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We present forecasted cosmological constraints from combined measurements of galaxy cluster
abundances from the Simons Observatory and galaxy clustering from a DESI-like experiment on two
well-studied modified gravity models, the chameleon-screened Hu-Sawicki fðRÞ model and the nDGP
braneworld Vainshtein model. A Fisher analysis is conducted using σ8 constraints derived from thermal
Sunyaev-Zel’dovich (tSZ) selected galaxy clusters as well as linear and quasilinear redshift-space 2-point
galaxy correlation functions. We find that the cluster abundances drive the constraints on the nDGP model
while fðRÞ constraints are led by galaxy clustering. The two tracers of the cosmological gravitational field
are found to be complementary, and their combination significantly improves constraints on the fðRÞ in
particular in comparison to each individual tracer alone. For a model of fðRÞ with a general relativity (GR)
fiducial case (fR0 ¼ 0), we find a 2-σ upper limit of fR0 ≤ 5.68 × 10−7. For the well-studied log-based
fiducial parameter value in fðRÞ, log10ðfR0Þ ¼ −5, paired with the parameter value n ¼ 1, we find
combined 1-σ constraints of σðlog10ðfR0ÞÞ ¼ 0.12 and σðnÞ ¼ 0.36. For the nDGP model with fiducial
nnDGP ¼ 1 we find σðnnDGPÞ ¼ 0.087. Our results present the exciting potential to utilize upcoming
galaxy and CMB survey data available in the near future to discern and/or constrain cosmic deviations
from GR.
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I. INTRODUCTION

The ΛCDM model accredits the acceleration of cosmic
expansion [1–9] to the negative pressure exerted by an
unknown dark energy, either as a cosmological constant Λ
with a canonical equation of state w ¼ −1, or as a variable
scalar field known as quintessence [10–12]. However, more
direct evidence for of the underlying nature of dark energy
remains absent. The cosmological constant explanation
suffers from stark incompatibility since the value inferred
from astronomical observations is ∼120 orders of magni-
tude smaller than that predicted in particle physics; the
quintessence field theories attempting to resolve the dis-
crepancy face subsequent fine-tuning problems [13].
Modified gravity (MG) theories attempt to avoid this

extra energy component by explaining the accelerating
Universe with altering the standard theory of gravity,
namely Einstein’s general relativity (GR), in large scales
[14–16]. While GR has been meticulously tested with
astrophysics on smaller scales, such as the Solar System
tests [17] and strong-gravity tests via gravitational
waves [18,19], MG can potentially be applicable to larger
cosmic scales with relatively weak gravitational fields.
Nevertheless, such remarkable tests of GR on small scales

have already imposed stringent constraints [20–25], leaving
a limited parameter space for most MG models. Two
particularly well-studied MG models that survive are the
Hu-Sawicki fðRÞ model series [26], which feature a
Chameleon mechanism, and the normal-branch Dvali-
Gabadadze-Porrati braneworld model (nDGP) [27], which
introduces a fifth dimensional force (Vainshtein mecha-
nism). They successfully evade the above small-scale tests,
while also reproducing an expansion history indistinguish-
able fromΛCDM. Hence, constraints via other independent
observational quantities, especially the growth of the
cosmic large-scale structure (LSS), are of crucial impor-
tance [28]. Complementary to constraints via geometric
distance measurements of the expansion history, LSS
growth are very sensitive to the phenomenology of the
cosmological MG models of interest [28–30].
Current and future LSS surveys will measure the

abundance of galaxy clusters, as well as the three-
dimensional positions and velocities of galaxy halos.
Such measurements are powerful probes of the LSS growth
and clustering, and subsequently the nature of gravity and
dark energy. In this work, we explore the constraining power
of cluster abundances from upcoming observations of the
thermal Sunyaev-Zel’dovich (tSZ) effect by the Simons
Observatory [31] and galaxy clustering from spectroscopic
observations by the Dark Energy Spectroscopic Instrument*R. L. and G. V. contributed equally to the work.
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(DESI) [32],1 both when considered independently and
combined with each other.
Galaxy clusters have long been regarded as a promising

set of observables to test MG, and their abundances
represented as number counts, as well as mass profiles,
both serve as powerful tools. Potential constraints on MG
using a wide variety of signal types have been considered,
including x rays [33–36], the tSZ effect [34,37–39], and
weak lensing [40,41]. In this work, the constraints from
abundances of galaxy clusters over the large linear scales is
inferred through constraints on measurements of σ8, the
mean amplitude of matter energy density fluctuations. We
base these constraints on the forecasted weak-lensing and
CMB-halo lensing calibrated tSZ galaxy cluster abundan-
ces in [39,40].
Meanwhile, mapping out the three-dimensional cluster-

ing of galaxies across the cosmic history offers another
window into the underlying physical processes, including
the gravity models, that shaped the LSS. Building upon the
legacy of the recently completed analysis by the extended
baryon oscillation spectroscopic survey (eBOSS) [42–44],
DESI is expected to constrain the properties of gravity and
dark energy at unprecedented levels of accuracy [45], in
combination also with the next generation of cosmological
surveys, such as Euclid [46], the Vera C. Rubin Observatory
LegacySurvey ofSpace andTime (LSST) [47,48], theNancy
Grace Roman Space Telescope [7] and SPHEREx [49]. A
necessary requirement for the optimal interpretation of this
upcoming wealth of observational data is the ability to
reliably model the clustering statistics in the variety of
competing scenarios, in our case the landscape of MG
models. When galaxies are identified through spectroscopic
measurements, in particular, one needs to take into account
not only the nonlinear growth of structure, but also the fact
that galaxy peculiar velocities induce an observed anisotropy
in the clustering pattern, the redshift-space distortions (RSD)
[50–52]. In this study we capture these effects closely
following the recent work of [53], that employed the
Gaussian streaming model (GSM) approach [54–56] with
Lagrangian perturbation theory [57–65] in the context of
MG [66–68], in order to successfully model the multipoles
of the anisotropic correlation function of halos in theories
beyond GR.
We forecast individual and joint constraints on MG from

these two probes using Fisher analysis. In addition to
obtaining model-dependent constraints through a state-of-
the-art treatment of the galaxy bias and RSD effects in MG,
this work explores tests of gravity through the combination
of these two complementary and promising probes of the
LSS. Our paper is structured as follows: first, in Sec. II, we
outline our theoretical and observational formalism and
assumptions. We then present our analysis results in
Sec. III, with a subsequent discussion including

implications for future work in Sec. IV. The details of
the particular model used to obtain the galaxy clustering
covariance matrices are presented in the Appendix.

II. FORMALISM

A. Modified gravity models

We focus on two quintessential models in the literature
of MG, the Hu-Sawicki fðRÞ and the nDGP braneworld
models, which respectively realize the Chameleon and
Vainshtein classes of screening.

1. f ðRÞ Hu-Sawicki model

In the Hu-Sawicki fðRÞ model, a nonlinear modification
function, fðRÞ, of the Ricci scalar is added to the standard
Einstein-Hilbert action,

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
Rþ fðRÞ
16πG

þ Lm

�
; ð1Þ

where G is the Newtonian gravitational constant, Lm the
matter Lagrangian, and fðRÞ induces the accelerating
Universe instead of a cosmological constant Λ. Through
a conformal transformation, (1) as the Einstein frame
expression can be cast into the form of a scalar-tensor

theory with the scalaron, fR ≡ dfðRÞ
dR , acting as the MG-

induced degree of freedom [69]. Imposing an expansion
history identical to ΛCDM in the high curvature limit, a
present day value of the scalaron can be obtained as [53]

fR0 ¼ −n
c1
c22

�
Ωm0

3ðΩm0 þΩΛ0Þ
�
nþ1

; ð2Þ

where Ωm0 and ΩΛ0 are the normalized density parameters
for nonrelativistic mass and dark energy today; they, as
ΛCDM parameters, appeared in (2) as a result of our
assumption on the expansion history. Instead of using
c1=c22 as the free parameter in (2), the pair of fR0 (typically
jfR0j in the literature, and for the rest of this paper we only
consider fR0 ≥ 0) and n are commonly used. We recover
the ΛCDM (GR) model when fR0 → 0, which is the case in
regions of high Newtonian potential, where the chameleon
field becomes very massive due to the effect of the
screening mechanism [70,71].
Extensive studies of the Hu-Sawicki model in the past

decade have tightened constraints on the available param-
eter space of the model [72,73] but have still left the model
observationally viable and theoretically attractive, as it is
devoid of instabilities [74]. For these reasons, it serves as
the ideal test bed for us to explore constraints on MG with
upcoming surveys of the LSS and CMB.1https://www.desi.lbl.gov/
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2. nDGP model

The Dvali-Gabadadze-Porrati (DGP) model is a repre-
sentative example of the Vainshtein screening mechanism
[75,76] and features a modification to gravity due to a large
extra fifth dimension of spacetime. The modified Einstein-
Hilbert action is in this case,

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R

16πG
þ Lm

�
þ
Z

d5x
ffiffiffiffiffiffiffiffi
−g5

p R5

16πGrc
;

ð3Þ

where R5 and g5 denote respectively the corresponding
Ricci scalar and metric determinant of the fifth dimension,
and rc the crossover distance, a characteristic scale below
which GR model becomes four dimensional. A more
appealing self-accelerating DGP model branch (sDGP),
which requires no dark energy, has been shown to suffer
from undesirable instabilities [77]; hence we study the
“normal” branch (nDGP) coupled with a dark energy
component to match the desired ΛCDM expansion history,
which still remains interesting due to prior simulation
investments. In this case, the only free parameter to constrain
is n ¼ H0rc (H0 being the Hubble constant), of which the
extensively studied values are 1 and 5. GR is recoveredwhen
n → ∞, corresponding to the presence of large gradients of
gravitational forces in Vainshtein screening.

B. Cluster abundances and σ8
The constraints by cluster abundances are modeled after

results obtained from [40], in which a Fisher forecast based
on tSZ-selected galaxy clusters from a CMB-S4-like
experiment is extended to model-independent constraints
on the time-evolution of σ8ðzÞ. Specifically, we use fore-
casted errors on σ8ðzÞ from [40], which predicted tSZ
cluster abundances for Simons Observatory and included
mass calibrations from optical weak-lensing and CMB-halo
lensing while marginalizing over ΛCDM and seven cluster
mass-observable scaling relation parameters [for more
details see 40]. The correlations between these mass-
observable scaling relation and cosmological parameters
are shown in Fig. 6 of [40]. σ8 is the amplitude of matter
energy density fluctuations smoothed out over a scale of
8 Mpc=h, and its evolution over redshift z is a promising
probe of structure growth in the linear density perturbation
regime.
To predict σ8ðzÞ from MG models, we calculate σR

through the standard deviation of the probability density
function of the matter density fluctuations, convoluted with
a spherical top-hat window functionWðr; RÞ with radius R,

Wðr; RÞ ¼ 1

4πR3=3
¼

�
1; jrj ≤ R;

0; jrj > R:
ð4Þ

Fourier transforming, Parseval’s theorem gives

σR
2ðzÞ ¼

Z
∞

0

Pðk; zÞ
2π2

�
3j1ðkRÞ

kR

�
2

k2dk; ð5Þ

where Pðk; zÞ is the matter power spectrum at wave number
k and redshift z, j1ðkRÞ is the spherical Bessel function of
the first kind, and 3j1ðkRÞ=ðkRÞ is the Fourier transform of
the window function. 8 Mpc=h is then assigned to R.
In general, the power spectrum in MG can be obtained

from the ΛCDM one by considering the modifications to
the linear growth factor Dðk; zÞ,

PMGðk; zÞ ¼ PΛCDMðk; z ¼ 0Þ ·
�

DMGðk; zÞ
DΛCDMðz ¼ 0Þ

�
2

: ð6Þ

The growth factors, more commonly expressed as Dðk; aÞ
[a ¼ 1=ð1þ zÞ being the scale-factor], are obtained by
solving the modified linear density evolution equations,
extracted from the work of [78],

D̈þ 2H _D − 4πGρmð1þ geffÞD ¼ 0; ð7Þ

where H is the Hubble parameter, ρm is the nonrelativistic
matter density, and dots are derivatives with respect to time
t. The effective gravitational factor geff for fðRÞ [79] is

geff ¼
k2

3ðk2 þ a2mðaÞÞ2 ; ð8Þ

with the associated mass term,

mðaÞ ¼ 1

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½Ωm0 þ 4ð1 −Ωm0Þ�−ðnþ1Þ

ðnþ 1ÞjfR0j

s

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Ωm0

a3
þ 4ð1 − Ωm0Þ

�
nþ2

s
; ð9Þ

and for nDGP,

geff ¼
1

3βðaÞ ; ð10Þ

where

βðaÞ ¼ 1þ 2Hrc

�
1þ

_H
3H2

�
¼ 1þ 2

H
H0

n

�
1þ

_H
3H2

�
:

ð11Þ

For more direct comparison with the standard ΛCDM
model, we evaluate σ8ðMGÞ=σ8ðΛCDMÞ. We obtain the ΛCDM
linear matter power spectrum at z ¼ 0, PΛCDMðk; z ¼ 0Þ,
from the Boltzmann code CAMB [80–82] as a starting point,
and then utilize (5) and (6) to determine σ8ðMGÞ=σ8ðΛCDMÞ.
Based on the assumptions in MG, the structure growth at
early times should be indistinguishable from that inΛCDM;
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hence we normalize the ratio to 1 at redshift z ¼ 10, high
enough to set the initial conditions of structure growth. We
note that the growth factors between the GR limit solution of
(7) and theΛCDM prediction fromCAMB differ at the level
far below the statistical uncertainties to affect the results of
the Fisher analysis, and are corrected by normalization using
the former.
Our solution of Dðk; zÞ [or Dðk; aÞ] for the fðRÞ model

is checked against the work of [83] in which the code for
linear perturbation in MG is slightly modified for our
purpose. For both the ΛCDM and the nDGP models, the
growth factorDðzÞ [orDðaÞ] are scale-independent and are
checked against the empirical fitting function proposed
by [29]

gðaÞ≡DðaÞ=a ¼ exp

�Z
a

0

da0

a0
½Ωmða0Þγ − 1�

�
; ð12Þ

where ΩmðaÞ ¼ Ωm0a−3=ðH=H0Þ2, γ is taken as 0.55 for
ΛCDM, and 0.68 for both sDGP and nDGPwith a modified
expansion history [29]. This agreement remains stable
when Ωm0 is varied in a small range around our fiducial
value Ωm0 ∼ 0.315. In our work after the check, the ΛCDM
expansion history (Hubble parameter) is imposed on the
nDGP model.
Using the marginalized errors on σ8ðzÞ to summarize the

constraints from cluster abundances has the following
advantages. There is not much information lost since we
are examining the linear regime, despite the fact that the
constraints are compressed into a root-mean-squared quan-
tity as σ8. Performing a Fisher analysis using σ8 based on
[40] is not only faster but also more conservative in the
sense that it does not introduce extra degeneracy breaking
as is the case for full Fisher analyses where ΛCDM and
nuisance parameters are not already marginalized over.

C. Galaxy clustering correlations

The LSS of the Universe, as traced by the observed
inhomogeneous clustering pattern of galaxies, has been
formed by the nonlinear gravitational collapse of the
primordial density distribution. We can model the observed
clustering statistics of galaxies in MG, by taking into
account the crucial effects of clustering in the quasilinear
regime, large-scale galaxy bias and redshift space distor-
tions (RSD). Our modeling procedure summarized below is
tailored to DESI observations and is heavily based upon the
previous works of [53,68].
In the intermediate, quasilinear scales, higher order

perturbation theory can substantially improve upon the
accuracy of the simple linear treatment, allowing for a
robust modeling of the clustering statistics, without the
need to resort to computationally expensive N-body sim-
ulations. In this work we focus on the Lagrangian pertur-
bation theory (LPT), in which the expansion parameter is a
vector field, Ψ, which displaces each fluid particle from its

initial position, q, to its final, Eulerian one, xðq; tÞ, through
the mapping,

xðq; tÞ ¼ qþΨðq; tÞ: ð13Þ

The first order LPT solution is the famous Zel’dovich
approximation [57]. In MG theories, an additional degree
of freedom is present, altering the perturbed Einstein
equations and the nonlinear gravitational evolution of dark
matter overdensities, and subsequently the framework of
LPT, as detailed in [66–68,84].
The galaxies observed by surveys of the LSS do not

perfectly trace the underlying dark matter density distri-
bution, but rather are biased tracers of it [85]. In the simpler
picture of linear perturbation theory, the large-scale over-
density of biased tracers (i.e., galaxies) is proportional to
the underlying dark matter overdensity [86], while a wide
range of more sophisticated treatments have been devel-
oped in the literature [87]. When working in Lagrangian
space as is in this work, biased tracers are identified as
regions of the primordial density field preselected by a
biasing function, F, that depends on the local matter
density [63,64]. Given the statistical nature of cosmic
density fields, the simplest meaningful observable statistic
(in the configuration space) is the two-point correlation
function, ξXðrÞ, of tracers correlated over a distance r,

ξXðrÞ ≔ hδXðxÞδXðxþ rÞi; ð14Þ

where the angle brackets denote an ensemble average. In
Lagrangian space, the “convolution Lagrangian perturba-
tion theory” (CLPT) [64,88,89] was shown to work
particularly well at recovering the correlation function of
halos from N-body simulations, in ΛCDM cosmologies.
Building upon these works, [67,68] then expanded CLPT in
the case of MG theories and successfully recovered the
real-space two-point correlation function of dark matter
haloes across the parameter space of the fðRÞ and nDGP
MG scenarios.
In addition to imperfectly tracing the dark matter dis-

tribution of the cosmic web, galaxies identified through
spectroscopic means are observed in redshift space, rather
than in real space, which further distorts the observed
clustering pattern, known as the redshift space distortions
(RSD) [50–52]. Due to its peculiar velocity about the
Hubble flow, vðxÞ, a galaxy with real space position x will
be instead observed at a redshift space position,

s ¼ xþ ẑ · vðxÞ
aHðaÞ ẑ; ð15Þ

withHðaÞ the Hubble parameter evaluated at scale-factor a.
As a consequence, the redshift-space 2-point correlation
function for biased tracers,
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ξsXðrÞ ¼ hδXðsÞδXðsþ rÞi; ð16Þ

becomes directionally dependent, unlike the real-space
expression (14). In large linear scales, coherent infall leads
to the “Kaiser boost,” an enhancement on the amplitude of
the two-point correlation function, whereas in the nonlinear
scales, the random velocities within virialized structures
lead to the “Fingers-of-God” (FOG) suppression effect.
The Gaussian streaming model (GSM) [54–56] has been

shown to be very successful in modeling the anisotropic
RSD correlation function of halos, through a convolution of
the halo real space correlation function with the probability
velocity distribution of tracers, that is approximated as a
Gaussian [90]. In particular, given the real-space mean
pairwise velocity along the pair separation vector of a pair
of tracers, v12ðrÞ, as well as its pairwise velocity dispersion,
σ212ðrÞ, the GSM gives the expression for the anisotropic
RSD correlation function,

1þ ξsXðs⊥; skÞ ¼
Z

∞

−∞

dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πσ212ðrÞ

p ½1þ ξrXðrÞ�

× exp

�
−
ðsk − y − μv12ðrÞÞ2

2σ212ðrÞ
�
; ð17Þ

where s⊥, sk are the perpendicular and parallel to the line-
of-sight components of the redshift-space separation s, with

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2⊥ þ s2k

q
, r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2⊥ þ y2

p
and μ ¼ r̂ · ẑ ¼ y

r. Using

CLPT to model the three ingredients that enter the
prescription (17), ξrXðrÞ, v12ðrÞ, σ212ðrÞ, and based on the
MG implementations of [67,68], [53] was able to success-
fully model the simulated RSD correlation function of
haloes in the fðRÞ and nDGP gravity scenarios up to 1-loop
order in PT. For the purposes of this work, we only use the
first order LPT solution (Zel’dovich approximation [57]) to
evaluate the GSM ingredients, mainly because our model
for the evaluation of the clustering covariance matrix does
not incorporate non-Gaussian corrections, as we explain in
the Appendix.
In addition to the LPT growth factors and the linear

power spectrum, derived from the underlying cosmological
model, we include two nuisance parameters in the model-
ing of the observed galaxy clustering correlation function
using the CLPT and GSM framework laid out in this
section.
The first nuisance parameter sets the first-order

Lagrangian bias parameter, bE1 ðzÞ, which we use to calcu-
late the Lagrangian bias up to second order (for a one-loop
prediction). We assume a redshift evolution for the bias of
the form bE1 ðzÞDðzÞ ¼ constant, following [91], where
DðzÞ, the linear growth factor under ΛCDM, is normalized
to unity at z ¼ 0. In our analysis, we treat bE1 ðz ¼ 0Þ as a
nuisance parameter over which we marginalize separately
for the two types of DESI-like galaxy samples, luminous

red galaxies (LRGs) and the emission line galaxies (ELGs),
with fiducial values of bE1 ðz ¼ 0Þ ¼ 1.7 and 0.84
respectively.
We do not treat the second order bias parameter, bE2 , as a

nuisance parameter in its own right, but rather determine it
in terms of the bE1 ðzÞ prediction through the fitting formula
calibrated from N-body simulations [92],

bE2 ¼ 0.412 − 2.143bE1 þ 0.929ðbE1 Þ2 þ 0.008ðbE1 Þ3: ð18Þ

Fixing b2, rather than allowing it to vary independently,
is motivated by previous work [93], in which the galaxy
correlation function multipoles on the large scales on
which we are focusing were found to be insensitive to
the particular values of the higher order bias factors
(bn ≥ b2), which were fixed to the corresponding peak-
background split (PBS) prediction. This fact was further
confirmed in the context of MG models in [53], with the
only difference being that in the current work we use the
improved empirical fit from Eq. (18) to determine b2,
instead of the PBS prediction.
Finally, the Eulerian bias values bE1 and bE2 can be

converted to their Lagrangian space equivalents through the
known conversion relationships [94,95],

bL1 ¼ bE1 − 1;

bL2 ¼ bE2 −
8

21
bL1 : ð19Þ

Motivated by the findings in [53], we only include the b1
and b2 bias terms (together with the FoG contribution) as
these were shown to be sufficient to accurately capture the
RSD correlation function from the N-body simulations for
the MG models we consider. Further, since we focus on the
linear and quasilinear regimes, using the Zel’dovich
approximation, we do not attempt to include the small-
scale effects through the corresponding EFT corrections, as
was done e.g., in [96] for GR and more recently [97] for
MG theories, but rather reserve these expansions for future
work. We finally note that throughout this analysis the bias
is taken to be scale-independent, a good approximation for
our scales of interest, as was explained in [53] and also
previously confirmed by simulations in [98], for both GR
and MG.
The second nuisance parameter we include is a constant

offset, ασ , that needs to be added to the modeled galaxy
pairwise velocity dispersion,

σ212 → σ212 þ ασ; ð20Þ

such that the latter matches the observed prediction from
simulations/observations at the large scale limit, as we
found in [53]. This correction aims to capture unknown
small-scale nonlinear effects and is essentially the equiv-
alent of the “Fingers-of-God” free parameter, σ2FoG, that is
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commonly employed in the simple phenomenological
dispersion models [99,100]. While, in principle, the free
parameter ασ is different for each of the two galaxy samples
we consider, in [53] it is shown that in the Zel’dovich
regime, which we adopt in this work, the best-fit value of ασ
changes only by a very small amount across the range of
MG models and halo mass ranges we examine. This
motivates the use of a common fiducial value for both
the ELG and the LRG galaxy samples, in all cases.
All of those ingredients are combined to produce a

prediction, by means of Eq. (17), for the MG RSD galaxy
correlation function for the ELG and the LRG DESI galaxy
samples at a given redshift z. As commonly performed in

the literature, we further decompose the correlation func-
tion through a multipole expansion in a basis of Legendre
polynomials, LlðμsÞ,

ξðs; μsÞ ¼
X
l

ξlðsÞLlðμsÞ; ð21Þ

where the multipoles of order l are given by

ξlðsÞ ¼
2lþ 1

2

Z
1

−1
dμsξðs; μsÞLlðμsÞ; ð22Þ

with μs ¼ ẑ · ŝ ¼ sk=s. We restrict our analysis on values
l ¼ f0; 2; 4g, which correspond to the monopole, the
quadrupole and the hexadecapole, respectively (first three
nonvanishing multipoles). In Fig. 1 we demonstrate an
example of how the correlation function multipoles deviate
from the corresponding ΛCDM prediction for the ELG
sample at z ¼ 0.05, in the fðRÞ scenario, for two sets of fR0
and n values. For a more thorough discussion of this topic,
we refer the reader to [53,67,68].

D. Fisher analysis

For the forecasted constraints on the two MG models we
use Fisher analyses on the tracers of the LSS, e.g., cluster
abundances in the linear regime and galaxy clustering in the
quasilinear regime. Our adopted fiducial background cos-
mology andMG parameters are shown in Table I, following
[40]. We consider three different fðRÞ scenarios with
fiducial values fR0 ¼ 0 (referred to as “near-GR”), 10−5

(“F5”), and 10−6 (“F6”). In the near-GR case at fR0 ¼ 0,
the parameter n is not well-defined and has no impact on
the growth, so we consider its value as fixed at n ¼ 1 and
do not include it as a Fisher parameter. Furthermore, we
consider two nDGP scenarios with fiducial parameter

FIG. 1. The fractional deviations of the monopole [top],
quadrupole [middle] and hexadecapole [bottom] of the aniso-
tropic correlation function in the fR0 ¼ 10−5 [red dashed] and
fR0 ¼ 10−6 [solid blue] fðRÞ scenarios with respect to the
corresponding ΛCDM prediction for the ELG sample at
z ¼ 0.05.

TABLE I. The fiducial cosmological parameters for the back-
ground cosmology considered in the analysis (denoted as
ΛCDM) and the baseline fðRÞ and nDGP MG scenarios. We
add that the nuisance parameters refer only to the galaxy
clustering evaluation.

Parameter Fiducial value(s)

ΛCDM Ωch2 0.1194
Ωbh2 0.022
H0 67.0

109As 2.2
ns 0.96

fðRÞ fR0 0, 10−5, 10−6

n 1
nDGP nnDGP 1,5
Nuisance

bE1 ðz ¼ 0Þ 1.7 (LRG)
0.84 (ELG)

Parameters ασ (in Mpc=h) 0.5
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values n ¼ f1; 5g, that we respectively refer to as N1
and N5.
To obtain constraints on fR0, we use two different

parameter space configurations. For the near-GR fiducial
model, we use a linear parameter space, recognizing that
we are probing a direct and comparatively small deviation
from GR. Such a linear prior is used in the literature, see for
example, Fig. 18 in [101], where ω−1

BD is a generalized
equivalent of fR0. For F5 and F6 cases; on the other hand,
we use a logarithmic prior, i.e., the corresponding param-
eter we use to constrain the models is log10ðfR0Þ. This is a
common choice for constraining power-law-like parame-
ters representing further deviations from GR; see [83,102]
for example.
In theory, the constraints from the two prior configura-

tions are relatable through a direct transformation from the
chain rule: σ½fR0� ¼ σ½log10ðfR0Þ� · ½fR0 lnð10Þ�. Problems
might arise on the lower limits of the constraints after such
a transformation, which might reach down beyond the
physically allowed range of fR0 ≥ 0. Regarding this, we
note that for each Fisher analysis, a Gaussian distribution is
assumed of the likelihood around the fiducial value, i.e., a
Gaussian distribution in the linear space around fR0 for the
near-GR case, and likewise in the log space around
log10ðfR0Þ for F5 and F6. A Gaussian distribution of
constraints in the log space implies a skewed distribution
of constraints linearly and vice versa. In order to keep our
assumptions self-consistent, and supported by the literature
as mentioned, we refrain from attempting a direct trans-
formation of 1-σ errors and present our results in their
respective prior spaces as-is.
Another point of caution pertains to the case of fiducial

models closer to GR, such as F6, for which the lower limit
of the constraint can approach zero (as is the case with our
result plots, Figs. 3 and 6). Our way of representing the
results with both the upper and lower limits in the log prior,
as well as the choice of the log prior itself in this case, are
intended primarily to align with previous works in the
literature as aforesaid (e.g., see Fig. 10 of [83]), in order to
allow direct comparison with them. We note, however, that
considering the attainable precision of experiments in the
near future, it can be challenging to observationally
distinguish the lower limit from zero, in which case the
upper limit carries more observational value.
Under the Gaussian likelihood distribution assumption

described previously, we employ the Fisher formalism
[103,104],

Fij ¼
X
αβ

∂fα
∂pi

Cov−1½fα; fβ�
∂fβ
∂pj

; ð23Þ

where fα;β are the observables in bins labeled by α, β; Cov
is the observable covariance matrix and pi and pj are a pair
of the model parameters being constrained.

The constraints by cluster abundances, as discussed
in II B, are represented by σ8ðzÞ. In particular, the observ-
ables fα are the set of fσ8ðMGÞðzÞ=σ8ðΛCDMÞðzÞg across 30
linearly spaced redshift bins centered on z ¼ 0.05 to
z ¼ 2.95, which are predicted by the MG models.
The observable covariance matrix Cov−1½fα; fβ� on
σ8=σ8ðΛCDMÞ, obtained from [40], is diagonal and is a
model-independent result where the errors from the back-
ground ΛCDM parameters are marginalized over, reducing
the parameters to constrain in (23) to the pair ffR0; ng
(fðRÞ) or nnDGP (nDGP). Hence, the partial derivative
stepsizes for the background cosmology parameters are
aligned with that specified in [40]. For the near-GR case,
we take a stepsize of 10−8 directly with respect to fR0,
addressing a linear deviation from GR, with also noting that
log10ðfR0Þ is not well-defined. For F5 and F6, the partial
derivatives are taken with respect to flog10ðfR0Þ; ng, with
the respective stepsizes f0.05; 0.05g. In N1 and N5, the
stepsize is 0.05 for nnDGP. A five-point central differences
scheme is applied to evaluating the partial derivatives over
all the MG parameters, giving a third-order accuracy, with
the exception of the near-GR case where only a one-sided
derivative is feasible due to the fR0 ≥ 0 limitation. For this,
a corresponding four-point forward differences scheme is
then applied to maintain the third-order accuracy. The
priors of the parameters for cluster abundances are inherited
from [40], where information from the CMB is included
and the priors are discussed and marginalized over (see
around Table II of [40]).
For galaxy clustering the observables are the galaxy

correlation function multipoles, fα ¼ fξ0ðsÞ; ξ2ðsÞ; ξ4ðsÞg,
considered over 35 spatial separation bins equally (loga-
rithmically) spaced in the range 25 < s < 600 ðMpc=hÞ.
The cosmological parameters, pi, are those given in Table I,
while the covariance matrix for the monopole, quadrupole
and hexadecapole moments is described in the Appendix.
Our evaluation assumes a DESI-like survey with LRG and
ELG galaxy samples in the redshift range 0.15 < z < 1.85,
using 18 linearly spaced z bins, as outlined in [91].
Our choices for the galaxy number density, survey volume
and linear bias as a function of redshift are informed
by [91], in particular its Table V. This assumes a mean
galaxy number density of n̄g ∼ 2.5 × 10−4 ðMpc=hÞ−3 and
n̄g ∼ 5 × 10−4 ðMpc=hÞ−3, for LRGs and ELGs, respec-
tively. The partial derivatives of the multipoles are evalu-
ated with a two-point central differences scheme, with the
derivative step-sizes with respect to the backgroundΛCDM
parameters and linear bias provided by [40]. With regards
to the MG parameters, in the near-GR case with fR0 → 0,
we again employ a three-point forward differences scheme,
with a forward step of 10−8 in fR0 while keeping n fixed;
the derivative steps for the ffR0; ng pair in the F5 and F6
cases are f2 × 10−6; 0.4g and f3 × 10−7; 0.4g, respectively,
and for nnDGP in the N1 and N5 models they are 0.15 and
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0.5. The step-size when differentiating with respect to the
nuisance parameter ασ is 1.5, informed by the detailed
study in [53]. We have checked that all of the choices above
provide numerical stability in the derivatives. For galaxy
clustering, no prior information was added for any of the
parameters. The exploration of how to optimally include
the BAO information, for example, would require addi-
tional appropriate priors (e.g., from big bang nucleosyn-
thesis) on the baryon density parameter Ωbh2, a task we
reserve for future study.

III. RESULTS

In this section we present the forecasted constraints on
the cosmological parameters of Table I from galaxy
clustering, and constraints on the MG parameters using

combined observables, following the methods outlined
previously.
In Fig. 2, we present two-dimensional constraints from

each parameter pair in the Fisher analysis, as obtained by
the first three nonvanishing multipoles of the redshift-space
correlation function of the LRG and ELG galaxy samples,
both when considered separately and combined. In addition
to the constraints on the standard ΛCDM parameters in
line with previous works in the literature (e.g., [91]), the
complementarity of the LRG- and the ELG-derived con-
tributions allows us to tightly constrain the pair of the MG
parameters flog10ðfR0Þ; ng, which are the focus of our
analysis. We see from the plot that the combined constraints
from the two samples on the MG parameters are much
tighter than the individual ones. It is also expected that

FIG. 2. Galaxy clustering constraints on the parameters in the F5 case (fiducial values fR0 ¼ 10−5, n ¼ 1) using the DESI LRG
sample [red], the ELG sample [blue] and both combined [cyan] for a minimum survey scale of rmin ∼ 25.0 Mpc=h, the smallest scale we
anticipate can be probed with the survey. Combined constraints for a more conservative minimum scale of rmin ∼ 43.79 Mpc=h [yellow]
are also presented to show the impact of scale on the constraints.
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using the ELGs produces tighter constraints in all param-
eter planes, given that this sample has a larger number
density and redshift range, compared to the LRG counter-
part (see Table V of [91]).
Figure 2 also shows, as we further quantify in Table II,

that the forecasted constraints on the MG parameter
log10ðfR0Þ are at least about an order of magnitude tighter
compared to the parameter n. This finding is attributed to
the fact that the two-point function is more sensitive to
variations of fR0 than of n, in particular for the range of
scales we consider in this work, as was found by the
sensitivity analysis of [102]. Due to this fact, most previous
works in the literature (e.g., [83,105]) have commonly
worked with a fixed value of n ¼ 1, and only considered
constraints on fR0. Thanks to our flexible analytical model
for the anisotropic correlation function in any scalar-tensor
theory, in this work we are able to provide constraints on
the fuller parameter space of the fðRÞ Hu-Sawicki model.
In addition, in Fig. 2 we demonstrate how the choice of

the minimum survey scale impacts the constraints we
obtain, finding that a more conservative value of rmin ∼
43.79 Mpc=h dilutes the constraining power overall. We
find that the constraints from LRGþ ELG combined for
this more conservative value are comparable with the
constraints from LRGs alone for rmin ∼ 25.0 Mpc=h.
This reduction in sensitivity is consistent with the predicted
deviations in the Hu-Sawicki model becoming progres-
sively more pronounced, as one considers smaller scales.
As a result, an analysis focusing on larger scales would
restrict the ability to probe MG signals, resulting in looser
constraints on the corresponding MG parameters.
For the F6 model, we find that the 2D degeneracies

between the ΛCDM and MG parameters are qualitatively
similar to those for F5. In Fig. 3 we show that the
constraints on the two MG parameters are comparatively
looser in F6 versus F5, consistent with the predicted
deviations from GR being smaller. We find that the F6
constraints from LRG and ELG data are more comparable,
with ELGs still being tighter, so that the combination of the
two gives more notable relative improvements to the ELG

data alone than for the F5 scenario. As we have discussed in
Sec. II D, for the F6 case the upper limit is more effectively
represented under considerations of future experiments,

TABLE II. Marginalized one-parameter errors in MG models, presented using galaxy clustering (minimum survey scale
rmin ∼ 25.0 Mpc=h) and cluster abundances alone respectively, and cross-combining the two observables. The numerical values
within the same row of a fiducial parameter denotes the 1-σ (68% confidence) errors on the same parameter around that fiducial value.
Specifically for the near-GR case (the top-row for the fR0 ¼ 0 fiducial value), the 2-σ (95% confidence) upper limits are reported.

Galaxy clustering

Model Fiducial parameters LRG ELG ELGþ LRG Cluster abundances Combined

2-σ fðRÞ near-GR fR0 ¼ 0 ≤ 1.79 × 10−6 ≤ 1.15 × 10−6 ≤ 8.64 × 10−7 ≤ 7.53 × 10−7 ≤ 5.68 × 10−7

1-σ

fðRÞ F5 log10ðfR0Þ ¼ −5 0.29 0.15 0.13 0.37 0.12
n ¼ 1 2.14 0.75 0.59 1.00 0.36

fðRÞ F6 log10ðfR0Þ ¼ −6 1.78 1.12 0.77 0.69 0.48
n ¼ 1 8.64 5.92 3.61 3.31 2.30

nDGP N1 nnDGP ¼ 1 0.59 0.25 0.23 0.094 0.087
nDGP N5 nnDGP ¼ 5 8.30 3.63 3.29 1.77 1.56

FIG. 3. Galaxy clustering constraints on flog10ðfR0Þ; ng in the
F5 (top) and F6 (bottom) cases (fiducial values fR0 ¼ 10−5 and
10−6, n ¼ 1) for the LRG sample [red], ELG sample [blue] and
both combined [cyan] assuming rmin ∼ 25.0 Mpc=h.
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and while we use the log space to ease comparison with the
literature, we caution against the translation of the con-
straints to the linear space.
We also performed the same analysis on the nDGP

models but will only present the final combined constraints
and omit showing the full corner plots for the sake of
brevity. Our findings regarding nDGP are overall similar to
the fðRÞ scenario: the direction of the degeneracies for the
background ΛCDM parameters are the same, while the
degeneracies are stronger for the nDGP scenarios, presum-
ably due to the scale-independence.
The 1D projected uncertainties obtained from galaxy

clustering for the near-GR, F5, F6 fðRÞ model and nDGP
are summarized in Table II. Across all the models consid-
ered, the uncertainties are principally driven by the ELG
galaxy sample. For the near-GR case, the combination of
LRGs with ELGs tightens the constraint on fR0 from ELGs
alone by 25% (with the ELG constraint being about two-
thirds that from LRGs). For F5, the ELG constraints on
both parameters are roughly half the size of those from
LRGs, and the combination of the two only reduces the
uncertainties by 10%–20%. The impact of combining the
two is more pronounced for F6, with ELGþ LRG con-
straints about 30%–40% tighter than for ELGs alone. For
both nDGP cases, the ELG constraint error on the nnDGP
parameter is less than half of that from LRGs alone, and
only a ∼10% reduction is obtained by combining the two
samples.
Our constraints for the fðRÞ and nDGP cases are of the

same order as the ones presented in [105], which performed
a Markov chain Monte Carlo analysis.
We now consider the constraints from cluster abundan-

ces, obtained from σ8ðMGÞ=σ8ðΛCDMÞ. In Fig. 4, we provide
an overview comparison of the evolution of the predicted
σ8 ratio, over the 30 redshift bins from z ¼ 0.05 to

z ¼ 2.95, for the MGmodels versus the model-independent
forecasted errors for future observations at the Simons
Observatory [31]. The ratios predicted from MG are
normalized at z ¼ 10, consistent with the assumption that
MG gives indistinguishable predictions from ΛCDM for
LSS at high redshifts, varying ffR0; ng for fðRÞ and n for
nDGP, respectively. The σ8ðΛCDMÞ is normalized to be that
calculated from (7) (with geff ¼ 0).
This overview provides an insight into the sensitivity of

σ8 with respect to the parameters of the two MG models we
consider. For both the fðRÞ and nDGP MG models, the
constraining power mainly lies at lower redshifts, at z < 2,
increasing as one approaches z ¼ 0, where the deviation of
the MG-predicted σ8 is the highest, and the forecasted
errors by cluster abundances are the tightest, notably for
0.5 < z < 1.5. Furthermore, by comparing the signal to
errors for the fðRÞ case in subfigures (a) and (b), we
anticipate that the σ8 data will be more sensitive to
variations in fR0 than in n.
As is the case for galaxy clustering, we also summarize

the model parameter constraints from galaxy cluster abun-
dances in Table II. We find that for the near-GR case in
fðRÞ, the constraints from cluster abundances and that from
galaxy clustering are comparable. However, when it comes
to constraining the model that deviates most greatly from
GR, with a fiducial log10ðfR0Þ ¼ −5, cluster abundances
are not found to be as competitive as galaxy clustering. For
this model, the constraint on log10ðfR0Þ is a factor of 2.8
larger, while for n it is 70% larger. Cluster abundances then
provide comparatively tighter constraints as we move to the
weaker fðRÞ model, with fiducial log10ðfR0Þ ¼ −6, where
the constraints on log10ðfR0Þ and n, although effectively
more of an upper limit, are roughly 10% smaller than those
predicted from galaxy clustering. We also find that cluster
abundances provide constraints on the nDGP parameters

(a) (b) (c)

FIG. 4. The MG predicted σ8ðzÞMG=σ8ðzÞΛCDM normalized at z ¼ 10, plotted against the error of this ratio forecasted by cluster
abundances. Left, (a): shows scenarios with different fR0 values while fixing n in fðRÞ as 1. Center, (b): shows scenarios fixing
fR0 ¼ 10−6 while changing n. Right, (c): shows the case in nDGP, where nnDGP is varied.
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that are roughly 50%–60% tighter than those from galaxy
clustering.
We now present our findings in figures. We first examine

the near-GR fðRÞ case in Fig. 5(a), which is conveniently
placed alongside the corresponding nDGPconstraints, due to
that they are all one-dimensional. As we mentioned, the
relative impacts of the cluster abundance and galaxy

clustering constraints onfR0 are comparable for each dataset,
and the combination provides a ∼25% improvement in the
1-σ constraint relative to that from cluster abundances alone.
This result also implies that a 2-σ (95% confidence) upper
limit of fR0 ≤ 5.68 × 10−7 can be placed for fR0 when we
take the fiducial scenario as GR (fR0 ¼ 0).

(a) (b) (c)

FIG. 5. The 1D likelihood distribution for [Left, (a)] the near-GR fðRÞ model, with fiducial value fR0 ¼ 0 (the value of n becomes
redundant) and for the nDGP model with fiducial values [Center, (b)] nnDGP ¼ 1 and [Right, (c)] nnDGP ¼ 5, under a Gaussian
assumption in the Fisher forecast. The constraints from [red] galaxy clustering (ELGþ LRG), [yellow] cluster abundances and [cyan]
the two combined are shown, with the darker fill-in shades denoting the corresponding 1-σ (68%) confidence levels, lighter shades the
2-σ (95%) confidence levels.

(a) (b)

FIG. 6. The constraints on the [(a)] F5 and [(b)] F6 fðRÞ scenarios are shown from [red] galaxy clustering, [yellow] cluster abundances
and [cyan] the two combined. The covariance ellipses in the flog10ðfR0Þ; ng parameter space indicating the joint 1-σ (68%) confidence
levels, and their respective marginalized 1D Gaussian likelihoods are shown for each scenario, with the darker fill-in shades denoting the
corresponding 1-σ (68%) confidence levels, lighter shades the 2-σ (95%) confidence levels.
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We then present the 2D flog10ðfR0Þ; ng constraints for
the F5 and F6 fðRÞ scenarios for the two datasets in Fig. 6,
with the corresponding combined 1D constraints summa-
rized in Table II. The choice of our prior space and the
corresponding caveats have been discussed in Sec. II D and
also noted in the captions. For F5 with cluster abundances
we find that there is a strong degeneracy in the log10ðfR0Þ-n
plane but with a well-measured combination in the direc-
tion orthogonal to the degeneracy. This phenomenon has
been tested to be relatively stable across the higher and
lower redshift ranges. In contrast, constraints from galaxy
clustering do not show significant degeneracies in this
parameter space and provide tighter constraints on
log10ðfR0Þ and n separately, but with an overall likelihood
ellipse that is wider (the best constraint in the 2D plane is
weaker than for the cluster abundances). In combination,
the galaxy clustering constraints help break the degeneracy
from the cluster abundance data and drive the constraints on
log10ðfR0Þ. The constraints on n are improved, relative to
those from the galaxy clustering, by a factor of ∼2. For F6,
the constraints from both cluster abundances and galaxy
clustering are weaker, but the galaxy clustering constraints
on log10ðfR0Þ are comparable to those from the cluster
abundances. The net effect of combining the two datasets is
less significant than for F5; however, we see improvements
of ∼30% in constraints on both log10ðfR0Þ and n.
The constraints on the nDGP model parameter are also

shown in Fig. 5. Here we find that the cluster abundances
drive the constraints for both fiducial scenarios and the
galaxy clustering plays a minimal role in affecting improve-
ments, which possibly is also due to the scale-independence
that nDGP features.
Spanning the two most popular classes of screening in

the literature, through the representative fðRÞ and nDGP
MG models, our detailed analysis overall serves to high-
light the ways in which the upcoming precise observations
of redshift-space galaxy clustering and cluster abundances
will enable us to probe the landscape of dark energy and
MG parametrizations in the next 10 years. The nDGP
model realizes the Vainshtein screening mechanism, which
is harder to constrain using other astrophysical probes, in
comparison to the chameleon screening of fðRÞ. Here we
find that the cluster abundances are better able to constrain
the scale-independent effects of the nDGP model, while the
galaxy clustering provides tighter constraints on the scale-
dependent fðRÞ scenario, and could break degeneracies
when combined with cluster abundances. This comple-
mentarity of the two techniques in constraining these
models, and the potential for cluster abundances to con-
strain nDGP, are important outcomes from our findings.

IV. DISCUSSION

In this work we performed a detailed study of our ability
to constrain the large-scale properties of gravity with a

combination of two promising probes of the LSS: galaxy
clustering from spectroscopic observations by DESI as well
as cluster abundances from tSZ observations by the Simons
Observatory.
For galaxy clustering, we employ the Gaussian stream-

ing model with Lagrangian perturbation theory (LPT) to
predict the anisotropic redshift-space two-point correlation
function of biased tracers, which was recently generalized
to support predictions for MG parametrizations. We apply
the model to predict the multipoles of the RSD correlation
function for the ELG and the LRG DESI spectroscopic
galaxy samples as well as their corresponding covariance
matrices. Regarding cluster abundances, we use the ampli-
tude of density fluctuations, σ8ðzÞ, obtained by tSZ-
selected galaxy clusters, as a window into the nature of
the underlying gravity model, expanding upon recent
detailed model-independent studies in the context of
standard cosmological parameters.
We employ the Fisher forecast formalism to obtain a set

of joint constraints on two widely studied MG models, the
Hu-Sawicki fðRÞ and the nDGP gravity models. We
demonstrate that the two independent probes complement
each other in constraining the Hu-Sawicki fðRÞ model
parameters, for a near-GR fiducial scenario, as well as
varying degrees of deviation away from a ΛCDM back-
ground. We find that the tightest constraints are obtained in
the large-deviation F5 scenario, at the level of a ∼2%
forecasted joint constraint on the log10ðfR0Þ parameter,
with the ELGs serving as the primary source of discrimi-
nating power on the galaxy clustering side. The con-
straining power of both probes is primarily derived from
their corresponding lower redshift snapshots, when the MG
deviations are more pronounced overall. We also consider
the full 2D parameter space, flog10ðfR0Þ; ng, for the Hu-
Sawicki model, and place corresponding constraints.
In a similar manner, we find that the interplay between

the cluster abundance and galaxy clustering observables
can be utilized to constrain the parameter space of the
nDGP gravity scenario. We forecast a combined relative
constraint of ∼9% in the nnDGP ¼ 1 case and that the cluster
abundance observations would principally drive these
constraints. This, and the opposite phenomenon that galaxy
clustering drives the constraints for the F5 scenario, are
potentially due to the fact that the fðRÞ model is scale-
dependent in contrast to nDGP in linear and quasilinear
scales, which might also explain the relatively balanced
constraining powers of the two observables for F6 and near-
GR, where the scale-dependence is weaker than in F5.
There are many possible ways in which one can expand

upon this line of inquiry. For galaxy clustering, the
accuracy of our model can be further improved by includ-
ing the one-loop corrections of LPT [53] into the GSM
prediction, as well as by introducing effective field theory
corrections to account for nonperturbative small-scale
physics. Such an approach would also need to be combined

LIU, VALOGIANNIS, BATTAGLIA, and BEAN PHYS. REV. D 104, 103519 (2021)

103519-12



with a suitably improved treatment of the clustering
covariance matrix, which we assumed to be Gaussian in
the present work. Furthermore, it would be very interesting
to also explore the constraining power of the Fourier space
counterpart of the two-point function, the redshift space
power spectrum, obtained either by analytical approaches
(see e.g., [97]) or through emulators [102]. For galaxy
cluster abundances, extending this work to a full Fisher
analysis with MG requires halo mass functions [e.g., 106]
with fitting formulas in their ansatz for the Hu-Sawicki
fðRÞ and the nDGP gravity models. We expect these
constraints to further improve with CMB-S4 cluster abun-
dances in combination with photometric and weak gravi-
tational lensing observations by stage-IV surveys such as
the V. Rubin Observatory LSST [47,48]. Finally, it would
be interesting to use a Markov chain Monte Carlo fore-
casting approach to see how non-Gaussianities in the
posterior likelihood impact the constraints and degener-
acies we present.
In the near future, synergies between new cosmological

surveys will allow us to explore the vast landscape of dark
energy and MG scenarios, and shed new light on the nature
of cosmic acceleration. Our work serves to highlight the
great promise held in such considerations, as well as the
optimal ways in which the vast amounts of upcoming
observations could be utilized.
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APPENDIX: COVARIANCE MATRIX
CALCULATION

This Appendix provides the details of the analytical
model we use to evaluate the covariance matrix of the
multipoles of the anisotropic correlation function. We begin
with the known expression for the Poisson error matrix of
the power spectrum, assuming Gaussian density perturba-
tions [107,108]:

Cov½PðkÞ;Pðk0Þ� ¼ ð2πÞ3
Vs

�
P

�
kþ 1

n

�
2

ðδDðk−k0Þ þ δDðkþk0ÞÞ
�

þ 1

n2Vs
½Pðjk−k0jÞ þPðjkþk0jÞ þ 2PðkÞ þ 2Pðk0Þ� þ 1

n3Vs
; ðA1Þ

with n the number density of the galaxies in a given sample,
Vs the survey of the volume and δD the Dirac delta-
function. The second and third lines on the r.h.s of Eq. (A1)
encode the Poisson shot noise contributions to the covari-
ance matrix [109]. Equation (A1) has neglected contribu-
tions from nonlinear gravitational evolution [108,110–112],
super sample covariance [113–117] and effects of the
survey nontrivial window function [118].
Our goal is to Fourier transform the result (A1), so that we

obtain the configuration space equivalent expression for the
covariance matrix of the anisotropic correlation function.
In the simpler case of real space considerations, with the
correlation function being isotropic, [109] demonstrated
that, by angle-averaging the Fourier transform of (A1), the
oscillatory Bessel function dependencies can be eliminated
(unlike in the RSD case, as shown below), and a more
compact expression is possible. [109] also found the Poisson
shot-noise contributions to be diagonal for the correlation
function. In redshift space, which is what we are interested in
this work, the equivalent configuration space expression for

(A1) has been derived in [119,120], assuming only Gaussian
shot-noise contributions (i.e., neglecting the second and third
lines in the r.h.s of (A1), and is the following:

Cov½ξl1ðsiÞ; ξl2ðsjÞ�

¼ il1þl2

2π2

Z
∞

0

k2σ2l1l2ðkÞjl1ðksiÞjl2ðksjÞdk; ðA2Þ

where we defined the multipole per-mode covariance:

σ2l1l2ðkÞ ¼
ð2l1 þ 1Þð2l2 þ 1Þ

Vs

×
Z

1

−1

�
Pðk; μkÞ þ

1

n

�
2

Ll1ðμkÞLl2ðμkÞdμk; ðA3Þ

where jl1ðksiÞ, jl2ðksjÞ are the spherical Bessel functions of
the first kind. Poisson shot-noise contributions can poten-
tially become significant, as pointed out by [109]. To that
end, we proceed to expand the expression (A2) to also
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include the Poisson terms to the shot-noise contributions, just
as in the real-space version of [109]. To do so, we first adopt
our convention for the Fourier transformation, applied on the
correlation function:

ξðsÞ ¼
Z

d3k
ð2πÞ3 e

ik·sPðkÞ; ðA4Þ

and label the terms reflecting the Poisson shot-noise con-
tributions in (A1) (second and third lines of r.h.s) as
Cov½PðkÞ; Pðk0Þ�jPoisson. Fourier transforming both sides
then gives2

Cov½ξðsiÞ; ξðsjÞ�jPoisson ¼
2

n2Vs
ξðsiÞδDðsi − sjÞ: ðA5Þ

Finally, we aim to project out the correlation function
multipoles, for which we integrate the ξ terms on the l.h.s
above (after multiplying both sides with the appropriate
Legendre polynomials), as in (22), which gives

Cov½ξl1ðsiÞ; ξl2ðsjÞ�jPoisson
¼ ð2l1 þ 1Þð2l2 þ 1Þ

n2Vs4πs2i
δDðsi − sjÞ

×
Z

1

−1
ξðsi; μsÞLl1ðμsÞLl2ðμsÞdμs; ðA6Þ

where we have made use of the delta-function property:

δDðsi − sjÞ ¼
δDðsi − sjÞ

s2i
δDðΩi −ΩjÞ; ðA7Þ

withΩ denoting the corresponding solid angles. Combining
(A6) with (A2), we arrive at the desired result:

Cov½ξl1ðsiÞ; ξl2ðsjÞ�

¼ il1þl2

2π2

Z
∞

0

k2σ2l1l2ðkÞjl1ðksiÞjl2ðksjÞdk

þ ð2l1 þ 1Þð2l2 þ 1Þ
n2Vs4πs2i

δDðsi − sjÞ

×
Z

1

−1
ξðsi; μsÞLl1ðμsÞLl2ðμsÞdμs; ðA8Þ

which is the equation we use to evaluate the covariance
matrix of the multipoles of ξ in this work. The last term in
Eq. (A8) expands the Gaussian expression (A2) of [119,120]
in order to also capture the Poisson shot-noise contributions
in the anisotropic case, and exhibits the same diagonal nature
as the corresponding real space expression of Eq. (32) in
[109], which it recovers in the limit of isotropy. The shot-
noise terms in (A8) are further divided by the binwindth,Δs,
in order to avoid overestimating the error predictions, as in
[109,121].
To summarize our procedure, after getting an analytical

prediction for the RSD correlation function for our desired
cosmology from Eq. (17), we use it to predict the
covariance matrix from Eq. (A8) (combined with the input
from (A3)). An intermediate step is to Fourier Transform to
also obtain Pðk; μkÞ from ξðs; μsÞ, which is required in
Eq. (A3), and can be easily performed with the publicly
available package mcfit.3 The integrals involving spheri-
cal Bessel functions in (A2) can also be conveniently
performed by utilizing the same package.
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