
Free scalar correlators in de Sitter space via the stochastic approach beyond
the slow-roll approximation

Archie Cable * and Arttu Rajantie †

Department of Physics, Imperial College London, London SW7 2AZ, United Kingdom

(Received 17 May 2021; accepted 13 October 2021; published 15 November 2021)

The stochastic approach to calculating scalar correlation functions in de Sitter spacetime is extended
beyond the overdamped “slow-roll” approximation. We show that with the correct noise term, it reproduces
the exact asymptotic long-distance behavior of field correlators in free field theory, thereby demonstrating
the viability of the technique. However, we also show that the naïve way of calculating the noise term by
introducing a cutoff at the horizon does not give the correct answer unless the cutoff is chosen specifically
to give the required result. We discuss the implications of this for interacting theories.
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I. INTRODUCTION

The study of spectator scalar fields in de Sitter via
quantum field theory (QFT) in a curved spacetime is a well
studied area [1–4]. Beyond formal interest, spectator
scalars are applicable to many areas of cosmology, in
particular the inflationary epoch [5–9]. Examples of this
include the study of post-inflationary dynamics [10], the
generation of dark matter [11–13], the anisotropy of the
gravitational wave background [14] and the triggering of
electroweak vacuum decay [15–17].
Standard QFT techniques can be applied to free field

theory in de Sitter; however, for theories including self-
interactions, infrared divergences result in the breakdown
of perturbation theory for light scalar fields [18–21], which
has led physicists to explore other methods [22–29]. The
stochastic approach [30,31] is one such method, where
quantum behavior can be approximated by a stochastic
contribution to the classical equations of motion. It is
becoming increasingly popular and is now widely used
in the literature as an alternative to perturbative QFT
[10,32–50]. It is possible to derive the stochastic equations
via a path integral, which aligns more with standard thermal
field theory approaches [36,37,45,51–58]; however, in this
paper we will focus on the original mode expansion method
[30,31]. One of the major attractions of the stochastic
approach is that the scalar correlation functions can be
considered as statistical quantities governed by the prob-
ability distribution function (PDF), leading to straightfor-
ward computations via a spectral expansion [44].
In much of the current literature [35,40–44,48–50], the

stochastic approach is applied to almost-massless scalar
fields where one can use the overdamped “slow-roll”

approximation in which the second derivative of the field
is negligible, reducing the equation of motion to a first-
order differential equation. In this limit, the pioneering
work of Starobinsky and Yokoyama [30,31] showed that
the existence of the de Sitter horizon allows one to split the
modes between subhorizon and superhorizon wavelengths.
The quantum subhorizon modes give rise to a stochastic
noise term, which can be calculated by explicitly integrat-
ing out the modes with momenta above the horizon-scale
cutoff. The long-time or long-distance asymptotic behavior
of field correlation functions obtained by solving the
resulting stochastic equation agrees with the original
QFT result, demonstrating the validity of the approach.
However, there are many situations in which the slow-

roll approximation is not valid, because the scalar field
mass m is not much smaller than the Hubble rate H. As
long as m <

ffiffiffi
2

p
H, the long-wavelength modes are still

amplified by the expansion of space, and at asymptotically
long distances the stochastic approach should still be valid.
The extension of the stochastic approach to these cases,
beyond the slow-roll limit, has been discussed in
Refs. [41,42,47] in the top-down picture by deriving the
effective stochastic theory from the microscopic QFT
description using a similar cutoff procedure as in the
slow-roll case. In this paper, we consider the same question
from the bottom-up perspective, asking whether and when
the stochastic theory actually reproduces the correct QFT
behavior in a free field theory where the latter is exactly
known.
We find that this is not the case for the stochastic theory

obtained with the cutoff approach: the asymptotic behavior
of the correlators does not agree with the QFT results. On
the other hand, with a different mass-dependent noise term
it is possible to reproduce all equal-time QFT correlators
correctly. This gives confidence that the stochastic
approach itself can be valid beyond the slow-roll limit,
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but it leaves open the question of how to compute the
correct noise term in general. In the free field case, we can
determine it by matching the correlators, but in an inter-
acting theory that is not possible because no exact QFT
result is known. Nonetheless, this current work with free
fields paves the way for future work on interacting theories.
The paper is organized as follows. In Sec. II, we begin

with a brief overview of Starobinsky and Yokoyama’s
original approach before extending it beyond the over-
damped limit. In Sec. III, we solve the stochastic system
and compare it with the full QFT. Finally, we discuss our
findings and conclusions in Sec. IV.

II. THE STOCHASTIC APPROACH

A. The overdamped limit

Let us consider a scalar quantum field ϕ̂ðt;xÞ in a
cosmological de Sitter spacetime with scale factor
aðtÞ¼eHt. We define the effective mass m2¼m2

0þ12ξH2,
where m0 is the scalar mass and ξ is the nonminimal
coupling constant [59], such that the scalar potential
Vðϕ̂Þ incorporates all nonminimal interactions. We intro-

duce the field derivative π̂ ¼ _̂ϕ as an independent variable
such that the equations of motion are written as� _̂ϕ

_̂π

�
¼

� π̂

−3Hπ̂ þ 1
aðtÞ2 ∇2ϕ̂ − V 0ðϕ̂Þ

�
; ð1Þ

where dots and primes denote derivatives with respect to
time and field respectively, andH ¼ _a=a is the Hubble rate
which we take to be constant.
The original stochastic approach proposed by

Starobinsky and Yokoyama [30,31] splits the field into
classical and quantum components:

ϕ̂ ¼ ϕ̄þ δ̂ϕ ð2Þ
about the de Sitter horizon scale 1=H, where ϕ̄ contains the
classical superhorizon [k=aðtÞ < 1=H] modes and

δ̂ϕðt;xÞ ¼
Z

d3k
ð2πÞ3WkðtÞϕ̂kðt;xÞ ð3Þ

contains the quantum subhorizon [k=aðtÞ > 1=H] modes.
The field operator can be written as ϕ̂kðt;xÞ ¼ ϕkðt;xÞâkþ
ϕ�
kðt;xÞâ†k, where fâkg are the set of creation and annihi-

lation operators relating to the Bunch-Davies vacuum
[1–3], and the window function WkðtÞ ¼ θðk − ϵaðtÞHÞ
acts as a cutoff to separate the subhorizon quantum modes
from the superhorizon classical ones, where the real
parameter ϵ determines the precise cutoff scale.
In the overdamped slow-roll limit, where V 00ðϕ̂Þ ≪ H2,

which corresponds to (nearly) massless scalar fields,
_̂π is negligible. Therefore, one obtains a one-dimensional
equation of motion:

0 ¼ _̂ϕþ 1

3H
V 0ðϕ̂Þ: ð4Þ

Applying the field split of Eq. (2), we obtain

0 ¼ _̄ϕþ 1

3H
V 0ðϕ̄Þ − ξ̂ðt;xÞ; ð5Þ

where

ξ̂ðt;xÞ ¼ ϵaðtÞH2

Z
d3k
ð2πÞ3 δðk − ϵaðtÞHÞϕ̂kðt;xÞ: ð6Þ

For massless scalars, the vacuum Bunch-Davies mode
solutions [1–3] are given by

ϕkðt;xÞ ¼ −
Hffiffiffiffiffi
2k

p
�

1

HaðtÞ þ
i
k

�
eið

k
HaðtÞ−k·xÞ: ð7Þ

The key observation of Starobinsky and Yokoyama
[30,31] was that Eq. (5) may be approximated by a
Langevin equation,

0 ¼ _ϕþ 1

3H
V 0ðϕÞ − ξðt;xÞ; ð8Þ

with a stochastic white noise contribution ξðt;xÞ that
satisfies

hξðt;xÞξðt0;xÞi¼ lim
ϵ→0

D
ξ̂ðt;xÞξ̂ðt0;xÞ

E
¼ H3

4π2
δðt− t0Þ: ð9Þ

Thus, ϕ is now considered as a stochastic quantity with
an associated probability distribution function and hence
correlators can be evaluated by statistical methods.

B. The cutoff method

We will now consider massive fields, requiring us to go
beyond the overdamped approximation. The naive exten-
sion of Starobinsky and Yokoyama’s cutoff approach is to
follow the same procedure as in the overdamped limit, but
now we also need to split the time derivative of the field
[42,58]. This gives

π̂ ≔ _̂ϕ ¼ _̄ϕþ ∂tðcδϕÞ ¼ π̄ þ bδπ; ð10Þ

where π̄ contains the classical modes and

δ̂π ¼
Z

d3k
ð2πÞ3WkðtÞπ̂kðt;xÞ; ð11Þ

where π̂kðt;xÞ ¼ πkðt;xÞâk þ π�kðt;xÞâ†k and WkðtÞ is a
window function that satisfies WkðtÞ ¼ 1 for k ≫ aðtÞH
and WkðtÞ ¼ 0 for k ≪ aðtÞH. The mode functions obey
the equation of motion (1), which is solved to give
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ϕkðt;xÞ ¼
ffiffiffiffiffiffiffi
π

4H

r
aðtÞ−3=2Hð1Þ

ν

�
k

aðtÞH
�
e−ik·x; ð12aÞ

πkðt;xÞ ¼ −
ffiffiffiffiffiffiffiffiffi
π

16H

r
aðtÞ−3=2

�
3HHð1Þ

ν

�
k

aðtÞH
�
þ k
aðtÞ

�
Hð1Þ

ν−1

�
k

aðtÞH
�
−Hð1Þ

νþ1

�
k

aðtÞH
���

e−ik·x ð12bÞ

for the Bunch-Davies vacuum [1–3], where HðiÞ
ν ðzÞ is the

Hankel function of the ith kind and ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
9
4
− m2

H2

q
. We can

now write the equation of motion in terms of the splits as

_̄ϕ ¼ π̄ −
Z

d3k
ð2πÞ3

_WkðtÞϕ̂kðt;xÞ; ð13aÞ

_̄π ¼ −3Hϕ̄ − V 0ðϕ̄Þ −
Z

d3k
ð2πÞ3

_WkðtÞπ̂kðt;xÞ; ð13bÞ

where Eqs. (13) and (13b) are the first and second rows of
Eq. (1) respectively. Thus, the equations of motion can be
written as a system of first-order differential equations:� _̄ϕ

_̄π

�
¼

�
π̄

−3Hπ̄ − V 0ðϕ̄Þ

�
þ
�
ξ̂ϕðt;xÞ
ξ̂πðt;xÞ

�
; ð14Þ

where

ξ̂ϕðt;xÞ ¼ −
Z

d3k
ð2πÞ3

_WkðtÞϕ̂kðt;xÞ; ð15aÞ

ξ̂πðt;xÞ ¼ −
Z

d3k
ð2πÞ3

_WkðtÞπ̂kðt;xÞ: ð15bÞ

Once again, we may approximate Eq. (14) as a Langevin
equation, where the field and field momentum move from
quantum to classical objects. This is written as�

_ϕ

_π

�
¼

�
π

−3Hπ − V 0ðϕÞ

�
þ
�
ξϕðt;xÞ
ξπðt;xÞ

�
; ð16Þ

where the stochastic noise ξi satisfies

hξiðt;xÞξjðt0;xÞi ¼ hξ̂iðt;xÞξ̂jðt0;xÞi; ð17Þ

for fi; jg ¼ fϕ; πg. Note that we will refer to π as the field
momentum, though this is now slightly more complicated
than just the time derivative of the field, as per Eq. (14).
Computing the quantum correlator for a sharp cutoff at

k ¼ ϵaðtÞH, namely WkðtÞ ¼ θðk − ϵaðtÞHÞ, where ϵ is a
parameter whose relevance we will discuss later, we obtain

hξiðt;xÞξjðt0;xÞi ¼ σ2cut;ijδðt − t0Þ; ð18Þ

where

σ2cut;ϕϕ ¼ ϵ3aðtÞ3H4

2π2
jϕϵaðtÞHðt;xÞj2

¼ H3ϵ3

8π
Hð1Þ

ν ðϵÞHð2Þ
ν ðϵÞ; ð19aÞ

σ2cut;ϕπ ¼ σ2cut;πϕ

¼ ϵ3aðtÞ3H4

4π2
ðϕϵaðtÞHðt;xÞπ�ϵaðtÞHðt;xÞ

þπϵaðtÞHðt;xÞϕ�
ϵaðtÞHðt;xÞÞ

¼−
H4ϵ3

32π

�
ϵðHð1Þ

ν−1ðϵÞ−Hð1Þ
νþ1ðϵÞÞHð2Þ

ν ðϵÞ

þHð1Þ
ν ðϵHð2Þ

ν−1ðϵÞþ6Hð2Þ
ν ðϵÞ− ϵHð2Þ

νþ1ðϵÞÞ
�
; ð19bÞ

σ2cut;ππ ¼
ϵ3aðtÞ3H4

2π2
jπϵaðtÞHðt;xÞ2j

¼ H5ϵ3

32π

�
ϵHð1Þ

ν−1ðϵÞ þ 3Hð1Þ
ν ðϵÞ − ϵHð1Þ

νþ1ðϵÞ
�

×

�
ϵHð2Þ

ν−1ðϵÞ þ 3Hð2Þ
ν ðϵÞ − ϵHð2Þ

νþ1ðϵÞ
�
; ð19cÞ

and the subscript cut stands for cutoff. We note that σ2cut;ϕπ
is given by the classical part of the quantum noise correlator
as we know that it must be real for this to be considered a
stochastic process. Choosing ϵ ≪ 1 ensures that the
classical symmetric part dominates over the quantum
antisymmetric part. The details of this statement are dealt
with more carefully in Refs. [42,58].

C. The Fokker-Planck equation

The time evolution of the probability distribution func-
tion (PDF) Pðϕ; π; tÞ of the variables ϕ and π is given by
the Fokker-Planck equation associated with the Langevin
equation (16):
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∂Pðϕ; π; tÞ
∂t ¼ 3HPðϕ; π; tÞ − π

∂Pðϕ; π; tÞ
∂ϕ

þ ð3Hπ þ V 0ðϕÞÞ ∂Pðϕ; π; tÞ∂π
þ 1

2
σ2ϕϕ

∂2Pðϕ; π; tÞ
∂ϕ2

þ σ2ϕπ
∂2Pðϕ; π; tÞ

∂ϕ∂π
þ 1

2
σ2ππ

∂2Pðϕ; π; tÞ
∂π2 ; ð20Þ

where, in this section, we consider general white noise with
the form

hξiðt;xÞξjðt0;xÞi ¼ σijδðt − t0Þ; ð21Þ

which does not necessarily have the amplitude (19).
In principle it is possible to solve Eq. (20) using the

spectral expansion in the same way as in the overdamped
limit [44]. However, the two-dimensional eigenvalue equa-
tion is hard to solve numerically. It is also not self-adjoint,
and therefore the eigenfunctions are not orthogonal. In this
paper, we will restrict ourselves to the free field case,

VðϕÞ ¼ 1

2
m2ϕ2; ð22Þ

where we can solve Eq. (20) using a different technique. It
is worth noting, that in the special case σ2ϕϕ ¼ σ2ϕπ ¼ 0, the
eigenvalue equation can also be solved analytically using
creation and annihilation operators [60].
For the free potential (22), the equilibrium solution is

Peqðϕ; πÞ ∝ e
−
3Hððð9H2þm2Þσ2

ϕϕ
þ6Hσ2

ϕπ
þσ2ππ Þπ2þ6Hm2σ2

ϕϕ
ϕπþðm2σ2

ϕϕ
þσ2ππ Þm2ϕ2Þ

ðm2σ2
ϕϕ

þ3Hσ2
ϕπ

þσ2ππ Þ2þ9H2ðσ2
ϕϕ

σ2ππ−σ
4
ϕπ

Þ ;

ð23Þ

with the normalization condition
R
dϕ

R
dπPeqðϕ; πÞ ¼ 1.

To obtain the time-dependent solution, we introduce new
dynamical variables ðq; pÞ as�

p

q

�
¼ 1ffiffiffiffiffiffiffiffiffiffi

1 − α
β

q �
1 αH
1
βH 1

��
π

ϕ

�
; ð24Þ

where α ¼ 3
2
− ν and β ¼ 3

2
þ ν, with ν ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
9
4
− m2

H2

q
. The

inverse transformation is given by�
π

ϕ

�
¼ 1ffiffiffiffiffiffiffiffiffiffi

1 − α
β

q �
1 −αH

− 1
βH 1

��
p

q

�
: ð25Þ

In these new variables, the Langevin equation (16) can
be written as

�
_q

_p

�
¼

�−αHq

−βHp

�
þ
�
ξq

ξp

�
; ð26Þ

where ξq ¼ 1ffiffiffiffiffiffi
1−α

β

p ð 1
βH ξπ þ ξϕÞ and ξp ¼ 1ffiffiffiffiffiffi

1−α
β

p ðξπ þ αHξϕÞ.
Thus, we have two one-dimensional Langevin equations
with correlated noise. The resulting Fokker-Planck equa-
tion for the PDF Pðq; p; tÞ is

∂Pðq;p; tÞ
∂t ¼ αHPðq;p; tÞþαHq

∂Pðq;p; tÞ
∂q

þ1

2
σ2qq

∂2Pðq;p; tÞ
∂q2

þβHPðq;p; tÞþβHp
∂Pðq;p; tÞ

∂p
þ1

2
σ2pp

∂2Pðq;p; tÞ
∂p2

þσ2qp
∂2Pðq;p; tÞ

∂q∂p ; ð27Þ

where σ2qq, σ2qp, and σ2pp are defined in the same way by
Eq. (21), but now ði; jÞ ∈ fq; pg. The equilibrium solution
to this Fokker-Planck equation is

Peqðq;pÞ¼
3H
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αβ

9σ2qqσ
2
pp−4αβσ4qp

s
e
−
9Hðσ2qqβp2−43σ

2
qpαβqpþσ2ppαq

2Þ
9σ2qqσ

2
pp−4αβσ

4
qp ;

ð28Þ

where we have included the normalization found by the
condition

R
dp

R
dqPeqðq; pÞ ¼ 1.

For completeness, we note that the transformation to and
from the ðϕ; πÞ noise amplitudes with respect to the ðq; pÞ
noise amplitudes is respectively

σ2qq ¼
1

1 − α
β

�
1

β2H2
σ2ππ þ

2

βH
σ2ϕπ þ σ2ϕϕ

�
;

σ2qp ¼ 1

1 − α
β

�
1

βH
σ2ππ þ

�
1þ α

β

�
σ2ϕπ þ αHσ2ϕϕ

�
;

σ2pp ¼ 1

1 − α
β

ðσ2ππ þ 2αHσ2ϕπ þ α2H2σ2ϕϕÞ; ð29aÞ

σ2ϕϕ ¼ 1

1 − α
β

�
1

β2H2
σ2pp −

2

βH
σ2qp þ σ2qq

�
;

σ2ϕπ ¼
1

1 − α
β

�
−

1

βH
σ2pp þ

�
1þ α

β

�
σ2qp − αHσ2qq

�
;

σ2ππ ¼
1

1 − α
β

ðσ2pp − 2αHσ2qp þ α2H2σ2qqÞ: ð29bÞ
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III. EVALUATION OF CORRELATORS

A. Stochastic correlation functions

We will now evaluate the ðϕ; πÞ correlators in terms of the ðq; pÞ correlators using Eq. (25). For the stochastic approach,
we evaluate the correlators at equal points in space before transforming to equal-time correlators at the end of this section.
The equal-space ðϕ; πÞ correlators are written as

hϕð0ÞϕðtÞi ¼ 1

1 − α
β

�
1

β2H2
hpð0ÞpðtÞi − 1

βH
ðhqð0ÞpðtÞi þ hpð0ÞqðtÞiÞ þ hqð0ÞqðtÞi

�
; ð30aÞ

hϕð0ÞπðtÞi ¼ 1

1 − α
β

�
−

1

βH
hpð0ÞpðtÞi þ hqð0ÞpðtÞi þ α

β
hpð0ÞqðtÞi − αHhqð0ÞqðtÞi

�
; ð30bÞ

hπð0ÞϕðtÞi ¼ 1

1 − α
β

�
−

1

βH
hpð0ÞpðtÞi þ α

β
hqð0ÞpðtÞi þ hpð0ÞqðtÞi − αHhqð0ÞqðtÞi

�
; ð30cÞ

hπð0ÞπðtÞi ¼ 1

1 − α
β

ðhpð0ÞpðtÞi − αHðhqð0ÞpðtÞi þ hpð0ÞqðtÞiÞ þ α2H2hqð0ÞqðtÞiÞ: ð30dÞ

To calculate the ðq; pÞ correlators, we introduce a time-evolution operator Uðq0; q; p0; p; tÞ, which is defined as the
Green’s function of the Fokker-Planck equation and therefore obeys

∂Uðq0; q; p0; p; tÞ
∂t ¼ αHUðq0; q; p0; p; tÞ þ αHq

∂Uðq0; q; p0; p; tÞ
∂q þ 1

2
σ2qq

∂2Uðq0; q; p0; p; tÞ
∂q2

þ βHUðq0; q; p0; p; tÞ þ βHp
∂Uðq0; q; p0; p; tÞ

∂p þ 1

2
σ2pp

∂2Uðq0; q; p0; p; tÞ
∂p2

þ σ2qp
∂2Uðq0; q; p0; p; tÞ

∂q∂p ; ð31Þ

for all values of q0 and p0. Then, the time dependence of
the PDF is given by

Pðq; p; tÞ ¼
Z

dp0

Z
dq0Pðq0; p0; 0ÞUðq0; q; p0; p; tÞ;

ð32Þ

such that the time-evolution operator obeys the Fokker-
Planck equation (27). Unfortunately, this is not an easy
equation to solve. However, if we initially only consider the
two-point correlation functions such as those in Eq. (30),
we only need to evolve p or q forward in time for any given
correlator, not both simultaneously. Therefore, one only
needs to use the one-dimensional time evolution operators
Uqðq0; q; tÞ and Upðp0; p; tÞ defined by

Pqðq; tÞ ¼
Z

dq0Pqðq0; 0ÞUqðq0; q; tÞ; ð33aÞ

Ppðp; tÞ ¼
Z

dp0Ppðp0; 0ÞUpðp0; p; tÞ; ð33bÞ

respectively, where Pqðq; tÞ and Ppðp; tÞ are the time-
dependent univariate probability distributions. These time-
evolution operators satisfy the Fokker-Planck equations

∂Uqðq0; q; tÞ
∂t ¼ αHUqðq0; q; tÞ þ αHq

∂Uqðq0; q; tÞ
∂q

þ 1

2
σ2qq

∂2Uqðq0; q; tÞ
∂q2 ; ð34aÞ

∂Upðp0; p; tÞ
∂t ¼ βHUpðp0; p; tÞ þ βHp

∂Upðp0; p; tÞ
∂p

þ 1

2
σ2pp

∂2Upðp0; p; tÞ
∂p2

; ð34bÞ

which can be derived in the standard way from the two
components of the Langevin equation (26).
Alternatively, they can also be obtained from the

two-dimensional Fokker-Planck equation (31), by first
observing that they can be expressed in terms of the
two-dimensional time-evolution operators as
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Uqðq0; q; tÞ ¼
Z

dpUðq0; q; p0; p; tÞ; ð35aÞ

Upðp0; p; tÞ ¼
Z

dqUðq0; q; p0; p; tÞ; ð35bÞ

which do not depend on p0 and q0, respectively. Integrating
Eq. (31) over p and q, respectively, and integrating the
relevant terms by parts gives Eqs. (34a) and (34b).
It is a special property of the coordinates ðq; pÞ that one

obtains time-evolution equations that only depend on one
variable. It comes as a result of the Langevin equation (26)
being diagonal, i.e. the time derivative of q is not dependent
on p and, similarly, the time derivative of p is not
dependent on q. It is this property that allows us to
analytically evaluate the two-point correlators using the
one-dimensional time-evolution operators. Note, however,
that in order to calculate the higher-order correlators, one
needs to evaluate the full time-evolution operator.

Equation (34) can be solved via a spectral expansion [44]
as outlined in the Appendix. The resulting solutions are

Uqðq0; q; tÞ ¼ e
− αH
2σ2qq

ðq2−q2
0
ÞX

n

QnðqÞQnðq0Þe−nHαt; ð36aÞ

Upðp0; p; tÞ ¼ e
− βH

2σ2pp
ðp2−p2

0
ÞX

n

PnðpÞPnðp0Þe−nHβt; ð36bÞ

where

QnðqÞ ¼
1ffiffiffiffiffiffiffiffiffi
2nn!

p
�
αH
πσ2qq

�1
4

Hn

� ffiffiffiffiffiffiffi
αH
σ2qq

s
q

�
e
− αH
2σ2qq

q2

; ð37aÞ

PnðpÞ ¼
1ffiffiffiffiffiffiffiffiffi
2nn!

p
�

βH
πσ2pp

�1
4

Hn

� ffiffiffiffiffiffiffi
βH
σ2pp

s
p

�
e
− βH

2σ2pp
p2

; ð37bÞ

where HnðzÞ is the Hermite polynomial.

1. Two-point equal-space stochastic correlators

The two-point ðq; pÞ correlators are given by

hqð0ÞqðtÞi ¼
Z

dp0

Z
dq

Z
dq0Peqðq0; p0ÞUqðq0; q; tÞq0q ¼ σ2qq

2αH
e−αHt; ð38aÞ

hpð0ÞqðtÞi ¼
Z

dp0

Z
dq

Z
dq0Peqðq0; p0ÞUqðq0; q; tÞp0q ¼ σ2qp

3H
e−αHt; ð38bÞ

hqð0ÞpðtÞi ¼
Z

dq0

Z
dp

Z
dp0Peqðq0; p0ÞUpðp0; p; tÞq0p ¼ σ2qp

3H
e−βHt; ð38cÞ

hpð0ÞpðtÞi ¼
Z

dp
Z

dp0

Z
dq0Peqðq0; p0ÞUpðp0; p; tÞp0p ¼ σ2pp

2βH
e−βHt: ð38dÞ

and the equal-space ðϕ; πÞ stochastic correlators are calculated using Eq. (30) as

hϕð0ÞϕðtÞi ¼ 1

1 − α
β

��
σ2qq
2Hα

−
σ2qp
3H2β

�
e−αHt þ

�
σ2pp

2H3β3
−

σ2qp
3H2β

�
e−βHt

�
; ð39aÞ

hϕð0ÞπðtÞi ¼ 1

1 − α
β

��
−
σ2qq
2

þ ασ2qp
3Hβ

�
e−αHt þ

�
−

σ2pp
2H2β2

þ σ2qp
3H

�
e−βHt

�
; ð39bÞ

hπð0ÞϕðtÞi ¼ 1

1 − α
β

��
−
σ2qq
2

þ σ2qp
3H

�
e−αHt þ

�
−

σ2pp
2H2β2

þ ασ2qp
3Hβ

�
e−βHt

�
; ð39cÞ

hπð0ÞπðtÞi ¼ 1

1 − α
β

��
αHσ2qq

2
−
ασ2qp
3

�
e−αHt þ

�
σ2pp
2Hβ

−
ασ2qp
3

�
e−βHt

�
: ð39dÞ
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2. Stochastic variance

For completeness, we can also evaluate the stochastic
variances. We will discuss these in the context of the
quantum result in Sec. III E. For now, they are given by

hϕ2i ¼ 1

1 − α
β

�
hq2i − 2

βH
hqpi þ 1

β2H2
hp2i

�
; ð40aÞ

hϕπi ¼ 1

1 − α
β

�
−

1

βH
hp2i þ

�
1þ α

β

�
hqpi − αHhq2i

�
;

ð40bÞ

hπ2i ¼ 1

1 − α
β

ðhp2i − 2αHhqpi þ α2H2hq2iÞ; ð40cÞ

where

hq2i ¼
Z

dq
Z

dpPeqðp; qÞq2 ¼
σ2qq
2Hα

; ð41aÞ

hqpi ¼
Z

dq
Z

dpPeqðq; pÞpq ¼ σ2qp
3H

; ð41bÞ

hp2i ¼
Z

dq
Z

dpPeqðq; pÞp2 ¼ σ2pp
2Hβ

: ð41cÞ

Thus, the stochastic variances in terms of a general noise
term are given by

hϕ2i ¼ 1

1 − α
β

�
σ2qq
2Hα

−
2σ2qp
3βH2

þ σ2pp
2β3H3

�
; ð42aÞ

hϕπi ¼ 1

1 − α
β

�
−
σ2qq
2

þ
�
1þ α

β

�
σ2qp
3H

−
σ2pp

2β2H2

�
; ð42bÞ

hπ2i ¼ 1

1 − α
β

�
αHσ2qq

2
−
2ασ2qp
3

þ σ2pp
2βH

�
: ð42cÞ

3. Joint unequal-time probability
distribution function

Now that we have calculated all the timelike two-point
ðϕ; πÞ stochastic correlators and their associated variance,
we can write the joint probability that ϕð0Þ ¼ ϕ0,
πð0Þ ¼ π0, ϕðtÞ ¼ ϕ, and πðtÞ ¼ π, for any given

ϕ0; π0;ϕ; π. This is given by the joint unequal-time
PDF as

P2ðϕ0;ϕ; π0; π; tÞ ¼ NðtÞe−1
2
ΦTMðtÞ−1Φ ð43Þ

where

Φ ¼ ðπ0;ϕ0; π;ϕÞT; ð44aÞ

MðtÞ ¼

0BBB@
hπ0π0i hπ0ϕ0i hπ0πi hπ0ϕi
hϕ0π0i hϕ0ϕ0i hϕ0πi hϕ0ϕi
hππ0i hπϕ0i hππi hπϕi
hϕπ0i hϕϕ0i hϕπi hϕϕi

1CCCA: ð44bÞ

The normalization constant NðtÞ is found by the
condition

R
dϕ

R
dϕ0

R
dπ

R
dπ0P2ðϕ0;ϕ; π0; π; tÞ ¼ 1.

Note that Eq. (43) is a solution to the Fokker-Planck
equation (20) for any value of ϕ0 and π0. This allows us to
calculate higher-order correlators directly, as will be shown
in Sec. III F.
One can also write the joint unequal-time PDF in terms

of the time-evolution operator as

P2ðϕ0;ϕ;π0;π; tÞ
¼Peqðϕ0;π0ÞUðqðϕ0;π0Þ;qðϕ;πÞ;pðϕ0;π0Þ;pðϕ;πÞ; tÞ;

ð45Þ

where q and p are written in terms of ϕ and π as of Eq. (24).

4. Two-point equal-time stochastic correlators

The quantum objects that are of interest physically are
the equal-time correlators. Currently, the stochastic corre-
lators are for equal points in space and thus we need to find
a way of moving to equal times. Following the original
work by Starobinsky and Yokoyama [31], we introduce a
time coordinate

tr ¼ −
1

H
lnðHjx − x0jÞ: ð46Þ

We then connect the equal-space and equal-time correlators
by evaluating a three-point function, incorporating this time
coordinate. We will follow a similar line of reasoning as the
equal-space correlators, whereby we calculate the equal-
time ðq; pÞ correlators and then move to the equal-time
ðϕ; πÞ correlators using Eq. (30). The equal-time ðq; pÞ
correlators are given by

hqðt;xÞqðt;x0Þi¼
Z

dqr

Z
dprPeqðqr;prÞ

Z
dqUqðqr;q;t−trÞq

Z
dq0Uqðqr;q0;t−trÞq0 ¼

σ2qq
2αH

ðHaðtÞjx−x0jÞ−2α ð47aÞ

hpðt;xÞqðt;x0Þi¼
Z

dqr

Z
dprPeqðqr;prÞ

Z
dpUpðpr;p;t−trÞp

Z
dq0Uqðqr;q0;t−trÞq0 ¼

σ2qp
3H

ðHaðtÞjx−x0jÞ−3 ð47bÞ
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hqðt;xÞpðt;x0Þi¼
Z

dqr

Z
dprPeqðqr;prÞ

Z
dqUqðqr;q;t−trÞq

Z
dp0Upðpr;p0;t−trÞp0 ¼σ2qp

3H
ðHaðtÞjx−x0jÞ−3 ð47cÞ

hpðt;xÞpðt;x0Þi¼
Z

dqr

Z
dprPeqðqr;prÞ

Z
dpUpðpr;p;t−trÞp

Z
dp0Upðpr;p0;t−trÞ¼

σ2pp
2βH

ðHaðtÞjx−x0jÞ−2β ð47dÞ

where Uqðqr; q; t − trÞ and Upðpr; p; t − trÞ are given in Eq. (36), qr ¼ qðtrÞ and pr ¼ pðtrÞ. Thus, using the equal-time
version of Eq. (32), the equal-time ðϕ; πÞ stochastic correlators are given by

hϕðt; 0Þϕðt;xÞi ¼ 1

1 − α
β

�
σ2qq
2Hα

jHaðtÞxj−2α þ σ2pp
2H3β3

jHaðtÞxj−2β − 2σ2qp
3H2β

jHaðtÞxj−3
�
; ð48aÞ

hϕðt; 0Þπðt;xÞi ¼ 1

1 − α
β

�
−
σ2qq
2

jHaðtÞx−2αj − σ2pp
2H2β2

jHaðtÞxja−2β þ 2ασ2qp
3Hβ

jHaðtÞxj−3
�
; ð48bÞ

jπðt; 0Þϕðt;xÞj ¼ 1

1 − α
β

�
−
σ2qq
2

jHaðtÞxj−2α − σ2pp
2H2β2

jHaðtÞxj−2β þ 2ασ2qp
3Hβ

jHaðtÞx−3j
�
; ð48cÞ

hπðt; 0Þπðt;xÞi ¼ 1

1 − α
β

�
αHσ2qq

2
jHaðtÞx−2αj þ σ2pp

2Hβ
jHaðtÞxj−2β − ασ2qp

3
jHaðtÞxj−3

�
: ð48dÞ

B. Quantum correlators

In order to understand how effective the stochastic approach is, we must compare the correlators with their QFT
counterparts. The simplest correlator to calculate is the two-point Feynman propagator of the field. In free field theory, this
can be evaluated exactly by solving the linear mode functions as [1–4]

iΔðt; t0;x;x0Þ ≔ hT̂ ϕ̂ðt;xÞϕ̂ðt0;x0Þi ¼ H2

16π2
Γ
�
3

2
þ ν

�
Γ
�
3

2
− ν

�
2F1

�
3

2
þ ν;

3

2
− ν; 2; 1þ y

2

�
ð49Þ

in the Bunch-Davies vacuum, where 2F1ða; b; c; zÞ is the hypergeometric function, ΓðzÞ are the Euler-Gamma functions
and y is given by

y ¼ coshðHðt − t0ÞÞ −H2

2
eHðtþt0Þjx − x0j2 − 1: ð50Þ

From Eq. (49), we can find the quantum ϕ − π, π − ϕ and ϕ − ϕ correlators by taking time derivatives. The results are

hT̂ ϕ̂ðt;xÞπ̂ðt0;x0Þi ¼ ∂t0 ðiΔðt; t0;x;x0ÞÞ

¼
�
−H sinhðHðt − t0ÞÞ −H3

2
eHðtþt0Þjx − x0j2

�
×

H2

64π2
Γ
�
5

2
þ ν

�
Γ
�
5

2
− ν

�
2F1

�
5

2
− ν;

5

2
þ ν; 3; 1þ y

2

�
ð51aÞ

hT̂ π̂ðt;xÞϕ̂ðt0;x0Þi ¼ ∂tðiΔðt; t0;x;x0ÞÞ

¼
�
H sinhðHðt − t0ÞÞ −H3

2
eHðtþt0Þjx − x0j2

�
×

H2

64π2
Γ
�
5

2
þ ν

�
Γ
�
5

2
− ν

�
2F1

�
5

2
− ν;

5

2
þ ν; 3; 1þ y

2

�
; ð51bÞ
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hT̂ π̂ðt;xÞπ̂ðt0;x0Þi ¼ ∂t∂t0 ðiΔðt; t0;x;x0ÞÞ

¼
�
−H2 coshðHðt − t0ÞÞ −H4

2
eHðtþt0Þjx − x0j2

�
×

H2

64π2
Γ
�
5

2
þ ν

�
Γ
�
5

2
− ν

�
2F1

�
5

2
− ν;

5

2
þ ν; 3; 1þ y

2

�
;

þ
�
H sinhðHðt − t0ÞÞ −H3

2
eHðtþt0Þjx − x0j2

�
×

H2

384π2
Γ
�
7

2
þ ν

�
Γ
�
7

2
− ν

�
2F1

�
7

2
− ν;

7

2
þ ν; 4; 1þ y

2

�
: ð51cÞ

The stochastic approach relies on quantum fluctuations being stretched to classical perturbations by the expansion of the
Universe. This approximation is only valid for large spacetime separations and therefore we will only be interested in the
leading order term in a large y expansion. We can expand the quantum field correlator to give

iΔðt; t0;x;x0Þ ¼ H2

16π2

�
Γð−2νÞΓð1þ 2νÞ
Γð1

2
þ νÞΓð1

2
− νÞ

X∞
s¼0

Γð3
2
þ νþ sÞΓð1

2
þ νþ sÞ

Γð1þ 2νþ sÞs!
�
−
y
2

�
−3
2
−ν−s

þ Γð2νÞΓð1 − 2νÞ
Γð1

2
þ νÞΓð1

2
− νÞ

X∞
s¼0

Γð3
2
− νþ sÞΓð1

2
− νþ sÞ

Γð1 − 2νþ sÞs!
�
−
y
2

�
−3
2
þν−s

�
: ð52Þ

Thus, we find that taking the leading order terms in the two sums gives

iΔðt; t0;x;x0Þ ¼ H2

16π2

�
Γð2νÞΓð3

2
− νÞ

Γð1
2
þ νÞ

�
−
y
2

�
−3
2
þν

þ Γð−2νÞΓð3
2
þ νÞ

Γð1
2
− νÞ

�
−
y
2

�
−3
2
−ν
�
: ð53Þ

The first term in the above expression is the leading term in the asymptotic expansion, while the second term is subleading.
For light scalar fields where 0 < ν < 1=2, this term is not next-to-leading order.
The two spacetime regimes that we wish to consider are equal time and equal space. The equal-space correlators to

leading order in the two sums are

hT̂ ϕ̂ðt;xÞϕ̂ðt0;xÞi ¼ H2

16π2
Γð2νÞΓð3

2
− νÞ

Γð1
2
þ νÞ

�
−
eHðt−t0Þ

4

�
−3
2
þν

þ H2

16π2
Γð−2νÞΓð3

2
þ νÞ

Γð1
2
− νÞ

�
−
eHðt−t0Þ

4

�
−3
2
−ν
; ð54aÞ

hT̂ ϕ̂ðt;xÞπ̂ðt0;xÞi ¼ H3

16π2
αΓð2νÞΓð3

2
− νÞ

Γð1
2
þ νÞ

�
−
eHðt−t0Þ

4

�
−3
2
þν

þ H3

16π2
βΓð−2νÞΓð3

2
þ νÞ

Γð1
2
− νÞ

�
−
eHðt−t0Þ

4

�
−3
2
−ν
; ð54bÞ

hT̂ π̂ðt;xÞϕ̂ðt0;xÞi ¼ −
H3

16π2
αΓð2νÞΓð3

2
− νÞ

Γð1
2
þ νÞ

�
−
eHðt−t0Þ

4

�
−3
2
þν

−
H3

16π2
βΓð−2νÞΓð3

2
þ νÞ

Γð1
2
− νÞ

�
−
eHðt−t0Þ

4

�
−3
2
−ν
; ð54cÞ

hT̂ π̂ðt;xÞπ̂ðt0;xÞi ¼ H4

16π2
α2Γð2νÞΓð3

2
− νÞ

Γð1
2
þ νÞ

�
−
eHðt−t0Þ

4

�
−3
2
þν

þ H4

16π2
β2Γð−2νÞΓð3

2
þ νÞ

Γð1
2
− νÞ

�
−
eHðt−t0Þ

4

�
−3
2
−ν
; ð54dÞ

while for equal times they are given by

hϕ̂ðt;xÞϕ̂ðt;x0Þi ¼ H2

16π2
Γð2νÞΓð3

2
− νÞ

Γð1
2
þ νÞ

�
HeHtjx − x0j

2

�
−3þ2ν

þ H2

16π2
Γð−2νÞΓð3

2
þ νÞ

Γð1
2
− νÞ

�
HeHtjx − x0j

2

�
−3−2ν

; ð55aÞ

hϕ̂ðt;xÞπ̂ðt;x0Þi ¼ −
H3

16π2
αΓð2νÞΓð3

2
− νÞ

Γð1
2
þ νÞ

�
HeHtjx − x0j

2

�
−3þ2ν

−
H3

16π2
βΓð−2νÞΓð3

2
þ νÞ

Γð1
2
− νÞ

�
HeHtjx − x0j

2

�
−3−2ν

; ð55bÞ
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hπ̂ðt;xÞϕ̂ðt;x0Þi ¼ −
H3

16π2
αΓð2νÞΓð3

2
− νÞ

Γð1
2
þ νÞ

�
HeHtjx − x0j

2

�
−3þ2ν

−
H3

16π2
βΓð−2νÞΓð3

2
þ νÞ

Γð1
2
− νÞ

�
HeHtjx − x0j

2

�
−3−2ν

; ð55cÞ

hπ̂ðt;xÞπ̂ðt;x0Þi ¼ H4

16π2
α2Γð2νÞΓð3

2
− νÞ

Γð1
2
þ νÞ

�
HeHtjx − x0j

2

�
−3þ2ν

þ H4

16π2
β2Γð−2νÞΓð3

2
þ νÞ

Γð1
2
− νÞ

�
HeHtjx − x0j

2

�
−3−2ν

: ð55dÞ

We note that it is unneccesary to specify the time ordering of the operators for the equal-time correlators since they
commute. Therefore, in contrast to timelike separation, there is no ambiguity in the definition of spacelike QFT correlators.

C. Comparison between the cutoff stochastic and quantum correlators

We are now in a position to consider the validity of the cutoff approach with respect to the QFT. We will focus on the
equal-time field correlator in this comparison. By substituting the cutoff noise amplitudes of Eq. (19) into Eq. (29a), we can
express the ðq; pÞ noise amplitudes in terms of Hankel functions and hence the stochastic field correlator is given by

hϕð0; 0Þϕð0;xÞicut ¼
H2ϵ3

256ν2πα

����ϵHð1Þ
ν−1ðϵÞ − 2νHð1Þ

ν ðϵÞ − ϵHð1Þ
νþ1ðϵÞ2

����jHxj−3þ2ν

þ H2ϵ3

256ν2πβ

����ϵHð1Þ
ν−1ðϵÞ þ 2νHð1Þ

ν ðϵÞ − ϵHð1Þ
νþ1ðϵÞ2

����jHxj−3−2ν: ð56Þ

Note that we exclude the jHaðtÞxj−3 term in what follows as that is an additional stochastic term that does not appear in
the quantum correlator. Comparing this expression with Eq. (53), we find that the cutoff approach will reproduce the leading
order term of the quantum correlator if

H2ϵ3

256ν2πα

����ϵHð1Þ
ν−1ðϵÞ − 2νHð1Þ

ν ðϵÞ − ϵHð1Þ
νþ1ðϵÞ

����2 ¼ H2

16π2

�
Γð3

2
− νÞΓð2νÞ43

2
−ν

Γð1
2
þ νÞ

�
: ð57Þ

This can only be true if ϵ is mass dependent. Note that
this solution will not reproduce the leading term in the
second sum of Eq. (52).
To make this comparison between the cutoff stochastic

and quantum correlators more concrete we define a
quantum noise as

H2

16π2
Γð3

2
− νÞΓð2νÞ43

2
−ν

Γð1
2
þ νÞ ¼ 1

1 − α
β

σ2Q;qq

2Hα
: ð58Þ

If the stochastic noise has the amplitude σ2qq ¼ σ2Q;qq then
the leading term in the equal-time stochastic field correlator
(48a) is equal to the leading term in the equal-time quantum
field correlator (55a). To compare this with the cutoff
method, we plot σ2Q;qq and σ

2
cut;qq, for various values of ϵ, as

a function of ν in Fig. 1. We observe that the cutoff
procedure correctly calculates the leading-order amplitude
in the small massm ≪ H limit as ϵ → 0 but beyond this the
results diverge from each other.

D. The matching procedure

As an alternative to the cutoff procedure, we propose to
generalize the stochastic approach. We assume the sto-
chastic equations are that of Eq. (14) but we keep the noise
general, as we do throughout Secs. II C and III A. Then, the

procedure for calculating stochastic correlators remains
unchanged, but we match the noise amplitude with the
equal-time quantum correlators (55). This not only trivially
reproduces the two-point equal-time correlators to leading
order, but also reproduces all higher-order equal-time
correlators correctly for the matched noise.

0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.01

0.02

0.03

0.04

0.05

0.06

0.07

FIG. 1. The quantum (blue) σ2Q;qq and the cutoff (red) noises
σ2cut;qq with ϵ ¼ 0 (dot-dashed), ϵ ¼ 0.01 (solid), ϵ ¼ 0.5
(dashed), and ϵ ¼ 0.99 (dotted) is plotted as a function of ν.
We see that the two approaches do not agree for any value of ϵ
and therefore the cutoff procedure is unable to reproduce the
quantum field correlator for all masses.
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The noise matrix has 3 degrees of freedom: σ2qq, σ2qp and
σ2pp. The primary constraint is that the leading order
behavior of the equal-time quantum correlators is repro-
duced by their stochastic counterparts; in other words, it
satisfies Eq. (58). We also choose to match with the
subleading contribution, which results in a constraint on
σ2pp. Finally, we constrain σ2qp such that the equal-space
quantum correlators are also reproduced by their stochastic
counterparts up to a complex phase. This amounts to the
continuation from equal space to equal time via eHðt−t0Þ →
ðHaðtÞjx − x0jÞ2. We suggest that this complex phase
should not feature in the stochastic approach since the
stochastic correlators are real by definition. This may be an
indication of long-distance quantum features that are not
accounted for, though more work is required to understand
this more concretely.
With these constraints in place, our matched ðq; pÞ noise

contributions are given by

σ2Q;qq ¼
H3αν

4π2β

Γð2νÞΓð3
2
− νÞ43

2
−ν

Γð1
2
þ νÞ ; ð59aÞ

σ2Q;qp ¼ 0; ð59bÞ

σ2Q;pp ¼ H5β2ν

4π2
Γð−2νÞΓð3

2
þ νÞ43

2
þν

Γð1
2
− νÞ : ð59cÞ

These can then be substituted into the equal-time
stochastic correlators (48) to give (55). Note that this
choice simplifies the Fokker-Planck equation (27) to two
uncorrelated one-dimensional Fokker-Planck equations for
q and p. Thus, the separation of the time-evolution operator
discussed in Sec. III A applies to all correlators.
We note that the matching stochastic approach repro-

duces the equal-time quantum correlators for all masses,
including when ν becomes imaginary. We suspect that this
is only true for free fields and that, for self-interacting
theories, the stochastic approach will break down if the
fields are too heavy since the expansion of the Universe will
no longer be sufficient to promote quantum fluctuations to
classical perturbations. More work is required to under-
stand this in more detail. However, the purpose of the
stochastic approach is to replace the IR divergent pertur-
bation theory. This is only necessary for light scalar fields,
where we expect the stochastic approach to work.

E. Quantum variance

Before considering higher-order correlators, we compare
the matched stochastic and quantum variances. We have
calculated the general form of the stochastic variances in
Sec. III A 2. Substituting the matched noise of Eq. (59) into
Eq. (42), we find that

hϕ2i ¼ H2

16π2

�
Γð3

2
− νÞΓð2νÞ43

2
−ν

Γð1
2
þ νÞ þ Γð3

2
þ νÞΓð−2νÞ43

2
þν

Γð1
2
− νÞ

�
; ð60aÞ

hϕπi ¼ −
H2

16π2

�
αΓð3

2
− νÞΓð2νÞ43

2
−ν

Γð1
2
þ νÞ þ βΓð3

2
þ νÞΓð−2νÞ43

2
þν

Γð1
2
− νÞ

�
; ð60bÞ

hπ2i ¼ H4

16π2

�
α2Γð3

2
− νÞΓð2νÞ43

2
−ν

Γð1
2
þ νÞ þ β2Γð3

2
þ νÞΓð−2νÞ43

2
þν

Γð1
2
− νÞ

�
: ð60cÞ

In the quantum theory, even for free fields, these
quantities contain ultraviolet divergences since they are
governed by short-distance dynamics. It is therefore not
appropriate to compare this quantum object with its
stochastic equivalent because the stochastic approach is
only valid for large spacetime separations. We only include
it here to allow us to compare higher-order correlators. Its
inclusion in these expressions allows us to isolate the
ambiguity surrounding the UV divergences.
To see this more clearly, we include the quantum

variances, which are given by Refs. [1–3]

hϕ̂2i ¼ H2

16π2
Γ
�
3

2
− ν

�
Γ
�
3

2
þ ν

�
2F1

�
3

2
þ ν;

3

2
− ν; 2; 1

�
;

ð61aÞ

hϕ̂ π̂i ¼ 0; ð61bÞ

hπ̂2i¼−
αβH4

64π2
Γ
�
3

2
−ν

�
Γ
�
3

2
þν

�
2F1

�
7

2
þν;

7

2
−ν;4;1

�
:

ð61cÞ
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It is clear that the variances do not match between
quantum and stochastic approaches, which is to be
expected as discussed. In the small mass m ≪ H limit,
the variances are given by

hϕ̂2i
����
m≪H

¼ 3H4

8π2m2
; hϕ2i

����
m≪H

¼ 3H4

8π2m2
; ð62aÞ

hϕ̂ π̂i
����
m≪H

¼ 0; hϕπi
����
m≪H

¼ −
17H3

8π2
; ð62bÞ

hπ̂2i
����
m≪H

¼ −
3H4

32π2
; hπ2i

����
m≪H

¼ 6H2

π2
: ð62cÞ

One can see that the field variances match. This is
because the 1=m2 term comes from the leading order
contribution to the asymptotic expansion, precisely as
the stochastic approach reproduces, due to its IR divergence
in the small mass limit. For the ϕ − π and π − π variances,
subleading terms in the asymptotic expansion contribute to
the leading terms in the small mass expansion and thus the
stochastic and quantum variances do not match even in the
small mass limit.

F. Higher-order correlators

We are finally in a position to consider higher-order
correlators. This is done using the joint unequal-time PDF
(45) with the matched noise of Eq. (59). Thus, all equal-
space higher-order correlators can be calculated via

hfðϕð0;xÞ; πð0;xÞÞgðϕðt;xÞ; πðt;xÞÞi

¼
Z

dϕ0

Z
dϕ

Z
dπ0

×
Z

dπ P2ðϕ0;ϕ; π0; πÞf0ðϕ0; π0Þgðϕ; πÞ: ð63Þ

The PDF of Eq. (43) is Gaussian and therefore Wick’s
theorem can be used to compute correlators of arbitrary
functions of ϕ and π. The only quantities that need explicit
calculation are the ϕ − ϕ, ϕ − π, π − ϕ and π − π corre-
lators with their corresponding variances, all of which have
been done. This also means that we have implicitly proven
that the stochastic and quantum results agree to leading
asymptotic order for all diagrammatic contributions to all
correlators. Thus, the matching of the stochastic and
quantum two-point field correlator is not arbitrary but
provides a key calculational tool for dealing with correla-
tors in de Sitter.
As an example, let us consider the ϕ2 correlator.

Using Wick’s theorem, one can calculate the stochastic
correlator as

hϕð0; 0Þ2ϕð0;xÞ2i ¼ hϕ2i þ 2ðhϕð0ÞϕðxiÞ2: ð64Þ

Alternatively, one can calculate the ϕ2 stochastic corre-
lator using the methods outlined in Sec. III A. With
σ2qp ¼ 0, it is possible to write

Uðq0; q; p0; p; tÞ ¼ Uqðq0; q; tÞUpðp0; p; tÞ; ð65Þ
and hence all timelike ðq; pÞ correlators can be calculated
from

hfðq; p; 0Þgðq; p; tÞi ¼
Z

dq0

Z
dq

Z
dp0

×
Z

dpPeqðq0; p0ÞUqðq0; q; tÞ

×Upðp0; p; tÞfðq0; p0Þgðq; pÞ:
ð66Þ

Then, all higher-order ðϕ; πÞ correlators can be related to
this via Eq. (25) and hence calculated. For the equal-space
ϕ2 correlator,

hϕð0;xÞ2ϕðt;xÞ2i

¼ 1

ð1−α
βÞ2

��
−

1

βH
pð0Þþqð0Þ

�
2
�
−

1

βH
pðtÞþqðtÞ2

�	
:

ð67Þ
By expanding the brackets, we see that this correlator

will depend on nine ðq; pÞ correlators. To ensure we get all
leading-order contributions for this correlator, we perform
the spectral expansion with a sum up to n ¼ 2 for the time-
evolution operators of Eq. (36). Evaluating the ðq; pÞ
correlators, we find that many of them are zero. The
remaining nonzero correlators are

hpð0Þ2pðtÞ2i ¼ σ4Q;pp

4H2β2
ð1þ 2e−2βHtÞ; ð68aÞ

hpð0Þ2qðtÞ2i ¼ σ2Q;ppσ
2
Q;qq

4H2αβ
; ð68bÞ

hpð0Þqð0ÞpðtÞqðtÞi ¼ σ2Q;ppσ
2
Q;qq

4H2αβ
e−3Ht; ð68cÞ

hqð0Þ2pðtÞ2i ¼ σ2Q;ppσ
2
Q;qq

4H2αβ
; ð68dÞ

hqð0Þ2qðtÞ2i ¼ σ4Q;qq

4H2α2
ð1þ 2e−αHtÞ: ð68eÞ

Since we have chosen the noise such that timelike
and spacelike correlators are related by eHðt−t0Þ→
ðHaðtÞjx−x0jÞ2, the equal-time ϕ2 stochastic correlator
is given by
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hϕðt; 0Þ2ϕðt;xÞ2i ¼
�

1

1 − α
β

�
2
��

σ2Q;qq

2Hα
þ σ2Q;pp

2H3β3

�
2

þ 2

�
σ2Q;qq

2Hα
jHaðtÞxj−2α þ σ2Q;pp

2H3β3
jHaðtÞxj−2β

�
2
�
: ð69Þ

The first term is the square of the stochastic field
variance, Eq. (42a), while the second term is proportional
to the square of the stochastic two-point field correlator,
Eq. (48a). Hence, the spacelike ϕ2 correlator is given by
Eq. (64), as expected by Wick’s theorem.
Wick’s theorem can also be used to evaluate the quantum

ϕ2 correlator to giveD
ϕ̂ðt; 0Þ2ϕ̂ðt;xÞ2

E
¼

D
ϕ̂2

E
2 þ 2ðiΔðxÞÞ2: ð70Þ

This is equal in form to its stochastic counterpart, with
the obvious discrepancy between the variance.

IV. DISCUSSION

A. The small mass m ≪ H limit

The new matching technique of evaluating noise has
proven to be effective in calculating the correlators at all
orders in mass. It is now instructive to compare this
matched noise with the cutoff method. In the small mass
limit, the matched and cutoff noises are

σ2Q;qq

����
m≪H

¼ H3

4π2
;

σ2cut;qq

����
m≪H

¼ H3

4π2

�
1þ ϵ2

3
þ ϵ4

9

�
; ð71aÞ

σ2Q;qp

����
m≪H

¼ 0;

σ2cut;qp

����
m≪H

¼ H4

4π2

�
−ϵ2 þ ϵ4

3

�
; ð71bÞ

σ2Q;pp

����
m≪H

¼ 36H5

π2
;

σ2cut;pp

����
m≪H

¼ H5

4π2
ϵ4: ð71cÞ

One can see that the cutoff and matched qq and qp
noises are equal in the limit ϵ → 0, the former as indicated
by Fig. 1. However, the pp noises are not. This suggests
that the cutoff method is only capable of reproducing the
leading order behavior, even in the small mass limit,
whereas the matching procedure reproduces both leading
and subleading. We can make this statement more precise
by writing the field correlator for both the cutoff and
matching procedures in the small mass limit. This is
given by

hϕðt; 0Þϕðt;xÞicut
����
ϵ¼0

¼ 3H4

8π2m2
jHaðtÞxj−2m2

3H2 ð72aÞ

hϕðt; 0Þϕðt;xÞiM ¼ 3H4

8π2m2
jHaðtÞxj−2m2

3H2

þ 2H2

3π2
jHaðtÞxj−6þ2m2

3H2 : ð72bÞ

We can see that both methods produce the leading order
behavior but only the matching method reproduces the
subleading contribution. The subleading contribution is
negligible compared to the mass-divergent leading term, so
the cutoff method is sufficient in this limit, as expected. The
leading term is also precisely the result of Starobinsky and
Yokoyama’s original work in the overdamped limit.

B. Concluding remarks

The stochastic approach can be applied to free scalar
fields beyond the slow-roll limit. If the noise amplitude in
the stochastic equations is correct, equal-time correlators
agree with the QFT results at asymptotically long distances,
which is the relevant regime for cosmological observations.
Timelike correlators are also reproduced up to an overall
complex phase.
However, the cutoff procedure—a naive extension of

Starobinsky and Yokoyama’s original approach—only
gives the correct noise term if the cutoff ϵ depends on
the mass in a specific way. We determine this mass
dependence by matching with the QFT. Alternatively,
one can obtain the noise term directly by matching with
the QFT, without introducing a cutoff. Both these proce-
dures are equivalent and both require knowledge of the
asymptotic QFT correlators.
Regardless of how one chooses to evaluate the noise, the

key result is that the stochastic approach is a viable
alternative to QFT for free fields if the noise contribution
is given by Eq. (59a). This motivates future work, where
this method will be applied to interacting theories, as it
suggests that the stochastic approach offers the ability to
calculate objects that cannot be found by standard QFT
procedures. Because the exact quantum correlators are not
known in that case, one would ideally need a way of
determining the noise amplitude directly from the micro-
scopic picture without matching. Currently it is not known
how to do that, but by showing what the answer needs to be
in the free case, our results are an important step in that
direction.
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APPENDIX: DERIVATION
OF THE EIGENSPECTRUM

In this Appendix, we derive Eq. (36), the expression for
the time-evolution operators, via a spectral expansion [44].
We will explicitly deriveUqðq0; q; tÞ here; the derivation of
Upðp0; p; tÞ follows in precisely the same way. We begin
with Eq. (34a):

∂Uqðq0; q; tÞ
∂t ¼ αHUqðq0; q; tÞ þ αHq

∂Uqðq0; q; tÞ
∂q

þ 1

2
σ2qq

∂2Uqðq0; q; tÞ
∂q2 ; ðA1Þ

which holds for any q0. We define

Uqðq0; q; tÞ ¼ e
− αH
2σ2qq

ðq2−q2
0
Þ
Ũqðq0; q; tÞ ðA2Þ

such that Eq. (A1) becomes

∂Ũqðq0; q; tÞ
∂t ¼ 1

2
σ2qq

∂2Ũqðq0; q; tÞ
∂q2

þ 1

2

�
Hα −

H2α2

σ2qq
q2
�
Ũqðq0; q; tÞ; ðA3Þ

which is solved to give

Ũqðq0; q; tÞ ¼
X
n

e−nαHtQnðqÞQnðq0Þ ðA4Þ

where

0¼ ∂2QnðqÞ
∂q2 þ

�
2Hα

σ2qq

�
nþ1

2

�
−
H2α2

σ4qq
q2
�
QnðqÞ: ðA5Þ

This equation is recognized as that of a quantum
harmonic oscillator. Thus, these eigenstates can be found
through standard procedures, resulting in Eq. (37), and so
the time-evolution operator is given by Eq. (36a), as
required. We note that since the right-hand side of
Eq. (A5) is a self-adjoint operator, the eigenfunctions obey
the orthonormality and completeness relationsZ

dqQnðqÞQmðqÞ ¼ δnm; ðA6aÞ
X
n

QnðqÞQnðq0Þ ¼ δðq − q0Þ: ðA6bÞ
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