
Probing gravitational slip with strongly lensed fast radio bursts

Tal Adi and Ely D. Kovetz
Department of Physics, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel

(Received 2 September 2021; accepted 21 October 2021; published 16 November 2021)

The rapid accumulation of observed fast radio bursts (FRBs) originating from cosmological distances
makes it likely that some will be strongly lensed by intervening matter along the line of sight. Detection of
lensed FRB repeaters, which account for a noteworthy fraction of the total population, will allow not only
an accurate measurement of the lensing time delay, but also follow-up high-resolution observations to
pinpoint the location of the lensed images. Recent works proposed to use such strongly lensed FRBs to
derive constraints on the current expansion rate H0 as well as on cosmic curvature. Here, we study the
prospects for placing constraints on departures from general relativity via such systems. Using an ensemble
of simulated events, we focus on the gravitational slip parameter γPN in screened modified gravity models
and show that FRB time-delay measurements can yield constraints as tight as jγPN − 1j≲ 0.04 ×
ðΛ=100 kpcÞ × ½N=10�−1=2 at 1σ with ten detections.

DOI: 10.1103/PhysRevD.104.103515

I. INTRODUCTION

The accelerated cosmic expansion is one of the most
puzzling open questions in cosmology and physics in
general [1,2]. The simplest solution is given by the
introduction of a cosmological constant into Einstein’s
general relativity (GR) equations, which leads to an
exponential expansion once the Universe expands enough
for the energy density in radiation and then matter to
become subdominant. However, the physical interpretation
for this ad hoc solution remains unknown. Numerous
theories propose an explanation for the acceleration
[3–6] and can be categorized into two general approaches:
dark energy (DE) and modified gravity (MG), which can be
thought of as two different ways to alter Einstein’s
equations in order to accommodate a similar effect to that
of the cosmological constant. The former introduces a DE
component with a modeled equation of state, which
describes its properties and dynamics, thus altering the
source terms of the equations, whereas the latter offers to
modify the coupling to gravity, resulting in an “effective”
Einstein tensor. While DE models can be evaluated via their
equation of state, MG models are usually evaluated via an
extension of the post-Newtonian parametrization to cos-
mological scales. Unfortunately, there is no one description
to rule them all, and one must describe the model in order to
define its post-Newtonian parameters.
Nonetheless, most MG theories share two key features.

One is the gravitational slip, referring to the difference
between the potential associated with the time component
of the metric and the one associated with the spatial
component [7,8]. The second is screening, which sets a
scale beyond which MG is relevant [9,10]. Recent work

(Ref. [11]) took advantage of these features in order to
demonstrate how one may place constraints on MG models
using time-delay measurements of strongly lensed quasars
by adopting a phenomenological approach in which the
departure from GR is encapsulated by a parametrized
gravitational slip on distances greater than a cutoff scale
Λ. However, the constraints are limited by the ≳1%
uncertainty in the measured quasar time delay (TD). One
way to overcome this is to use a different source.
Fast radio bursts (FRBs) are bright transients with

Oð1 msÞ duration at approximately gigahertz frequencies.
While the physical nature of FRBs remains a mystery
[12,13], their all-sky distribution and their large dispersion
measures (DMs) are consistent with a cosmological origin
[13]. Some of the detected bursts feature a repeating
pattern, enabling high-time-resolution radio interferometric
follow-up observations to localize their sources [14]. The
CHIME/FRB Collaboration recently presented a catalog
[15] of 535 FRBs over a year of observation, 61 of which
originate from 18 repeating sources. Detecting a repeating
FRB signal for which each burst is accompanied by a
second image separated by the same fixedOð10Þ days time
interval could indicate a repeating strongly lensed FRB
event. Events like this, which can be picked by a large-field
survey, can then be subsequently observed at higher
resolution using radio telescopes such as the Very Large
Array (VLA) [16], the future Square Kilometre Array
(SKA) [17], or with Very Long Baseline Interferometry
(VLBI) networks, enabling one to resolve the lensed
images of the FRB signal. The frequent all-sky rate of
FRBs, ∼103 per day [18,19], and their extremely short
relative durations (∼10−9 of a typical lensing time delay)
make strongly lensed repeating FRBs a promising tool for
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cosmological tests [20–22]. To that effect, recent work [23]
simulated such possible strongly lensed FRB in order to
conduct cosmography and estimated the constraining
power of such systems on the Hubble parameter H0 and
the spatial curvature Ωk in a cosmological-model-indepen-
dent manner, finding that ten such systems can constrain
H0 to a subpercent level, on par with the tight constraints
from the cosmic microwave background measurement
reported by Planck 2018 [24].
In this work, we study the prospects of using strongly

lensed FRB systems to place constraints on screened MG
models featuring a gravitational slip. While such systems
have not yet been detected, it is likely that such detection
will be made in the near future as the search for FRB
expands. For example, the SKA [17], the hydrogen
intensity and real-time analysis experiment (HIRAX)
[25], and the Packed Ultra-wideband Mapping Array
(PUMA) [26], are all future experiments with wide fields
of view which are expected to detect ∼102–103 FRBs per
day. Considering a typical galaxy-galaxy strong-lensing
optical depth of ∼10−4–10−3 [27], this leads to a predicted
number of Oð10–100Þ lensed FRB events per year. As a
considerable fraction of FRBs are repeaters, we optimis-
tically assume (as in Ref. [23]) that within a few years
Oð10Þ strongly lensed repeating FRB systems can be
detected and followed up with high-resolution images.
To estimate the constraining power of FRB TD mea-

surements on the post-Newtonian gravitational slip param-
eter γPN at supergalactic screening scales Λ, we adopt a
formalism which resembles the one in Ref. [11]. Using
simulations of strongly lensed FRB systems, taking into
account the possibility of gravitational slip, we find that
their observation will improve the constraints on γPN
significantly. With N ¼ 10 systems, the constraint scales
as jγPN − 1j≲ 0.04 × ðΛ=100 kpcÞ × ½N=10�−1=2, enabling
< 10% precision up to scales of Λ ∼ 300 kpc.
The paper is organized as follows. In Sec. II, we review

the model we use to evaluate the TD and the methods we
use to simulate strongly lensed FRB systems. We then
present and discuss our results in Sec. III, before conclud-
ing in Sec. IV.

II. METHODOLOGY

A. The model

The metric on cosmological scales, in the presence of a
gravitational potential, is described by the line element

ds2 ¼ a2ðηÞ½−ð1þ 2ΦÞdη2 þ ð1 − 2ΨÞdx⃗2�; ð1Þ

where Φ and Ψ are the Newtonian and longitudinal
gravitational potentials, respectively, and aðηÞ is the cos-
mological scale factor. This metric gives rise to the familiar

Newton’s equation x⃗00 ¼ −∇⃗2Φ and Poisson’s equation
∇2Ψ ¼ 4πGa2ρ. While the two potentials are equal under

GR [28,29], MG theories, such as fðRÞ [30,31] and scalar-
tensor theories [32–35], Dvali, Gabadadze, and Porrati
(DGP) gravity [36–38], and massive gravity [39], all predict
a systematic difference Ψ ≠ Φ, also known as the gravita-
tional slip. This departure fromGR is often quantified by the
ratio γPN ¼ Ψ=Φ, while γPN ¼ 1 (i.e., GR) is expected at
small distances due to screening. It is worth noting, though,
thatmany efforts to develop a phenomenological description
of the gravitational slip result in a variety of parametriza-
tions, including dynamical ones [7,40–44].
The gravitational screening phenomenon reflects in the

suppression of the additional gravitational degrees of
freedom, introduced by MG theories, within a certain
region. This effect enables MG theories to resemble GR
at subgalactic scales while introducing new effects at larger
scales, such as cosmic acceleration. We follow the notation
in Ref. [11] and consider the gravitational slip to be turned
on abruptly at a screening radius Λ, which is assumed to be
larger than the Einstein radius, Λ > θEDL.
Photons follow null geodesics, ds2 ¼ 0, which, accord-

ing to Eq. (1), are described by Σ≡Φþ Ψ. Thus, for a
spherically symmetric mass distribution, we can model the
departure from GR as [11]

Σ ¼ ½2þ ðγPN − 1ÞΘðr − ΛÞ�ΦðrÞ; ð2Þ

where r andΛ are physical distances andΘ is the Heaviside
step function. In what follows, we mostly make use of the
same model as in Ref. [11], which is reviewed in
Appendix A.
The TD between two images of a source at redshift zS

that is gravitationally lensed by a deflector at redshift zL
can be written as

Δtij ¼
1þ zL

c
DLDS

DLS

�
1

2
ðα2i − α2jÞ − ðψ i − ψ jÞ

�
; ð3Þ

where ψ i ¼ ψðθiÞ and αi ¼ αðθiÞ ¼ ∂θψ jθi are the lensing
potential and the deflection angle at the angular position
(of an image) θi, respectively, and fDS;DL;DLSg are the
angular diameter distances from us to the source, to the
lens, and between the lens and source, respectively.
Equation (3) may be written more compactly in terms of
the Fermat potential, ϕi ¼ α2i =2 − ψ i, as

Δtij ¼
DΔt

c
Δϕij; ð4Þ

where DΔt ¼ ð1þ zLÞDLDS=DLS is the time-delay dis-
tance. As the lensing potential depends directly on Σ (see
Appendix A), applying Eq. (2) results in the decomposition
of the lensing potential (and, therefore, the deflection angle
as well) as follows:

ψ ¼ ψGR þ ðγPN − 1ÞΔψ ; ð5Þ

103515-2

TAL ADI and ELY D. KOVETZ PHYS. REV. D 104, 103515 (2021)



where ψGR is the usual lensing potential in GR and Δψ is a
lensing potential slip term. Assuming a spherical power-
law mass density distribution ρlens, the expressions for the
lensing potential components are [11,45]

ψGRðθÞ ¼
θγ

0−1
E;GR

3 − γ0
θ3−γ

0
; ð6Þ

ΔψðθÞ ¼ cθγ
0−1
E;GR

3 − γ0

�
DL

Λ

�
γ0−3

× 2F1

�
1

2
;
γ0 − 3

2
;
γ0 − 1

2
;

�
DLθ

Λ

�
2
�
; ð7Þ

where θE;GR is the Einstein radius of the lens, γ0 ≡
−d log ρlens=d log r is the radial profile slope, 2F1 is the
hypergeometric function,

c ¼ 1

2
ffiffiffi
π

p Γðγ0
2
− 1Þ

Γðγ0−1
2
Þ ; ð8Þ

and Γ is the Gamma function. The deflection angle
components αGR and Δα are given by taking their deriva-
tive with respect to θ.
The gravitational slip correction to the gravitational

potential affects the lens parameters, inferred from the
lensing observables (observed TD, image positions, etc.).
Thus, for an observed lensing event, one should carry out a
full Markov-chain Monte Carlo (MCMC) analysis for the
entire set of parameters (lens parameters plus γPN).
However, as strongly lensed FRB systems have not yet

been observed, we adopt a more naive approach, suggested
in Ref. [11], of relating θE;GR, the Einstein radius in GR, to
θE;obs, the observed value, which would be inferred differ-
ently in the case of screening, via

θE;obs ¼ αGRðθE;obsÞ þ ðγPN − 1ÞΔαðθE;obsÞ; ð9Þ

where both αGR and Δα depend on θE;GR [derived from
Eqs. (7) and (8)]. Hence, instead of letting all the lens
parameters vary, as one does in a complete MCMC
analysis, we account only for the shift in the observed
Einstein radius. But again, as there is no θE;obs available for
a strongly lensed FRB system, we must rely on simulation
alone. Therefore, in our work, we calculate the GR
quantities and numerically solve the set of Eqs. {(3),(9)}
for γPN and θE;obs, where

Δtij → Δtobs þ σðΔtobsÞ ð10Þ

and

Δtobs ¼
DΔt

c
ΔϕðθE;obsÞ ð11Þ

is the TD one would naively observe in case of γPN ≠ 1.
Note that in the case of σðΔtobsÞ ¼ 0 the solution yields
γPN ¼ 1 and θE;GR ¼ θE;obs; thus, the deviation from GR is
driven by the uncertainties.

B. Uncertainty contributions

There are several contributions to the uncertainty in
Eq. (3) [46,47]: (i) the TD measurement error; (ii) the
uncertainty in the lens modeling, which results in an
uncertainty in the inferred Fermat potential differences;
and (iii) the uncertainty in the estimates of the external
convergence, κext, which corresponds to the contribution of
the mass distribution along the line of sight (LOS) and
results in an overall rescaling of the observed TD.
A typical galaxy-lensing TD is of the order of ∼10 days.

While the relative error in the TD measurement of a lensed
quasar is ∼1%, the measurement is expected to be
extremely accurate in the case of strongly lensed FRBs
due to the short duration of the signal, yielding relative
errors as small as ∼10−7%, thus completely negligible.
Lens modeling requires high-resolution localization of

the lensed FRB images as well as an image of their host
galaxy, in order to have better measurements of the angular
positions and shear, which, in turn, result in smaller
uncertainty on the Fermat potential differences. Unlike
quasars, FRBs have the advantage of not being associated
with bright active galactic nuclei, allowing cleaner host
images to be obtained (using high-resolution radio tele-
scopes, such as VLA or SKA, and VLBI observations). We
adopt the relative uncertainty in the Fermat potential
differences of δðΔϕÞ ¼ 0.8%, inferred from a series of
simulations of such systems that was recently carried out in
Ref. [23]. We note that the uncertainty in the Fermat
potential differences depends, in general, on the system
(i.e., on the lens and source redshifts, the lens parameters,
the sky localization of the event, etc.) and that the
uncertainty we use in this work, which we treat as a
typical value, was inferred from thousands of simulations
of various systems [23]. In addition, this uncertainty is
considered for a single repetition and may be improved by
observing multiple repetitions of the same strongly lensed
FRB (by mitigating the lens modeling uncertainty; see
Ref. [48]). We leave such analysis to future work.
The last and most dominant contribution to the TD

uncertainty is due to mass along the LOS. It can be shown
that transforming the lensing potential according to

ψðθÞ → λψðθÞ þ 1 − λ

2
θ2; ð12Þ

together with an isotropic scaling of the impact parameter
β → λβ, results in the same lensing observables (i.e., image
positions, magnification ratios, etc.), whereas the TD is
shifted by the same factor of λ [49–51]. This property is
known as themass-sheet degeneracy. Writing the scaling as

103515-3

PROBING GRAVITATIONAL SLIP WITH STRONGLY LENSED … PHYS. REV. D 104, 103515 (2021)



λ ¼ 1 − κext, the additional term in the lensing potential
can be interpreted as a constant external convergence κext,
which appears due to mass along the LOS. Various tech-
niques, such as using galaxy counts and shear information to
obtain the probability density function for κext, may allow
one to break this degeneracy and estimate the external
convergence and its effect on theTDuncertainty [52–54].As
an example, different analyses of HE0435-1223 report
values of σðκextÞ ¼ 0.013–0.025 [53–55], which correspond
to ∼1.6%–2.5% uncertainty in the TD distance. Below, we
will follow Ref. [23], where the average contribution of the
LOS environment to the TD relative uncertainty of lensed
FRBs is taken to be δextðΔtÞ ¼ 0.02. We use a single value
throughout, although the uncertainty in the external con-
vergence depends on the field of view of the lens and may
vary from one system to another.
Therefore, in our analysis we consider the total TD

uncertainty to be

σðΔtÞ ¼ Δt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½δðΔϕÞ�2 þ ½δextðΔtÞ�2

q
¼ ΔtδΔt; ð13Þ

where δΔt ≈ 2.2%.
For completeness, it is worth mentioning that there

are additional, subdominant, contributions to the uncer-
tainties in the TD measurement, which originate, for
example, from the relative motion of the source, lens,
and Earth [22,48,56], gravitational wave interference [57],
etc. Such effects correspond toOð1 msÞ variation in the TD
differences and are, therefore, negligible compared to the
contributions we considered above.

C. Simulation

In order to simulate strongly lensed FRB events, we must
make certain assumptions regarding the distributions of
the different parameters of the system. As described in
Sec. II A, in this work we assume spherical symmetry for
simplicity, which reduces the number of lens parameters
required in more realistic models (e.g., shear, eccentricity,
etc.). We follow a three-step procedure to simulate a
strongly lensed FRB system: (i) First, we generate the
FRB source redshift zS, assuming an FRB density distri-
bution modeled after the newly released CHIME catalog
[15], and then determine a corresponding lens redshift zL;
(ii) next, we generate the lens mass using the halo mass
function (HMF), thus determining the GR Einstein radius
θE;GR; (iii) finally, we generate the impact parameter,
assuming a simple probability distribution, and determine
the two image positions θ�.
Throughout our analysis, we set the Hubble constant and

matter density toH0 ¼ 67.36 km=s=Mpc andΩm ¼ 0.315,
respectively, in agreement with best-fit values reported by
Planck 2018 [24]. However, as we discuss below, our
results are insensitive to the variation of these parameters
within the range suggested by other measurements. In

addition, since observations suggest that early-type lens
galaxies have approximately isothermal mass density
profiles, i.e., γ0 ≈ 2 [58–62], we approximate each lens
in our simulations as a singular isothermal sphere (SIS). In
practice, in order to preserve the angular dependence in
Eqs. (7) and (8), we set the radial-profile slope of the lens
to γ0 ¼ 1.95 (a 2.5% deviation from the slope of an SIS
profile, similar to that of the RXJ1131 lens [63]; for more
discussion, see Appendix C). We note that the SIS
approximation is used here as a simplification, for brevity
in the derivations, and yet emphasize that it is valid for the
scope of this work, as discussed below.

1. FRB and lens redshifts: zS and zL
We use the cumulative data, with a total of 669 FRBs,

from the CHIME [15] and FRBcat [64,65] catalogs, to
approximate the redshift distribution of FRB sources (in
previous works, the distribution was assumed to follow the
star-formation history or to have a constant comoving
density [20,23], but these no longer fit the data well).
In order to infer the redshift of each FRB from the

observed DM, we follow the formalism in Ref. [66] and
model the DM as

DM ¼ DMISM þ DMhalo þ DMcosmic þ DMhost; ð14Þ

where the first two terms are the contributions from the
interstellar medium (ISM) and the dark-matter halo of the
Milky Way and the last two terms are the extragalactic
contribution, composed of the DM due the source and its
host galaxy, and the cosmic DM, which accounts for
the contribution from the intergalactic medium (IGM),
given by

DMcosmicðzÞ ¼
Z

z

0

cn̄eðz0Þ
1þ z

���� dtdz0
����dz0

¼
Z

z

0

cn̄eðz0Þdz0
H0ð1þ zÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωmð1þ zÞ3 þΩΛ

p ; ð15Þ

with n̄eðzÞ ¼ fdρbðzÞm−1
p ð1 − YHe=2Þ, where YHe ¼ 0.25

is the helium mass fraction; mp is the proton mass;
ρb ¼ Ωbρc;0ð1þ zÞ3 is the baryon density in units of
ρc;0 ¼ 3H2

0=8πG, for which we assume Ωbh2 ¼ 0.0224
as reported by Planck [24]; and fd is the fraction of baryons
in the IGM. The baryon fraction fd is, in general, an
evolving quantity, which can be modeled as done in
Refs. [66–68]. However, for the purpose of this work,
we follow Ref. [69] and use a constant value of fd ¼ 0.84,
for which the resulting DMcosmicðzÞ is consistent with the
one in Ref. [66], for z≲ 4, as we show in Fig. 1. In our
analysis, we make use of the excess DM given in the
catalogs, where the ISM contribution, estimated via
NE2001 model [70], had been already subtracted from
the observed DM. The DM contribution of the MilkyWay’s
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halo and the host are uncertain; we, thus, follow the
assumptions in Ref. [66] and use the midrange value of
DMhalo ¼ 50 pc cm−3 and the best-fit value from the
analysis in Ref. [66], DMhost ¼ 145 pc cm−3=ð1þ zÞ,
which is weighted by the redshift of the source. We
estimate the redshifts of the detected FRBs by solving
Eq. (14) for z and plot their distribution in Fig. 2. We note
that in our analysis we neglect the uncertainties in the
formalism above, which should be accounted for when
running a full MCMC analysis, as done in Ref. [66]. We
find that the FRB redshift distribution can be described to a
good approximation by the simple distribution

NFRBðzÞ ¼
z
z2c

e−z=zc ; ð16Þ

where the parameter zc ¼ hzi=2 ¼ 0.255 sets the expected
value of z. In Fig. 3, we show the histogram of the
combined catalogs, normalized to unity, along with the
best-fit distribution function. As using data from different
experiments may introduce a selection bias into fit, we
repeated the fit using the CHIME catalog alone, which
yields zc ¼ hzi=2 ¼ 0.256, corresponding to a subpercent
deviation in the constraining power on γPN.
In our analysis, we generate a redshift for each FRB

independently, according to Eq. (16). We then repeat the
choice of Ref. [23] and use the source redshift to determine
the corresponding lens redshift zL, by setting it to be the
value which maximizes the probability for a distant point
source at redshift zS to be lensed by an intervening DM halo
at zL, as presented in Fig. 2 in Ref. [21].

2. Einstein radius θE;GR

The Einstein radius θE;GR is determined by the lens
parameters. In particular, for a SIS, it is given by [71]

θE;GR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4GMðθE;GRÞ

c2
DLS

DLDS

s
; ð17Þ

where G is Newton’s constant and MðθE;GRÞ is the
mass enclosed within a radius of θE;GR. Therefore, in order
to set the Einstein radius of a lens at redshift zL, we must
specify its mass, which we assume to follow the HMF
within the range 1010h−1 M⊙ < M < 2 × 1013h−1 M⊙
(H0 ¼ h × 100 km=s=Mpc), which roughly corresponds
to dark-matter halos with this profile that reside in galaxies
and make the dominant contribution to the lensing prob-
ability [21,72–74]. We consider the probability density for
lensing by a dark-matter halo with massM, at redshift zL, to
be proportional to nðM; zÞσSISðMÞ, where nðM; zÞ is the

FIG. 1. The redshift dependence of DMcosmic. In solid red, we
show our results, evaluated by assuming a constant fd ¼ 0.84 in
Eq. (15); in solid black, we show the results from Ref. [66], where
fd is modeled to be redshift dependent, and its uncertainty in
dashed black. We find that the results are well correlated in the
range 0 < z ≲ 4.

FIG. 2. Redshift distribution of 669 FRBs from the CHIME
catalog [15] and FRBcat [65], where others denotes FRBs
detected by GBT, VLA, Apertif, DSA-10, FAST, and Arecibo.

FIG. 3. A histogram of 669 FRBs from the CHIME catalog [15]
and FRBcat [65], normalized to unity. The assumed FRB redshift
distribution in Eq. (16) is plotted in a dashed line. The distribution
fits the data well; however, it tends to slightly overestimate
(underestimate) lower (higher) redshifts.
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number density of halos (determined by the HMF) and
σðMÞ ¼ πθ2E is the SIS lensing cross section, taken to be
the cross section of its Einstein sphere. We make use of the
publicly available HMF code [75,76], assuming the Press-
Schechter formalism [77], to generate the HMF at a given
lens redshift zL, within the aforementioned mass range. We
then use the HMF as the distribution for generating the lens
mass, which determines θE;GR.

3. Impact parameter β

We assume that the probability for a source at angular
position β (the impact parameter), in the projected source
plane, to be lensed by an intervening halo centered at the
origin (at the LOS), is proportional to the circumference of
a ring with radius β. Thus, we randomly choose the impact
parameter from a distribution that is linear with β and has a
cutoff at 2θE;GR=3 (set by a limit on the flux ratio of the
image, as described in Appendix B). We also exclude
values smaller than a critical value set by the limit on FRB
TD detection, β ≳ cΔtmin=ð2DΔtθEÞ, which is of the order
of ∼10−9 arcsec and is, therefore, practically negligible (the
probability for such a value vanishes). Given the Einstein
radius and impact parameter, we then determine the angular
position of the images according to the SIS lens model,
jθ�j ¼ θE;GR � β. A more detailed description can be
found in Appendix B.

III. RESULTS AND DISCUSSION

We use the procedure described in Sec. II C to simulate
each strongly lensed FRB and then solve Eqs. {(3),(9)} to
find the constraints it can place on γPN for each screening
radius Λ. We simulate a modest number of N ¼ 10 events,
which we assume can be expected to be observed in the
next few years, averaged over 100 simulations, to eliminate
statistical variance. In Fig. 4, we show the upper and lower
constraints on γPN at 1σ CL from an average single event
and from the combination of ten events. The range of
screening radii displayed in Fig. 4 was chosen to be the
same as in Ref. [11], setting the minimal screening radius at
a typical Einstein radius value, Λ≳ θEDL ≈ 10 kpc.
However, as the assumption of an abrupt transition at
radius Λ is an approximated simplification to the real
screening predicted by models, our results are expected to
be less accurate in the proximity of the lower limit.
The constraining power of all ten events is evaluated

according to the combined variance around the fiducial
value γPN ¼ 1:

ðγ�PNÞtotal ¼ 1�
�Xn¼10

i¼1

1

σ2�;i

�−1=2
; ð18Þ

where σ2�;i ¼ jðγ�PNÞi − 1j2 is the variance from the ith event
(the � corresponds to the maximum and minimum allowed
values for γPN). We find that the combined constraint on

γPN from N ¼ 10 events scales as jγPN − 1j≲ 0.04 ×
ðΛ=100 kpcÞ × ½N=10�−1=2 (for Λ≲ 100 kpc), which is
roughly 3 times stronger than the corresponding constraint
from ten strongly lensed quasars, estimated from Ref. [11].
In previous work [78–82] that searched for MG by studying
strongly lensed systems, the constraints were inferred
from analyzing the distance-dependent deviation from
GR; hence, they are sensitive to scales smaller than the
Einstein radius, Λ≲ θEDL (e.g., approximately kiloparsec
for galaxies and approximately megaparsec for clusters). A
comparison between the constraining power we predict
from near-future detections of strongly lensed FRBs to
those from previous work is shown in Fig. 5. We find that
observations of FRB TDs will allow a significant increase
of the constraining power on the post-Newtonian parameter
γPN in the regime of screening radii Λ ¼ 10–800 kpc.
We have tested the robustness of our results against

variation in the cosmological parameters, H0 and Ωm,
within the ranges suggested by recent experimental con-
straints such as Planck [24] and local measurements of H0

[84], and found a negligible impact of ≲0.1% on the
constraining power on γPN, for the set of parameters
specified in Appendix C, where we demonstrate the
responsiveness of our constraints to the different lens
parameters. We have also tested the impact of the relative
uncertainty and found that the constraints on γPN vary
linearly with δΔt for a given screening radius and scale as
jγPN − 1j≲ 0.12 × ðΛ=100 kpcÞ × ½N=10�−1=2 for N ¼ 10
events, if we increase the relative uncertainty to δΔt ¼ 6%.
In addition, we made a consistency check of our SIS

profile ansatz, repeating the analysis above when simulat-
ing the systems using the exact lens equations for the
power-law mass profile [45], reviewed in Appendix D, and
found that our SIS approximation holds up to ∼0.1%–0.6%

FIG. 4. The constraints on γPN from ten simulated event (solid
green line), single average event (solid brown line), and its 1σ
uncertainty (dashed brown line). Shaded areas are excluded by
the constraints of the corresponding color. A black vertical
dashed line signifies the 10 kpc threshold.
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precision in the constraints for Λ ¼ 100–800 kpc and
≲0.1% for Λ < 100 kpc, justifying our approximations.

IV. CONCLUSIONS

In this work, we have studied the application of strongly
lensed (repeating) FRBs to set constraints on a wide range
of MG models, which exhibit a gravitational slip, para-
metrized by γPN, beyond a given screening radius Λ. We
used the results of recent work concerning FRBs to
simulate a set of strongly lensed FRB systems. We then
used the phenomenological model from Ref. [11], along
with recent estimations of the relative time-delay uncer-
tainties for such systems, to simulate a set of observed
events and estimate the maximal and minimal values of γPN
that are consistent with them.
While current surveys have already cataloged a large

number of FRBs [15], upcoming surveys will vastly expand
this catalog [17,25,26]. Once the observed number
approaches ∼104, it is likely that a few will prove to be
strongly lensed repeaters, for which a full MCMC analysis
could be used in order to constrain all the lens parameters
as well as γPN. We have shown that this can improve the
constraining power on MG, in terms of both precision
and range of screening radii, as ten events alone could
place constraints at a level of 10% in the range of Λ ¼
10–300 kpc and to improve the precision of current
constraints up to distances of ∼800 kpc. Furthermore,

due to their high-precision TD measurement, strongly
lensed repeating FRBs may offer the opportunity for
observing “real-time” evolution of the lens by studying
the change in the TD over time. Such observable can serve
as a new probe of cosmic expansion [56] as well as for
mitigating uncertainties from the mass distribution of the
lens, as proposed and studied in Ref. [48]. This can improve
the constraints from TDs from strongly lensed FRB on
screened MG theories with gravitational slip.
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APPENDIX A: LENSING POTENTIAL

The lensing potential is defined as [85]

ψðθÞ ¼ 1

c2
DLS

DLDS

Z
ΣðDLθ; zÞdz; ðA1Þ

where z denotes the distance along the line of sight (LOS)
and Σ is the sum of the potentials defined in Eq. (2), which
reduces to 2Φ in GR. Thus, the two contributions to the
lensing potential noted in Eq. (5) are

ψGRðθÞ ¼
2

c2
DLS

DLDS

Z
ΦðDLθ; zÞdz; ðA2Þ

ΔψðθÞ ¼ 1

c2
DLS

DLDS

Z
Θðr − ΛÞΦðDLθ; zÞdz: ðA3Þ

Assuming a power-law mass profile of the form

ρðrÞ ¼ ρ0

�
r0
r

�
γ0

; ðA4Þ

where ρ0 and r0 are constant parameters which set the mass
of the lens, and employing the Poisson equation ∇2Φ ¼
4πGa2ρ yields the lens Newtonian potential

ΦðrÞ ¼ 4πGρ0r
γ0
0

ð3 − γ0Þð2 − γ0Þ r
2−γ0 ; ðA5Þ

which leads to Eqs. (7) and (8), where θE;GR encompasses
the coefficients of the mass profile. The deflection
angle can be derived from the lensing potential via
αðθÞ ¼ ∇θψðθÞ, leading to the two contributions

αGRðθÞ ¼ ∂θψGRðθÞ; ðA6Þ

FIG. 5. 1σ uncertainty on γPN as a function of the screening
radius Λ. We show our prediction for the constraining power of
TDs from ten strongly lensed FRBs (solid green line) in
comparison to constraints obtained from: a nearby strong
gravitational lens ESO 325-G004 [82] (solid red line), where
the cutoff corresponds to the Einstein radius of the lens
Λ < θEDL; cluster observations by CLASH and VLT [81] (solid
cyan line); the cosmological observational data from Planck and
large-scale structure [83] (solid blue line); and the constraints
from TD of a strongly lensed quasar by RXJ1131 [11] (solid
purple line). Since all of these measurements place constant
constraints on γPN at a certain distance scale, we also plot dashed
lines to represent the upper limit for the constraints on smaller
scales.
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ΔαðθÞ ¼ ∂θΔψðθÞ: ðA7Þ

APPENDIX B: SIMULATED LENS MODELING

The dimensionless lens equation that corresponds to the
power-law mass profile (A4) is (D6)

y ¼ x − jxj2−γ0 xjxj : ðB1Þ

But, as mentioned in Sec. II C, the type of lenses we
consider can be approximated to have a SIS profile, i.e.,
γ0 ≈ 2, reducing the lens equation to the traditional form

y ¼ x −
x
jxj ; ðB2Þ

where we dropped the vector notation due to the spherical
symmetry and the Einstein radius is defined by Eq. (17). It
is easy to show that this equation has two solutions
(images) θ� ¼ β � θE, only if y < 1, which places an
upper boundary on the possible value of the impact
parameter (β < θE). However, a more restrictive boundary
can be placed by considering the detection limitations of
both events. Following Ref. [20], the image flux ratio is
defined as the ratio of the image magnifications μ�:

Rf ¼
���� μþμ−

���� ¼ 1=yþ 1

1=y − 1
¼ 1þ y

1 − y
> 1: ðB3Þ

In order to ensure both events are detected (assuming that
the brighter first image is detectable), we set a minimum
threshold value R̄f, which then yields an upper limit
y < ðR̄f − 1Þ=ðR̄f þ 1Þ. Requiring a conservative red-
shift-independent threshold of R̄f ¼ 5 (see Ref. [20]) yields
a more restrictive boundary of β < 2θE=3.
The lower limit for the impact parameter is determined

by the threshold for detecting the TD between the two
images, which must be larger than the duration of the FRB
signal. However, since a SIS lens TD is independent of the
impact parameter (it is easy to show that it cancels out), we
consider the nonapproximated expression for the TD of the
power-law profile in Eq. (A4) [45]:

Δt¼DΔt

c
γ0−1

2ð3− γ0Þ
�
θ2þ−θ2−þ

4ð2− γ0Þ
γ0−1

βðθþþθ−Þ
�
: ðB4Þ

Now, taking the limit of γ → 2 and the solutions for the SIS
lens equation, Eq. (B4) can be approximated as

Δt ≈ 2
DΔtθE

c
β; ðB5Þ

setting the lower threshold for the impact parameter as

β ≳ 10−7Δtmin

�
Gpc
DΔt

��
arcsec
θE

�
½arcsec�: ðB6Þ

However, since FRBs have durations of milliseconds, this
value is extremely small (∼10−9 arcsec), compared to
traditional quasar lensing (Δtmin ∼ days), for which it
is ∼0.1 arcsec.

APPENDIX C: RESPONSIVENESS TO LENS
PARAMETERS

In order to make sure our results are robust and
consistent, we test the responsiveness of the constraining
power to the slope of the lens mass profile γ0 in Fig. 7. We
also provide in Fig. 6 the responsiveness of γPN to the
different parameters we simulated, fzS; zL;M; βg. In these
tests, we set all parameters to a typical fixed set of values,
fzS ¼ 0.8; zL ¼ 0.36;M¼ 1012 M⊙;β¼ θE=3;γPN ¼ 1.95g,
while varying only one of them at a time. Since, in different
MG theories, the screening radii are usually determined by
the geometric mean of the Compton wavelength of the
graviton and the Schwarzschild radius of the massive object
[10], we choose to perform the tests at screening radii of
Λ ¼ 20 kpc, which corresponds to a graviton with Hubble-
radius wavelength and a typical galaxy of mass ∼1012 M⊙.
The equation for the TD that we solve [Eq. (3)] can be

simplified in our analysis as both sides are proportional to
DΔt=c, so that it can be written as

ΔϕðθE;obsÞ½1� δΔt� ¼ ΔϕðθE;GRÞ þ ðγPN − 1ÞΔϕð1Þ
slip

þ ðγPN − 1Þ2Δϕð2Þ
slip; ðC1Þ

where we defined

Δϕð1Þ
slip ¼ αiΔαj − Δψ i þ Δψ j; ðC2Þ

Δϕð2Þ
slip ¼

1

2
ðΔα2i − Δα2jÞ; ðC3Þ

which we call the Fermat potential slip terms. In what
follows, we will shift the first term Eq. (C1) to the lhs of the
equation, denoting the sum of all terms on that side byΔ, so
that we may refer to three quantities: fΔ;Δϕð1Þ

slip;Δϕ
ð2Þ
slipg.

We plot the impact of each parameter in Figs. 6 and 7.
It is clear from the bottom plot on the left in Fig. 6 that

the influence of the impact parameter is negligible, since all
the Fermat potential terms (the plots on right in Fig. 6)
increase linearly with β, which prevents γPN from varying;
therefore, the impact of varying other parameters is not
influenced by the fact that we take β ¼ θE=3 (which
naturally varies with θE). We find that, as the source is
closer to the lens (i.e., smallerDLS), the constraining power
on γPN drops, whereas increasing zS beyond the value
which corresponds to the maximal lensing probability
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FIG. 6. The responsiveness in the constraining power on γPN to variation of the different parameters of the strongly lensed FRB system
(on the left side) and the corresponding responsiveness of the Fermat potential term in Eq. (C1) (on the right side): Δ × 103 (dashed

black line), Δϕð1Þ
slip × 10 (solid blue line), and Δϕð2Þ

slip (solid green line). The dashed red vertical lines represent zL ¼ 0.36, which is
associated with zS ¼ 0.8 according to the maximal lensing probability relation. In order to disentangle the redshift responsiveness due to
the relative distance between the lens and source, we also plot the responsiveness to the zS with a dynamical lens redshift (dashed orange
line), where zL is determined by the same relation. As implied from Eq. (C1), the constraining power on γPN is determined by the ratio
between the slip terms, Δϕslip, and Δ.
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relation does not lead to tighter constraints, as can be seen
by looking at the difference between the curves of constant
and dynamic zL, at the top left plot in Fig. 6. Considering
the low likelihood of detecting events with small DLS, we
deduce that the responsiveness to the relative distance
between the lens and the source is small. However, when
we let zL vary with zS, according to the maximal lensing
probability relation, we find that the constraining power on
γPN increases with the source redshift. Nonetheless, higher
redshifts yield smaller lens mass, for which the constraining
power is smaller. We also note that the responsiveness of
γPN to the lens redshift (at a given source redshift) features a
minimum near the value of maximum lensing probability
(vertical dashed red line), due to the dependence of the slip
terms on the lens distance DL, which confirms our
assumption of considering the one-to-one relation between
zS and zL in Sec. II C 1, as the variation of zL would yield a
small impact on the constraints on γPN.
Finally, we address the variation of the slope of the

power-law mass profile, γ0, presented in Fig. 7. The
variation of the slope poses a difficulty in our analysis,
as the most probable value of γ0 ¼ 2 results in the diversion
of the slip terms—yielding an artificially tight constraint on
γPN, whereas values away from 2 are in a mismatch with the
simulated SIS values we approximated—mostly the posi-
tion of the images. We also note the degeneracy between
γPN and the slope, which originates from the degeneracy
between the Fermat potentials and the slope. However, as
shown in Fig. 7, the tilt has a small impact on the magnitude
of the constraints (∼1% around γ0 ¼ 2). Therefore, we find

that as long as γ0 is not too close to the critical value of 2
(and we are outside the grayed region in Fig. 7) or too far—
so that the SIS approximation still holds (15% deviation
from γ0 ¼ 2 corresponds roughly to a maximum 10%
deviation in the position of the images)—the inferred
constraining power remains valid. In our analysis, we used
a value of γ0 ¼ 1.95—similar to the value of the RXJ1131
lens [63]—for which our SIS approximation holds, the
results are almost perfectly symmetric around 1, and we are
outside the anomalous region around γ0 ¼ 2.

APPENDIX D: POWER-LAW MASS PROFILE
LENS MODEL

The surface mass density ΣðRÞ (not to be confused with
the sum of potentials Σ ¼ Φþ Ψ) of a spherical power-law
mass profile (A4) is given by integrating the mass density
along the LOS:

ΣðRÞ ¼
Z

∞

−∞
ρð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ z2

p
Þdz

¼ ρ0r0
ffiffiffi
π

p �
r0
R

�
γ−1 Γ½γ0−1

2
�

Γ½γ0=2� ; ðD1Þ

where R ¼ θDL is the projected radius on the lens
plane, dz is a distance segment along the LOS (not
to be confused with redshift), and we assume γ > 1.
Using the usual definition of the critical surface density,
Σcr ¼ c2DS=4πGDLDLS, the dimensionless surface mass
density (also known as the convergence) is

κðθÞ ¼ ΣðθDLÞ=Σcr; ðD2Þ
which can be written more conveniently in terms of the
Einstein radius θE as

κðθÞ ¼ 3 − γ0

2

�
θE
θ

�
γ0−1

: ðD3Þ

The relation between the convergence and lensing potential
[86], ∇2ψðθÞ ¼ 2κðθÞ, yields

ψðθÞ ¼ θ2E
3 − γ0

�
θE
θ

�
γ0−3

; ðD4Þ

which leads to the deflection angle

αðθÞ ¼ ∇θψðθÞ ¼ θγ
0−1
E θ2−γ

0
θ̂: ðD5Þ

It is straightforward to check, by plugging this result into
the lens equation β ¼ θ − αðθÞ and solving for β ¼ 0, that
θE is indeed the Einstein radius. The lens equation can be
written in a dimensionless form, in θE units, as

y ¼ x − jxj2−γ0 xjxj ; ðD6Þ

FIG. 7. The responsiveness of the constraining power on γPN to
a variation of the mass profile slope γ0. The gray band around
γ0 ¼ 2 corresponds to the anomalous region where one of the slip
terms diverges, which should be excluded to avoid artificially
tight constraints. It is clear that there is a degeneracy between the
upper and lower constraints on γPN and the slope, resulting in a tilt
around the value of γPN ¼ 1. It is also notable that the con-
straining power, evaluated by the difference γþPN − γ−PN, is almost
unaffected by the variation of γ0, a change of ≲1% between
1.8 ≥ γ0 ≤ 2.2.
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where x≡ θ=θE and y≡ β=θE are the dimensionless
angular position and impact parameter, respectively.
Thus, Eq. (D6) relates the observed angular
positions of the images to the lens parameter θE and

γ0 and the source angular position, or—for the simu-
lations carried out in this work—given the lens param-
eters and the source position, the image positions can be
determined.
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