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We compute the cosmological boost factor at high redshifts of z ¼ 10–100 by integrating the nonlinear
matter power spectrum measured from high-resolution cosmological N-body simulations. An accurate
boost factor is required to estimate the energy injection from dark matter annihilation, which may
affect the cosmological reionization process. We combined various box-size simulations (side lengths
of 1 kpc–10 Mpc) to cover a wide range of scales, i.e., k ¼ 1–107 Mpc−1. The boost factor is consistent
with the linear theory prediction at z ≳ 50 but strongly enhanced at z ≲ 40 as a result of nonlinear matter
clustering. Although dark matter free-streaming damping was imposed at kfs ¼ 106 Mpc−1 in the initial
power spectrum, the damping disappears at later times of z ≲ 40 as a result of the power transfer from large
to small scales. Because the simulations do not explore very small-scale clustering at k > 107 Mpc−1, our
result is a lower bound on the boost factor at z ≲ 40. A simple fitting function of the boost factor is also
presented.
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I. INTRODUCTION

In the standard cold dark matter model, cosmological
structure formation is driven by the gravitational force of
dark matter. The nature of dark matter remains elusive but
may comprise unknown elementary particles (e.g., [1]).
The annihilation of dark matter particles may generate
high-energy photons or particles (such as eþe− and qq̄).
At the photon decoupling epoch (at z ≈ 1000), the dark
matter density was nearly homogeneous; however, at
later times, the density contrast evolved and high density
regions (such as halos) formed, where the annihilation is
enhanced. The high-energy photon production and inter-
galactic medium heating from the annihilation at high
redshifts of z≳ 6 could affect the cosmological reionization
process [2–6]. Recently, the EDGES experiment reported
the first detection of an absorption signature in radio signals
at z ¼ 17 [7], which indicates a lower gas temperature
than the background radiation. This measurement can
constrain (or exclude) the energy injection from dark
matter annihilation [8–11].
The annihilation rate is proportional to the square of the

dark matter density; therefore, an inhomogeneous density
will enhance dark matter annihilation. Let us denote the

dark matter density at a comoving coordinate x and a
redshift z as ρðx; zÞ. This density can be decomposed into
its spatial mean ρ̄ðzÞ and its density contrast δðx; zÞ such
that ρðx; zÞ ¼ ρ̄ðzÞ½1þ δðx; zÞ�. Because the collision rate
is proportional to ρ2, its spatial average over the Universe is

hρ2ðx; zÞi ¼ ρ̄2ðzÞBðzÞ; ð1Þ

where the cosmological boost factor is defined as
BðzÞ≡ 1þ hδ2ðx; zÞi.
Two methods have been used to calculate BðzÞ: the halo-

model approach (e.g., [12–17]) and the power spectrum
(PS) approach [18,19]. Both approaches give consistent
results (e.g., Fig. 1 in Ref. [20]). In the former approach, the
boost factor for a single halo is calculated and all the
contributions from multiple halos for the given model
parameters, such as the halo density profile and the mass
function (e.g., [21]), are summed. However, there are
several known uncertainties, including the ellipticity of
the halo shape, inner density profile, halo mass function,
subhalo (and sub-subhalo) abundance, and baryonic feed-
back effects. In fact, substructure clumps enhance dark
matter annihilation [22–27] and gas cooling increases the
central density of the halos [28–30]. This makes theoretical
modeling very complicated. Furthermore, the model pre-
dictions (such as the mass function and density profile)*takahasi@hirosaki-u.ac.jp
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must be extrapolated to very small scales that cannot be
resolved by current (or even near-future) numerical sim-
ulations. These model uncertainties cause orders of mag-
nitude variations in BðzÞ (e.g., [31–33]).
In the latter approach, BðzÞ is obtained by integrating

the matter PS with respect to the wave number of the
density fluctuations. This approach, first proposed by
Refs. [18,19], is much simpler and has fewer uncertain-
ties (such as very small-scale clustering and baryonic
effects) than the former approach. References [18,19]
calculated BðzÞ to estimate extragalactic gamma-ray flux
from dark matter annihilation at z ¼ 0–6. They prepared
the nonlinear PS using several methods: a fitting formula
(Halofit [34,35]), the stable clustering ansatz [36], and
Millennium Simulations I and II [37,38]. They extrapo-
lated the analytical PS to very small scales and then
integrated the PS up to the free-streaming scale of dark
matter (∼107 Mpc−1).
In this paper, we calculate BðzÞ at redshifts of

z ¼ 10–100 using the matter PS measured from high-
resolution cosmological N-body simulations. We run dif-
ferent box-size simulations (with cubic-box side lengths
of L ¼ 1 kpc, 10 kpc, 100 kpc, 1 Mpc, and 10 Mpc) to
cover a wide range of scales up to k ¼ 1.6 × 107 Mpc−1.
These are dark matter only (DMO) simulations; how-
ever, the baryonic effect is included in the initial PS.
The simulations follow nonlinear evolution near the
free-streaming scale, which is set to kfs ¼ 106 Mpc−1.
Therefore, our analysis does not rely on extrapolation
beyond the free-streaming scale.
There has been several studies of first halo formation

near the free-streaming scale using N-body simulations
[39–41]. These studies indicate that Earth-mass halos with
≈10−6 M⊙½kfs=ð106 Mpc−1Þ�−3 form at z ≈ 30. Recently,
Ref. [42] performed multiscale zoom-in simulations at z ¼
0 covering the halo-mass range from 10−6 M⊙ to 1015 M⊙.
The primary interest of these studies was the halo proper-
ties, such as the mass function and density profile. As far as
we know, no one has studied the nonlinear evolution of the
PS near the free-streaming scale.
The rest of this paper is organized as follows. Section II

discusses the cosmological boost factor in the PS approach
and our simulation setting. Section III presents our main
results: the nonlinear matter PS measured from the simu-
lations and the resulting boost factor. Section IV discusses
the effects of density fluctuations larger than the simulation
box, the small-scale PS in the halo model, and baryonic
effects on PS. Section V summarizes our study.
Throughout this paper, we adopt a cosmological model

consistent with the Planck 2015 best-fit flat Λ cold dark
matter model [43]: a matter density of Ωm ¼ 1 − ΩΛ ¼
0.3089, a baryon density of Ωb ¼ 0.0486, a Hubble param-
eter of h ¼ 0.6774, a spectral index of ns ¼ 0.9667, and an
amplitude of matter density fluctuations on the scale of
8h−1 Mpc σ8 ¼ 0.8159.

II. COSMOLOGICAL BOOST FACTOR

This section introduces the PS approach (Sec. II. A) and
then discusses the linear PS (Sec. II. B) and our N-body
simulation settings (Sec. II. C).

A. PS approach

Let us denote the Fourier transform of the dark matter
density fluctuations as δ̃ðk; zÞ, where k is the wave vector
in the comoving scale. Then, the matter PS is defined as
hδ̃ðk; zÞδ̃ðk0; zÞi≡ ð2πÞ3Pðk; zÞδDðkþ k0Þ, where δD is the
Dirac delta function. The dimensionless matter PS is
defined as Δ2ðk; zÞ≡ k3Pðk; zÞ=ð2π2Þ. Then, using the
Fourier transform, the cosmological boost factor at a
redshift z is [18,19]

BðzÞ ¼ 1þ
Z

∞

0

d ln kΔ2ðk; zÞ: ð2Þ

In the linear theory, because Δ2
Lðk; zÞ ∝ knsþ3 in the low-k

limit and Δ2
Lðk; zÞ → 0 in the high-k limit (over the

free-streaming scale), the integral in Eq. (2) converges.
However, in the nonlinear regime, N-body simulations are
required to obtain Δ2ðk; zÞ in the high-k regime; this is
discussed in the following sections.

B. Linear PS

The linear matter PS is written as

PLðk; zÞ ¼ A

�
k
k�

�
ns
D2þðzÞT2ðk; zÞD2

fsðkÞ; ð3Þ

where k� ¼ 0.05 Mpc−1 is the pivot scale and DþðzÞ is
the linear growth factor, which is safely approximated as
DþðzÞ ∝ ð1þ zÞ−1 in the redshift range of z ¼ 10–100.
The amplitude A and the spectral index ns are set to be
consistent with the Planck 2015 result [43]. Here, we do not
consider the running (or the running of running) of the
spectral index.
Tðk; zÞ is the transfer function for the total matter density

(i.e., dark matter and baryons). Here, we use the fitting
function Tðk; zÞ given in Appendix C of Ref. [44], obtained
from cosmological perturbation theory.1 In their study, the
Boltzmann equation was numerically solved and the results
were fitted down to a very small scale (k ¼ 104 Mpc−1).
The quoted accuracy of the fitting formula is a few percent
(10%) for k ¼ 1–100 Mpc−1 (k > 100 Mpc−1). We con-
firmed that their Tðk; zÞ agrees with the CAMB output [46]
within 8% for k < 104 Mpc−1. At small kð≲0.1 Mpc−1Þ,
the Tðk; zÞ is consistent with the Bardeen-Bond-Kaiser-
Szalay formula [47] with the baryonic correction [48].

1There is a minor typo in their formula [45]. In their
Appendix C, α1 should be replaced with α1 ¼ ½1 − ð1þ
24Ωc=ΩmÞ1=2�=4, where Ωc ¼ Ωm − Ωb.
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After the decoupling epoch, the baryonic gas pressure
suppresses the growth of density fluctuations smaller than
the Jeans length. As time continues, the gas temperature
(and pressure) decreases, and thus, the Jeans length
decreases. Therefore, the transfer function depends on
the redshift (i.e., the suppression is more significant for
lower z; see also Fig. 5 in Ref. [44]). Because we are
interested in the matter clustering at z ≈ 10, we used the
transfer function at z ¼ 10, Tðk; z ¼ 10Þ, throughout this
paper. In this case, PLðk; zÞ simply evolves in proportion
to D2þðzÞ.
The damping factor due to the dark matter free stream-

ing, D2
fsðkÞ, is taken from [49]:

DfsðkÞ ¼
�
1 −

2

3

�
k
kfs

�
2
�
exp

�
−
�
k
kfs

�
2
�
; ð4Þ

for k <
ffiffiffiffiffiffiffiffi
3=2

p
kfs, and DfsðkÞ ¼ 0 otherwise. Throughout

this paper, the free-streaming scale is set to kfs ¼
106 Mpc−1, which corresponds to a kinetic decoupling
temperature of Td ≈ 1 MeV for dark matter particles (e.g.,
[49,50]). Note that the primordial PS is currently measured
up to k ≃ 0.2 Mpc−1 by Planck [51], and therefore the
linear PS in Eq. (3) relies on an extrapolation up to kfs.
The dimensionless linear PS, Δ2

Lðk; zÞ, is plotted in
Fig. 1. The suppression at k≳ 103 Mpc−1 is caused by
the Jeans effect after the decoupling epoch (see also Fig. 4
in Ref. [44]). This scale is determined by the Jeans length λJ
just after the decoupling epoch: λJ ¼ 2π=kJ, where kJ ¼
9 × 102ðΩmh2Þ1=2 Mpc−1 [44]. Even at z ¼ 10, the ampli-
tude of ΔL is less than unity over the entire k range. For the

quasinonlinear regime (ΔL ≳ 0.1), N-body simulations are
required to follow the nonlinear evolution.

C. N-body simulations

To obtain the nonlinear Δ2, we ran N-body simulations
in cubic boxes to follow the gravitational evolution of
collisionless particles. These are dark matter only simu-
lations (i.e., without nonlinear baryonic processes such
as star formation, gas cooling, or radiative transfer).
However, the baryonic effects in the initial linear PS (such
as the baryon acoustic oscillation and the Silk damping)
are included. Baryonic effects on the nonlinear PS are
discussed in Sec. IV. C. Because the length scales of
interest are broad, k ¼ 1–107 Mpc−1, we combined five
different box-size simulations with side lengths of
L ¼ 1 kpc; 10 kpc; 100 kpc; 1 Mpc, and 10 Mpc. The
number of particles in each box was Np ¼ 51203 and
25603 for the high-resolution (HR) and low-resolution (LR)
runs, respectively. These different resolution runs were
used to check the numerical convergence, given the finite
spatial resolution. The minimum wave number was
kmin ¼ 2π=L, which is necessarily smaller than kfs to
include the initial power at k < kfs. The simulation results
are reliable up to the particle Nyquist wave number, given
by kNy ≡ ðπ=LÞN1=3

p . Our simulation settings, including the
values of L, Np, kmin, kNy, and the N-body particle mass
mp, are summarized in Table I. The particle mass in the
smallest box (≃3 × 10−11 M⊙) is small enough to resolve
the minimum halo mass determined by kfs (i.e., Earth
mass ∼10−6 M⊙).
The initial particle positions were given with the grid-

based configuration on the basis of the second-order
Lagrangian perturbation theory [52–54] at z ¼ 400. The
initial PS in Eq. (3) was obtained at z ¼ 10 and then scaled
back to the initial epoch (z ¼ 400) using the linear growth
factor. We used a tree-particle-mesh code, GreeM [55], to
follow the nonlinear gravitational evolution. The gravita-
tional softening length was set to 5% of the mean particle
separation. The number of particle-mesh grid cells was set
to Np=8 in all the runs.
The particle position data were stored at z ¼ 10, 17, 23,

30, 40, 50, 60, and 100. To measure the density contrast
δðx; zÞ, we assigned the particles to the 28163 grid cells in
the box using the cloud-in-cell interpolation (e.g., [56,57]).
Then, the Fourier transform of δðx; zÞ was obtained using a
fast Fourier transform.2 To explore smaller scales, we
applied the folding method [58], which folds the particle
positions x into a smaller box of side length L=n by
replacing x with x%ðL=nÞ, where a%b is the reminder of
a=b. Here, we set n ¼ 10 and 100. This procedure
effectively increases the spatial resolution by n times.

10−3

10−2

10−1

100

100 101 102 103 104 105 106

linear theory z=10

z=17

z=30

z=50

z=100

FIG. 1. Dimensionless linear matter power spectrum at
z ¼ 10–100. Solid curves include free-streaming damping at
kfs ¼ 106 Mpc−1, whereas dashed curves exclude free-streaming
damping. The suppression at k≳ 103 Mpc−1 is caused by the
baryon gas pressure (i.e., the Jeans effect) after the decoupling
epoch [44].

2FFTW3 (the Fastest Fourier Transform in the West) at http://
www.fftw.org/.
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The PS estimator was measured as

P̂ðk; zÞ ¼ 1

Nmode

X
jk0j∈k

jδ̃ðk0; zÞj2; ð5Þ

where Nmode is the number of Fourier modes in a spherical
shell of k − Δk=2 < jk0j < kþ Δk=2. The bin width was
set to Δ log10 k ¼ 0.2. We did not subtract the Poisson shot
noise, Psn ¼ L3=Np, from the measured Pðk; zÞ because
this simple formula Psn is inaccurate, especially for high z
(see, e.g., Secs. 4 and 6.2 in Ref. [59]).
To reduce the sample variance for the HR runs, we

employed the “pairing and fixing” technique [60,61] in
which paired simulations are prepared in each run. In the
initial condition for both of the paired runs, the amplitudes
of the density contrasts in the Fourier space are given to
reproduce the input PLðk; zÞ without Gaussian randomiza-
tion [i.e., jδ̃ðkÞj ¼ P1=2

L ðk; zÞ�. The phase, θðkÞ ¼ arg½δ̃ðkÞ�,
for one of the paired runs is randomly chosen in a range
of 0 − 2π, whereas the phase is set to −θðkÞ for the other
run (i.e., these phases are opposite to each other).
Accordingly, the mean PS of the paired runs agrees with
the ensemble average of many Gaussian realizations even
in the nonlinear regime [61]. For the LR runs, we prepared
four independent realizations with different seeds for the
Gaussian initial condition.

III. RESULTS

This section presents the simulation results for the
nonlinear PS (Sec. III. A) and the resulting boost factor
(Sec. III. B).

A. Nonlinear PS

Figure 2 shows a plot of Δ2ðk; zÞ measured from the
simulations with various box sizes (L ¼ 1 kpc–10 Mpc),
as denoted by the different colored symbols. Here, the
results are the averages from the paired simulations (the
four realizations) for the HR (LR) runs. The plotting range
is from k ¼ kNy=10 to kNy, as given in Table I, for the HR
runs. Only for L ¼ 1 kpc, the results are plotted up to k ¼
108 Mpc−1 (≃6kNy). The range is the same for the LR runs,

but the maximum wave number is the LR kNy, which is half
the HR kNy. Only for L ¼ 10 Mpc, the minimum wave
number is 5.3 Mpc−1, where the relative Gaussian variance
of Pðk; zÞ [≡ð2=NmodeÞ1=2 in Eq. (5)] is less than 3%.
As seen in the figure, at z ¼ 60, the simulation results

agree fairly well with the linear theory. At z ≃ 40, the
nonlinear evolution starts at k≳ 103 Mpc−1. According to
previous studies (e.g., [39,40]), the first halos with Earth
mass ≈10−6 M⊙½kfs=ð106 Mpc−1Þ�−3 formed around this
epoch. At z ¼ 10, Δ2 is approximately 100 times larger
than the linear theory at k≳ 103 Mpc−1. The HR and LR
runs are consistent in the plotting ranges of the scales
and redshifts. It is known for the initial PS with a small-
scale damping that unphysical small halos below the free-
streaming scale are formed from spurious fragmentation of
filaments owing to a finite mass resolution [62–65]. These
halos may affect the nonlinear PS at k≳ kfs. However, the
agreement between the HR and LR results suggests that this
can be negligible up to the LR kNy. The discontinuities
between the larger and smaller boxes are due to the lack of
density fluctuations larger than the smaller box size. The
large-scale power deficit suppresses small-scale clustering
because the power transfers from large to small scales via
the mode coupling between the different scales [66–70]. In
other words, our small box simulations give lower bounds
on Δ2 (the effect of density fluctuations larger than the box
size are discussed in Sec. IV. A).
The free-streaming damping at kfs ¼ 106 Mpc−1

imposed in the initial conditions persist at z≳ 50.
However, at z ¼ 40 and later, this feature disappears.
For example, the results with and without initial damping,
denoted by the red and the gray circles, respectively,
become similar at lower z. This is because the power
flow from large to small scales erases the damping feature.
This trend is also observed in the nonlinear evolution of
the free-streaming damping for warm dark matter [71–76].
The disappearance of the damping has important implica-
tions for BðzÞ because the integration in Eq. (2) does not
appear to converge in the high-k limit.
The red dotted lines in Fig. 2 indicate the shot noise,

Δ2
sn ¼ ðL3=NpÞ½k3=ð2π2Þ�, for the red circles. The simu-

lation results do not approach these lines at k < kNy, which

TABLE I. Summary of our N-body simulations: the side length of cubic simulation box L, the number of particles
Np, the minimum wave number 2π=L, the particle Nyquist wave number kNy ≡ ðπ=LÞN1=3

p , and the N-body particle
mass mp. Values in parentheses indicate differing values for the low-resolution runs.

L Np 2π=L [Mpc−1] kNy [Mpc−1] mp½M⊙�
10 Mpc 51203 (25603) 0.63 1.6 × 103 (800) 29 (230)
1 Mpc 51203 (25603) 6.3 1.6 × 104 (8.0 × 103) 2.9 × 10−2 (0.23)
100 kpc 51203 (25603) 63 1.6 × 105 (8.0 × 104) 2.9 × 10−5 (2.3 × 10−4)
10 kpc 51203 (25603) 630 1.6 × 106 (8.0 × 105) 2.9 × 10−8 (2.3 × 10−7)
1 kpc 51203 (25603) 6.3 × 103 1.6 × 107 (8.0 × 106) 2.9 × 10−11 (2.3 × 10−10)
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means that the simple shot noise term, Δsn, is not
appropriate, which is consistent with the previous remark
(e.g., [59]). In fact, the initial condition at k < kNy does not
contain the shot noise.

We comment on the realizable range of k in the
simulations. The initial condition includes the linear PS
up to k ¼ kNy but it does not include any power at k > kNy.
As time evolves, via the power transfer from large to small

10−1

100

101

102

103

z=10

z=17

z=30

linear theory

L=10Mpc,1Mpc,100kpc,10kpc,1kpc,1kpc (w/o damping)

kNy

high res.
low res.

10−1

100

101

102

L=10Mpc,1Mpc,100kpc,10kpc,1kpc,1kpc (w/o damping)

kNy

10−2

10−1

100

L=10Mpc,1Mpc,100kpc,10kpc,1kpc,1kpc (w/o damping)

kNy

10−2

10−1

100

L=10Mpc,1Mpc,100kpc,10kpc,1kpc,1kpc (w/o damping)

kNy

10−4

10−3

10−2

10−1

L=10Mpc,1Mpc,100kpc,10kpc,1kpc,1kpc (w/o damping)

kNy

10−4

10−3

10−2

10−1

101 102 103 104 105 106 107 108

z=40

z=50

z=60

L=10Mpc,1Mpc,100kpc,10kpc,1kpc,1kpc (w/o damping)

kNy

FIG. 2. Dimensionless matter power spectrum, Δ2ðk; zÞ, at z ¼ 10–60. The symbols denote the simulation results with various box
sizes: L ¼ 10 Mpc (purple), 1 Mpc (blue), 100 kpc (orange), 10 kpc (green), and 1 kpc (red) from left to right. The gray symbols are the
same as the red symbols but do not include the free-streaming damping. The filled circles indicate the HR results with the number of
particles Np ¼ 51203, whereas the crosses indicate the LR results with Np ¼ 25603. Solid curves are the linear theory prediction with
the free-streaming damping, and dashed curves are the same without the free-streaming damping. Dotted red lines indicate the shot noise
for the red circles. Vertical dot-dashed red lines indicate the Nyquist wave number for the red circles. The discontinuity between the
larger and smaller boxes, which is especially prominent at z ¼ 17–40, results from the lack of density fluctuations larger than the smaller
box size.
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scales, the reliable range extends to higher k (> kNy),
possibly up to the wave number determined by the soft-
ening length ϵ (ksoft ¼ π=ϵ ¼ 20kNy in our setting). In the
halo model, the maximum reliable k is determined by the
smallest halos resolved in the simulation [77]; therefore
the mass resolution is also important (a correspondence
between the wave number and the halo mass is briefly
discussed in Sec. IV. B). The maximum k also depends on
the linear spectral index [78]; for a redder spectrum, the
reliable k extends further due to the power transfer. In our
case of Fig. 2, the red circles approach the shot noise at
k > kNy; therefore the maximum k is primarily determined
by the shot noise.
Before concluding this subsection, we would like to

comment on the analytical predictions of Δ2 on the basis of
the stable clustering ansatz. Let the linear PS be a single
power law, Δ2

Lðk; zÞ ∝ PLðk; zÞk3 ∝ knLþ3. Then, the cor-
responding nonlinear PS follows Δ2ðk; zÞ ∝ knþ3 with
nþ 3¼ 3ðnLþ 3Þ=ðnLþ 5Þ [36]. In our case, in Eq. (3),
the effective spectral index, neff þ 3≡ d lnΔ2

LðkÞ=d ln k,
ranges from −0.19 to 0.18 at k ¼ 102 − 105 Mpc−1.
According to the stable clustering ansatz, the nonlinear
spectral index, nþ 3, ranges from −0.31 to 0.25, which is
roughly consistent with the simulation result in the strongly
nonlinear regime Δ2 ≳ 30.

B. Cosmological boost factor

The boost factor BðzÞ can be obtained by integrating the
measured Δ2ðk; zÞ up to kNy (¼ 1.6 × 107 Mpc−1) for the
HR run. Here, we linearly interpolated the discrete data
point of Δ2ðk; zÞ in Fig. 2 for the integration in Eq. (2).
Figure 3 shows a plot of the resulting BðzÞ. The dashed
curve indicates the linear theory prediction obtained ana-
lytically from Eqs. (2) and (3): BLðzÞ ¼ 1þ 514ð1þ zÞ−2.
The simulation result agrees with the linear theory at z≳ 40
but strongly increases by orders of magnitude at z≲ 40.
The orange curve represents our fit to the simulation result:

BfitðzÞ ¼ BLðzÞ þ
4.0 × 104

ð1þ zÞ1.27 erfc
�
1þ z
18.0

�
: ð6Þ

In the high-z limit, Eq. (6) approaches the linear theory
prediction, BLðzÞ. The second term in the equation repre-
sents the nonlinear correction (its functional form is the
same as the one used in [3], but its fitting parameters are
updated). This fitting function agrees with the simulation
result within 6.8% at z ¼ 10–100. Because the integration
in Eq. (2) does not include very small-scale clustering at
k > 1.6 × 107 Mpc−1, our BðzÞ represents a lower bound at
z≲ 40. Our result is somewhat smaller than the previous
halo-model result for Mmin ¼ 10−3 M⊙ [3]. Note that their
result included huge uncertainties as a result of their
extrapolation of the halo properties (such as the mass
function and density profile) across many orders of
magnitude to extremely small scales.

We include the very small-scale clustering at k > kNy
in BðzÞ by extrapolating the measured results of Δ2.
Suppose that Δ2ðk; zÞ is a single power law from k ¼
kNy to a cutoff wave number kcut, then we have Δ2ðk; zÞ ¼
Δ2ðkNy; zÞðk=kNyÞγ for kNy ≤ k ≤ kcut and Δ2ðk; zÞ ¼ 0 for
k > kcut. Figure 2 suggests γ ≈ 0. Then, an additional
contribution to BðzÞ, arising from k > kNy, is written as

ΔBfitðzÞ ¼ Δ2ðkNy; zÞ ln
�
kcut
kNy

�
; for γ ¼ 1

¼ Δ2ðkNy; zÞ
1

γ

��
kcut
kNy

�
γ

− 1

�
: for γ ≠ 1 ð7Þ

with a fitting function

Δ2ðkNy; zÞ ¼
4.1 × 102

ð1þ zÞ0.28 erfc
�
1þ z
16.1

�
: ð8Þ

Equation (8) agrees with the simulation results of
Δ2ðkNy; zÞ within 7.2% at z ¼ 10–40. By adding ΔBfit

to Bfit in Eq. (6), one can obtain the boost factor for an
arbitrary kcut and γ. For kcut=kNy ¼ 10, 100, and 103 with
γ ¼ 0, ΔBfit=Bfit is less than 0.32,0.63, and 0.94, respec-
tively, in the range of z ¼ 10–40; therefore, ΔBfit does not
exceed Bfit even for kcut ¼ 103kNy. The cutoff wave number
is currently unknown, but it can be estimated from the
minimum halo mass in the halo model (see also discussion
in Sec. IV. B).
Throughout this paper, the free-streaming scale has been

fixed to kfs ¼ 106 Mpc−1. Here, we comment on the kfs
dependence on the nonlinear BðzÞ. Our simulations cover

 1

 10

 100

 1000

B

z
10                     30                      100

simulation result
kmax=1.6x107/Mpc

our fit

Evoli+ (2014)
Mmin=10−6Msun

10−3Msunlinear theory

FIG. 3. Boost factor calculated from the simulation results of
Δ2 for the maximum wave number 1.6 × 107 Mpc−1 denoted by
the red circles. Orange curve represents our fit to the simulation
results given in Eq. (6), whereas dashed black curve represents
the linear theory prediction. Dotted green and blue curves
represent the previous halo-model results [3] for the minimum
halo masses 10−6 M⊙ and 10−3 M⊙, respectively.
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wave numbers of up to approximately 10 times larger than
kfs even for different kfs values (this is determined by our
simulation settings). If the flat spectrum, Δ2ðk; zÞ ≈ const.,
continues at k > 10kfs, the resulting BðzÞ would not
converge and would be less sensitive to kfs. Additional
simulations are needed to explore the kfs dependence;
however, such simulations are beyond the extent of this
study and are left as future work.

IV. DISCUSSION

This section discusses the effects of density fluctuations
larger than the simulation volume (Sec. IV. A), the cutoff
wave number in the halo model (Sec. IV. B), and the
baryonic effects on Δ2 (Sec. IV. C).

A. Density fluctuations larger than
the simulation volume

To examine the effects of density fluctuations larger than
the box, we computed Δ2 for various box sizes while
retaining the spatial resolution. These additional simula-
tions were run following the same procedure used in
Sec. II. C. The result is shown in Fig. 4. The plotting
range is from the minimum wave number (¼ 2π=L) to the
particle Nyquist wave number. Figure 4 indicates that the
smaller box simulation underestimates Δ2 in the nonlinear
regime, as expected from the power flow from large to
small scales. Here, the missing large-scale power is less
important for a bluer spectrum (larger spectral index) and
more important for a redder spectrum (smaller spectral
index). Because the linear PS in Eq. (3) is red (nL þ 3 ≈ 0)
at k≳ 102 Mpc−1, this effect is prominent. Furthermore,
Fig. 4 shows that Δ2 is steep in the weak nonlinear regime
(1≲ Δ2 ≲ 30) but becomes shallow in the strong nonlinear
regime (Δ2 ≳ 30). This trend is consistent with previous
findings (Sec. 5.1 in Ref. [34]).
Next, we calculated the root-mean-square mass fluc-

tuation σW within a cubic box in the linear theory. This
quantity σW needs to be smaller than unity to safely neglect
the effect of large-scale fluctuations. The window function
for a cubic box of side length L isWðx;LÞ ¼ L−3ΘðL=2 −
jxjÞ ΘðL=2 − jyjÞ ΘðL=2 − jzjÞ, where ΘðxÞ is the step
function: ΘðxÞ ¼ 1ð0Þ for x ≥ 0 (x < 0). Its Fourier trans-
form is W̃ðk;LÞ ¼ sincðkxL=2Þ sincðkyL=2Þ sincðkzL=2Þ,
where sincðxÞ ¼ sin x=x. Accordingly, the linear mass
variance can be written as

σ2WðL; zÞ ¼
Z

d3k
ð2πÞ3 jW̃ðk;LÞj2PLðk; zÞ: ð9Þ

This variance is roughly related to Δ2
L as σ2WðL; zÞ≈

Δ2
Lðk ¼ 2π=L; zÞ. Table II lists the values of σW for various

L at z ¼ 10 [here, σW ∝ 11=ð1þ zÞ for an arbitrary z].
Only for L ¼ 10 Mpc, the missing large-scale fluctuations
are safely negligible; for the other box sizes, they are not.
For higher redshifts (z ≥ 17), because σW is smaller, the

large-scale fluctuations are less important. Note that the
linear theory, assumed in Eq. (9), underestimates Δ2 for
k≳ 10 Mpc−1 at z ¼ 10 and, therefore, the obtained σW
indicates a lower bound.
Density fluctuations larger than the box can be

accounted for using the separate universe (SU) technique
(e.g., [79–87]). A SU simulation can follow the nonlinear
clustering in an over/underdense region of the Universe. In
this technique, the mean density of the box, which is
usually different from the global mean, is absorbed into the
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z=30

z=40

(L, Np)=(100kpc, 51203)(50kpc, 25603)
(25kpc, 12803)

10−1

100

101

102

(L, Np)= 3) 3)
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10−2

10−1

100

(L, Np)= 3) 3)
3)

10−2

10−1

102 103 104 105

(L, Np)= 3) 3)
3)

FIG. 4. Dimensionless matter power spectrum Δ2ðk; zÞ for
various box sizes L with different number of particles Np but
the same spatial resolution: L ¼ 100 kpc with Np ¼ 51203 (red
circles), L ¼ 50 kpc with Np ¼ 25603 (green triangles), and L ¼
25 kpc with Np ¼ 12803 (blue diamonds). Solid curves show the
linear theory prediction.

TABLE II. Root-mean-square mass fluctuation σW within a
cubic box of side length L, given in Eq. (9), at z ¼ 10. Here,
linear density fluctuations are assumed.

L σW

10 Mpc 0.14
1 Mpc 0.38
100 kpc 0.71
10 kpc 1.09
1 kpc 1.38
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change in the cosmological parameters, i.e., the simulation
runs under the “local” cosmological parameters. For
example, an overdense region corresponds to a spatially
closed universe, while an underdense region corresponds to
a spatially open universe. The SU simulation can account
for the local density contrast, as well as the external tidal
field. The SU approach, however, is beyond the scope of
this paper and is left as future work.

B. Cutoff wave number in the halo model

This subsection estimates the cutoff wave number kcut
of the nonlinear Δ2 from the typical size of the minimum
halo (see, e.g., Sec. 3 of Ref. [19]). The minimum halo
mass Mh;min is determined by kfs such that Mh;min¼
ð4π=3Þρ̄ðπ=kfsÞ3≈10−6M⊙½kfs=ð106 Mpc−1Þ�−3. Because
the halo is defined as a spherical region of radius rv,
where the mean density is Δv times higher than the
background density, we have Mh ¼ ð4πr3v=3Þρ̄Δv. Intro-
ducing the scale radius of a halo rs ¼ rv=c, where c is the
concentration parameter, we have kcut ¼ π=rs. From the
above equations, kcut can be written as

kcut ¼ cΔ1=3
v kfs;

¼ 5.8c

�
Δv

200

�
1=3

kfs: ð10Þ

The typical value of c is roughly c ¼ 1–2, with a large
scatter comparable to its mean, forMh;min [39,40]. Figure 2
suggests that kcut is at least 10 times larger than kfs. This
means, from Eq. (10), that some halos with c≳ 2 and/or
substructure in Mh;min would contribute to Δ2 at k > 10kfs.
In the halo model, halos with rs primarily contribute to

the nonlinear Δ2ðk; zÞ at k ∼ 1=rs. In the small-scale limit,
but larger than the cutoff scale (k < kcut), the spectral index

of Δ2, nþ 3, depends on several model ingredients,
including the mass function, the concentration parameter,
and the linear spectral index nL [e.g., Eq. (4) in Ref. [88]].3

If nL þ 3 ¼ 0 and the concentration parameter is indepen-
dent of the halo mass, then nþ 3 ¼ 0, which is roughly
consistent with our simulation result.

C. Baryonic effects on Δ2

So far, we have discussed the nonlinear Δ2 obtained from
the dark matter only (DMO) simulations. However, baryonic
processes [such as star formation, gas cooling and supernova
and active galactic nucleus (AGN) feedback] also affect Δ2,
especially at small scales (e.g., see a recent review by
Ref. [89]). This subsection estimates the baryonic effects
using public hydrodynamic simulations, IllustrisTNG.4

The TNG team computed the gravitational evolution, as
well as astrophysical processes, using themoving-mesh code
AREPO [90]. They ran three sets of simulations in different
size cubic boxes, with three mass resolutions for each box
size. Here, we used the highest resolution runs in the middle
and small box sizes, TNG100-1 [91–95] and TNG50-1
[96,97], respectively. For TNG100-1 and TNG50-1, the
box sizes were L ¼ 75h−1 and 35h−1 Mpc, respectively,
with the number of particles being Np ¼ 18203 and 21603,
respectively, where Np was the same for both the baryonic
and dark matter particles. The TNG team also performed
corresponding DMO runs excluding the baryonic processes,
which can be used to observe the impact of baryons on the
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FIG. 5. Nonlinear power spectrum measured from the hydrodynamic simulations including the baryonic processes: TNG100-1 (blue
diamonds) and TNG50-1 (purple circles) at z ¼ 20 (left) and 10 (right). The gray symbols are the same as the colored ones but are
measured from the corresponding DMO runs. Red curve indicates the linear theory, and dashed blue and purple lines indicate the shot
noise for TNG100-1 and TNG50-1, respectively. The shot noise is included in the plotted points (i.e., it is not subtracted). The bottom
portions of the panels plot the ratio of Δ2 to the corresponding value for the DMO runs.

3The spectral index is nþ 3 ¼ ½18β − αðnL þ 3Þ�=½2ð3β þ 1Þ�
where the concentration-mass relation is c ∝ M−β and the mass
function is dn=dM ∝ ναe−ν

2=2, with the linear mass variance
σðMÞ ∝ ν−1.

4https://www.tng-project.org.
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small-scale clustering. Their cosmologicalmodel parameters
were the same as ours. The initial redshift was z ¼ 127 for all
runs, and the simulation data at z ¼ 0–20 were released.
Here, we analyze the data at z ¼ 10 and 20.
The upper part of the panels in Fig. 5 show plots of Δ2

calculated from the TNG simulations. The colored symbols
are from the simulations with baryons, whereas the gray
symbols are from the simulations without baryons. Here,
Δ2 is calculated for the dark matter density (i.e., excluding
the baryonic component) even in the baryonic runs because
BðzÞ is determined by the dark matter. The potting range is
up to the particle Nyquist wave number. The lower parts
of the panels show the ratio of Δ2 with baryons to Δ2

without baryons. At larger scales (k≲ 10 Mpc−1), as
expected, the ratio is unity. The baryons slightly suppress
Δ2 by 10%–20% at k ¼ 10–200 Mpc−1. The baryonic
effects cannot be explored at higher k (> 200 Mpc−1)
owing to the finite resolution of the simulations. It is known
that at low redshifts (z≲ 3), baryons suppress the PS at
k ¼ 1–10 Mpc−1 as a result of the AGN feedback but
strongly enhance it at k > 10 Mpc−1 as a result of gas
cooling [89]. At high redshift (z ≥ 10), because the AGN
feedback is not effective, the baryon pressure should
suppress small-scale clustering at k > 10 Mpc−1.

V. CONCLUSIONS

We obtained the cosmological boost factor, BðzÞ, at high
redshifts of z ¼ 10–100 by integrating the nonlinear PS
measured from dedicated high-resolution N-body simula-
tions. To cover a wide range of scales (k ¼ 1–107 Mpc−1),
including the free-streaming scale (kfs ¼ 106 Mpc−1), we
combined five different box-size simulations. Here, our
simulations cover wave numbers up to the particle Nyquist
frequency of the smallest box, kNy ¼ 1.6 × 107 Mpc−1.

Nonlinear clustering starts at z ≃ 40 and enhances the PS
by orders of magnitude at z≲ 30. We found that although
free-streaming damping was imposed in the initial PS, this
damping feature disappears at late times (z≲ 40) as a result
of the power transfer from large to small scales. Our BðzÞ
result agrees with the linear theory prediction at z≳ 50 but
is strongly enhanced at z≲ 40. Our nonlinear BðzÞ is
roughly consistent with, but slightly smaller than, the
previous halo-model prediction with Mh;min ¼ 10−3 M⊙
[3]. We provide a simple fitting function for BðzÞ in Eq. (6).
The contribution from the small-scale fluctuations at
k > kNy is also included in our fitting function of BðzÞ,
given in Eq. (7), using an extrapolation of the measured
results Δ2 down to the smaller scales; therefore one may
obtain BðzÞ for an arbitrary cutoff wave number. Note that
our BðzÞ result is a lower bound in the nonlinear epoch
(z≲ 40) for the following two reasons: (i) the initial
conditions of the simulations do not include density
fluctuations smaller than 2π=kNy ¼ 0.39 pc and (ii) the
lack of density fluctuations larger than the simulation
volume suppresses nonlinear clustering.
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