calculated from numerical realizations of weakly non-
Gaussian random fields in two dimensions have already been
performed in Ref. [111] with first- and second-order correc-
tions of the non-Gaussianity. The results are in complete
agreement with each other within the limit of numerical
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errors of the realizations. Detailed comparisons of the first-
and second-order corrections with numerical realizations for
three dimensions and comparisons with data of cosmological
N-body simulations will be presented in a subsequent paper
[129]. The analytic formula of this paper well reproduce
numerical evaluations of the Minkowski functionals on large
scales in quasilinear regime, >30h~! Mpc. In the mildly
nonlinear regime, the non-Gaussianity becomes too large to
describe the Minkowski functionals by the analytic formula
of this paper.

The utility of the analytic formula in cosmology mainly
resides in theoretical understanding of how the cosmologi-
cal information is contained in the Minkowski functionals
in general. In weakly nonlinear regime, the deviations from
the Gaussian predictions can be naturally described by
superpositions of Hermite polynomials as functions of the
threshold v, and coefficients are given by lower-order
cumulants of fields, for which values depend on cosmo-
logical models that we need to distinguish among. While
quantitative analysis of the Minkowski functionals in
realistic data still requires some numerical methods, the
analytic formula of the present work provides qualitative
guides for how one can extract underlying information in
the measured Minkowski functionals.

Considering the derived formula beyond three dimen-
sions, it would be extraordinarily interesting if the cases of
d >4 could be applied to some sort of abstract data
analysis or higher-dimensional theories in fundamental
physics, etc.
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APPENDIX A: PROOF OF EQ. (45)
In this Appendix, Eq. (45),

(det(vl — Z))g = Hy(v). (A1)
is proven. This formula is already known (see, e.g.,

Refs. [116,121]). Here, we provide an alternative proof.
We define

(A2)

below.
Considering the derivative of det A with respect to v, we
have

=5, aa

OA;; A K.
5‘ ]adet :ZAi’ (A3)

ij i=1

where A; is the (i,7) minor of the matrix A. Given the
statistical isotropy, we have
{Aj)g = (detAD)g, (A4)

where AW-D = pjld=1) _ 7(@-1) js the matrix A in
(d — 1)-dimensional subspace. Thus, we have

d
- (detA)g = d(det A=V .

(AS)

Using the same approach, we can show a recursion relation

d
- (det AU = m(det A1), (A6)
v
for m = 1,2, ..., where det A(?) = 1. Thereby,
H,(v) = (det AM)g (A7)

satisfies the same relation as the Appell sequence of
Hermite polynomials,
H,,(v) = mH,,_ (v). (A8)
Therefore, if the integration constant H,,(0) is the same as
H,,(0), H,(v) is identified with H,,(v) by induction. The
relation i,,(0) = H,,(0) can be shown as follows. We have
H,,(0) = (=1)"(det Z")q. (A9)
The determinant of the matrix Z") in m-dimensional
subspace is given by

1
det 2" = —¢; ;. Z™ ... z™ (A10)
m

 CivinCirin Sy g
The Gaussian average of this equation with odd m is zero.
For odd m, we have H,,(0) = 0 and Eq. (A9) is trivially

identified with H,,(0). For even m, we have

(detZ(m)
(m—1)!! (m) (m) (m)  m)
- m! €i].A.[’n€le..jm< iljlzi2j2> e <Zim—]jm—lzimjm>’
(Al1)

where Wick’s probability theorem for the multivariate
normal distribution is applied. Equation (37) also
holds for Z in the m-dimensional subspace with
1<i,jkl<m,
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7)) -

ij —0;i0u + (861 + 6bj1 + 50k ).

d
(d+2)y?
(A12)
In Eq. (A11), symmetric components with respect to the

permutations of (iy, ), (ji,ja), etc., should vanish, and
thus we can substitute

we have (det AU), = H, (v). Setting m =d in this
relation completes the proof of Eq. (Al).

APPENDIX B: PROOF OF EQ. (51)
In this Appendix, we prove Eq. (51),

(Tr(Dz™) -+ - Tr(Dz™) det(vl — Z))g
(m) (m 1 7(m) (m) (m) (m) ~(m) —1)k !
<lejlzlzjz> Z[ < l|J1 12]2> - <Zi2jlzi1j2> - <Zi|jzzi2j1>] = (2m1—>k ﬁfld—m(y)’ (Bl)
1
=—=(6;;6i,:, —6;i0ii) Al3
2( 90 = O Ois) (A13) where m = m; + ---+ my and my, ..., m; are non-nega-
. tive integers, and D, is given by Eq. (49).
etc. in Eq. (A11). Consequently, we have The determinant of A — vl — Z is given by
(det Zm)g = (m— 1)1(=1)"2 = H,,(0),  (Al4) '
_ det A = Ciyig€jyjitiviy .Aidjd' (Bz)
where ¢; ..; €;.; =m! is used. Therefore, H,(0) in
Eq. (A9) is identified with H,(0) for even m. Thus, From this expression, we calculate
J
. o —1)m o 9
Dlljl...Dlmfmth:( .. th
? ? © 2m (8A11J1 + a14]]’1) (6A m./m + aAfm m) ©
I < i
- Zm(d _ m)leil"'idejl"‘jd It 1mt1 idja ym.
I <> Jm
Thus, we have (B3)
Tr(D,™)det A = DYRpS* ... phki et A
2(_1)m
= 2m(d _ m)!eklkz'“kmimﬂ"‘id€k2k3‘“kmkljm+1“‘fdAim+1jm+1 o .Aidjd
-1
- 2m_1 (d - m) ! eklkz”'kmi'w»]"'ideklkZ"'kmjm+l"'jdAinx+lj1n+l o .Aidjd’ (B4)

where the second equality is derived since there is no contribution when the same indices appear in the antisymmetric

tensor.
We also calculate

Comparing Eqgs. (B4) and (BS5), we have

-1 o"
Tr(Dz")det A = ————-det A, (B6)
2Wl 8 m
and consequently, we have
m m ( ) —am
Tr(Dz™)---Tr(D;™)det A = = —det A,  (B7)

(d= )t bbb ia bk i ia B A

(BS)

where m = my + - - - my. Taking the Gaussian average of
the last equation and applying Eq. (A1), we have

Tr(D,™)detA) —ﬂd—mH (v). (BY)
z G— om=k g m d :
Equation (B1) immediately follows from the repeated use
of the Appell sequence of Eq. (AS8).

An alternative proof of Eq. (B1) is also provided in a
separate paper [114].

(Te(D;™) -
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