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We study the observational constraints on single-field inflationary models achievable with the next
generation of cosmic microwave background (CMB) experiments. We focus on a Stage IV (S4)-like
experiment and forecast its constraints on inflationary parameters in the context of α-attractor inflation
comprising a large class of single-field models. To tailor our forecasts, we use as a fiducial model the
results obtained with current CMB and LSS data, assuming the α model a priori. We find that current
CMB data are able to place a tight bound on the ratio of the tensor amplitude with the alpha parameter
r=α ¼ 3.87þ0.78

−0.94 × 10−3 and on the running of the scalar index αS ¼ −6.4þ1.6
−1.3 × 10−4 with a value of the

scalar index consistent with current constraints. These tight constraints are the result of the strong bound
imposed on ns by the current cosmological data and the theoretical prior of α-attractor models on
inflationary observables. This bound can also be translated into an upper bound for α. We find α < 25 and
α < 15, given r < 0.1 and r < 0.06 for Planck 2018 and Planck 2018 and BICEP/Keck 2015 data,
respectively. In the optimistic scenario of detection of primordial gravitational waves in the CMB
B-mode polarization, CMB-S4 will be able to achieve a 15% bound on the value of the α parameter. This
bound clearly shows the ability of CMB-S4 to constrain not only the energy scale of inflation but also the
shape of its potential. Enlarging the baseline model to also include the neutrino sector merely reduces the
accuracy on α by about 5%, and thus our main conclusions are still valid. Conversely, in the pessimistic
scenario of no detection, a CMB-S4-like experiment will reduce the upper bound on α by around an order
of magnitude, leading to a possible exclusion of the Starobinsky model at the level of 6 standard
deviations.
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I. INTRODUCTION

In this paper we forecast the possible constraints that a
future cosmic microwave background (CMB) Stage IV
(hereafter, CMB-S4) experiment may impose on infla-
tionary observables in the optimistic scenario of a detection
of nonvanishing tensor anisotropies in the CMB polariza-
tion and temperature data. In general, the approach fol-
lowed within the community (see, e.g., Refs. [1–5]) is to
sample the inflationary parameters without assuming any
specific inflationary model a priori. While this approach
has the advantage of exploring the inflationary sector
model independently, it does not allow for a complete
sampling study of the parameter space in a specific model.
Moreover, the assumption that the inflationary observables
are independent of one another is in contrast with the
prediction of any theory of inflation, which, for instance,
assumes the validity of the slow-roll conditions (see, e.g.,
Refs. [6–8]). In this work, conversely to the current

literature on the subject, we follow a model-dependent
approach by imposing a specific model a priori and
calculate the inflationary observables directly by imposing
the slow-roll conditions on the inflationary potential.
The standard ΛCDM model is based on the simplest

inflationary paradigm: canonical slow-roll single-field
inflation. Inflation not only solves the need to fine-tune
the initial conditions from the hot big bang scenario, but
also provides an elegant mechanism to explain the origin
of the scalar primordial perturbations that evolved into the
current cosmic structures at large scales. Furthermore,
quantum inflationary fluctuations are expected to source
a stochastic background of gravitational waves—so-called
primordial gravitational waves (PGWs)—sourcing fluctua-
tions in the polarization of CMB photons at recombination
leading to a very distinctive signature in the CMB B-mode
power spectrum at large angular scales. Within this
approach, the power spectra of scalar and tensor comoving
curvature perturbations are parametrized as power laws:
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where kS⋆ ¼ 0.05 Mpc−1 and kT⋆ ¼ 0.002 Mpc−1, and the
subscripts stand for scalar and tensor perturbations, respec-
tively. The powers of the parametrizations are the scalar and
tensor indices (nS and nT) and the running of the spectral
index αS. Statistical analysis of recent cosmological obser-
vations [Planck observations of the CMB [5,9,10] and
large-scale structure (LSS) surveys [11,12]] support this
parametrization for the scalar fluctuations with 109AS ≈ 2.1
and nS ≈ 0.965 [5,9,10].
In the last decade, the bound on the amplitude of PGWs

(parametrized typically with the tensor-to-scalar ratio, r)
has not yet seen significant improvement, where only an
upper limit r0.002 < 0.056 at 95% C.L. has been provided in
the latest data released by the Planck Collaboration [9]
combining Planck and BICEP2/Keck array (BK15) data
[13]. Detecting those PGWs would give a direct measure-
ment of the energy scale during inflation, as well as a clear
distinguishable signature of the quantum origin of primor-
dial fluctuations. In the upcoming decade, a new generation
of CMB experiments (e.g., BICEP3 [14], CLASS [15],
SPT-3G [16], Advanced ACTPol [17], LBIRD [18], and
CMB-S4 [19]) are expected to strongly improve the
sensitivity on the B-mode polarization in the CMB,
possibly revealing the first evidence of inflationary tensor
modes with amplitudes r ∼ 0.01–0.001. That range is
precisely expected in many well-motivated models, such
as Starobinsky inflation, which is considered the bench-
mark of future CMB experiments. However, while a
measure of a nonvanishing r would be of key importance
for inflationary theories, it will not allow us to understand
the inflationary mechanism in detail, but rather only its
energy scale. Therefore, it is time to investigate, given
future CMB experiments, what would be the freedom in a
generic inflationary framework that is left in case of the
optimistic scenario of a nonvanishing tensor-to-scalar ratio
measure.
In particular, there is a general class of models called α

attractors that have gained popularity because of their
agreement with observational constraints and the univer-
sality of their predictions for the inflationary observables
[20–24]. Recently, α attractors have also been used in the
context of dark energy to explain the late-time cosmic
acceleration [25–29]. This set of models has also been
embedded in a more general multifield inflationary sce-
nario and in N ¼ 1 supergravity. In the context of super-
gravity, the α attractor can be represented by a potential of
the form

VðφÞ
V0

¼ ðtanhðβφ=2ÞÞ2n; ð3Þ

where β2 ¼ 2=3α and n is an arbitrary value. It is important
to note that the “attractor behavior” of this potential comes
from the fact that the observable predictions are the same
up to leading order regardless of the value of n, while they
differ only in subleading corrections. Assuming slow-roll
inflation and the α-attractor form of the inflationary
potential, the observational predictions for the inflationary
observables can be written as

r ¼ 12α
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; ð4aÞ
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where N is the number of e-folds for inflation to last. These
definitions in terms of the parameter α encompass several
inflationary models and clearly reduce to the well-known
Starobinsky inflation for α ¼ 1 [30–32]. Moreover, for a
broad class of potentials V, as long as α ≪ Oð1Þ, the scalar
spectral index nS, its running αS, and the tensor-to-scalar
ratio r converge to the functional form of Eqs. (4) regard-
less of the kinetic terms of the theory [33]. It has also been
shown that this statement holds true in some multifield
inflation regimes [33], where the conditions that guarantee
the universality of the observational predictions for the
inflationary parameters are derived by imposing constraints
on the potential. The universality of the observational
constraints is one of the most important features of
single-field α-attractor models.

II. CONSTRAINTS FROM CURRENT
CMB AND LSS DATA

Current CMB [1–5] and LSS [11] data are unable to
constrain the tensor-to-scalar ratio if r is sampled inde-
pendently from the scalar index nS. However, by imposing
the α-attractor model a priori, we force a specific functional
relation between nS and r that allows us to translate the
subpercent constraints on nS from current data into a
constraint on r in the context of α attractors.
In fact, by imposing an inflationary model we are

selecting a subset of the parameter space allowed by the
data when r and nS are considered independently in
cosmological parameter estimations. This is particularly
evident if one considers the relation between r and ns in the
α-attractor model given by Eq. (4b).
Current data cannot break the r − α degeneracy, and

therefore, sampling it in our analysis would give no insight
on the α-attractor models. For this reason, instead of
sampling r and α independently, we use the ratio r=α as
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a parameter for our Markov chain Monte Carlo (MCMC)
analysis.
Along with the ratio r=α, we consider as independent

parameters the other five standard ΛCDM ones: the baryon
density ωb ¼ Ωbh2 and cold dark matter density
ωc ¼ Ωch2, the Hubble constant H0, the optical depth τ,
and the amplitude of scalar perturbations As. Along with
these parameters we also include the running of the spectral
index, αS. As α attractors satisfy the usual inflationary
consistency relation, we fix the index of tensor modes to
nT ¼ −r=8. The uniform prior distributions imposed on
these parameters are reported in Table I.
The predictions of the theoretical observational probes

are calculated using the latest version of the cosmological
Boltzmann integrator code CAMB [34,35]. To compare our
theoretical predictions with data, we use the full 2018
Planck (P18) temperature and polarization data sets which
also include multipoles l < 30 [36]. We combine the
Planck likelihood with the BICEP/Keck 2015B-mode
(BK15) data [13] and the combination of galaxy clustering
and weak lensing data from the first year of the Dark
Energy Survey (DES Y1) [37]. The posterior distributions
of the cosmological parameters have been explored using
the publicly available version of the Bayesian analysis tool
COBAYA [38]. In particular, the posteriors have been
sampled using the MCMC algorithm developed for

CosmoMC [39,40] and tailored for parameter spaces with
a speed hierarchy.
The 1D posteriors of r=α, nS, and αS resulting from our

Bayesian statistical analysis employing Planck 2018 data
in combination with DES and BK15 data are reported in
Fig. 1. Given the subpercent constraints on the scalar index,
we found a sub-percentage constraint on the tensor ampli-
tude, i.e., r=α ¼ 0.00387þ0.00078

−0.00094 for Planck 2018 data
alone. We also found no differences between the results
using Planck 2018 data alone or combined with the BICEP/
Keck 2015 data ðr=α ¼ 0.00400þ0.00076

−0.00095Þ as the constraint
on the scalar index is the same for the two datasets (if not
for a statistically insignificant shift in the posterior mean).
When LSS data (i.e., DES) are included in the analysis, a
shift in the spectral index ns with respect to CMB data is
found. DES data prefer a slightly higher value for ns,
shifting the running of the spectral index αS and the tensor-
to-scalar ratio r accordingly. However, the results remain
consistent with that from P18 and P18þ BK15 within 1σ
(see also Fig. 1).
Incidentally, we also obtain a constraint on the running

of the scalar index αS [related to r=α by Eq. (4c)] away from
zero at 4 standard deviations, i.e.,αS ¼ −6.4þ1.6

−1.3 × 10−4. It is
worth noting that (as for r) this is due to the specific
correlation which arises in α-attractor inflation between
the parameters of the scalar and tensor spectra. This result,
however, shows that future measurements of r0.002 and nnrun
could potentially rule out the α-attractor model: they are key
parameters in studying the viability of an inflationary model
and should be considered in the future analysis of CMB and
LSS data.
We conclude this section with the following two

considerations:
(1) Given nS ≈ 0.965 and r → 0, the best-fit model for

CMB and LSS data is the case of α ¼ 1, which
corresponds to Starobinsky inflation, and this cannot
be distinguished from a generic model with α ≠ 1
unless future experiments provide a measure of
either polarization B modes or αS.

TABLE I. Range of uniform prior distributions imposed on the
sampled parameters during the analysis.

Parameter Prior range

Ωbh2 [0.005, 0.1]
Ωch2 [0.001, 0.99]
H0 [20, 100]
τ [0.01, 0.8]
r0.002=α · 103 [0.5, 8]
logð1010AsÞ [1.61, 3.91]P

mν [0, 1]
Neff [2, 5]

FIG. 1. Posterior distribution for Planck 2018 data alone and combined with the BICEP/Keck 2015B-mode data and with large-scale
structure DES data. The dotted lines denote the expected values for Starobinsky inflation (α ¼ 1 and N ≈ 60).
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(2) Current data are consistent with r → 0. Never-
theless, not all values of α are allowed. Instead,
they set an upper limit on the value of the tensor-to-
scalar ratio and this knowledge can be used to obtain
an upper limit for α:

α≲ rlim
r0

≡ αlim; ð5Þ

where rlim is the experimental threshold for a given
experimental configuration and r0 is the mean of the
r=α posterior. Since rlim ≈ 0.1 for P18 data and
rlim ≈ 0.06 for P18þ BK15 data combined [5], we
correspondingly find αlim ≈ 25 and αlim ≈ 15 for P18
and P18þ BK15, respectively. These upper limits
would be the same that one would obtain by running
an MCMC analysis with r and α considered inde-
pendently (see the Appendix).

III. FORECAST FOR FUTURE CMB-S4
OBSERVATIONS

While current data are unable to constrain the value of α
given the current experimental sensitivity, future CMB
experiments are expected to strongly improve the sensi-
tivity on the B-mode polarization signal of the CMB,
possibly discovering evidence of a primordial tensor mode
with an amplitude in the range of r ∼ 0.01–0.001 [41–44].
In particular, this is the range predicted by many well-
motivated inflationary models such as Starobinsky infla-
tion, considered the benchmark for future CMB observa-
tions [41–44]. In this section, we study the optimistic
scenario of a future detection in the CMB anisotropies of a
nonvanishing tensor amplitude and we forecast the con-
straints achievable with a CMB-S4-like experiment on the
parameters of the α-attractor model.
We consider as a baseline model a minimal extended

ΛCDM cosmology with the inclusion of a nonvanishing
tensor-to-scalar ratio r, and α. This extended model
constitutes our simulated data sets. The value of r is
chosen correspondingly to the best-fit value obtained with
a Starobinsky model using only Planck 2018 data i.e.,
r ¼ 0.00387, while we fix α ¼ 1. The value of the scalar
index and its running are also fixed to ns ¼ 0.964 and
αS ¼ 0.0006. The remaining ΛCDM parameters values are
ωb ¼ 0.0221, ωc ¼ 0.12, H0 ¼ 67.3, τ ¼ 0.06, and
lnð1010AsÞ ¼ 3.05. As the new generation of CMB experi-
ments also expects to shed some light on the neutrino
sector, we also explore the number of effective degrees of
freedom of relativistic species Neff and the sum of the
neutrino masses

P
mν in the forecast.

Both simulated data and theoretical models are com-
puted with the latest version of the Boltzmann code CAMB
[34,35]. To extract constraints on cosmological parameters,
we make use of the MCMC code CosmoMC [39,40] which

compares theory with a simulated data set using a given
likelihood.
As in Refs. [45–48], we build our forecasts for future

CMB experiments following a well-established and
common method. Using the set of fiducial parameters
described above, we compute the angular power spectra
of temperature CTT

l , E and B polarization CEE;BB
l , and cross

temperature-polarization CTE
l anisotropies. We produce a

fiducial realization of future data by adding to the theo-
retical power spectra an exponential noise of the form [49]

Nl ¼ w−1 expðlðlþ 1Þθ2=8 ln 2Þ; ð6Þ

where θ is the FWHM angular resolution and w−1 is the
experimental sensitivity expressed in μKarcmin. The
polarization noise is derived equivalently assuming w−1

p ¼
2w−1 since one detector measures two polarization states.
The simulated spectra, realized accordingly to the previous
discussion, are compared with theoretical ones using a
“CMB-like” likelihood as in Refs. [49,50].
For this paper, we have constructed synthetic realizations

of CMB data for only one experimental configuration,
namely, CMB-S4 (see, e.g., Ref. [51]). The CMB-S4 data
set is constructed using θ ¼ 30 and w ¼ 1μKarcmin, and it
operates over the range of multipoles 5 ≤ l ≤ 3000, with a
sky coverage of 40%. Furthermore, CMB-S4 is expected to
reach a target sensitivity on the tensor-to-scalar ratio of
Δr ∼ 0.0006, the goal of which is to provide a 95% upper
limit of r < 0.001. Therefore, the value chosen for our
fiducial model is well within the scope of an experiment
like CMB-S4. However, the corresponding sensitivity on
the value of the running of the scalar index αS would be
onlyΔαS ¼ 0.002, which would clearly not be enough for a
joint detection of r and αS assuming Starobinsky inflation.
Thus, it may not be possible to distinguish between a
generic α-attractor model with r ∼ 0.004 and Starobinsky
inflation despite a future detection of a nonvanishing tensor
amplitude.
In α attractors, however, the uncertainties about the

correct shape of the inflationary potential, defining the
values of r, ns, and αS, are parametrized with the α
parameter. Therefore, a measure of the value of α would
also give us insights about the correct shape of the infla-
tionary potential and correspondingly the correct theory of
inflation. If a non vanishing tensor amplitude is ever
detected, a CMB-S4-like experiment will be able to provide
such insights.
Current data is only able to constrain the upper bound

0 ≤ α≲ 15 [52] correspondingly to P18þ BK15 upper
limit on the tensor amplitude r < 0.056 at 95% C.L. [9]. To
correctly explore the available parameter space for α, we
therefore employ a logarithmic prior on its value −6 ≤
log10 α ≤ 1 while the other parameters are sampled using
the priors shown in Table I. We refer to this model as
αCDM. From our CMB-S4 forecasts we obtain a 15%
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bound on the parameter α ¼ 1.01þ0.14
−0.18 , clearly showing the

ability of future CMB experiments to bound single-field
slow-roll inflationary models. Models with α ≥ 2 and
α ≤ 0.5 would be potentially excluded at more than 2
standard deviations in the optimistic scenario of a
PGW detection with an amplitude in the range of the
Starobinsky model. We then extend this baseline model by
including the number of relativistic neutrino species Neff ,
ðαCDMþ NeffÞ. When Neff is varied, we find a 5%
reduction of the accuracy with which α is measured, i.e.,
α ¼ 1.07þ0.18

−0.23 , while the bound on the tensor-to-scalar ratio
is basically the same in the two cases, i.e., σðrÞ ¼ 0.00050.
Conversely, we find an increase in the error budget of the
scalar index and running, passing from σðnsÞ ¼ 0.0016 and
σðαSÞ ¼ 0.00006 ðαCDMÞ to σðnsÞ ¼ 0.0035 and σðαSÞ ¼
0.0001 ðαCDMþ NeffÞ a worsening of a factor around two
in both cases. It is worth stressing that primordial gravi-
tational waves may also contribute to the number of
relativistic species, being themselves relativistic degrees
of freedom [48,53,54]. This contribution can be calculated
analytically to be

Neff;GW ∼
rAs

nT
ðAnT − BnT Þ; ð7Þ

where A and B are two real numbers and A;B ≫ 1. This
contribution is clearly extremely small for red spectra
ðnT ≤ 0Þ but may be important in inflationary theories
where blue spectra ðnT > 0Þ can be produced (see, e.g.,
Refs. [55–61]). Consequently, the only interaction between
PGWs and neutrinos considered in this work is the one
arising from neutrino anisotropic stress after neutrino
decoupling at T ≲ 1 MeV [62]. These constraints are
virtually unmodified when we further extend our baseline
model, allowing the whole neutrino sector to vary, i.e.,
Neff þ

P
mν. The 2D contours for both of our forecasts are

reported in Fig. 2. A strong correlation now arises between
α and the other inflationary parameters conversely to what
we found with the Planck data. This is due to the power of
CMB-S4 to resolve the B-mode spectrum, consequently

breaking the degeneracy between r and ns. Nevertheless,
the situation is unchanged for the scalar running. The
strong bound we find on the scalar running is in fact due to
imposing the α model a priori. Even a Stage IVexperiment
would not have the required accuracy to measure the tiny
scalar running predicted by α-attractor inflation. When r,
ns, and αS are independently varied [i.e., neglecting the
consistency relation in Eqs. (4)] the running is fixed only
with an error σðαSÞ ¼ 0.0029 at 68% C.L., an order of
magnitude higher than when the α model is imposed
a priori and in good agreement with the expected sensi-
tivity for the CMB-S4 experiment [19].
We note that, as well as for current data, one can forecast

the corresponding upper limit on α from Eq. (5) in the
pessimist scenario where CMB-S4 does not detect a tensor-
to-scalar ratio above the target sensitivity. Assuming rlim ¼
0.001 [43], one finds αlim ≈ 0.26 which would exclude
Starobinsky inflation at 10 standard deviations. With respect
to Planck data, CMBS4 will provide an improvement on the

FIG. 2. CMB-S4 forecasted 2D contours at 68% and 95% for α-attractor inflationary parameters in αCDM, αCDMþ Neff , and
αCDMþ Neff þ

P
mν.

FIG. 3. 1D posterior for the parameter α for several exper-
imental configurations. These posterior distributions are obtained
with the method described in the Appendix. The CMB Stage-III
(CMBS3) constraint is obtained assuming a target sensitivity of
rlim ¼ 0.01 corresponding to αlim ≈ 3. This sensitivity would be
achievable by a Stage III experiment such as SPT-3G [16] or
BICEP3 [14].
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measure of αlim of 2 orders of magnitude even in the
pessimistic case of not detecting any B-mode polarization
signal. The constraints on r=α will be instead improved
only by a factor of 4, leading to r=α ¼ 0.00386� 0.00035
when neutrino parameters are fixed to theirΛCDMvalues. In
Fig. 3 we show a comparison of the upper bounds on α
achievable by the experimental configurations considered in
this work.

IV. CONCLUSIONS

We have carried out a Bayesian analysis with current
CMB and LSS data to constrain inflationary observables
(the scalar spectral index ns, its running αS, and the tensor-
to-scalar ratio r). With the current constraining power on ns
and by imposing the α-attractor model a priori in our
analysis, the possible values of the ratio r=α are narrowed
to a band of around 0.004. However, current data do not
have enough sensitivity to break the degeneracy between r
and α and consequently to constrain any deviation from
the Starobinsky inflationary model due to the fact that the
predicted tensor-to-scalar ratio is much smaller than the
current upper limit of LSS and CMB data. Consequently,
we focused our attention on forecasting the constraints
achievable by a future CMB-S4 experiment assuming a
tensor-to-scalar ratio corresponding to the value obtained
from Planck data by imposing the α-attractor model
a priori; see Sec. II.
The forecast was performed using a Bayesian statistical

approach, where α was sampled from a logarithmic prior
distribution. Future CMB-S4 experiments will then be
able to constrain α as long as the value of r is above the
target sensitivity expected from such an experiment, i.e.,
r > 0.001 [43,51]. Conversely, in the pessimist scenario
where future CMB-S4 data does not measure a tensor
amplitude above the target sensitivity, the situation will be
similar to the current one with the value of α constrained
only to an upper limit. We forecasted the corresponding
limit on α to be αlim ≈ 0.26, an improvement of 2 orders of
magnitude with respect to Planck data alone.
In conclusion, a future CMB-S4 experiment will have

enough sensitivity to significantly constrain single-field
slow-roll inflationary models. In the case of an optimistic
detection of a nonvanishing tensor amplitude, it would be
able to shed light on both the energy scale and the shape of
the inflationary potential, while in the pessimistic scenario
of a nondetection of tensor modes it would still be able to
place a tight upper limit on the value of α and exclude
Starobinsky inflation at 10σ. We emphasize that when the
running of the spectral index αS is free to vary it is always
different from zero, as is expected from the inflationary
consistency relation of the α-attractor model. However, we
showed that the value expected for the scalar running given
the current constraints on the scalar index is so small that it

will not be detectable by a future CMB-S4 experiment
(with an expected sensitivity ofΔαS ∼ 0.003), but it may be
reachable when information from future weak-lensing and
galaxy clustering measurements are included [63–65]. The
combination of future weak-lensing surveys and CMB-S4
would possibly reach a target sensitivity of ΔαS ∼ 0.001, a
factor of 3 better than CMB-S4 alone.1 This is enough to
constrain αS at a level compatible with the value expected
from α-attractor models. Note that a measure of αS would
constitute a smoking gun for inflation as well as a measure
of a nonzero tensor amplitude. Therefore, future LSS
surveys and CMB experiments will either give us a measure
of both r and αS in the most optimistic scenario, or they will
be able to significantly reduce the available parameter
space for single-field slow-roll inflation in the most
pessimistic one.
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APPENDIX: FROM A TWO-SIGMA
BOUND TO AN UPPER LIMIT

In this appendix we briefly describe the procedure used
to convert the two-sigma bound on r=α into an upper limit
on α assuming an experimental threshold rlim. Let us start
by noting that an upper limit on the tensor-to-scalar ratio
r < rlim at 95% C.L. can be represented by a half-normal
distribution with a standard deviation σ given by the
following equation:

Z
rlim

−rlim
N ðxj0; σÞdx ¼ 0.95: ðA1Þ

Solving for σ and applying an inverse transform
sampling technique, we can extract samples from the
half-normal distribution. Then, for each sample of the
half-Gaussian of r=α, we can use Eq. (5) to calculate a
sample of the distribution of α. This procedure allows to
reconstruct the posterior of α starting from the bound on

1This is derived assuming an improvement of a factor
σðαSÞPlanck=σðαSÞCMBS4 ∼ 3 of the forecasted constraints on αS
with respect to the combination of weak-lensing and Planck data
from Table 21 of Ref. [66].
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r=α and it is equivalent to performing a full MCMC
analysis with an experimental configuration that can reveal
tensor modes with amplitude r > rlim at 95% C.L. As
shown in Fig. 3, the results on α agree almost perfectly with

the approximate results obtained considering a delta dis-
tribution for r0 and rlim. Thus, we conclude that the
uncertainties in the measure of r=α can be negligible in
deriving an upper limit for the values of α.
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[8] W. Giarè, E. Di Valentino, and A. Melchiorri, Phys. Rev. D

99, 123522 (2019).
[9] Y. Akrami et al. (Planck Collaboration), Astron. Astrophys.

641, A10 (2020).
[10] N. Aghanim et al. (Planck Collaboration), Astron.

Astrophys. 641, A8 (2020).
[11] C. To et al. (DES Collaboration), Phys. Rev. Lett. 126,

141301 (2021).
[12] C. Heymans et al., Astron. Astrophys. 646, A140 (2021).
[13] P. Ade et al. (BICEP2, Keck Array Collaborations), Phys.

Rev. Lett. 121, 221301 (2018).
[14] J. A. Grayson et al. (BICEP3 Collaboration), Proc. SPIE Int.

Soc. Opt. Eng. 9914, 99140S (2016).
[15] T. Essinger-Hileman et al., Proc. SPIE Int. Soc. Opt. Eng.

9153, 91531I (2014).
[16] B. A. Benson et al. (SPT-3G Collaboration), Proc. SPIE Int.

Soc. Opt. Eng. 9153, 91531P (2014).
[17] S. W. Henderson et al., J. Low Temp. Phys. 184, 772

(2016).
[18] A. Suzuki et al. (LiteBIRD Collaboration), J. Low Temp.

Phys. 193, 1048 (2018).
[19] K. N. Abazajian et al. (CMB-S4 Collaboration), arXiv:

1610.02743.
[20] O. Iarygina, E. I. Sfakianakis, D.-G. Wang, and A.

Achucarro, J. Cosmol. Astropart. Phys. 06 (2019) 027.
[21] O. Iarygina, E. I. Sfakianakis, D.-G. Wang, and A.

Achúcarro, arXiv:2005.00528.
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