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The fractional dark energy (FDE) model describes the accelerated expansion of the Universe through a
nonrelativistic gas of particles with a noncanonical kinetic term. This term is proportional to the absolute
value of the three-momentum to the power of 3w, where w is simply the dark energy equation of state
parameter, and the corresponding energy leads to an energy density that mimics the cosmological constant.
In this paper we expand the fractional dark energy model considering a nonzero chemical potential and we
show that it may thermodynamically describe a phantom regime. The Planck constraints on the equation
of state parameter put upper limits on the allowed value of the ratio of the chemical potential to the
temperature. In the second part, we investigate the system of fractional dark energy particles with negative
absolute temperatures (NAT). NAT are possible in quantum systems and in cosmology, if there exists an
upper bound on the energy. This maximum energy is one ingredient of the FDE model and indicates a
connection between FDE and NAT, if FDE is composed of fermions. In this scenario, the equation of state
parameter is equal to minus one and, using cosmological observations, we find that the transition from
positive to negative temperatures is allowed at any redshift larger than one.
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I. INTRODUCTION

Observations of type-Ia supernovae (SNe) indicate that the
Universe is currently undergoing a phase of accelerated
expansion [1,2]. A fluid with negative pressure, dark energy
(DE), causes this expansion, but its nature is one of the major
challenges in modern cosmology. The simplest candidate for
DE is a cosmological constant, in agreement with most of the
cosmological observations [3]. However, the existing ten-
sions in theΛCDMmodel, specially the one arising from the
determination of the Hubble constant from cosmic micro-
wave background (CMB) data [3] and its local measurement
trough Cepheids [4], summed to the lack of well-motivated
explanations for the origin of such a constant leads to
alternative candidates for DE. Among a plethora of options,
there are scalar and vector fields [5–24], metastable DE
[25–33], holographic DE [34–50], interacting DE [51–76],
models using extra dimensions [77], etc.
Recently, an alternative explanation for the cosmological

constant was proposed in [78], in the so-called fractional
dark energy (FDE) model. In this setup, the energy of the
system has a noncanonical kinetic term, proportional to
p3w, where p is the three-momentum and w is the DE
equation of state parameter. The corresponding energy
density is constant and mimics the one of the cosmological
constant. Its smallness, however, is not a completely free

parameter, but may arise from a Fermi-Dirac integral and it
is related to the particle’s minimum energy. Furthermore,
the energy eigenvalue is obtained from fractional quantum
mechanics (see [79] for a recent review on fractional
quantum mechanics), where the Laplacian has a fractional
power (leading to the Riesz integral). In fact, fractional
calculus has been used in different contexts, such as in
fractional quantum mechanics [80–86], Newtonian gravity
[87,88] and quantum cosmology [89,90].
In this paper we further investigate the FDEmodel in two

contexts. First, we analyze the influence of a nonzero
chemical potential. In this scenario, the equation of state
can be smaller than minus one, indicating a phantom
behavior that comes only from the gas properties.
Taking the measurements of w from Planck into account
[3] for the wCDMmodel, we are able to obtain upper limits
for the ratio of the chemical potential to the temperature.
Since the FDE model has a maximum energy as an

ingredient to avoid a divergence when the momentum goes
to zero, it is natural to investigate whether FDE particles
can have negative absolute temperatures (NAT). NATwere
initially predicted and explored in the late 1940s and in
the 1950s, both experimentally (in a crystal) [91], and
theoretically [92,93]. They require an upper bound on the
energy since the Boltzmann distribution function, for
instance, would diverge if T < 0 and the energy is
unlimited [93,94]. A revival of NAT occurred after the
experimental realization of NAT for motional degrees of*ricardo.landim@tum.de
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freedom [95], rather than the previously done localized spin
systems [91,96,97]. In cosmology, an interesting conse-
quence of negative temperatures is negative pressure, thus
indicating a possible relation between DE and NAT. In [98],
NAT in cosmology were further investigated. Hence, we
explore the connection between NATand the FDE model in
the second part of this work and we use cosmological
observations to investigate the transition from positive
temperature to NAT.
This paper is organized in the following manner. In

Sec. II we review the FDE model. Section III is devoted to
analyzing the system of FDE particles when the chemical
potential is nonzero, while in Sec. IV we investigate the
connection between FDE and NAT. In Sec. V we summa-
rize the work and present our conclusions. We will use
natural units ℏ ¼ c ¼ kB ¼ 1 throughout the text, unless
explicitly stated.

II. FRACTIONAL DARK ENERGY

In this section we review the main features of the FDE
model presented in [78]. FDE is composed of particles that
satisfy the fractional Schrödinger equation. In the context
of fractional calculus a fractional derivative can be defined
as the Riemann-Liouville derivative [99]

aDα
xfðxÞ¼

1

Γðnþ1−αÞ
dnþ1

dxnþ1

Z
x

a
ðx−yÞn−αfðyÞdy; ð1Þ

for n ≤ α < nþ 1, where Γðnþ 1 − αÞ is the Gamma
function. The inverse operator is the Riemann-Liouville
fractional integration operator

aD−α
x fðxÞ ¼ 1

ΓðαÞ
Z

x

a
ðx − yÞα−1fðyÞdy; α > 0; ð2Þ

such that aDα
bðaD−α

b fðxÞÞ ¼ fðxÞ, with the operators sat-

isfying the property aD�α
b ðaD�β

b fðxÞÞ ¼ aD
α�β
b fðxÞ.

The operator ðℏ∇Þα is thus defined as [79]

ðℏ∇Þα ¼ −
ℏα

2 cosðπα=2Þ ½−∞D
α
x þ xDα

∞�; ð3Þ

where α is the Lévy index 1 < α ≤ 2.
The quantum Riesz fractional derivative (or integral, if

α < 0) gives the fractional Laplacian operator

ð−ℏ2ΔÞα=2ψðr; tÞ ¼ 1

ð2πℏÞ3
Z

d3peip·r=ℏjpjαφðp; tÞ: ð4Þ

Therefore, the fractional Schrödinger equation for FDE is

iℏ
∂ψðr; tÞ

∂t ¼ Cð−ℏ2ΔÞ3w=2ψðr; tÞ; ð5Þ

where C is a constant with units of ½C� ¼ erg1−3wcm3ws−3w

(or ½energy�1−3w, in natural units).
The eigenvalue of the Hamiltonian operator gives a

noncanonical kinetic term, which can be inserted into the
nonrelativistic limit of the energy-momentum relation

ϵ ≈mþ p2

2m
þ C
p−3w ; ð6Þ

where p≡ jpj. When the nonrelativistic particles cooled
down below the rest mass (Cp3w > m) the DE behavior
started dominating.
The DE number density and energy density are then

respectively given by

n ¼ −
C−1

wg
6π2w

Z
ϵmax

ϵmin

ϵ
1
w−1

eβϵ � 1
dϵ; ð7Þ

¼ −
C−1

wg
6π2w

β−
1
wF umax

umin;
1
w−1

; ð8Þ

ρ ¼ −
C−1

wg
6π2w

Z
ϵmax

ϵmin

ϵ
1
w

eβϵ � 1
dϵ ð9Þ

¼ −
C−1

wg
6π2w

β−
1þw
w F umax

umin;
1
w
; ð10Þ

where g ¼ 2sþ 1 is the spin multiplicity, β ¼ T−1, u≡ βϵ,
ϵmin ≈m is the nonrelativistic energy and ϵmax ¼ Λ is a
cutoff scale to avoid a divergence on the energy (6). The
integral in the equation above is

F umax
umin;1w

≡
Z

umax

umin

u
1
w

eu � 1
du: ð11Þ

The change of variables does not influence the limits of
integration because the cutoff energy is sufficiently large
and the nonrelativistic energy may be turned into
m0 þ c0T, where m0 is the particle’s rest mass and c0 is
a constant of order of m0=T ∼ 3. This effective mass may
resemble the analogue effective mass in solid-state physics
and a further study of such a temperature dependence
is subject of a future work. Depending on the value of
umin ¼ ϵmin=T the integral can be sufficiently small and C
can be of order of unity to give the correct observed vacuum
energy. For example, if umin ¼ 10 then C ¼ 10−40 GeV4,
orC ¼ 1 GeV4 for umin ¼ 100. Even for the apparent small
value of C, we may notice that if it is proportional to the
inverse of the Planck mass C ¼ λ6=M2

Pl, then the new
constant can be around λ ¼ 10−2=6 GeV. In the context of
fractional quantum field theory, the constant C−1=ð1−3wÞ
would be a length scale [100–102].
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III. FRACTIONAL DARK ENERGY WITH
NONZERO CHEMICAL POTENTIAL

The discussion presented in the last section assumed a
null chemical potential. If the chemical potential μ is now
different from zero, it may give rise to a phantom behavior.
The second law of thermodynamics can be written

as [103]

nTdσ ¼ dρ −
ρþ P
n

dn; ð12Þ

where σ is the entropy density per number density and P is
the pressure. Using the particle number conservation,
the continuity equation and the fact that dσ is an exact
differential, the equation above can be written as [104]

_T
T
¼ ∂P

∂ρ
_n
n
; ð13Þ

which yields n ∝ T1=w and T ∝ V−w.
Taking the Euler equation [105]

Ts ¼ ρþ P − μn ¼ ð1þ wÞρ − μn; ð14Þ

we can see that the entropy is positive even for w < −1,
provided that μ < 0. The condition of positive entropy leads
to a lower limit on the equation of state parameter [106]

w ≥ −1þ μn
ρ
: ð15Þ

Given the relations n¼n0a−3, ρ ¼ ρ0a−3ð1þwÞ, T ¼ T0a−3w

and s ¼ s0a−3 one can obtain [106]

μ ¼ μ0a−3w ¼ μ0
T
T0

; ð16Þ

where

μ0 ¼
1

n0
½−T0s0 þ ð1þ wÞρ0�: ð17Þ

The chemical potential is thus negative for a phantom
behavior. The dependence of μ on the scale factor shows
that the combination μn=ρ in Eq. (15) is independent of the
scale factor, i.e., μn=ρ ¼ μ0n0=ρ0.
A nonzero chemical potential modifies the DE number

density and energy density to

n ¼ −
C−1

wg
6π2w

β−
1
wF umax;βμ

umin;
1
w−1

; ð18Þ

ρ ¼ −
C−1

wg
6π2w

β−
1þw
w F umax;βμ

umin;
1
w
; ð19Þ

where here u≡ βϵ − βμ and

F
umax;βμ
umin;a ≡

Z
umax

umin

ðuþ βμÞa
eu � 1

du: ð20Þ

The result of the integration above now depends on βμ.
Similarly to the case of null chemical potential we have the
relation between the number density and energy density

ρ ¼ β−1
F umax;βμ

umin;
1
w

F umax;βμ
umin;

1
w−1

n: ð21Þ

Using Eqs. (18) and (19) the equation of state (15)
becomes

w ¼ −1 −
jμ0jn0
ρ0

¼ −1 − jβμj
F umax;βμ

umin;
1
w−1

F umax;βμ
umin;

1
w

: ð22Þ

Notice that the combination βμ is independent of the scale
factor. Equation (22) is constant and it may represent
the wCDM model, in the phantom regime. Therefore we
can compare the equation of state for FDE for different
values of βμ, given by Eq. (22), with the corresponding
one for the wCDM model compatible with cosmological
observations. Figure 1 presents this comparison for two
different initial energies (umin) and the evolution of the DE
density parameter. As it can seen, βμ should be roughly less
than 5% of βϵi to be in agreement with the observations.
As it was shown in [78] both energies can give the

correct observed vacuum energy, provided that the constant
C is chosen accordingly.

IV. NEGATIVE ABSOLUTE TEMPERATURE

The FDE model has an intrinsic cutoff to avoid a
divergence in the energy and the minimum energy is the
particle mass. These limits are similar to the ones in a
scenario where a cosmological fluid possesses NAT, as
investigated in [98].
The canonical absolute temperature can be defined as the

variation of the entropy with the internal energy at thermal
equilibrium

1

T
¼

�∂S
∂U

�
V;N

; ð23Þ

which can be negative.
Necessary requirements for NATare thermal equilibrium

among the elements in the system and upper limit on the
energy of the allowed states [93]. Classically a system is not
found with NAT because there is no upper bound on its
energy. However, quantum mechanical systems can be
constructed such that they possess an energy upper bound.
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In order scenarios this upper bound can be seen as an
energy cutoff [98].
A system with NAT is hotter than the one with positive

temperature because the former has more energy stored in
it and can transfer its energy to any system at positive
temperature it is in contact with [91]. Since a fluid with
negative equation of state will have always an increasing
temperature, it is natural to think that the NAT will be
reached sometime in the evolution of this fluid.
In a cosmological context a fluid with positive temper-

ature has the following number density, energy density and
pressure [98]

nðT; μÞ ¼
Z

Λ

m
DðϵÞN ðT; ϵ; μÞdϵ; ð24Þ

ρðT; μÞ ¼
Z

Λ

m
ϵDðϵÞN ðT; ϵ; μÞdϵ; ð25Þ

PðT; μÞ ¼ β−1
Z

Λ

m
ϵDðϵÞ lnð1þ e−βðϵ−μÞÞdϵ; ð26Þ

where DðϵÞ is the density of states and N ðT; ϵ; μÞ is the
Fermi-Dirac distribution. The energy of the system is not
bounded from above for bosons with no number conser-
vation, therefore if μ ¼ 0 a cosmological fluid with NAT
can only be composed of fermions [98].
The symmetry of the Fermi-Dirac distribution and the

logarithm in Eq. (26) allows the following relation between
positive and negative temperatures

N ðT; ϵ; μÞ ¼ 1

eβðϵ−μÞ þ 1

¼ 1 −
1

e−βðϵ−μÞ þ 1
;

¼ 1 −N ð−T; ϵ; μÞ; ð27Þ

ln½1þ e−βðϵ−μÞ� ¼ −βðϵ − μÞ þ ln½1þ eβðϵ−μÞ�: ð28Þ

As pointed out in [98], Eq. (27) indicates the idea of “holes”
and “particles,” where holes are particles in the highest
energy states (with T < 0), which simply represent the
absence of particles in states with positive temperature. The
highest number density and energy density is thus when
β → −∞, yielding

nmax ¼
Z

Λ

m
DðϵÞdϵ ¼ C−1

wg
6π2

ðm1
w
0 − Λ1

wÞ; ð29Þ

ρmax ¼
Z

Λ

m
ϵDðϵÞdϵ ¼w¼−1 Cg

6π2
½lnðΛÞ − lnðm0Þ�; ð30Þ

where the second equality in both equations comes from
the fact that for FDE the density of states is DðϵÞ ¼
−C−1

wg=ð6π2wÞϵ1
w−1. The lower limit of integration is m ¼

m0 because for negative temperatures m ¼ m0 þ c0jTj and
T ¼ 0−. From Eqs. (27) and (29) one can see that the
maximum energy density and number density would be
negative and thus unphysical, if bosons were considered
instead of fermions.
Using the properties in Eqs. (27) and (28) one can obtain

the following relations

nðT; μÞ ¼ nmax − nð−T; μÞ; ð31Þ

ρðT; μÞ ¼ ρmax − ρð−T; μÞ; ð32Þ

PðT; μÞ ¼ −ρmax þ μnmax − Pð−T; μÞ: ð33Þ

FIG. 1. Left: equation of state parameter (22) for different initial energies βϵi, as a function of βμ. The orange lines represent the
68% C.L. constraints on the equation of state parameter for the wCDM model (w ¼ 1.028� 0.031 [3]), using the combination of
Planck, baryon acoustic oscillations (BAO) and SNe data. Right: redshift evolution of the DE density parameter using the equation of
state on the left plot, for the two corresponding choices βϵi ¼ 100 (blue) and βϵi ¼ 10 (red). The orange region represents the 68% C.L.
constrains from Planck þ BAOþ SNe, for the phantom behavior.
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In our case, both particles and holes (i.e., particles
with T > 0 or T < 0) will be described by a fluid with
the same negative equation of state parameter, since the
corresponding density of states arises from the noncanoni-
cal kinetic term (6) in both regimes.
The number density and energy density for holes are still

given by Eqs. (8) and (10) (or Eqs. (18) and (19) if μ ≠ 0),
respectively, with the simple replacement β → jβj and the
integrals are performed for negative β:

nh ¼ −
C−1

wg
6π2w

jβj−1
wF umax;βμ

umin;
1
w−1

; ð34Þ

ρh ¼ −
C−1

wg
6π2w

jβj−1þw
w F umax;βμ

umin;
1
w
; ð35Þ

where here u≡ −jβjðϵ − μÞ and the subscripts “p” and “h”
will indicate particles with T > 0 and with T < 0, respec-
tively. Contrary to the case of positive T (∞ < β < 0þ), the
negative temperature makes the number density to grow
with jβj, because an increase in a negative temperature
corresponds to an increase in jβj.1 The following relations
also hold

ρh ¼ jβj−1
F umax;βμ

umin;
1
w

F umax;βμ
umin;

1
w−1

nh: ð36Þ

_T
T
¼ −

_β

β
¼ ∂P

∂ρ
_np;h
np;h

: ð37Þ

Equation (37) also yields np ∝ β−
1
w and nh ∝ jβj−1

w, thus the
number density of holes increases up to nmax.
The number conservation equation and the continuity

equation for particles and holes are

_np þ 3Hnp ¼ 0; ð38Þ

_nh þ 3Hðnh − nmaxÞ ¼ 0; ð39Þ

_ρp þ 3Hð1þ wÞρp ¼ 0; ð40Þ

_ρh þ 3Hð1þ wÞρh ¼ 0: ð41Þ

The solution of Eq. (39) is nh ¼ nmax − nmaxða�=aÞ3,
where the scale factor a� represents the time when the
initial abundance of particles was equal to the maximum

number density n�p ¼ nmax. This solution means that in the
early Universe all states with positive temperature were
filled and nh ¼ 0. As the Universe evolves np decreases
and nh increases up to nmax. When β → 0 both number
densities are equal to half of the maximum number density,
np ¼ nh ¼ nmax=2. Since nh ∝ jβj NAT increase as
jβj ∝ nmaxð1 − ða�=aÞ3Þ,2 while for positive temperatures
the scaling is linear T ¼ β−1 ∝ V.
The number conservation was required in [98] because

for canonical particles the number conservation equation
and the continuity equation gave inconsistent results. For
example, for nonrelativistic particles (w ¼ 0) Eq. (39) can
be multiplied bym, but it does not yield Eq. (41). However,
this problem is solved for FDE. Taking the time derivative
of Eqs. (21) and (36), for particles and holes, respectively,
and using Eqs. (37), (38) and (39), we obtain

_ρp ¼ −3Hð1þ wÞρp; ð42Þ

_ρh ¼ −3Hð1þ wÞρh þ 3Hð1þ wÞρh
nmax

nh
: ð43Þ

Equation (43) is equal to Eq. (41) if w ≈ −1. Hence, in
this scenario the chemical potential should be approxi-
mately zero.
Equations (8) and (34) do not include the case when

β → 0. In this limit both particles and holes are equally
distributed, so that np ¼ nh ¼ nmax=2. The full results are
then

np ¼ Cg
6π2

βF umax;þβ
umin;−2 þ nmax

2
; ð44Þ

nh ¼
Cg
6π2

jβjF umax;−β
umin;−2 þ nmax

2
; ð45Þ

where the subscripts �β in F umax
umin;−2 are simply to indicate

the regime in which the integrals are referred to.
Using Eqs. (44) and (45) we plot in Fig. 2 the

ratios np=nmax ¼ βm0F
umax;þβ
umin;−2 þ 1=2 and nh=nmax ¼

jβjm0F
umax;−β
umin;−2 þ 1=2 with umin ¼ 3, as a function of

βm0. The maximum combination βm0 for positive temper-
ature that gives np ¼ nmax is βm0 ¼ 145, while nh ¼ nmax

for βm0 ¼ −1.5. Soon after the FDE particles reach the
transition þT → −T, they quickly reach the maximum
negative temperature T ¼ 0−. This behavior happens
because both energy and temperature increase with the
volume, then when the energy of the particles reach the
cutoff the volume continue increasing and ϵ=T is no longer

1The temperature increases as 0þ;…;þ∞;…;−∞;…; 0− or
in terms of β as þ∞;…; 0;…;−∞, which makes the description
of NAT through β more intuitive.

2Note that this evolution is valid for jβj < ∞, because the
number density for holes is no longer given by Eq. (43) when
β → −∞, but by Eq. (29).
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constant, enabling a transition from positive to negative
temperatures βΛ ≪ 1. However, once the particles reach
the cutoff, they populate the highest energy state, and
the number density and energy density of the system are at
their corresponding maximum values. Therefore, the tran-
sition þ∞ → −T → 0− happens in a very short time
interval. Different values of umin lead to similar behavior.
If umin¼10, then np¼nmax for βm0 ¼ 106, and nh ¼ nmax

for βm0 ¼ −5. The maximum þβ for a given mass is the
minimum possible temperature at the transition of canoni-
cal nonrelativistic matter to noncanonical nonrelativisitic
matter, i.e., when the noncanonical kinetic term dominates
and the temperature of the system stops decreasing to start
increasing.
Since positive temperatures scale with the volume, a

variation from βm0 to zero corresponds to a decrease
of βm0ðzβ¼0 þ 1Þ3=ðz� þ 1Þ3, where the redshift z� corre-
sponds when np ¼ nmax, that is, at the beginning of the
FDE evolution. If βm0 ¼ 106 and the redshift of FDE
formation is z� ¼ 1012, at redshift 108 the combination
βm0 is reduced to 10−6. A similar reduction happens for
z� ¼ 109 and zβ¼0 ¼ 105. For the smaller value βm0 ¼ 145

the transition from positive to negative temperatures
happens much faster.
The fact that nh ≈ nmax ≫ np, soon after the temperature

becomes negative, indicates from the number conservation
equation that _nh ¼ 0, thus the holes are not diluted as
the Universe expands, but fill all the high-energy states.
The behavior of FDE particles therefore does not suffer
from the problems presented in [98] when the number of
particles is conserved.
For positive β we have, for example, F 104

10;−1 ¼ 10−6

while F 104

10;−1 ¼ 7 for negative β. If umin is one order

of magnitude smaller, then F 104

3;−1 ¼ 10−2 for positive β

and F 104

3;−1 ¼ 8 for negative β. These results indicate that

the constant C should be of order 10−46 GeV4, i.e.,
C ¼ λ6M−2

Pl , with λ ∼ 10−8=6 GeV, to give the observed
value of the vacuum energy. Since the maximum energy
density depends logarithmically on the cutoff scale, even
arbitrarily large values of Λ ∼ 1019 GeV would still give
the observed value of the vacuum energy if the constant is
C ∼ 10−47 GeV4. Using the parametrization including the
Planck mass, the length scale is ðM2

Pl=λ
6Þ1=4, indicating that

the length λ−1 is of order 107.8l1=3p ∼ 103=2 GeV−1, where lp
is the Planck length.
The energy density is constant for both particles and

holes, and we can see its evolution and the transition from
þT to −T in Fig. 3, where we selected the corresponding
initial energy βϵi ¼ 3, which is the minimum allowed
value for this parameter. Other choices for the minimum
energy would give very similar results. Since the equation
of state should be minus one, DE perturbations are
practically zero.
In order to investigate the impact of this transition in the

early Universe, we will use cosmological observations to
constrain the redshift of the transition zβ¼0 and the usual six
ΛCDM parameters. We take the same initial energy as
before and use an adapted version of CLASS [107], along
with MONTEPYTHON [108,109] to constrain the cosmologi-
cal parameters.
We use a different set of observations from the

following surveys: CMB anisotropy results from Planck
high-l and low-l temperature and polarization power
spectra (TT, TE, EE) [110] and lensing measurements
[111]; BAO measurements from 6dFGS [112], MGS
[113], BOSS DR12 [114], and the auto and cross-
correlation of Lyα absorption and quasars in eBOSS
DR14 [115,116]; and 1048 SNe from the Pantheon sample

]117 ]. We constrain the nuisance parameters along with
the cosmological ones and we use the Gelman-Rubin
criterion [118] R − 1 < 0.06 to assume that the chains
converged. We use a prior on the redshift zβ¼0 [1, 1010] so
that DE dominates at very late times.

FIG. 3. Evolution of the density parameter for radiation, matter
and dark energy with a illustrative transition from þT to −T at
redshift 103.

np

nmax

nh
nmax

0 20 40 60 80 100 120 140

0.05

0.10

0.50

1

m0

FIG. 2. Ratio between the particle (hole) number density to the
maximum number density in blue (red), as a function of βm0. The
temperature increases from right to left.
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We show in Fig. 4 the constraints on the redshift of
the transition from þT to −T and the other six para-
meters for the joint analysis of CMBþ BAO and
CMBþ BAOþ SNe. We present in Table I the best fit
and 68% C.L. values for all parameters. The results are
consistent with the ΛCDM model and the transition from

positive to negative temperatures could have happened at
any redshift zβ¼0 > 1, thus in agreement with the cos-
mological observations. This agreement reflects the fact
that the energy density for DE is much smaller than the
corresponding ones for matter and radiation, at higher
redshifts.

FIG. 4. 1D and 2D (68% and 95% C.L.) posterior distributions of the cosmological parameters for the combinations CMBþ BAO and
CMBþ BAOþ SNe.
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V. CONCLUSIONS

In this paper we have investigated further aspects of
the FDE model. First, we analyzed FDE with a nonzero
chemical potential. In this case, FDE possesses a phantom
behavior and the equation of state parameter has a lower
limit. The combination of temperature and chemical
potential βμ is constrained by measurements of w by
Planck, giving an upper bound of βμ ≲ 5%βϵ.

In the second part of this paper we analyzed the NAT
behavior for FDE. In order to avoid a divergence in the
energy when the momentum goes to zero, a cutoff is
introduced. This cutoff is precisely a requirement for
NAT, thus indicating a connection between FDE and
NAT, if FDE is composed of fermions. In this case the
equation of state parameter should be equal to minus one
and the chemical potential should be zero. We have
shown that when the energy of the system reaches the
cutoff, the transition to NAT happens and in fact, all high-
energy states become quickly populated, leading in turn
to the maximum energy density and number density for
the system. Negative temperatures saturates (T ¼ 0−) in a
very short time and the holes are no longer diluted as the
Universe expands. Using combined data from CMB,
BAO and SNe, we investigated the redshift of the
transition from þT to −T and the results indicated that
this transition is allowed at any redshift larger than one.
This connection between FDE and NAT elucidates the
properties of the present model and shows a possible fate
of the FDE gas.
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