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The Universe’s initial conditions—in particular, baryon and cold dark matter (CDM) isocurvature
perturbations—are poorly constrained on sub-Mpc scales. In this paper, we develop a new formalism to
compute the effect of small-scale baryon perturbations on the mean free-electron abundance, and thus on
cosmic microwave background (CMB) anisotropies. Our framework can accommodate perturbations with
arbitrary time and scale dependence. We apply this formalism to four different combinations of baryon and
CDM isocurvature modes, and we use Planck CMB-anisotropy data to probe their initial amplitude. We find
that Planck data is consistentwith no small-scale isocurvature perturbations, and that this additional ingredient
does not help to alleviate theHubble tension.We set upper bounds to the dimensionless initial power spectrum
Δ2

I ðkÞ of these isocurvature modes at comoving wave numbers 1 Mpc−1 ≤ k ≤ 103 Mpc−1, for several
parametrizations. For a scale-invariant power spectrum, our 95% confidence-level limits onΔ2

I are 0.023 for
pure baryon isocurvature, 0.099 for pure CDM isocurvature, 0.026 for compensated baryon-CDM
perturbations, and 0.009 for joint baryon-CDM isocurvature perturbations. Using a Fisher analysis
generalized to nonanalytic parameter dependence, we forecast that a CMB Stage-4 experiment would be
able to probe small-scale isocurvature perturbationswith initial power 3 to 10 times smaller than Planck limits.
The formalism introduced in this work is very general and can be used more widely to probe any physical
processes or initial conditions sourcing small-scale baryon perturbations.
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I. INTRODUCTION

The Universe’s initial conditions on scales ranging from a
few to a few thousand comovingmegaparsecs have nowbeen
characterized with exquisite precision, especially through
measurements of cosmic microwave background (CMB)
anisotropies. The data point to a rather simple picture: on
these large scales, initial perturbations in all species—
photons, neutrinos, baryons, and cold dark matter (CDM)
—are consistent with being proportional to a single,
Gaussian-distributed scalar quantity, with a variance of order
∼10−9 and a nearly scale-invariant power spectrum. In
addition, initial perturbations are consistent with being
adiabatic—i.e., with equal number density fluctuations for
all species. Quantitatively, the latest Planck data constrains
nonadiabatic contributions to the observed temperature
variance to be below 1.7% on scales 10−3 Mpc−1≲
k≲ 10−1 Mpc−1 [1] (see also Refs. [2,3] for earlier con-
straints). In other words, on large scales, isocurvature modes
[4], which can be produced by multifield inflation [5–9], are
constrained to be significantly subdominant to adiabatic
modes expected from single-field inflation.

Our knowledge of the Universe’s beginnings on smaller
scales is much more limited. CMB-anisotropy observations
cannot probe initial conditions beyond k≳ a few
10−1 Mpc−1, as temperature and polarization fluctuations
are exponentially damped by photon diffusion. Large-scale-
structuremeasurements can in principle reach smaller scales,
but their interpretation is limited by our understanding of
nonlinear structure formation and complex baryonic physics.
We thus only have indirect information on initial conditions
on scales k≳ 1 Mpc−1, in the form of upper bounds. The
tightest constraints arise from upper limits to distortions of
the CMB blackbody spectrum [10]. Such spectral distortions
would be sourced by the dissipation of small-scale photon
perturbations with wave numbers 1Mpc−1≲k≲104 Mpc−1

[11,12]. As a consequence, their nondetection constrains the
variance of adiabatic perturbations to be less than ∼10−5 on
these scales [13] (see also Ref. [14] for weaker limits for
104 Mpc−1 ≲ k≲ 105 Mpc−1). Small-scale neutrino density
and velocity isocurvature modes [4] are also constrained by
this method, with a variance limited to ≲10−4 [15]. On the
other hand, small-scale baryon isocurvature (BI) and CDM
isocurvature (CI) modes do not efficiently source photon
perturbations, and they are thus relatively poorly constrained
by CMB spectral distortions [15]. A tighter constraint on
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small-scale BI modes arises from the observation that the
primordial deuterium abundance would be modified by
significant baryon inhomogeneities in the early Universe,
implying hδ2bi≲ 0.02 on scales k≳ 0.1 Mpc−1 [16]. Given
this very limited and fragmentary information on small-scale
initial conditions—in particular, baryon and CDM isocur-
vature modes—it is useful to try to devise new and com-
plementary probes.
In this paper, we explore an alternative window into

small-scale baryon (and CDM) perturbations, through their
effect on the average recombination history, and thus large-
scale CMB anisotropies. The key idea is that recombination
dynamics depend nonlinearly on the baryon density, and as
a consequence, small-scale baryon perturbations lead to an
offset of the average free-electron abundance, to which
CMB anisotropies are very sensitive. This general idea was
first put forward in Refs. [17,18], where it was used to
constrain primordial magnetic fields (PMFs), which would
source small-scale baryon density perturbations. The same
physical effect underlies the recent proposal that small-
scale baryon perturbations generated by PMFs might
alleviate the Hubble tension [19], which was recently
shown to be unsuccessful [20,21]. While these studies were
motivated by a physical model for baryon perturbations, in
practice they treat them as time independent. This simpli-
fication allows the authors of Refs. [17–21] to estimate the
mean free-electron abundance by simply averaging the
outputs of a recombination code run with different values
of the baryon density parameter ωb. Realistic density
perturbations, of course, would depend on time and scale.
One of the main goals of the present work is therefore to
develop a general formalism, able to accommodate arbitrary
temporal and spatial variations of small-scale baryon density
and velocity perturbations. Our formalism relies on comput-
ing the second-order Green’s function response of recombi-
nation to baryon perturbations, and is thus accurate as long as
the latter are small in amplitude. Moreover, we neglect the
spatial transport ofLyman-α andLyman-continuumphotons,
implying that our calculation is valid up to wave number
k≲ 103 Mpc−1 [22].
We apply this new formalism to compute modifications

to the mean ionization history in the presence of small-scale
BI and CI modes. In addition, we consider two linear
combinations of these initial conditions: a baryon and
CDM isocurvature (BCI) mode, in which both species start
with the same density perturbation, and the compensated
isocurvature perturbation (CIP), in which baryon and CDM
perturbations start with opposite signs, and in such a
way as to produce a vanishing total matter perturbation.1

We modify the recombination code HYREC-2 [36–38] and the
Boltzmann code CLASS [39], and analyze the latest Planck
data [40] including additional small-scale isocurvature per-
turbations, with a power spectrum parametrized by either a
Dirac delta function or a power law.We find that the data are
consistent with no isocurvature perturbations, and that add-
ing this ingredient does not alleviate the Hubble tension,
corroborating the findings of Refs. [20,21]. We are therefore
able to set upper limits to the amplitude of isocurvature
perturbations, for each of the four modes considered (BI, CI,
BCI, and CIP), on scales 1 Mpc−1 ≲ k≲ 103 Mpc−1. Our
limits are significantly stronger thanCMBspectral-distortion
limits [15]. They are weaker than the big bang nucleosyn-
thesis (BBN) limits of Ref. [16], but they rely on an entirely
different physical effect and data. More generally, the
formalism developed here ought to be useful to probe a
variety of mechanisms sourcing baryon perturbations, which
may not necessarily be already present by BBN. Further, we
forecast the sensitivity of a CMB Stage-4-like experiment
[41], using a generalized Fisher analysis, allowing us to
circumvent the nonanalytic dependence of the change in
CMB power spectra on the amplitude of isocurvature
perturbations. The rest of this paper is organized as follows:
In Sec. II, we develop the nonlinear Green’s function
formalism to compute perturbations to the mean free-
electron abundance due to time- and scale-dependent baryon
perturbations. In Sec. III, we review how small-scale baryon
perturbations evolve for the four different isocurvature initial
conditions considered, and we compute the induced pertur-
bations to the ionization history. We describe our CMB
anisotropy constraints and forecast in Sec. IV and compare
them with previous limits. We conclude in Sec. V. In the
Appendix, we revisit the BBN limits of Ref. [16].
Throughout, we denote conformal time by η, and overdots
denote derivatives with respect to η.

II. MODIFIED RECOMBINATION WITH
SMALL-SCALE BARYON FLUCTUATIONS

A. Basic idea

Consider small-scale inhomogeneities parametrized with
initial conditions IðxÞ, resulting in fluctuations in the
baryon density δbðη; xÞ, and thus in the free-electron
abundance neðη; xÞ. In general, inhomogeneities in ne lead
to non-Gaussian signatures in CMB anisotropies [42].
However, if I , and thus ne, fluctuates on scales much
smaller than ∼1 Mpc, we expect non-Gaussianities to be
negligible at the large scales k ≪ 1 Mpc−1 at which CMB
anisotropies are observed.
If the amplitude of δb ∝ I is sufficiently large, however,

it may result in noticeable modifications to the average
free-electron abundance. Indeed, the recombination rate
depends nonlinearly on the local baryon density [17] and
velocity divergence. As a consequence, the free-electron

1Note that CIPs are poorly constrained even on large scales,
since they do not have any effect at linear order on the matter
power spectrum or CMB spectra [23], and we refer the reader to
Refs. [1,24–35] for a variety of astute methods to probe large-
scale CIPs.
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abundance neðη; xÞ depends nonlinearly on the initial
perturbations:

ne ¼ nð0Þe þ nð1Þe � I þ nð2Þe � I � I þOðIÞ3; ð1Þ

where nð0Þe is the standard free-electron abundance

(obtained for a uniform baryon density), and nð1Þe and

nð2Þe are linear and quadratic Green’s functions, respectively.
In full generality, the symbol � in Eq. (1) represents a
spatial convolution. Taking the average of Eq. (1), and
assuming that the three-point function of I vanishes (which
is the case, e.g., if I is Gaussian), we find

hnei ¼ nð0Þe þ nð2Þe � hI � Ii þOðI4Þ: ð2Þ

This modification to the average free-electron abundance
affects the Thomson collision term in the photon
Boltzmann equation, and thus CMB-anisotropy power
spectra on all scales.2

We expect the fractional correction to the ionization
history to be of the order nð2Þe � hI � Ii=nð0Þe ∼ δ2b;rec, where
δb;rec is the characteristic baryon overdensity at recombi-
nation. Given that Planck is sensitive to sub-percent-level
corrections to recombination [43], we therefore expect it to
be sensitive to baryon perturbations δ2b;rec ≲ 10−2. We will
see that in practice, the sensitivity of Planck is (signifi-
cantly) weaker than this expectation, likely due to the
specific shape of ionization perturbations, which happen to
be poorly constrained by CMB anisotropies.

B. Recombination with a local time-dependent
perturbed baryon density

To compute nð2Þe in practice, we make the simplifying
approximation that the net recombination rate depends on
the local baryon density and velocity divergence. This
amounts to neglecting the spatial transport of Lyman-α and
Lyman-continuum photons, and our calculations are there-
fore only valid at scales k≲ 103 Mpc−1, beyond which
these effects become relevant [22].
In addition, we neglect the small variations of the helium

mass fraction YHe with baryon density at BBN. Indeed, YHe

is relatively insensitive to ωBBN
b : using the fitting formula

provided in Ref. [44], we find d lnYHe=d lnωBBN
b ≈ 0.04.

We may therefore safely assume a constant YHe, up to
percent-level relative errors.
Given these assumptions, a local time-dependent baryon

perturbation modifies the recombination dynamics in three
different places:
(1) The net recombination rate _xe ¼ F ðxe; nH; nHe;…Þ

depends on the local baryon density ρb¼ ρ̄bð1þδbÞ
through the hydrogen and helium densities
nH ¼ n̄Hð1þ δbÞ, nHe ¼ n̄Heð1þ δbÞ, where we
approximate YHe as constant.

(2) During hydrogen recombination, the function _xe
also depends on the local baryon velocity divergence
θb ≡ ∇ · vb, which modifies the Lyman-α escape rate
by a factor ð1þ 1

3
θb=aHÞ. This factor corresponds

to the local expansion rate H þ 1
3
a−1∇ · vb [45,46]

(note that the global expansion rate is unchanged).
In principle, helium recombination also depends on
the baryon velocity divergence, as it would affect the
local expansion rate, and thus the opacities in several
helium transitions as well as the hydrogen con-
tinuum opacity [37,47]. However, for the isocurva-
ture modes considered, the baryon density is
approximately constant in time until after hydrogen
recombination (as we will see in Sec. III B), imply-
ing θb ≈ 0 during helium recombination.

(3) The matter temperature evolution, accounting
for adiabatic cooling and Thomson heating, is modi-
fied to

ρ2=3b
dðρ−2=3b TmÞ

dη
¼ aΓTðTγ − TmÞ; ð3Þ

ΓT ≡ 8arxeT4
γσT

3með1þ xe þ fHeÞ
; ð4Þ

where ar is the radiation constant, Tγ is the average
CMB temperature, and fHe ≈ 0.08 is the helium
fraction by number. This can be rewritten as follows:

a−2
dða2TmÞ

dη
¼ aΓTðTγ − TmÞ þ

2

3

_δb
1þ δb

Tm; ð5Þ

wherewe keep the full nonlinear dependence on δb, as
we are interested in nonlinear corrections to the
recombination history. Given that the Compton heat-
ing rate ΓT is much greater than the expansion rateH
for z≳ 102, matter temperature perturbations remain
small relative to baryon perturbations at these red-
shifts (see, e.g., Ref. [45] for the evolution of δTm in
the context of standard adiabatic perturbations). The
additional source term in the matter temperature
evolution therefore has little effect on the free-electron
fraction until late times, and thus relatively little
impact on CMB anisotropies. We include it for

2Note that Eqs. (1) and (2) hold for baryon perturbations at all
(i.e., not necessarily small) scales. However, baryon perturbations
at large scales k ≲ 1 Mpc−1 would induce additional modifica-
tions to CMB power spectra, of the same order as those resulting
from the change in the mean free-electron abundance which we
consider here. Such terms would arise from the long-wavelength
terms of order δne × Θ in the Boltzmann collision operator,
where Θ is the temperature or polarization anisotropy. We do
not consider such terms here, and thus limit ourselves to
k≳ 1 Mpc−1.
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completeness, and note that it can potentially become
important at low redshifts, causing either extra cooling
or heating of the gas beyond standard, which could
have observable effects on the 21 cm signal [48–50].

We incorporate these effects into the recombination code
HYREC-2 [38]. This code computes the recombination
history with a simple but highly accurate four-level atom
model [36], accounting for radiative transfer effects with a
correction to the Lyman-α escape rate calibrated with
HYREC [37]. We modify it so that it can take as an input
a local perturbation to the baryon density with arbitrary
time dependence, ρbðη; xÞ ¼ ρ̄bðηÞ½1þ δbðη; xÞ�. We
account for the local baryon velocity divergence assuming
θb ¼ −_δb, which holds at linear order in perturbation
theory. We explain below why this is justified.

C. Nonlinear recombination response function

Let us consider a local baryon density perturbation
δbðη; xÞ and velocity divergence θbðη; xÞ, which we group
together in a two-dimensional vector

B≡ ðδb; θbÞ; ð6Þ

whose components we denote by Bα. Since recombination
only depends on these quantities locally, we may
write, formally, and up to corrections of cubic order in
perturbations,

neðη; xÞ ¼ nð0Þe ðηÞ þ
Z

η
dη0Gð1Þ

α ðη; η0ÞBαðη0; xÞ

þ
Z Z

η
dη1dη2G

ð2Þ
αβ ðη; η1; η2ÞBαðη1; xÞBβðη2; xÞ;

ð7Þ

where Gð1Þ
α is a (vector) linear Green’s function and Gð2Þ

αβ is
a (tensor) quadratic Green’s function. By definition, the
spatial average of the baryon density perturbation δb
vanishes at any order in perturbation theory. The spatial
average of θb also vanishes, due to the fact that it is the
divergence of a vector field. Again, this holds at any order
in perturbation theory. Hence, the first integral in Eq. (7)
has a vanishing spatial average, and the spatial average of
the free-electron abundance is given by

hneiðηÞ ¼ nð0Þe ðηÞ þ
Z Z

η
dη1dη2G

ð2Þ
αβ ðη; η1; η2Þ

× hBαðη1; xÞBβðη2; xÞi: ð8Þ

We therefore see that to obtain hnei at quadratic order in the
initial perturbations, we only need to account for the
evolution of baryon perturbations at first order in pertur-
bation theory. This justifies using the linearized continuity
equation θb ¼ −_δb in our modification of HYREC-2.

Let us now consider a general scale-dependent baryon
perturbation δbðη; kÞ ¼ T bðη; kÞIðkÞ, where T bðη; kÞ is the
linear transfer function appropriate for the initial conditions
IðkÞ of interest. We then have θbðη; kÞ ¼ − _T bðη; kÞIðkÞ.
Again, we group the baryon density and velocity divergence
transfer functions in a two-dimensional vector

T ðkÞ≡ ðT bðkÞ;− _T bðkÞÞ; ð9Þ

with components T α. Assuming the initial perturbations
IðkÞ are Gaussian, their two-point function is entirely
determined by their dimensionless power spectrum Δ2

IðkÞ,
defined as

hIðk0ÞI�ðkÞi ¼ ð2πÞ3 2π
2

k3
Δ2

IðkÞδDðk0 − kÞ; ð10Þ

where δD is the Dirac-delta function, implying

hBαðη1; xÞBβðη2; xÞi ¼
Z

d ln kT αðη1; kÞT βðη2; kÞΔ2
IðkÞ:

ð11Þ

Inserting Eq. (11) into Eq. (8), we arrive at

hneiðηÞ ¼ nð0Þe ðηÞ þ
Z

d ln knð2Þe ðη; kÞΔ2
IðkÞ; ð12Þ

nð2Þe ðη; kÞ≡
Z Z

η
dη1dη2G

ð2Þ
αβ ðη; η1; η2Þ

× T αðη1; kÞT βðη2; kÞ: ð13Þ

We see that the quadratic response function nð2Þe ðη; kÞ
depends on the specific type of initial conditions considered
(e.g., adiabatic, isocurvature) through the transfer func-
tions T α.
Comparing Eq. (13) to Eq. (7) suggests a simple approach

to computing nð2Þe without having to explicitly compute the

three-dimensional functions Gð2Þ
αβ ðη; η1; η2Þ. The idea is to

simply compute ne with a “local” density perturbation
proportional to �T bðη; kÞ. Specifically, we first compute

the standard free-electron abundance nð0Þe ðηÞ, with the
standard time-independent comoving baryon density.
Second, for each Fourier mode k, we compute the free-
electron abundances n�e ðηÞ with time-dependent baryon
density perturbations δbðηÞ ¼ �ϵT bðη; kÞ. Explicitly, we
compute the free-electron fractions x�e using HYREC-2

modified as described in Sec. II B, and then obtain

n�e ðηÞ ¼ nð0ÞH ð1� ϵT bðη; kÞÞx�e , where nð0ÞH is the standard
total hydrogen density. Recalling the definition of the linear
and quadratic Green’s functions in Eq. (7), we see from

Eq. (13) that the function nð2Þe ðη; kÞ is then simply obtained
from
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nð2Þe ðη; kÞ ¼ nþe ðη; kÞ þ n−e ðη; kÞ − 2nð0Þe ðηÞ
2ϵ2

; ð14Þ

as the linear parts in Eq. (7) cancel out. Note that one can
similarly define the matter temperature quadratic response

function Tð2Þ
m ðη; kÞ, which can be obtained simultaneously

with nð2Þe ðη; kÞ.

III. APPLICATION TO SMALL-SCALE
ISOCURVATURE PERTURBATIONS

A. Isocurvature modes considered

While the formalism developed in Sec. II can be applied
to any small-scale baryon perturbations, in this paper we
specialize to four specific linear combinations of baryon
and CDM isocurvature perturbations. We formally denote
by Xðk; ηiÞ the initial conditions for all metric and fluid
variables, defined at conformal time ηi well before horizon
entry for the Fourier mode k of interest. For each of the four
cases considered, we assume that Xðk; ηiÞ is proportional to
a single scalar Gaussian random field IðkÞ. The four modes
we consider are defined as follows:
(1) The baryon isocurvature (BI) initial condition

XBIðk; ηiÞ is such that δbðk; ηiÞ=IðkÞ → 1 for
kηi → 0, and all other metric and fluid variables
vanish at kηi → 0.

(2) The CDM isocurvature (CI) initial condition
XCIðk; ηiÞ is such that δcðk; ηiÞ=IðkÞ → 1 for
kηi → 0, and all other metric and fluid variables
vanish at kηi → 0.

(3) The baryon and CDM isocurvature (BCI) mode
is defined such that XBCIðk; ηiÞ ¼ XBIðk; ηiÞþ
XCIðk; ηiÞ—i.e., it has equal, unit-amplitude baryon
and CDM initial perturbations.

(4) Compensated isocurvature perturbations (CIPs)
are defined such that XCIPðk; ηiÞ ¼ XBIðk; ηiÞ−
ωb
ωc
XCIðk; ηiÞ—i.e., such that the baryon density

perturbation has unit initial amplitude, and the
CDM perturbation has amplitude −ωb=ωc, such
that the total matter density perturbation δm ≡
ðωbδb þ ωcδcÞ=ωm initially vanishes.

Note that explicit expressions for all the components of
XBIðk; ηiÞ and XCIðk; ηiÞ at small but finite kηi are provided
in Eqs. (23) and (24) of Ref. [4]. From these equations, one
can check explicitly that, for the CIP initial conditions, all
metric and perturbed fluid variables besides δb and δc
vanish at second order in ηi.

B. Baryon transfer functions

We obtain the baryon transfer functions T bðk; ηÞ≡
δbðk; ηÞ=IðkÞ for the BI and CI modes with the
Boltzmann code CLASS [39]. For simplicity, we do not
switch on perturbations to the matter temperature, which
themselves are coupled to perturbations to the ionization

fraction [45]. As we discussed below Eq. (5), matter
temperature perturbations are small relative to baryon
density perturbations at z≳ 102, and should therefore have
a negligible effect on the baryon pressure; hence, the
transfer functions operate at redshifts relevant to CMB
anisotropies. To be clear, we do self-consistently perturb
the matter temperature evolution when solving for per-
turbed recombination, as described in Sec. II B, but we do
not do so when computing the baryon transfer functions.
Given the BI and CI transfer functions, the BCI and CIP

transfer functions are then simply obtained from the
appropriate linear combinations:

T BCI
b ¼ T BI

b þ T CI
b ; T CIP

b ¼ T BI
b −

ωb

ωc
T CI

b : ð15Þ

We show the numerical baryon transfer functions for each
of the four modes in Fig. 1, for k ranging from 3 to
104 Mpc−1. In what follows, we develop some intuition for
the qualitative features seen in Fig. 1.
For baryon and CDM isocurvature modes, photons and

neutrinos are initially unperturbed. In addition, the modes
of interest are smaller than the Silk damping scale and the
neutrino free-streaming scale at last scattering, further
preventing any growth of their perturbations. We may
therefore assume both photons and neutrinos to be homo-
geneous. In addition, these small scales are deep in the
subhorizon regime, so we may neglect relativistic terms in
the fluid equations. With these approximations, and
neglecting perturbations to the baryon temperature, the
linearized continuity and Euler equations for baryons and
CDM perturbations become [51]

_δb þ θb ¼ 0 ¼ _δc þ θc; ð16Þ

_θb þHθb ¼ k2ϕþ c2sk2δb −Dθb; ð17Þ

_θc þHθc ¼ k2ϕ; ð18Þ

k2ϕ ¼ −4πa2ðρ̄bδb þ ρ̄cδcÞ; ð19Þ

D≡ 4

3

ρ̄γ
ρ̄b

aneσT; ð20Þ

where θb;c ≡ ikvb;c are the baryon and CDM velocity
divergences,H≡ aH ¼ _a=a is the conformal Hubble rate,
cs is the baryon sound speed, and overdots denote
derivatives with respect to the conformal time η. We
checked explicitly that solving this simple system of
equations accurately recovers the full numerical results
from CLASS [39] on the scales of interest.
This system of equations exhibits a characteristic time/

redshift and a characteristic length scale. First, independent
of wave number, the Compton drag rate D dominates over
the expansion rate H prior to kinematic decoupling at

PROBING SMALL-SCALE BARYON AND DARK MATTER … PHYS. REV. D 104, 103509 (2021)

103509-5



zdec ≈ 1020 [52]. Second, baryon pressure is relevant for
scales smaller than the baryon Jeans scale [24], with wave
number

kJ ≡
ffiffiffiffiffiffiffiffiffiffi
3ωb

2ac2s

s
H0 ∼ 102 Mpc−1max

�
1;

ffiffiffiffiffiffiffiffiffiffiffi
150

1þ z

r �
: ð21Þ

This approximation stems from the fact that the baryon
temperature closely follows the CMB temperature for
z≳ 150 and decays adiabatically as Tb ∝ 1=a2 after that.
We may understand qualitatively the numerical results

shown in Fig. 1 in four different regimes:
(i) k≳ kJ; z≳ zdec: In this regime, baryon perturbations

remain very small for the CI initial conditions. For
the three other initial conditions, baryon perturba-
tions behave as an overdamped oscillator, as we now
demonstrate. Neglecting the contributions of CDM
to the gravitational potential, the last two terms
dominate in the baryon momentum equation (17),
implying θb ≈ c2sk2δb=D. Combining this with the
continuity equation, one gets

_δb ≈ −
k2c2s
D

δb: ð22Þ

This implies an exponential decay of initial baryon
perturbation until kinematic decoupling:

δbðzdec; kÞ ¼ δb;iðkÞ exp½−k2=k2��; ð23Þ

k�≡
�Z

∞

zdec

dlna
c2s
DH

�−1=2
≈5×103Mpc−1: ð24Þ

This explains why baryon fluctuations on scales
k≳ k� are exponentially suppressed before cosmo-
logical recombination.

(2) k≳ kJ; z≲ zdec: Once photon drag is no longer
relevant, baryon perturbations below the Jeans scale
start undergoing acoustic oscillations, until the
gravitational force from CDM perturbations over-
comes baryon pressure. The oscillation timescale is
shorter than the expansion time, implying that
baryon and CDM perturbations evolve on different

FIG. 1. Baryon density transfer functions for the four different initial conditions described in Sec. III A, for several wave numbers,
obtained with the CLASS code [39]. See Sec. III B for a discussion of the qualitative features of these transfer functions.
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timescales and are mostly decoupled. The amplitude
of baryon acoustic oscillations decreases with in-
creasing k, due to the prior epoch of overdamped
evolution. In the meanwhile, CDM perturbations (if
present initially) grow, with a rate dependent on the
initial conditions: fastest for CI and BCI, and slowest
for CIP, for which the gravitational potential van-
ishes initially. Eventually, when the gravitational
force from CDM perturbations overcomes the
baryon pressure force, baryon perturbations start
growing as well.

(3) k≲ kJ; z≳ zdec: In this regime, photon drag is
dominant, and baryon pressure is negligible. As a
consequence, the baryon velocity divergence is
suppressed, and baryon perturbations remain ap-
proximately constant for all four initial conditions.

(4) k≲ kJ; z≲ zdec: After decoupling, and on scales
larger than the Jeans length, baryons behave as a
cold fluid. With the exception of the CIP mode,
baryons and CDM perturbations therefore grow
together, with a rate depending on the initial

conditions, which set the relative contributions of
the growing and decaying modes. In the case of
CIPs, the initially vanishing gravitational potential
would imply that baryon and dark matter perturba-
tions both remain constant. In practice, perturbations
are not strictly constant due to the small but finite
baryon pressure, leading to corrections of order
ðk=kJÞ2.

Before moving forward, let us point out one important
missing ingredient in the transfer functions that we have
obtained from CLASS: they do not take into account the large-
scale relative velocities between baryons and CDM, origi-
nating from the standard adiabatic mode [53]. These relative
velocities vadbc are typically supersonic, and as a consequence,
the nonlinear (and mode-mixing) advection terms vadbc · ∇δisob
and vadbc · ∇visob in the continuity and momentum equations,
respectively, are typically larger than the baryon pressure
term. These advection terms are relevant on scales smaller
than the characteristic distance over which relative velocities
advect baryons relative to CDM—i.e., for wave numbers

FIG. 2. Ratio nð2Þe ðz; kÞ=nð0Þe ðzÞ with four different initial conditions as functions of redshift for several wave numbers. Note that these
functions are accurate only for k ≲ 103 Mpc−1, as our assumption about the locality of recombination breaks down for smaller scales.
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k≳ 50 Mpc−1 [53] (see also Ref. [54]). The impact of
relative velocities on the evolution of small-scale isocurva-
ture modes should depend on the specific mode considered.
For BI, CI, and BCI initial conditions, relative velocities
should partially suppress the late-time growth of small-scale
perturbations, as baryon and CDM perturbations are
advected out of phase. In contrast, for CIPs, this advection
should break the perfect cancellation ofmatter perturbations,
and it may lead to an earlier evolution of baryon and CDM
perturbations. For the sake of simplicity, in this first study we
ignore this effect and defer a calculation quantifying it to
future work.

C. Recombination perturbations

In Fig. 2, we show the nonlinear ionization response
to small-scale baryon perturbations, nð2Þe ðz; kÞ=nð0Þe ðzÞ
[defined in Eq. (13)] for the four different isocurvature
initial conditions, as a function of redshift and wave number.

We see that different Fourier modes lead to very different
effects on the ionization history.
In addition to the quadratic responses to individual

Fourier modes, we may also obtain the response to any
given initial power spectrum from Eq. (12). Specifically, we
will consider power-law initial conditions over the range
kmin ≡ 1 Mpc−1 ≤ k ≤ kmax ≡ 103 Mpc−1 (neglecting per-
turbations outside this range), which we parametrize as

Δ2
IðkÞ ¼ Δ2

IðkpÞ
�
k
kp

�
nI−1

; kp ≡ 30 Mpc−1: ð25Þ

With this parametrization, the total small-scale power is

Δ2
I ;tot ≡

Z
kmax

kmin

d ln kΔ2
IðkÞ

¼ Δ2
IðkpÞ

nI − 1

��
kmax

kp

�
nI−1

−
�
kmin

kp

�
nI−1

�
: ð26Þ

FIG. 3. Fractional change of the free-electron abundance ne with four different isocurvature initial conditions, for power-law initial
power spectra, normalized to the total small-scale isocurvature power in 1 ≤ kMpc ≤ 103. We see that these perturbations are nearly
independent of nI for z ≳ 1000, and differ mostly at lower redshifts, which have a lesser impact on CMB anisotropy power spectra.
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For a given spectral index, we may use Δ2
IðkpÞ and Δ2

I ;tot

interchangeably to describe the amplitude of the power-law
initial perturbations.
We show the resulting perturbation to the mean ioniza-

tion history in Fig. 3 with four different initial conditions,
for several values of nI . We see that ðhnei=nð0Þe − 1Þ=Δ2

I ;tot
depends strongly on the spectral index at z≲ 1000 but is
relatively universal (for a given isocurvature mode) for
z≳ 1000.

IV. CONSTRAINTS FROM CMB ANISOTROPIES

A. Implementation and Planck analysis setup

We modify the Boltzmann code CLASS [39] (which uses
HYREC-2 [38] to compute the ionization and thermal
history) so that it can take as an input a parametrized
small-scale initial power spectrum, in addition to the
standard cosmological parameters. Specifically, we use
two different parametrizations: either a power law given
by Eq. (25), over the range 1 Mpc−1 ≤ k ≤ 103 Mpc−1, or
a Dirac-delta spike at wave number k0, defined as

Δ2
IðkÞ ¼ Δ2

Iðk0ÞδDðln k − ln k0Þ: ð27Þ

For improved efficiency, at virtually no cost in accuracy, we

precompute the ratios nð2Þe ðz; kÞ=nð0Þe ðzÞ for each of the four
isocurvature perturbations, for the Planck 2018 best-fit
standard cosmology, and we do not account for their small
variations with cosmological parameters. This is justified,
as these functions vary very little over the range of
cosmologies allowed by CMB-anisotropy data.
For BI, CI, and BCI modes, the late-time growth of

baryon perturbations implies that nð2Þe =nð0Þe becomes neg-
ative, with a large absolute value. For isocurvature ampli-
tudes saturating the Planck limits we derive below, one
would obtain a negative hnei at low redshift if naively using
Eq. (12). This is clearly unphysical, and it stems for the
breakdown of our nonlinear Green’s function approach for
large baryon fluctuations. To prevent the code from using
an unphysical negative ionization fraction, we impose a
floor to the average free-electron fraction hnei=n̄H ≥ 10−5.
In practice, for isocurvature amplitudes saturating our
upper limits, this floor is typically reached around
z ∼ 90, meaning that this approximate truncation has little
impact on CMB anisotropy limits, which rely mostly on the
ionization history at z≳ 102. We explicitly checked that
changing this floor to hnei=n̄H ≥ 10−6 does not affect our
constraints.
For a fixed spectral shape (i.e., a fixed spectral index nI or

fixed wave number k0 for the Dirac-delta spectrum), we
constrain small-scale primordial isocurvature perturbation
amplitude with the Planck 2018 baseline TTTEEEþ
lowEþ lensing likelihood [40], using MONTEPYTHON v3.0

[55]. Explicitly, we run a separate MCMC analysis for nine
different values of nI ¼ −1; 0; 0.6; 0.8; 1.0; 1.2; 1.4; 2; 3,

and for seventeen values of k0 evenly sampled in log-scale
from 1 Mpc−1 ≤ k0 ≤ 104 Mpc−1 for each one of the four
isocurvature modes BI, CI, BCI, and CIP. Note that our
results are only robust for k≲ 103 Mpc−1 due to our neglect
of small-scale radiative transport, but we also include smaller
scales in the Dirac-spectrum analysis to illustrate the poten-
tial reach of our method. The power-law constraints, how-
ever, are derived for a power spectrum with support over
1 Mpc−1 ≤ k ≤ 103 Mpc−1 only.

B. Generalized Fisher analysis for a CMB Stage-4
experiment

1. Motivations

The standard Fisher analysis method (see, e.g., Ref. [56])
consists in Taylor-expanding the posterior distribution near
its maximum to its lowest order in small variations in
cosmological parameters pi. This requires computing the
first-order derivatives of CMB-anisotropy power spectra
(hereafter, the Cl’s) with respect to the pi. This method can
be extended to account for higher-order derivatives—see,
e.g., Ref. [57].
When adding small-scale isocurvature perturbations with

power Δ2
I [which hereafter represents either Δ2

IðkpÞ or
Δ2

Iðk0Þ depending on the adopted parametrization], we
found that, for some of the modes considered, the change in
Cl’s scales as ΔCl ∝ ðΔ2

IÞα, with α < 1. In other words,
the dependence of Cl’s on Δ2

I appears to be sublinear, and
thus nonanalytic. As a consequence, one cannot directly
use the standard Fisher analysis method [56] or its
generalizations to higher-order derivatives [57], since even
the first derivative of the Cl’s with respect to Δ2

I appears
formally infinite near Δ2

I ¼ 0.
This sublinear scaling can be understood as follows: The

modification to the ionization history Δne induced
by isocurvature perturbations implies a change to the
Thomson optical depth to last scattering, Δτ ∝

R
dtΔne ∝R

d ln aa3=2Δne, assuming matter domination—i.e.,
HðaÞ ∝ a−3=2—where a is the scale factor. The perturbation
Δne is obtained from Eq. (2) as long as hnei > 0, and

otherwise saturates at Δne ≈ −nð0Þe , corresponding to the
floor hnei ≈ 0. In other words,

Δne=n
ð0Þ
e ≈max ½−1; ðnð2Þe =nð0Þe Þ � Δ2

I �; ð28Þ

where � represents the wave number integral of Eq. (2).
At late times, we find that the growth of baryon

perturbations implies jnð2Þe j=nð0Þe ∝ a2. Therefore, the scale

factor a� at which jΔnej=nð0Þe approaches unity (i.e., at
which the modification to the free-electron abundance
becomes nonperturbative and is assumed to saturate) scales
as a� ∝ ðΔ2

IÞ−1=2. At low redshift, the standard free-

electron fraction is nearly constant, and therefore nð0Þe
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scales approximately as a−3. As a result, one finds that the
change to the Thomson optical depth is dominated by the
transition region a ∼ a� and scales as

jΔτj ∝ ðΔ2
IÞ3=4: ð29Þ

If the change to the Thomson optical depth is dominated by
sufficiently low redshifts, its effect on CMB anisotropies is
qualitatively similar to a change in the optical depth to
reionization, and in particular implies ΔCl ≈ −2ΔτCl at
small angular scales. This argument explains the sublinear
scaling of ΔCl with Δ2

I .
Having identified the approximate dependence of ΔCl

on Δ2
I , we could in principle perform a standard Fisher

analysis with the parameter ðΔ2
IÞ3=4 rather than Δ2

I , an
approach similar in spirit to that of Ref. [58]. However,
this dependence is not exact, and is scale dependent.
Furthermore, as the argument above suggests, the dominant
effect of isocurvature perturbations is likely degenerate with
a (negative) change to the optical depth to reionization, and is
thus weakly constraining. In what follows, we develop a
method to isolate the nondegenerate part of the change in
Cl’s,whichwe find ismostly linear inΔ2

I . The latter property
further illustrates the independence of our results from the
details of how we impose the constraint hnei > 0.

2. Method

We define the cosmological-parameter vector
p≡ ðp1;…; p6; p7Þ≡ ðωc;ωb; θs; τreio; ln 1010As; ns;Δ2

IÞ.
We denote the standard ΛCDM Planck best-fit values [40]
by pstd ≡ ðpstd

1 ;…pstd
6 ; pstd

7 ≡ 0Þ. We denote by C≡
fCTT

l ; CTE
l ; CEE

l ; Cdd
l g the vector containing the temper-

ature, polarization auto- and cross-spectrum, as well as
the power spectrum of lensing deflection, and by Σ their
covariance matrix, given explicitly by

ΣXY;WZ
ll0 ≡ cov½ĈXY

l ; ĈWZ
l0 �

¼ δll0
C̃XW
l C̃YZ

l þ C̃XZ
l C̃YW

l

fskyð2lþ 1Þ ; ð30Þ

where, for X ¼ T;E; d,

C̃XW
l ≡ CXW

l þ δXWNXX
l ; ð31Þ

where NXX
l is the instrumental noise, of the form [59]

NXX
l ¼ NXX

0 exp

�
lðlþ 1Þθ2X

8 ln 2

�
: ð32Þ

We include multipoles over the range 2 ≤ l ≤ 3000 for TT
and 2 ≤ l ≤ 5000 for TE, EE, and dd. We adopt the noise
parameters of Ref. [60] for a CMB S4 experiment, which are
NTT

0 ¼ NEE
0 =2 ¼ 3.38 × 10−7μK2, θT ¼ θE ¼ 1 arcmin,

and fsky ¼ 0.4. The lensing reconstruction noises are calcu-
lated using the code developed in Ref. [61]. Note that we
checked that including or omitting Cdd

l does not make a
significant difference in the results. Then, the chi-squared is

χ2 ¼ ðCðpÞ − CðpstdÞÞ · Σ−1 · ðCðpÞ − CðpstdÞÞ: ð33Þ

Unlike the usual Fisher analysis, we extract the nondegen-
erate changes in CMB spectra due to p7 ¼ Δ2

I as follows.
Assuming that changes in Cl’s are approximately linear in
small variations in the six standard cosmological parameters,
we separate the changes in CMB spectra due to p7 from the
total changes as

ΔC≡ CðpÞ − CðpstdÞ ≃
X6
i¼1

∂C
∂pi

Δpi þ ΔCiso; ð34Þ

where Δpi ≡ pi − pstd
i and

ΔCiso ≡ Cðpstd
1 ;…; pstd

6 ;Δ2
IÞ − CðpstdÞ ð35Þ

is the change in Cl’s due to the small-scale isocurvature
perturbations alone, neglecting its small dependence on
standard cosmological parameters. We then decompose
ΔCiso into a part that is degenerate with other cosmological
parameters, and a part that is completely nondegenerate:

ΔCiso ¼
X6
i¼1

αi
∂C
∂pi

þ ΔC⊥
iso; ð36Þ

whereΔC⊥
iso is orthogonal to the variations ofCl ’s generated

by all standard cosmological parameters, using the inverse
covariance matrix as a scalar product:

∂C
∂pj

· Σ−1 · ΔC⊥
iso ¼ 0; ∀ j ¼ 1;…; 6: ð37Þ

Explicitly, the coefficients αi in Eq. (36) are given by

αi ¼
X6
j¼1

ðF̃−1Þij
∂C
∂pj

· Σ−1 · ΔCiso; ð38Þ

where the 6 × 6 Fisher matrix F̃ij is given by

F̃ij ¼
∂C
∂pi

· Σ−1 ·
∂C
∂pj

; 1 ≤ i; j ≤ 6: ð39Þ

Inserting Eq. (36) into Eq. (34), we may rewrite

ΔC ¼
X6
i¼1

Δp̃i
∂C
∂pi

þ ΔC⊥
iso; Δp̃i ≡ Δpi þ αi: ð40Þ

From the orthogonality properties of ΔC⊥
iso, we may then

rewrite the chi-squared as
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χ2 ¼
X6
i;j¼1

Δp̃i · F̃ij · Δp̃j þ ΔC⊥
iso · Σ−1 · ΔC⊥

iso: ð41Þ

Integrating the likelihoodL ∝ expð−χ2=2Þ over the standard
cosmological parameters p1;…; p6, we see that the margin-
alized likelihood for Δ2

I is

LisoðΔ2
IÞ ∝ exp

�
−
1

2
ΔC⊥

iso · Σ−1 · ΔC⊥
iso

�
: ð42Þ

Finally,wemayestimate the95%sensitivity toΔ2
I by solving

for Δ2
I such that

ΔC⊥
iso · Σ−1 · ΔC⊥

iso ¼ 4: ð43Þ

While this would be a well-defined procedure for arbitrary
dependence of ΔC⊥

iso on Δ2
I , in practice we find that this

dependence is in fact linear, so that the error bar on Δ2
I is

approximately

σΔ2
I
≈
�∂ΔC⊥

iso

∂Δ2
I

· Σ−1 ·
∂ΔC⊥

iso

∂Δ2
I

�−1=2
: ð44Þ

It is a simple linear-algebra problem to show that, if the full
ΔCiso were linear in Δ2

I , this result reproduces that of a
standard Fisher analysis.

C. Results

We find that Planck data does not favor small-scale
isocurvature perturbations, and that including this addi-
tional ingredient leaves the posterior distributions of
standard cosmological parameters virtually unchanged,
regardless of the specific isocurvature mode and assumed
spectral shape. For instance, Fig. 4 shows the marginalized
error ellipses for the ΛCDMþ Δ2

IðkpÞ analysis, in the case
of a scale-invariant isocurvature power spectrum ðnI ¼ 1Þ.
In particular, we see that this modification to the ionization
history has very little impact on the inferred Hubble
parameter. This conclusion holds for all four initial con-
ditions considered, and regardless of the spectral shape and
spectral index, corroborating the findings of Refs. [20,21].
Explicitly, we show in Fig. 5 that the means and 68% C.L.
intervals of H0 remain consistent with the standard ΛCDM
result even when including small-scale isocurvature per-
turbations with a Dirac-delta spectrum, independently of
the scale k0.
We present our 95% C.L. upper limits to the amplitude of

a Dirac-delta spectrum in Fig. 6, as a function of wave
number k0. These limits are mostly independent of wave
number for k0 ≲ 300 Mpc−1. At smaller scales, they
become tighter for BI, BCI, and CIP initial conditions,
and they worsen for CI initial conditions, as could have

been anticipated from the scale dependence of nð2Þe =ne

shown in Fig. 2. In general, constraints on the CI amplitude
are much weaker than for other modes, which stems from
the vanishing initial baryon perturbations in this mode.
While our treatment is only valid for k≲ 103 Mpc−1, we
show the limits that one would obtain by simply extrapo-
lating our analysis to smaller scales in a shaded region. We
see that the BI, BCI, and CIP amplitudes could potentially
be constrained up to k∼ several times 103 Mpc−1, but not
beyond 104 Mpc−1, due to the exponential damping of
small-scale baryon perturbation by Compton drag prior to
recombination, as discussed in Sec. III B.
In Fig. 7, we present our 95% C.L. upper limits for

power-law initial power spectra, in terms of both the
integrated power Δ2

I ;tot (left) and the amplitude at the pivot
scale Δ2

IðkpÞ (right). When expressed in terms of total
power, we see that CMB anisotropies limits depend weakly
on spectral index. This can be understood from Fig. 3,
where it can be seen that the perturbation to the ionization
history is not very sensitive to nI around the peak of the
Thomson visibility function z ∼ 1100. The small improve-
ment (or worsening) of limits on BI, BCI, and CIP (or CI)
total power with increased nI mirrors the improvement (or
worsening) of limits at small scales seen in Fig. 6. The nearly
index-invariant limits on Δ2

I ;tot translate to the peaked shape
of the limits forΔ2

IðkpÞ seen in the right panel of Fig. 7, as the
two quantities are related through Eq. (26).
We present the forecasted 95% C.L. sensitivities to

Δ2
IðkÞ for a CMB S4 experiment as red dot-dashed lines

in Figs. 6 and 7. Depending on the initial conditions, a
CMB S4 experiment is expected to be 3 to 10 times more
sensitive than current constraints from Planck data.

D. Comparison with other constraints on small-scale
perturbations

1. Constraints on small-scale baryon perturbations from
primordial magnetic fields (PMFs)

The general idea explored in this work is similar in spirit
to that first put forward in Ref. [17] and explored further in
Refs. [18–21], in the context of baryon perturbations
sourced by PMFs. Namely, the common idea is that
small-scale baryon density perturbations lead to a system-
atic offset of the average ionization fraction, as a result of
the nonlinearity of recombination dynamics. As we high-
light below, the underlying assumptions in our work and
these references are significantly different, preventing a
direct quantitative comparison of our results.
A first, and major, difference is that Refs. [17–21]

assume a time-independent baryon density perturbation.
This assumption seems difficult to justify, regardless of the
physical mechanism responsible for baryon perturbations.
In contrast, our formalism can accommodate arbitrary time
(and scale) dependence, provided they are sufficiently
small. With our notation, constant baryon perturbations
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correspond to a density and velocity divergence transfer
function T ðkÞ ¼ ð1; 0Þ, independent of wave number. From
Eq. (13), this implies a scale-independent quadratic response

function nð2Þe ðηÞ. Therefore, in the limit of small density
perturbations, Eq. (12) implies that the perturbation to

recombination only depends on the integrated power, which
is referred to as the “clumping factor” b in Refs. [17–21]:

hnei ≈ nð0Þe þ bnð2Þe ; b≡
Z

d ln kΔ2
IðkÞ≡ hδ2bi: ð45Þ

FIG. 4. Marginalized 68% and 95% confidence intervals for theΛCDM + small-scale isocurvature models, for BI, BCI, and CIP initial
conditions (the CI mode is not shown for clarity). In all cases shown here, the initial isocurvature power spectrum is assumed to be scale
invariant ðnI ¼ 1Þ over the range 1 Mpc−1 ≤ k ≤ 103 Mpc−1. This figure shows that Planck data is consistent with no small-scale
isocurvature perturbations, and that the addition of this ingredient has a negligible impact on the best-fit standard cosmological
parameters and their error bars. These conclusions also hold for all 8 spectral indices and all 17 Dirac spectra we considered, for each of
the four initial conditions BI, CI, BCI, and CIP.
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Note that the constant-baryon-density response function

nð2Þe ðηÞ is virtually identical to the k ¼ 3 Mpc−1 CIP
response function shown in Fig. 2, since large-scale baryon
(and CDM) perturbations remain constant for CIP initial
conditions. Within our formalism, we therefore obtain the
95% confidence limit b < 0.21 from Planck data.
This result cannot be directly compared to those of

Refs. [19–21] due to another difference between our works:
our formalism is only valid insofar as baryon over- and
underdensities are small and Gaussian distributed, so that
we only need to keep terms quadratic in the baryon density,

but neglect higher-order terms. In the three-zone models
considered in Ref. [19], the baryon overdensities are
allowed to be of order unity; for instance, “model M1”
in Ref. [19] includes a zone with Δ1 ≡ ρb=ρ̄b ¼ 0.1—i.e.,
an underdensity δb ¼ −0.9. In the limit where the overall
clumping factor is small, these highly over- or underdense
zones occupy a small volume fraction, and our quadratic
approximation for hnei should still be relatively accurate.
This may explain why the authors of Ref. [20] find that,
when letting Δ1 vary, this parameter is hardly constrained
by CMB anisotropies. Note that our upper limit is margin-
ally consistent with our perturbative assumption, since it
corresponds to baryon density perturbations of order
δb ∼

ffiffiffi
b

p
∼ 0.4, which is not particularly small. However,

provided hδ3bi ¼ 0, our small-δb expansion should still be
accurate up to corrections of order b2 ∼ 0.04. For good
measure, we checked that we obtain the same limits as
Ref. [20] for the three-zone models M1 and M2 when using
the same setup—i.e., computing the free-electron fraction
nonperturbatively—by appropriately weighing the outputs
of HYREC-2 in each of the three zones.

2. Constraints on BI and CI modes from CMB spectral
distortions

The damping of small-scale photon perturbations at z≲
2 × 106 gives rise to spectral distortions of the CMB
blackbody spectrum, quadratic in the amplitude of photon
perturbations, and thus linear in the primordial power
spectrum (see, e.g., Ref. [62]). The authors of Ref. [15]
(hereafter CG13) pointed out that this effect can be used to
constrain small-scale isocurvature perturbations, which
indirectly source photon perturbations. Using upper limits
on μ and y distortions from COBE/FIRAS [10,63], they
derived upper limits on the amplitude of small-scale BI and
CI perturbations for 1 Mpc−1 ≲ k≲ 104 Mpc−1 and fore-
casted the sensitivity of future PIXIE-type experiments
[64]. Note that CG13 also considered neutrino isocurvature
modes, which could not be constrained through perturbed
recombination.
In the right panel of Fig. 7, we show the FIRAS limits

and PIXIE forecasts of CG13 for BI and CI amplitudes,
alongside our Planck constraints and CMB Stage-4 (S4)
forecasts, for power-law spectra. Using the fact that spectral
distortions are proportional to ðωbδb þ ωcδcÞ2 [15], we can
also easily extract the spectral distortion limit on the BCI
amplitude: it is tighter than the CI limit by a factor ðωc=ωmÞ2.
The same argument implies that CIPs are not constrained by
spectral distortions. For the range of spectral indices con-
sidered −1 ≤ nI ≤ 3, Compton y distortions are systemati-
cally more constraining than μ distortions, and we therefore
only show limits and forecasts from the former. Note that the
power spectrum constrained in CG13 does not formally
include an upper cutoff, but the y distortion is mostly
sensitive to wave numbers 1 Mpc−1 ≲ k≲ 50 Mpc−1, and

FIG. 5. Means and 68% confidence intervals of H0 from each
initial condition with Dirac-delta power spectrum at k0.

FIG. 6. 95% C.L. upper limits on (sensitivities to) the amplitude
of the four isocurvature modes BI, CI, BCI, and CIP, from Planck
data (CMB S4 forecast), as a function of wave number, for a
Dirac-delta spike. Our treatment only applies to k≲ 103 Mpc−1,
due to our neglect of Lyman-α and Lyman-continuum transport
[22], which is why we show the limits at k ≥ 103 Mpc−1 in a
shaded region. We also show the BBN limit of Ref. [16], updated
in the Appendix. This limit applies to BI, BCI, and CIP modes,
but not CI initial conditions.
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therefore the results of CG13 are directly comparable to ours.
Also note that CG13’s original results were obtained for a
pivot scale k0 ¼ 0.002 Mpc−1, so we rescale their limits to
kp ¼ 30 Mpc−1 by multiplying them by ðkp=k0ÞnI−1.
As can be seen in Fig. 7, our Planck limits on BI, CI, and

BCI amplitudes are significantly stronger than the FIRAS
limits on these modes, for all spectral indices. We also see
that an experiment like PIXIE would be sensitive to CI (BI)
modes with an amplitude below the Planck limits for
nI ≤ 2 ðnI ≤ 1Þ. For sufficiently blue spectra, however,
our limits remain stronger than the reach of a PIXIE-like
experiment. Note that for clarity of the figures, we only
show GC13’s limits in terms of Δ2

IðkpÞ, but the same
conclusions would hold for the integrated power Δ2

I ;tot.

3. BBN constraints on small-scale baryon perturbations

Last but not least, Ref. [16] obtained constraints on the
small-scale baryon perturbations from the predicted deu-
terium yield yD during big bang nucleosynthesis (BBN).
The basic idea is similar in spirit to the one on which the
present work relies: yD is a nonlinear function of the local
baryon density, and as a consequence its spatial average is
modified in the presence of small-scale baryon overden-
sities. Comparing the modified yield against deuterium
abundance observations [65] (and assuming ωb measured
from CMB anisotropies, which our analysis confirms is not
affected by small-scale baryon perturbations), Ref. [16]
derives the 2σ limit hδ2bi ≤ 0.016. We revisit this analysis in
the Appendix, and we obtain the slightly weaker 95%-
confidence upper limit hδ2bi ≤ 0.019. This limit applies to
the total integrated power up to the neutron diffusion scale
during BBN, kd ∼ 4 × 108 Mpc−1. While this limit was
derived for BI initial conditions, it would apply equally for

BCI or CIP modes, since small-scale isocurvature baryon
perturbations remain constant around BBN, regardless of
the CDM perturbation. As can be seen in Fig. 6 and the left
panel of Fig. 7, this limit is approximately 1 order of
magnitude stronger than our BI and CIP limits, and a factor
of ∼3 stronger than our BCI constraint. Nevertheless, these
two limits rely on completely different physical processes
and observational systematics. Importantly, the general
formalism we have developed can apply to arbitrary
perturbations, including those generated after BBN.

V. CONCLUSION

Cosmological recombination is a nonlinear process, and as
a consequence, the average free-electron abundance, and
thusCMBanisotropies, are sensitive to thevariance of small-
scale baryon perturbations. This idea was explored in
Refs. [17–21], in the limit of time-independent baryon
density perturbations. In this work, we have developed a
formalism able to account for arbitrary time- and scale-
dependent baryon perturbations on scales 1 Mpc−1≲
k≲ 103 Mpc−1, in the limit that they are small in amplitude.
One of the main elements of our calculation is the time- and
scale-dependent second-order recombination perturbation

response function, nð2Þe ðz; kÞ, which can be obtained for
arbitrary linear baryon density and velocity transfer func-
tions. From this function, one may obtain the mean free-
electron abundance for an arbitrary initial power spectrum
through Eq. (12).
Our general framework allowed us to constrain the

amplitude of small-scale baryon and CDM isocurvature
perturbations using Planck CMB-anisotropy data.
Specifically, we considered pure baryon and CDM iso-
curvature modes (BI and CI), as well as two linear

FIG. 7. 95% C.L. upper limits on (sensitivities to) the amplitude of the four isocurvature modes BCI, BI, CIP, and CI (from bottom to
top in each plot), from Planck data (CMB S4 forecast), as a function of spectral index nI , for a power-law spectrum of the form (25). The
limits are presented in terms of the total integrated power Δ2

I ;tot (left) and of the power at the pivot scale Δ2
I ðkpÞ (right), which are related

through Eq. (26). In the left panel, we also show the BBN limit of Ref. [16], updated in the Appendix. In the right panel, we also show
the CMB spectral distortion limits (solid black lines) and forecasts (dashed black lines) of Ref. [15] for BCI, CI, and BI modes.
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combinations of them: an equal baryon and CDM iso-
curvature mode (BCI), and the compensated isocurvature
perturbation (CIP), in which the initial baryon and CDM
density perturbations cancel out. We found that the latest
Planck data is consistent with no small-scale isocurvature
perturbations, and that including this additional ingredient
does not shift the best-fit cosmological parameters in a
significant way—in particular, it does not help to alleviate
the Hubble tension as shown in Fig. 5, corroborating the
results of related analyses [20,21]. We derived upper limits
on the amplitudes of these four isocurvature modes, para-
metrized by either Dirac-delta or power-law initial power
spectra, as summarized in Figs. 6 and 7. For scale-invariant
initial power spectra within the range 1 ≤ kMpc ≤ 103, our
95%-confidence upper limits on the dimensionless power
spectrum Δ2

IðkÞ of initial perturbations are 0.099, 0.026,
0.023, and 0.009, for CI, CIP, BI, and BCI initial con-
ditions, respectively.3

While our CI limit is rather weak, as expected from the
vanishing initial baryon perturbations in this mode, it is
significantly stronger than the only other limit on small-
scale CDM isocurvature perturbations, resulting from
upper bounds on CMB spectral distortions [15]. Our limits
on CIP, BI, and BCI amplitudes are significantly weaker
than what one could have anticipated given the high
sensitivity of CMB anisotropies to cosmological recombi-
nation. This seems to stem from the weak sensitivity of
CMB anisotropies to the specific shapes of recombination
perturbations induced by small-scale baryon perturbations.
Still, our bounds are much stronger than spectral-distortion
limits (which do not constrain CIPs) [15]. Our constraints
on these modes are, however, weaker than limits resulting
from the deuterium yield in perturbed BBN [16] by a factor
∼3–10, depending on the specific mode. Our results are still
useful, as they rely on completely different physics and
observables, implying completely different systematics.
In addition to deriving limits from Planck data, we

forecasted the sensitivity of a CMB Stage-4-like experi-
ment, using a generalized Fisher analysis method. We
found that such an experiment would be sensitive to small-
scale isocurvature perturbations with power 3 to 10 times
smaller than currently constrained from Planck data. For
BCI initial conditions, the sensitivity is comparable to the
current BBN limit.
As always, we had to make simplifying approximations

in order to make headway. First, our study is limited to
wave numbers k≲ 103 Mpc−1 due to our assumption that
the recombination rate depends on the local baryon density
and velocity divergence. Our analysis shows that, in
principle, CMB anisotropies could be sensitive to small-
scale baryon isocurvature modes up to k ∼ 104 Mpc−1,

beyond which baryon perturbations are exponentially
damped before recombination by the combination of
Compton drag and baryon pressure. It could therefore
be interesting to generalize our work to scales
k ∼ 103 − 104 Mpc−1, which would require accounting
for the nonlocality of recombination due to the transport
of Lyman-α and Lyman-continuum photons [22]. Second,
we neglected the advection of baryon and CDM perturba-
tions relative to one another due to their supersonic relative
velocities, generated by the standard adiabatic mode [53].
This nonlinear effect may lead to order-unity changes to
the isocurvature baryon transfer functions at scales
k≳ 50 Mpc−1, and thus could affect CMB power spectrum
limits by factors of order unity. More interestingly, this
effect would lead to a large-scale modulation of the
ionization fraction, tracing the large-scale fluctuations of
relative velocities (see Ref. [66] for a similar effect in a
different context). This would result in non-Gaussian
signatures in the CMB, which could be more constraining
than the modification to the power spectrum, on which the
limits presented here rely.
In conclusion, we have introduced a general framework

to estimate the effect of small-scale baryon perturbations on
the mean ionization history. In this work, we have focused
on the consequences on CMB anisotropy power spectra. In
addition, the global cosmological recombination spectrum
(see, e.g., Refs. [67,68]) would also be affected by
perturbations to recombination dynamics. Even though
this faint signal will likely not be observed until the next
generation of spectral-distortion experiments sees the light
[69], it would be interesting to explore this complementary
observable to probe the smoothness of the early Universe
on very small scales.
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APPENDIX: BBN LIMITS TO SMALL-SCALE
BARYON INHOMOGENEITIES

In this Appendix, we revisit the limit on small-scale
baryon perturbations from the BBN deuterium yield [16],
with a more rigorous data analysis method.
Using the PArthENoPE code [70], the Planck

Collaboration [44] obtained a fitting formula for the

3Our full results (limits and forecasts) are available at https://
github.com/nanoomlee/small-scale_baryon_CDM_isocurvature_
results.
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deuterium yield of BBN, yDP ≡ 105 D/H, as a function of the
baryon density parameter ωb:

yDPðωbÞ ¼ 18.754 − 1534.4ωb þ 48656ω2
b − 552670ω3

b;

ðA1Þ

with an estimated theoretical uncertainty σth ¼ 0.06.
Assuming ωb ¼ ω̄bð1þ δbÞ, the average deuterium yield
is then, up to terms of order Oðδ3bÞ,

hyDPiðω̄b; hδ2biÞ ¼ yDPðω̄bÞ þ γðω̄bÞhδ2bi; ðA2Þ

γðωÞ≡ 1

2
ω2

d2yDP
dω2

¼ 48656ω2 − 1658010ω3: ðA3Þ

Therefore, the measurement yobs ¼ 2.545 of the yield with
error bar σobs ¼ 0.025 [65] implies a joint posterior on
ðω̄b; hδ2biÞ of the form

Pðω̄b; hδ2biÞ ∝ exp

�
−
ðyobs − hyDPiÞ2
2ðσ2th þ σ2obsÞ

�
Θðhδ2biÞ; ðA4Þ

where Θ is the Heaviside step function, enforcing the
prior hδ2bi > 0.
In order to obtain a marginalized posterior for hδ2bi, we

include additional information on ω̄b, from Planck
anisotropy measurements. In principle, these measurements
are also sensitive to a combination of ω̄b and hδ2bi.
However, as we find in this work and as shown in
Fig. 4, these two parameters are not very degenerate.
Moreover, the Planck constraints on hδ2bi are significantly

weaker than BBN constraints. We may therefore assume
that Planck constrains ω̄b to be Gaussian-distributed, with
mean ω̄0

b ¼ 0.02233 and error bar σωb
¼ 0.00015 [40].

Given the smallness of the error bar, we may Taylor-expand
hyDPi around ω̄0

b:

hyDPi ≈ y0DP þ λ0ðω̄b − ω̄0
bÞ þ γ0hδ2bi; ðA5Þ

y0DP¼2.5985; λ0¼−188.155; γ0¼5.800; ðA6Þ

where we have neglected terms of order ðω̄b − ω̄0
bÞhδ2bi.

Upon multiplying Eq. (A4) by the Gaussian distribution
for ω̄b and integrating over ω̄b, the resulting marginalized
distribution for hδ2bi is a Gaussian with mean and variance

meanðhδ2biÞ ¼
yobs − y0DP

γ0
≈ −0.0092; ðA7Þ

varðhδ2biÞ ¼
σ2obs þ σ2th þ λ20σ

2
ωb

γ20
≈ ð0.0122Þ2; ðA8Þ

truncated to positive values of hδ2bi. Solving for the 68%
and 95% confidence intervals of this truncated Gaussian,
we find

hδ2bi < 0.0086ð68%Þ; 0.0187ð95%Þ: ðA9Þ

We see that our 95%-confidence upper limit is slightly
weaker than that derived in Ref. [16].
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[27] D. Grin, O. Doré, and M. Kamionkowski, Phys. Rev. Lett.

107, 261301 (2011).
[28] M. T. Soumagnac, R. Barkana, C. G. Sabiu, A. Loeb, A. J.

Ross, F. B. Abdalla, S. T. Balan, and O. Lahav, Phys. Rev.
Lett. 116, 201302 (2016).

[29] D. Grin, D. Hanson, G. P. Holder, O. Doré, and M.
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