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In this work, we extend our previous study of the bulk viscosity of hot and dense npe matter induced by
the Urca processes in the neutrino trapped regime to npeμ matter by adding the muonic Urca processes as
well as the purely leptonic electroweak processes involving electron-muon transition. The nuclear matter is
modeled in a relativistic density functional approach with two different parametrizations which predict
neutrino dominated matter (DDME2 model) and antineutrino dominated matter (NL3 model) at temper-
atures for which neutrinos/antineutrinos are trapped. In the case of neutrino-dominated matter, the main
equilibration mechanism is lepton capture, whereas in the case of antineutrino-dominated matter this is due
to neutron decay. We find that the equilibration rates of Urca processes are higher than that of the pure
leptonic processes, which implies that the Urca-process-driven bulk viscosity can be computed with the
leptonic reactions assumed to be frozen. We find that the bulk viscosity decreases with temperature as
ζ ∼ T−2 at moderate temperatures. At high temperatures this scaling breaks down by sharp drops of the bulk
viscosity close to the temperature where the proton fraction is density-independent and the matter becomes
scale-invariant. This occurs also when the matter undergoes a transition from the antineutrino-dominated
regime to the neutrino-dominated regime where the bulk viscosity attains a local maximum. We also
estimate the bulk viscous dissipation timescales and find that these are in the range≳ 1 s for temperatures
above the neutrino trapping temperature. These timescales would be relevant only for long-lived objects
formed in binary neutron star mergers and hot proto-neutron stars formed in core-collapse supernovas.

DOI: 10.1103/PhysRevD.104.103027

I. INTRODUCTION

Binary neutron star mergers, which were observed
in gravitational waves by the LIGO-Virgo collaboration,
offer a new setting in which to study the properties of
superdense, strongly interacting matter. These events are
complementary to the studies of cold neutron stars, which
probe the near zero-temperature limit and heavy-ion
collisions which are covering less baryon-dense finite
systems. Thus, they offer an opportunity to gain insight
into the physics of hot, dense and highly isospin asym-
metric matter by analyzing the premerger gravitational
waves (already observed in two merger events, GW170817
and GW190425 [1,2]) and the postmerger signal which will

be accessible to advanced LIGO and the next-generation
gravitational-wave observatories, such as the Einstein
Telescope [3] and the Cosmic Explorer [4]. Furthermore,
electromagnetic counterparts of the gravitational waves
produced in neutron star mergers can be used to set bounds
on the properties of compact stars.
Numerical simulations of neutron star mergers using

the nondissipative hydrodynamics [5–16] (for reviews see
[17–19]) show that the matter in the postmerger object
undergoes oscillations which may be damped by dissipa-
tive processes. The initial estimates of the potential impact
of dissipation on these oscillations based on cold-matter
transport in neutron stars [20] highlighted the potential
importance of bulk viscosity in damping the modes.
Subsequent studies computed the bulk viscosity of dense
matter in various regimes [21–23]. In particular, our
previous work [22], focused on the neutrino-trapped regime
and computed the bulk viscosity of hot nuclear matter using
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the relativistic density functional method for the equation
of state (EoS) and single-particle spectra of baryons
consistent with the prevailing conditions in the post-merger
object. It was found that in the regime where neutrinos
are trapped the bulk viscosity is reduced compared to the
neutrino free-streaming regime. Our estimates of the
damping timescales [24] indicate that the bulk viscous
damping would be most efficient close the temperatures
T tr ∼ 5 MeV [25,26] at which the transition from trapped
to the free-streaming neutrino regime occurs. The efficacy
of the bulk viscosity was estimated by embedding it in the
ideal hydrodynamics simulations [27], but this study was
restricted to the free-streaming regime only.
The aim of this work is twofold. First, we extend our

previous study [22] of neutron-proton-electron (npe) mat-
ter to include muons. It is well established that muons
appear in significant amounts slightly above the nuclear
saturation density, which makes their proper treatment
mandatory. Their appearance gives rise to new types of
Urca processes and opens up the possibility of purely
leptonic electroweak processes. Thus, it is the purpose of
this work to assess the impact of these processes on the bulk
viscosity of npeμ matter. The second purpose of this work
is to improve on the approximations used in Ref. [22], by
computing the reactions rates of baryonic Urca processes in
a fully relativistic manner. We show below that using
relativistic rather than approximate nonrelativistic forms of
baryon spectra produces a sizeable effect already above
twice the nuclear saturation density. Below we focus again
on the neutrino-trapped regime, in which neutrinos have a
mean free path that is significantly shorter than the stellar
size. The resulting nonzero lepton chemical potential
affects both the composition of matter and the reaction
rates, and constitutes the main difference between this work
and the extensively studied low-temperature limit of npe
and npeμ compositions [28–37]. We demonstrate explicitly
how the low-temperature expressions are obtained from their
more general counterparts derived here inAppendixA. As in
Ref. [22] wewill assume that thermal conduction is efficient
enough tokeepmatter isothermal as it undergoes oscillations.
While such assumption is needed for the treatment of the
oscillations, the rates of various weak processes we compute
below are local quantities and do not require such an
assumption. The background matter will be treated within
the covariant density functional models based on the
DDME2 parametrization [38] with density-dependent cou-
plings and NL3 parametrization [39] which features density-
independent couplings but is supplemented with nonlinear
self-interaction terms for scalar mesons. More details on
these models are given in Ref. [22].
Our study is focused on the bulk viscosity, but the

methods and results are of more general interest, as they can
be applied to obtain other microphysical characteristic of
dense matter, for example, neutrino opacities.
The density-temperature regime studied here occurs

in neutron star mergers and also in supernovae and

proto-neutron stars, albeit in those cases the lepton fraction
is larger (Ye ≃ 0.4) than in the merger case (Ye ≃ 0.1) [40–
42]. It is worthwhile to note that the importance of muons
has been addressed recently in the supernova context as
well [43,44].
This paper is organized as follows. InSec. IIwediscuss the

rates of the nucleonic Urca and purely leptonic processes.
Section III derives the corresponding expressions for the bulk
viscosity. In Sec. IV we present the results of numerical
evaluation of the rates and bulk viscosity on the basis of two
density functional theory models at a finite temperature
which account for a neutrino component with nonzero
chemical potential. Our conclusions are given in Sec. V.
Appendix A details the computation of the phase-space
integrals needed to evaluate the rates of the Urca processes.
Finally, Appendix B details the computation of the suscep-
tibilities of nucleonic matter, which are required for the
evaluation of the bulk viscosity coefficient.
In this work we use natural (Gaussian) units with

ℏ ¼ c ¼ kB ¼ 1, and the metric gμν ¼ diagð1;−1;−1;−1Þ.

II. WEAK PROCESSES IN NEUTRON
STAR MATTER

We consider neutron-star matter composed of neutrons,
protons, electrons, muons, and electron and muon neutrinos
in the density range 0.5n0 ≤ nB ≤ 5n0, where n0 ≃
0.152 fm−3 is the nuclear saturation density, and temper-
ature range T tr ≤ T ≃ 100 MeV with T tr ≃ 5 MeV being
the temperature above which neutrinos (or antineutrinos)
are trapped in a neutron star [26].
The β-equilibration processes among the baryons we

consider below are the direct Urca processes

n⇄ pþ e− þ ν̄e ðneutron e − decayÞ; ð1Þ

pþ e− ⇄ nþ νe ðelectron captureÞ; ð2Þ

n⇄ pþ μ− þ ν̄μ ðneutron μ − decayÞ; ð3Þ

pþ μ− ⇄ nþ νμ ðmuon captureÞ: ð4Þ

If muons are present in matter, the following purely
leptonic reactions are operative

μ− ⇄ e− þ ν̄e þ νμ ðmuon decayÞ; ð5Þ

μ− þ νe ⇄ e− þ νμ ðneutrino scatteringÞ; ð6Þ

μ− þ ν̄μ ⇄ e− þ ν̄e ðantineutrino scatteringÞ: ð7Þ

Stellar matter is in approximate β-equilibrium which
implies μn þ μνl ¼ μp þ μl, where l ¼ fe; μg. We assume
that neutrino flavor conversion can be neglected, so there
are four exactly conserved quantities: baryon number
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nB ¼ nn þ np, electric charge (the system remains charge
neutral np ¼ ne þ nμ), and lepton numbers nLl

¼
nl þ nνl ¼ YLl

nB for each flavor l separately. Here YLl

are the lepton fractions, which have typical values YLe ¼
YLμ ¼ 0.1 in the BNS mergers [18] and YLe ¼ YLμ ¼ 0.4
in proto-neutron stars and supernovas [40–42]. Since
there are 4 conserved quantities and 6 particle species,
this leaves two chemical potentials (33) and (34) discussed
below that are driven to zero by weak interactions on

timescales that are potentially comparable to the density
variations in a merger. In this paper, we calculate the
resultant bulk viscosity.

A. Urca process rates

The neutron decay processes (1) and (3) can be written
compactly as n → pþ l− þ ν̄l, where l− is an electron or
muon and ν̄l is the corresponding antineutrino. Then, the
rate of each of these processes can be written as

Γn→plν̄ ¼
Z

d3p
ð2πÞ32p0

Z
d3p0

ð2πÞ32p0
0

Z
d3k

ð2πÞ32k0

Z
d3k0

ð2πÞ32k00
X

jMUrcaj2

× f̄ðkÞf̄ðpÞf̄ðk0Þfðp0Þð2πÞ4δð4Þðkþ pþ k0 − p0Þ; ð8Þ

where fðpÞ is the Fermi distribution function, f̄ðpÞ≡ 1 − fðpÞ, and the mapping between the particles and their momenta
is as follows: ðlÞ → k, ðνl=ν̄lÞ → k0, ðpÞ → p, and ðnÞ → p0. Similarly, the lepton capture processes (2) and (4) can be
written as pþ l− → nþ νl and the corresponding rate is given by

Γpl→nν ¼
Z

d3p
ð2πÞ32p0

Z
d3p0

ð2πÞ32p0
0

Z
d3k

ð2πÞ32k0

Z
d3k0

ð2πÞ32k00
X

jMUrcaj2

× fðkÞfðpÞf̄ðk0Þf̄ðp0Þð2πÞ4δðkþ p − k0 − p0Þ: ð9Þ
The matrix element of these processes is [45]

X
jMUrcaj2 ¼ 32G2

F cos
2θc½ð1þ gAÞ2ðk · pÞðk0 · p0Þ þ ð1 − gAÞ2ðk · p0Þðk0 · pÞ þ ðg2A − 1Þm�

nm�
pðk · k0Þ�; ð10Þ

where GF ¼ 1.166 × 10−5 GeV−2 is the Fermi coupling constant, θc is the Cabibbo angle (cos θc ¼ 0.974), gA ¼ 1.26 is
the axial-vector coupling constant, and m�

n and m�
p are the effective masses of neutron and proton, respectively. Because

gA ≈ 1, the second and the third terms in Eq. (10) are suppressed as compared to the first one so we neglect them in our
further computations.
The equilibration rates given by Eq. (8) and (9) can be computed once we specify the spectrum of strongly interacting

nucleons. We apply the covariant density functional theory (CDF) of nuclear matter which is based on phenomenological
baryon-meson Lagrangians introduced ba Walecka, Boguta-Bodmer and others [46,47].
The Lagrangian density of matter is given by

L ¼
X
N

ψ̄N

�
γμ
�
i∂μ − gωωμ −

1

2
gρτ · ρμ

�
−m�

N

�
ψN þ

X
λ

ψ̄λðiγμ∂μ −mλÞψλ;

þ 1

2
∂μσ∂μσ −

1

2
m2

σσ
2 −UðσÞ − 1

4
ωμνωμν þ

1

2
m2

ωω
μωμ −

1

4
ρμν · ρμν þ

1

2
m2

ρρμ · ρμ; ð11Þ

where N sums over nucleons, ψN are the nucleonic Dirac
fields with effective masses m�

N ¼ mN − gσσ, with mN
being the nucleon mass in vacuum; σ, ωμ, ρμ are,
respectively, the scalar-isoscalar, vector-isoscalar and
vector-isovector meson fields which mediate the inter-
action between baryons; ωμν ¼ ∂μων − ∂νωμ and ρμν ¼
∂μρν − ∂νρμ are the field strength tensors of vector
mesons; mi are the meson masses and gi are the
baryon-meson couplings with i ¼ σ, ω, ρ; finally,
UðσÞ is the self-interaction potential of scalar meson
field. The leptonic part of the Lagrangian is given by the

second sum in Eq. (11), where ψλ, λ ∈ ðe−; μ−; νe; νμÞ,
are the free Dirac fields of leptons with masses me− ¼
0.51 MeV, mμ− ¼ 105.7 MeV, and mνe ¼ mνμ ¼ 0. In
the following we will adopt two different parame-
trizations of Lagrangian (11), specifically, the model
DDME2 [38] in which the nucleon-meson couplings
are density-dependent and UðσÞ ¼ 0, and the model
NL3 [39], which has density-independent nucleon-meson
couplings but nonzero self-interaction among σ-meson
fields, which is contained in the potential UðσÞ ¼
g2σ3=3þ g3σ4=4.
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The spectrum of nucleonic excitations derived from
Eq. (11) in the mean-field approximation is given
by [46]

Ek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm�2

N

q
þ gωω0 þ I3gρρ03 þ Σr; ð12Þ

where I3 is the third component of the nucleon isospin, Σr
is so-called rearrangement self-energy [48] which should
be introduced to maintain the thermodynamical consistency
(specifically the energy conservation and fulfillment of the

Hugenholtz-van Hove theorem) of the system in the case of
density-dependent couplings. Defining the nucleon effec-
tive chemical potentials as μ�N ¼ μN − gωω0 − I3gρρ03 − Σr

we can write the argument of nucleon Fermi-functions as
Ek − μN ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm�2

N

p
− μ�N which formally coincides

with the spectrum of free nucleons with effective masses
and effective chemical potentials.
The details of computation of the phase-space integrals

in Eqs. (8) and (9) are given in Appendix A. The final
result reads

Γn→plν̄ðμΔl
Þ ¼ −

G2T4

ð2πÞ5
Z

∞

−∞
dy

Z
∞

0

dx½ðμνl þ μ�n þ yTÞ2 −m�2
n − x2T2�

× ½ðμl þ μ�p þ ȳlTÞ2 −m2
l −m�2

p − x2T2�

×
Z

αpþȳl

ml=T−αl
dz f̄ðzÞfðz − ȳlÞθx

Z
∞

ανl

dz0 fðz0 þ yÞf̄ðz0Þθy; ð13Þ

Γpl→nνðμΔl
Þ ¼ G2T4

ð2πÞ5
Z

∞

−∞
dy

Z
∞

0

dx½ðμνl þ μ�n þ yTÞ2 −m�2
n − x2T2�

× ½ðμl þ μ�p þ ȳlTÞ2 −m2
l −m�2

p − x2T2�

×
Z

αpþȳl

ml=T−αl
dz fðzÞfðȳl − zÞθx

Z
αnþy

−ανl

dz0 fðz0 − yÞf̄ðz0Þθz; ð14Þ

where G ¼ GF cos θcð1þ gAÞ, αj ¼ μ�j=T for baryons and αj ¼ μj=T for leptons, ȳl ¼ yþ μΔl
=T with μΔl

¼ μn þ μνl −
μp − μl being the chemical potential imbalances (see Sec. III). The θ-functions in Eqs. (13) and (14) impose the constraints

θx∶ ðzk − xÞ2 ≤ ðz − αp − ȳlÞ2 −m�2
p =T2 ≤ ðzk þ xÞ2; ð15Þ

θy∶ ðz0k − xÞ2 ≤ ðz0 þ αn þ yÞ2 −m�2
n =T2 ≤ ðz0k þ xÞ2; ð16Þ

θz∶ ðz0k − xÞ2 ≤ ðz0 − αn − yÞ2 −m�2
n =T2 ≤ ðz0k þ xÞ2: ð17Þ

The integration variables y and x are the transferred
energy and momentum, respectively, normalized by the
temperature; the variables z and z0 are the normalized-
by-temperature lepton and neutrino energies, respectively,

computed from their chemical potentials, and zk ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðzþ αlÞ2 −m2

l =T
2

q
and z0k ¼ z0 ∓ ανl are the normal-

ized-by-temperature momenta of the lepton and the anti-
neutrino/neutrino, respectively. The rates of the inverse
processes can be obtained from Eqs. (13) and (14) by
interchanging fðpiÞ ↔ f̄ðpiÞ for all particles.
In beta equilibrium we have μΔl

¼ 0 and the rates of
the direct and inverse processes are equal for each
lepton flavor: Γn→plν̄ ¼ Γplν̄→n ≡ Γn↔plν̄, Γpl→nν ¼
Γnν→pl ≡ Γpl↔nν. For small departures from β-equilibrium
μΔl

≪ T, we can assume linear response where the net

proton production rate due to the neutron decay and
its inverse processes is Γn→plν̄ − Γplν̄→n ¼ λn↔plν̄μΔl

.
Similarly, the net proton production rate due to the
inverse and direct lepton capture processes is Γnν→pl −
Γpl→nν ¼ λpl↔nνμΔl

. Pushing the system out of beta
equilibrium by a chemical potential μΔl

just replaces one
power of T in the rate with a power of μΔl

, so the expansion
coefficients λn↔plν̄ and λpl↔nν (see Appendix A) are
given by

λn↔plν̄ ¼
�∂Γn→plν̄

∂μΔl

−
∂Γplν̄→n

∂μΔl

�����
μΔl¼0

¼ Γn↔plν̄

T
; ð18Þ

λpl↔nν ¼
�∂Γnν→pl

∂μΔl

−
∂Γpl→nν

∂μΔl

�����
μΔl¼0

¼ Γpl↔nν

T
: ð19Þ
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B. Lepton process rates

The general form of the lepton reaction rates (5), (6) and (7) reads

Γμ→eν̄ν ¼
Z

dΩk

X
jMlepj2fðkμÞf̄ðkeÞf̄ðkν̄eÞf̄ðkνμÞð2πÞ4δð4Þðke þ kν̄e þ kνμ − kμÞ; ð20Þ

Γμν→eν ¼
Z

dΩk

X
jMlepj2fðkμÞfðkνeÞf̄ðkeÞf̄ðkνμÞð2πÞ4δð4Þðke þ kνμ − kνe − kμÞ; ð21Þ

Γμν̄→eν̄ ¼
Z

dΩk

X
jMlepj2fðkμÞfðkν̄μÞf̄ðkeÞf̄ðkν̄eÞð2πÞ4δð4Þðke þ kν̄e − kν̄μ − kμÞ; ð22Þ

where the short-hand notation dΩk is the Lorentz-invariant momentum phase-space element, i.e.,

Z
dΩk ¼

Z
d3ke

ð2πÞ32k0e

Z
d3kμ

ð2πÞ32k0μ

Z
d3kνe=ν̄e

ð2πÞ32k0νe=ν̄e

Z d3kνμ=ν̄μ
ð2πÞ32k0νμ=ν̄μ

: ð23Þ

The spin-averaged relativistic matrix element of lepton reactions reads [43]

X
jMlepj2 ¼ 128G2

Fðke · kνμ=ν̄μÞðkνe=ν̄e · kμÞ: ð24Þ

Computation of lepton process rates can be performed analogously to the Urca process rates. The final expressions suitable
for numerical evaluation are

Γμ→eν̄νðμLΔÞ ¼ −
4G2

FT
4

ð2πÞ5
Z

∞

−∞
dy

Z
∞

0

dx½ðμe þ μνμ þ ỹTÞ2 −m2
e − x2T2�

× ½ðμνe þ μμ þ yTÞ2 −m2
μ − x2T2�

×
Z

ανμþỹ

me=T−αe
dz f̄ðzÞfðz − ỹÞθLx

Z
∞

ανe

dz0 fðz0 þ yÞf̄ðz0ÞθLy ; ð25Þ

Γμν→eνðμLΔÞ ¼
4G2

FT
4

ð2πÞ5
Z

∞

−∞
dy

Z
∞

0

dx½ðμe þ μνμ þ ỹTÞ2 −m2
e − x2T2�

× ½ðμνe þ μμ þ yTÞ2 −m2
μ − x2T2�

×
Z

ανμþỹ

me=T−αe
dz f̄ðzÞf̄ðỹ − zÞθLx

Z
αμþy

−ανe
dz0f̄ðz0 − yÞfðz0ÞθLz ; ð26Þ

Γμν̄→eν̄ðμLΔÞ ¼
4G2

FT
4

ð2πÞ5
Z

∞

−∞
dy

Z
∞

0

dx½ðμe þ μνμ þ ỹTÞ2 −m2
e − x2T2�

× ½ðμνe þ μμ þ yTÞ2 −m2
μ − x2T2�

×
Z

∞

zmin

dz f̄ðzÞfðz − ỹÞθLx
Z

∞

ανe

dz0 fðz0 þ yÞf̄ðz0ÞθLy ; ð27Þ

where μLΔ ≡ μμ þ μνe − μe − μνμ ¼ μΔe
− μΔμ

is the chemical imbalance for leptons, ỹ ¼ yþ μLΔ=T, zmin ¼
maxfme=T − αe; ανμ þ ỹg, and the θ-functions impose the constraints

θLx ∶ ðzk − xÞ2 ≤ ðz − ανμ − ỹÞ2 ≤ ðzk þ xÞ2; ð28Þ

θLy ∶ ðz0k − xÞ2 ≤ ðz0 þ αμ þ yÞ2 −m2
μ=T2 ≤ ðz0k þ xÞ2; ð29Þ

θLz ∶ ðz0k − xÞ2 ≤ ðz0 − αμ − yÞ2 −m2
μ=T2 ≤ ðz0k þ xÞ2; ð30Þ

with zk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðzþ αeÞ2 −m2

e=T2
p

and z0k ¼ z0 ∓ ανe for θy=θz.
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III. BULK VISCOSITY OF npeμ MATTER

In this section, we derive a microscopic formula for the
bulk viscosity of neutrino-trapped npeμ matter arising
from the Urca processes (1)–(4). In the temperature
and density range where the neutrinos are trapped the
β-equilibration rates are much higher than the characteristic
frequency of density oscillations; this corresponds to the
fast equilibration regime [21]. Then the analysis can be
restricted to the “subthermal” case, where the matter is only
slightly perturbed from equilibrium.
Consider now small-amplitude density oscillations in

nuclear matter with a given frequency ω for which we can
write nBðtÞ ¼ nB0 þ δnBðtÞ and nLl

ðtÞ ¼ nLl0
þ δnLl

ðtÞ,
where δnBðtÞ, δnLl

ðtÞ ∼ eiωt. The baryon and lepton con-
servation laws in the comoving frame imply

δnB ¼ −nB0
θ

iω
; δnLl

¼ −nLl0

θ

iω
; l ¼ fe; μg; ð31Þ

where θ ¼ ∂ivi is the fluid velocity divergence.
The perturbations of particle densities can be separated

into local equilibrium and nonequilibrium parts

njðtÞ ¼ nj0 þ δnjðtÞ; δnjðtÞ ¼ δneqj ðtÞ þ δn0jðtÞ; ð32Þ

where j ¼ fn; p; e; μ; νe; νμg labels the particles. The
variations δneqj ðtÞ denote the shift of the equilibrium state
for the instantaneous values of the baryon and lepton
densities nBðtÞ and nLl

ðtÞ, whereas δn0jðtÞ denote the
deviations of the corresponding densities from their equi-
librium values.
The compression and rarefaction drives the system out of

chemical equilibrium leading to nonzero δn0jðtÞ, and, sub-
sequently, to chemical imbalances μΔl

¼ δμn þ δμνl −
δμp − δμl, which can be written as

μΔe
¼ Anδnn þ Aνeδnνe − Apδnp − Aeδne; ð33Þ

μΔμ
¼ Anδnn þ Aνμδnνμ − Apδnp − Aμδnμ; ð34Þ

where An ¼ Ann − Apn, Ap ¼ App − Anp, and Al ¼ All,
Aνl ¼ Aνlνl with

Aij ¼
�∂μi
∂nj

�
0

; ð35Þ

and index 0 refers to the equilibrium state. The nuclear
off-diagonal elements Anp and Apn are nonzero because
of the cross-species strong interaction between neutrons
and protons. The computation of susceptibilities Aij is
performed in Appendix B.
To proceed further we need to determine how the lepton

reactions (5)–(7) affect the bulk viscosity from the Urca
processes (1)–(4). Typically, we deal with two limiting

cases: (a) fast lepton-equilibration limit, i.e., the lepton
process rates are much higher than Urca process rates;
(b) slow lepton-equilibration limit, where the lepton proc-
ess rates are much lower than Urca process rates. We derive
analytic expressions for the bulk viscosity in terms of
equilibration rates and particle susceptibilities in these two
limiting cases in the next two subsections.

A. Fast lepton-equilibration limit

In this case, the chemical equilibration among leptons
(processes (5), (6), (7)) takes place much faster than
the equilibration between baryons and leptons, therefore
the condition μe − μνe ¼ μμ − μνμ can be assumed to be
satisfied while studying the bulk viscosity from the Urca
processes. This implies μΔe

¼ μΔμ
≡ μΔ, i.e., the electronic

and muonic Urca processes are described by a single
chemical potential shift from equilibrium. The rate
equations which take into account the loss and gain of
particles read

∂
∂t δnnðtÞ ¼ −θnn0 − ðλe þ λμÞμΔðtÞ; ð36Þ

∂
∂t δnpðtÞ ¼ −θnp0 þ ðλe þ λμÞμΔðtÞ; ð37Þ

∂
∂t δneðtÞ ¼ −θne0 þ λeμΔðtÞ þ IL; ð38Þ

∂
∂t δnμðtÞ ¼ −θnμ0 þ λμμΔðtÞ − IL; ð39Þ

where λe ¼ λn↔peν̄ þ λpe↔nν and λμ ¼ λn↔pμν̄ þ λpμ↔nν

are the summed equilibration rates of the electron and
muon Urca reactions, respectively. The quantity IL is
the summed rate of the lepton reactions (5), (6), (7),
which arises as a result of an almost vanishing shift μΔe

−
μΔμ

≪ μΔ but cannot be neglected because the relevant
λ-coefficient can be very large, as already discussed
in Ref. [49].
Only two of the balance equations are independent

(one for a baryon and one for a lepton) as the others
can be obtained from them via exploiting the conditions of
charge neutrality δnp ¼ δne þ δnμ and baryon conserva-
tion δnB ¼ δnn þ δnp. The balance equations for neutrinos
are obtained from Eqs. (38) and (39) and the constraints
δnLl

¼ δnl þ δnνl .
The equilibrium with respect to lepton reactions implies

δμμ þ δμνe − δμe − δμνμ

¼ Aμδnμ þ Aνeδnνe − Aeδne − Aνμδnνμ ¼ 0; ð40Þ

which gives the constraints
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δne ¼
ðAμ þ AνμÞδnp þ AνeδnLe

− AνμδnLμ

AL
; ð41Þ

δnμ ¼
ðAe þ AνeÞδnp − AνeδnLe

þ AνμδnLμ

AL
; ð42Þ

with AL ¼ Ae þ Aνe þ Aμ þ Aνμ . Substituting these expres-
sions into Eq. (33) we find

μΔ ¼ A−1
L ½ðNn − NpÞδnn þ NpδnB þ NeδnLe

þ NμδnLμ
�;

ð43Þ

where

Nn ¼ ALAn; ð44Þ

Np ¼ −ApAL − ðAe þ AνeÞðAμ þ AνμÞ; ð45Þ

NB ¼ Nn − Np ¼ ALðAn þ ApÞ þ ðAe þ AνeÞðAμ þ AνμÞ;
ð46Þ

Ne ¼ AνeðAμ þ AνμÞ; ð47Þ

Nμ ¼ AνμðAe þ AνeÞ: ð48Þ

Next we substitute μΔ in Eq. (36), assume that the
time-dependence of density perturbations is given by
δnjðtÞ ∼ eiωt and take into account Eq. (31) to obtain

iωδnn þ θnn0 þ λA−1
L ½NBδnn þ NpδnB þ NeδnLe

þ NμδnLμ
�

¼ A−1
L ½ðiωAL þ λNBÞδnn þ λNpδnB þ θnn0AL þ λðNeδnLe

þ NμδnLμ
Þ� ¼ 0; ð49Þ

with λ ¼ λe þ λμ. Solving for δnn gives

δnn ¼
θ

iω

λNpnB0 þ λðNenLe0
þ NμnLμ0

Þ − iωnn0AL

iωAL þ λNB
: ð50Þ

Under similar assumptions Eq. (41) gives

δne ¼ −
θ

iω
1

ðiωAL þ λNBÞ
fiωðAμ þ AνμÞnp0 þ λAnðAμ þ AνμÞnB0

þ ðiωþ λA2ÞAνenLe0
− ½iωþ λðAn þ ApÞ�AνμnLμ0

g; ð51Þ

where we exploited the relations

NBAνe þ NeðAμ þ AνμÞ ¼ AνeALA2; ð52Þ

NBAνμ − NμðAμ þ AνμÞ ¼ AνμALðAn þ ApÞ; ð53Þ

and

A1 ≡ An þ Ap þ Ae þ Aνe ; ð54Þ

A2 ≡ An þ Ap þ Aμ þ Aνμ : ð55Þ

The equilibrium shifts of neutron and electron densities can be found from the λ → ∞ limit of Eqs. (50) and (51),
respectively (see also Ref. [24])

δneqn ¼ θ

iωNB
f½−ApAL − ðAe þ AνeÞðAμ þ AνμÞ�nB0 þ AνeðAμ þ AνμÞnLe0

þ AνμðAe þ AνeÞnLμ0
g; ð56Þ

δneqe ¼ −
θ

iωNB
½AnðAμ þ AνμÞnB0 þ AνeA2nLe0

− AνμðAn þ ApÞnLμ0
�: ð57Þ

Finally, for the nonequilibrium shifts, we find
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δn0n ¼ −θAL

NBnn0 þ NpnB0 þ NenLe0
þ NμnLμ0

NBðiωAL þ λNBÞ
; ð58Þ

δn0e ¼
θðAμ þ AνμÞ

NBðiωAL þ λNBÞ
ðNnnn0 þ Npnp0 þ NenLe0

þ NμnLμ0
Þ; ð59Þ

which can be written in a compact form

δn0n ¼ −
θC

Bðiωþ λBÞ ; ð60Þ

δn0e ¼
Aμ þ Aνμ

AL

θC
Bðiωþ λBÞ ; ð61Þ

where B ¼ NB=AL, andC ¼ ðNnnn0 þ Npnp0 þ NenLe0
þ

NμnLμ0
Þ=AL.

The full expression for the out-of-equilibrium pressure is
given by

pðtÞ ¼ pðnjðtÞÞ ¼ p½nj0 þ δneqj ðtÞ� þ δp0ðtÞ
¼ peqðtÞ þ δp0ðtÞ; ð62Þ

where the nonequilibrium part of the pressure, referred to as
bulk viscous pressure, is given by

Π≡ δp0 ¼
X
j

�∂p
∂nj

�
0

δn0j: ð63Þ

Using the Gibbs-Duhem relation dp ¼ sdT þP
i nidμi,

which is valid also out of equilibrium, we can write [50]

cj ≡
�∂p
∂nj

�
0

¼
X
i

ni0

�∂μi
∂nj

�
0

¼
X
i

ni0Aij: ð64Þ

Then, using also the relations δn0p ¼ −δn0n, δn0μ ¼
δn0p − δn0e, δn0νl ¼ −δn0l, we obtain

Π ¼ θC
ALBðiωþ λBÞ ½−ðcn − cp − cμ þ cνμÞAL

þ ðce − cνe − cμ þ cνμÞðAμ þ AνμÞ�: ð65Þ

Writing out Eq. (64) for each particle species and recalling
the definitions of relations Apn ¼ Anp ¼ Ann − An ¼
App − Ap we find

cl ¼ nl0Al; cνl ¼ nνl0Aνl ; ð66Þ

cn ¼ nn0Ann þ np0Apn ¼ nB0Ann − np0An; ð67Þ

cp ¼ np0App þ nn0Anp ¼ nB0ðAnn − AnÞ þ np0Ap; ð68Þ

which allows us to write (65) as

Π ¼ −
θC2

Bðiωþ λBÞ : ð69Þ

The bulk viscosity is defined as the real part of −Π=θ, i.e.,

ζ ¼ C2

B
γ

ω2 þ γ2
; γ ¼ λB: ð70Þ

Bulk viscosity given by Eq. (70) has the classic resonant
form which depends on two quantities: the thermodynamic
prefactor C2=B which depends only on the EoS, and the
relaxation rate γ which depends on the weak interaction
rates of electron and muon Urca processes. The limit of the
absence of muons is obtained from the above equations by
setting nμ ¼ nνμ ¼ 0 and taking the limit Aμ; Aνμ → ∞.
Then AL ¼ Aμ þ Aνμ , and the previous expressions (45)
and (47) reduce to

Np ¼ −ðAp þ Ae þ AνeÞAL; Ne ¼ AνeAL; ð71Þ
and

B ¼ A1; C ¼ Annn0 − Apnp0 − Aene0 þ Aνenνe0: ð72Þ

The coefficients B and C coincide with those given in our
previous work [22].

B. Slow lepton-equilibration limit

When the lepton equilibration processes (5), (6), (7) are
slow compared to the Urca processes, i.e., μΔe

≠ μΔμ
, there

are two independent shifts in this case. Now IL ≃ 0, and rate
equations take the form

∂
∂t δnnðtÞ ¼ −θnn0 − λeμΔe

ðtÞ − λμμΔμ
ðtÞ; ð73Þ

∂
∂t δnpðtÞ ¼ −θnp0 þ λeμΔe

ðtÞ þ λμμΔμ
ðtÞ; ð74Þ

∂
∂t δneðtÞ ¼ −θne0 þ λeμΔe

ðtÞ; ð75Þ

∂
∂t δnμðtÞ ¼ −θnμ0 þ λμμΔμ

ðtÞ: ð76Þ

Substituting Eqs. (33) and (34) in the rate equations and
assuming the same time-dependence of perturbation as
above we find
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iωδnn ¼ −nn0θ − ðλe þ λμÞAnδnn þ ðλe þ λμÞApδnp − λeAνeδnνe þ λeAeδne − λμAνμδnνμ þ λμAμδnμ; ð77Þ

iωδne ¼ −ne0θ þ λeAnδnn − λeApδnp þ λeAνeδnνe − λeAeδne: ð78Þ

This system of equations is closed upon using the relations δnp þ δnn ¼ δnB, δne þ δnμ ¼ δnp, δnLe
¼ δne þ δnνe , and

δnLμ
¼ δnμ þ δnνμ , which leads us to (λ≡ λe þ λμ)

δne ¼
−ne0θ þ λeðAn þ ApÞδnn − λeApδnB þ λeAνeδnLe

iωþ λeðAe þ AνeÞ
; ð79Þ

iωδnn ¼ −nn0θ − ðλAn þ λAp þ λμAμ þ λμAνμÞδnn þ ðλeAe þ λeAνe − λμAμ − λμAνμÞδne ð80Þ

þðλAp þ λμAμ þ λμAνμÞδnB − λeAνeδnLe
− λμAνμδnLμ

: ð81Þ

The coupled Eqs. (79) and (80) can be solved to find

Dδnn ¼ −
θ

iω
fiω½nn0ðiωþ λeAe þ λeAνeÞ þ ne0ðλeAe þ λeAνe − λμAμ − λμAνμÞ�

þ ½iωðλAp þ λμAμ þ λμAνμÞ þ λeλμððA1 − AnÞðA2 − AnÞ − A2
pÞ�nB0

− λeAνe ½iωþ λμðAμ þ AνμÞ�nLe0
− λμAνμ ½iωþ λeðAe þ AνeÞ�nLμ0

g; ð82Þ

Dδne ¼ −
θ

iω
fiωne0½iωþ λμA2 þ λeðAn þ ApÞ� − λenB0½Apðiωþ λμA2Þ − λμðAn þ ApÞðA2 − AnÞ�

þ λenLe0
Aνeðiωþ λμA2Þ þ λeðAn þ ApÞiωnn0 − λeλμðAn þ ApÞAνμnLμ0

g; ð83Þ

where

D ¼ ðiωþ λeA1Þðiωþ λμA2Þ − λeλμðAn þ ApÞ2: ð84Þ
The equilibrium shifts δneqf are found as the limit λi → ∞ of Eqs. (82) and (83). However, as we showed in Ref. [24], one
can use the quasiequilibrium solutions δn0f ¼ −θnf0=iω instead, which arise in the λe;μ → 0 limit of Eqs. (82) and (83). We
then find

δn0n ¼
θ

iω

iωðλeC1 þ λμC2Þ þ λeλμ½C2ðAe þ AνeÞ þ C1ðAμ þ AνμÞ�
ðiωþ λeA1Þðiωþ λμA2Þ − λeλμðAn þ ApÞ2

; ð85Þ

δn0e ¼ −
θ

iω

iωλeC1 þ λeλμ½A2C1 − ðAn þ ApÞC2�
ðiωþ λeA1Þðiωþ λμA2Þ − λeλμðAn þ ApÞ2

: ð86Þ

The bulk viscous pressure then reads

Π ¼ θ

iω

iωðλeC2
1 þ λμC2

2Þ þ λeλμ½A1C2
2 þ A2C2

1 − 2ðAn þ ApÞC1C2�
ðiωþ λeA1Þðiωþ λμA2Þ − λeλμðAn þ ApÞ2

; ð87Þ

where we used the relations

cn − cp − ce þ cνe ¼ nn0An − np0Ap − ne0Ae þ nνe0Aνe ≡ C1; ð88Þ

cn − cp − cμ þ cνμ ¼ nn0An − np0Ap − nμ0Aμ þ nνμ0Aνμ ≡ C2: ð89Þ

Extracting the real part of Eq. (87) leads to the final expression of the bulk-viscosity

ζ ¼ λeλμfλe½ðAn þ ApÞC1 − A1C2�2 þ λμ½ðAn þ ApÞC2 − A2C1�2g þ ω2ðλeC2
1 þ λμC2

2Þ
fλeλμ½A1A2 − ðAn þ ApÞ2� − ω2g2 þ ω2ðλeA1 þ λμA2Þ2

: ð90Þ
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If the muon contribution is neglected (λμ ¼ 0) Eq. (90)
reduces to

ζe ¼
C2
1

A1

γe
ω2 þ γ2e

; ð91Þ

with γe ¼ λeA1, which coincides with the result of our
previous work [22].
In the limit of high frequencies ω ≫ λA we find from

Eq. (90)

ζ ¼ λeC2
1 þ λμC2

2

ω2
¼ ζe þ ζμ; ð92Þ

where ζe and ζμ are the contributions by electrons and
muons, respectively.
In the low-frequency limit

ζ ¼ λeðC1 − a1C2Þ2 þ λμðC2 − a2C1Þ2
λeλμðAn þ ApÞ2ða1a2 − 1Þ2 ; ð93Þ

with a1 ¼ A1=ðAn þ ApÞ and a2 ¼ A2=ðAn þ ApÞ.

IV. NUMERICAL RESULTS

A. β-equilibration rates

We start the discussion by presenting the relevant
thermodynamics of β-equilibrated, neutrino-trapped npeμ
matter for two parametrizations of the density functional
theory—the model DDME2 and the model NL3. The
fractions of massive particles (i.e., nucleons, electrons
and muons) are rather insensitive to the density and
temperature. The particles abundances for YLe

¼ YLμ
¼

0.1 are as follows: neutron fraction—80%–82%, proton

fraction—18%–20%, electron fraction—9.5%–10.5%,
muon fraction—9%–10% for model DDME2; and neutron
fraction—77%–81%, proton fraction—19%–23%, elec-
tron fraction—10%–12%, muon fraction—9%–11.5%
for model NL3 in the range 5 ≤ T ≤ 50 MeV and 1 ≤
nB=n0 ≤ 5with n0 being the nuclear saturation density with
the values n0 ¼ 0.152 fm−3 for model DDME2 and n0 ¼
0.153 fm−3 for model NL3.
In contrast to the massive particles, the fractions of

neutrinos are rather sensitive both to the density and
temperature, see Fig. 1. At high temperatures and very
low densities the net neutrino densities become negative in
the DDME2 model, indicating that there are more anti-
neutrinos than neutrinos in that regime. In the NL3 model
instead only the low-temperature and the low-density
regime is neutrino-dominated; the antineutrino population
increases with the increase of both density and temperature.
The reason for this behavior is the larger symmetry energy
in the case of NL3 model which favors larger proton
fractions as compared to the DDME2 model. Charge
neutrality then requires larger electron and muon fractions
and, therefore, smaller neutrino fractions for the given
values of YLl

¼ Yl þ Yνl . Thus, we have an important
difference in the composition of high-density and low-
temperature, i.e., the degenerate regime of neutrino-trapped
matter for these two models: while the trapped species are
neutrinos in the DDEM2 matter, these are antineutrinos in
the case of the NL3 model. This feature leads to qualita-
tively different behavior of β-equilibration rates and the
bulk viscosity for these two models, see below.

1. Rates of Urca processes

Next, we turn to the discussion of the Urca process
rates. As the neutron decay processes (1) and (3) involve
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FIG. 1. Neutrino fractions in neutron-star-merger matter with YLe
¼ YLμ

¼ 0.1 as functions of the baryon density nB (in units of
nuclear saturation density n0) for two values of the temperatures for models DDME2 (a) and NL3 (b). At high temperatures and densities
model NL3 becomes antineutrino-dominated.
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antineutrinos, their rates are expected to be much smaller
than the lepton capture rates if the matter is neutrino-
dominated, as discussed in Ref. [22]. Our numerical
calculations show that the neutron decay rate is negligibly
small if the neutrino chemical potential (for the given
lepton species) satisfies the condition ανl ¼ μνl=T ≥ −3.
This condition is satisfied for DDME2 model in the whole
temperature-density range of interest, therefore the domi-
nant equilibration processes are the lepton capture proc-
esses. The rates of the electron and muon capture processes
for model DDME2 are shown, respectively, in panels (a)
and (b) of Fig. 2. At moderate temperatures, T ≤ 10 MeV
the lepton decay rates follow their low-temperature scaling
given by Eq. (A31), i.e., increase cubically with the
temperature. At higher temperatures, this scaling breaks
down. However, the deviation of the exact equilibration
rates from their low-temperature limit is within a few
factors (see Appendix A). A comparison between the left
and right panels in Fig. 2 shows that the electron and the
muon capture rates are quite similar both qualitatively and
quantitatively. In panel (a) we show also the electron
capture rates which were computed in Ref. [22] in the
approximation of nonrelativistic nucleons. As expected, the
importance of relativistic corrections to the nucleon spec-
trum rises with the density, and at the density nB=n0 ¼ 5
the full relativistic rate is around one order of magnitude
larger than its nonrelativistic approximation.
Figure 3 shows the summed β-equilibration (Urca) rates

Γl ¼ Γn↔plν̄ þ Γpl↔nν for the model NL3. In contrast to the
model DDME2, the model NL3 features two different
regimes of equilibration—the antineutrino-dominated
regime in the low-temperature, high-density sector, where
the dominant equilibration process is the neutron decay;

and the neutrino-dominated regime in the high-temperature,
low-density sector, where the dominant equilibration proc-
ess is the lepton capture. As the antineutrino-dominated
regime is realized at low temperatures and high densities
where the matter is degenerate, the neutron decay rates
follow the scaling ∝ T3 given by Eq. (A33). Numerically
we find that the lepton capture rates are suppressed as long
as the scaled-to-temperature neutrino chemical potential
ανl ≤ −6. Although the net neutrino densities drop with
the increase of temperature (see Fig. 1), their scaled
chemical potentials increase (remaining negative) thus
allowing the neutrinos to come into the game already at
ανl ≃ −6. At higher temperatures, the neutron decay rates
become suppressed exponentially, and the lepton capture
processes become dominant at ανl ≃ −3. As a conse-
quence, there is always a sharp minimum in the net
equilibration rate which arises in the transition region
between these two regimes. The transition point moves to
higher temperatures with increasing density as the matter
becomes more saturated with antineutrinos at higher
densities. Note that there are no transitions at the density
nB ¼ n0; in this case, the lepton decay is the dominant
process in the whole range of the temperature 1 ≤ T ≤
100 MeV shown in Fig. 3.
To show the transition between the two regimes we plot

the equilibration rates for neutron decay and lepton capture
processes separately as functions of the scaled chemical
potentials ανl in Fig. 4. As seen from the figure, the curves
representing the rates of the neutron decay and the lepton
capture processes intersect at a value of the scaled chemical
potential within the range −5 ≤ ανl ≤ −3. Note that the
regime of neutrino-dominated equilibration starts already
around ανl ≃ −3, where the antineutrino density is still
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FIG. 2. The electron capture rate Γpe↔nν (a) and the muon capture rate Γpμ↔nν (b) as functions of the temperature for various densities
for the model DDME2. The neutron decay rates Γn↔peν̄ and Γn↔pμν̄ are negligible compared to the lepton capture rates in the whole
temperature-density range. The dotted lines in panel (a) show the electron capture rates computed in Ref. [22] within the approximation
of nonrelativistic nucleons.
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higher than the neutrino density. The reason for this is the
difference in the available phase space for the neutron
decay and lepton capture processes. Indeed, the lepton
capture process has a larger kinematic phase space than the
neutron decay, therefore for equal densities of neutrinos
and antineutrinos (i.e., at vanishing neutrino chemical
potential) the neutron decay rates are suppressed as
compared to the lepton decay rates.
As in the case of DDME2 model, we show also the

nonrelativistic electron capture rates in panel (a) of Fig. 3.
The nonrelativistic approximation underestimates the exact
rates by factors from 1 to 10 in the regions away from the
minimum, but close to the minimum, we have the opposite
behavior: the exact relativistic rates are lower as there is no

minimum in the nonrelativistic approximation (the tran-
sition between the antineutrino and neutrino-dominated
regimes is smooth in the nonrelativistic approximation). We
thus conclude that the sharp drop of the neutron decay rate
and the minimum at the transition point is a purely
relativistic effect and does not appear in the nonrelativistic
treatment.

2. Rates of leptonic processes

Next we discuss the results of the leptonic process rates
given by Eqs. (25)–(27). Figure 5 shows the neutrino (a)
and the antineutrino (b) absorption rates for the model
DDME2. As seen from panel (a), the neutrino absorption
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FIG. 3. The summed β-equilibration rates Γl ¼ Γn↔plν̄ þ Γpl↔nν for electronic (a) and muonic (b) Urca processes as functions of the
temperature for various densities for the model NL3. In this case the dominant process is the neutron decay at low temperatures and
the lepton capture at high temperatures. The dotted lines in panel (a) show the electron capture rates computed in Ref. [22] within the
approximation of nonrelativistic nucleons.
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rates show similar temperature dependence to the lepton
capture rates (shown by dotted lines), but are smaller on
average by an order of magnitude. The antineutrino
absorption rates are always many orders of magnitude
smaller than the neutrino absorption rates except in the very
high-temperature domain. The rate of the muon decay
process is negligible as compared to the neutrino and
antineutrino absorption processes because of the very small
scattering phase space. These rates are related to the
rate coefficients λX in the rate equations in a simple way,

λX ¼ ΓX=T (See Eqs. (18) and (19); similar relations hold
for the leptonic reactions since they have exactly the same
kinematics.) We can therefore conclude that within the
DDME2 model the leptonic processes are always much
slower than the Urca processes, putting the material in the
“slow lepton equilibration” regime.
In the NL3 model, the neutrino absorption is more

efficient at low densities but is suppressed at high densities
and low or moderate temperatures, see Fig. 6. The anti-
neutrino absorption rates show the opposite behavior: they
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FIG. 5. Rates of leptonic β-equilibration processes as functions of the temperature for different values of the density for the model
DDME2. The panel (a) refers to the neutrino absorption, and the panel (b) to the antineutrino absorption processes. We see that for
DDME2 the leptonic rates are always at least an order of magnitude slower than the Urca electron capture rates (shown by the dotted
lines for comparison; the muon capture rates are slightly higher than the electron capture rates and are not shown.).
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dominate the leptonic processes at high densities and are
damped at low densities. However, the summed rate of
leptonic processes in the case of NL3 model is qualitatively
similar to those of the model DDME2. Consequently, as we
see in Fig. 6, the material described by the NL3 model is
almost always in the “slow lepton equilibration” regime.
The only exception is the region around the transition point
where the Urca process rate has a minimum. Note that the
“fast lepton equilibration” regime is realized only around
the minimum of the muonic Urca rates.

B. Bulk viscosity of relativistic npe matter

In this subsection we will neglect muons and discuss the
bulk viscosity arising only from electronic Urca processes.
We include relativistic corrections to the nucleon spectrum
both in the equilibration rates and the nucleon susceptibil-
ities. The bulk viscosity of npeνe matter is given by
Eq. (91) with the susceptibilities C1 and A1 defined by
Eqs. (88) and (54).
The susceptibility A1 is not sensitive to the temperature

and the density, whereas C1 increases with density and
typically crosses zero at a temperature-dependent value of
the density where the proton fraction in β-equilibrated
matter has a minimum as a function of the density. At this
critical density, the system becomes scale-invariant, so
compression does not drive the system out of equilibrium.
This implies vanishing bulk viscosity at critical densities.
Figure 7 shows the susceptibility prefactor C2

1=A1 as a
function of density for two values of the temperature. At the
critical density, it drops to zero and slowly increases with
the density above that point. For comparison we show also
the results of our previous work [22] with the dotted lines,
which were obtained with the nonrelativistic spectrum for

nucleons. We see that the nonrelativistic approximation
strongly overestimates the susceptibility even at low
densities nB ≤ 2n0 where the relativistic corrections to
the nucleonic spectrum are relatively small.
The beta relaxation rates γe ¼ λeA1 of electronic Urca

processes which determine the location of the resonant
maximum of the bulk viscosity are shown in Fig. 8.
Qualitatively γe closely follows the behavior of Γe. As
the typical frequencies of density oscillations in neutron
star mergers are several kHz, the relaxation is always fast,
γe ≫ ω (1 kHz corresponds to 4.14 × 10−18 MeV). Thus,
the neutrino-trapped matter is in the fast equilibration
regime, and from (91) the bulk viscosity is independent
of the oscillation frequency and is given by ζ ¼ C2

1=ðA1γeÞ.
The results of the bulk viscosity arising from electronic

Urca processes are shown in Fig. 9. At low temperatures,
T ≤ 10 MeV the bulk viscosity decreases according to the
scaling ζe ∼ T−2, which breaks down at higher temper-
atures where the system approaches the point of scale-
invariance. In the case of NL3 model, the bulk viscosity
has a local maximum at high densities due to the transition
from the antineutrino-dominated regime to the neutrino-
dominated regime. At that maximum, the bulk viscosity
jumps nearly by an order of magnitude. Comparing these
results with ones obtained within the nonrelativistic
approximation for nucleons we see that the bulk viscosity
decreases by orders of magnitude when the relativistic cor-
rections are properly taken into account. The main reason
for this is much lower susceptibility C1 as compared to the
nonrelativistic case, and also the higher β-equilibration
rates. We also observe that the local maxima in the case of
NL3 model appear only in full relativistic computation as
was mentioned above.
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FIG. 7. The susceptibility prefactor C2
1=A1 as a function of the baryon density for two values of the temperature for (a) model DDME2

and (b) model NL3. The dotted lines show the nonrelativistic results used in Ref. [22].
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C. Bulk viscosity of relativistic npeμ matter

In this section, we present the results of the bulk
viscosity of nuclear matter including the contribution of
a muonic component. As discussed in Sec. IVA, in the case
of the DDME2 model the rates of the leptonic processes are
much smaller than the rates of the Urca processes, see
Fig. 5. Therefore, the bulk viscosity of npeμ matter can be
computed according to the slow lepton-equilibration limit,
as discussed in Sec. III. As the equilibration rates are much
larger than the oscillation frequency, the bulk viscosity for
the DDME2 model can be computed from Eq. (93). The
results are shown in the left panel of Fig. 10. The generic

behavior of the bulk viscosity of npeμ matter is similar to
the one of npe matter but the former exceeds the latter by
factors from 3 to 10 at the left side of the minimum. Above
the minimum, the bulk viscosity of npeμ matter is almost
the same as the bulk viscosity of npe matter. However,
there is an important difference in the high-temperature
regime, where the total bulk viscosity has a sharp minimum
but does not drop to zero, as it was the case of the bulk
viscosity of npematter. This behavior is easy to understand
by noting that in the relevant temperature-density range we
have mainly ðAn þ ApÞC1 ≪ A1C2, ðAn þ ApÞC2 ≪ A2C1,
ðAn þ ApÞ2 ≪ A1A2, which allows to simplify Eq. (93) to
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FIG. 9. The bulk viscosity due to electron Urca processes as a function of the temperature for (a) model DDME2; (b) model NL3. The
region T ≤ 5 MeV is shaded because neutrinos are no longer trapped at those temperatures. The dotted lines show the results of
Ref. [22] using the approximation of nonrelativistic nucleons.
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The dotted lines show the relaxation rates computed in Ref. [22] using the approximation of nonrelativistic nucleons. Typical density
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ζ ≃
λeðA1C2Þ2 þ λμðA2C1Þ2

λeλμðA1A2Þ2
¼ C2

2

λμA2
2

þ C2
1

λeA2
1

¼ ζe þ ζμ;

ð94Þ

where ζe and ζμ are the partial contributions of electronic
and muonic Urca processes, respectively, to the bulk
viscosity. Both susceptibilities C1 and C2 cross zero at
high temperatures, but the values of those critical temper-
atures for C1 and C2 are slightly shifted from each other. As
a result, the summed ζ has a minimum at a temperature that
lies between these two temperatures but does not drop
to zero.
Turning to the NL3 model we note that also in this case

the matter is mainly in the slow lepton-equilibration regime
except for the region close to the minimum of equilibration
rates, where for nB=n0 ¼ 3 and nB=n0 ¼ 5 we have the
opposite regime of fast lepton-equilibration, see Fig. 6.
Figure 10, panel (b) therefore shows the bulk viscosity in
the slow lepton-equilibration limit by the solid, dashed and
the dashed-dotted lines. The one exception is the dotted
line, which shows the fast lepton equilibration limit
[Eq. (70)] for nB=n0 ¼ 3.
At the highest density, nB=n0 ¼ 5, the bulk viscosity has

one local maximum as the electronic and muonic Urca
process rates have minima at almost the same temperature,
see Fig. 3. For moderate density nB=n0 ¼ 3 the minima of
Urca process rates for electrons and muons are at different
temperatures, therefore the bulk viscosity has local maxima
at both temperatures. However, near the maxima we cannot
rely on the slow lepton equilibration approximation: in the
fast lepton-equilibration limit (dotted line) the first maxi-
mum is eliminated by leptonic processes, whereas the

second maximum remains. At the highest density
nB=n0 ¼ 5, the numerical results for the bulk viscosity
in the fast lepton-equilibration limit are found to be very
close to those of slow lepton-equilibration limit and are not
shown on the figure.
The structure of the postmerger object changes with

time from initially having double density-peaks, associa-
ted with the two neutron stars, to a single density-peak
structure corresponding to the remnant (see, for example,
Refs. [5–16]). So far, we consider the variations of the bulk
viscosity at fixed density, which corresponds to moving
along the constant density surfaces in such an object. It is
also interesting to consider the isothermal surfaces along
which the density is changing. The temperature evolution
in the post-merger object replicates that of the density, i.e.,
a double peak high-temperature structure evolves in time
into a single peak structure. To account for this type of
variation, we plot the bulk viscosity as a function of the
density in Fig. 11.
The density variations of bulk viscosity for each value of

temperature represent self-similar curves, which are shifted
with respect to each other by a magnitude which depends
on the change in the temperature. In the case of model NL3
the curves T ¼ 5, 30, 50 MeV correspond to the slow
lepton-equilibration limit, and only the curve T ¼ 10 MeV
shows the results of the fast equilibration regime.

D. Damping of density oscillations

In this last subsection, we estimate the timescales of bulk
viscous damping of density oscillations in neutrino-trapped
npeμ matter. The characteristic timescale of damping of
density oscillations is given by [20,21,24]
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FIG. 10. The bulk viscosity of neutrino-trapped npeμ matter as a function of the temperature for (a) model DDME2; (b) model NL3.
The region T ≤ 5 MeV is shaded because neutrinos are no longer trapped at those temperatures. All curves assume the slow lepton-
equilibration regime except the dotted line in panel (b) which assumes fast lepton equilibration.
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τζ ¼
1

9

KnB
ω2ζ

; ð95Þ

where

K ¼ 9nB
∂2ε

∂n2B ð96Þ

is the (isothermal) incompressibility of nuclear matter. The
incompressibility of nuclear matter at finite temperatures is
shown in Ref. [24].
As the bulk viscosity is independent of the oscillation

frequency, the damping timescale is inversely proportional
to the square of ω. We show τζ as a function of the

temperature in Fig. 12 for f ¼ 10 kHz. The nuclear
incompressibility is almost independent of the temperature.
Therefore the damping timescale as a function of the
temperature closely follows the inverse bulk viscosity
showing sharp maxima in the high-temperature regime.
In the case of NL3 model there are local minima resulting
from the transition of the matter from the antineutrino-
dominated regime to the neutrino dominated regime. How-
ever, the damping timescales in the neutrino/antineutrino
trapped regime exceeds the characteristic timescales for the
long-term postmerger evolution timescale ≲1 s at temper-
atures above 5 MeV. At lower frequencies, the damping
timescales will be even larger. Thus, we conclude that the
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FIG. 12. The oscillation damping timescale as a function of temperature for various densities and for frequency fixed at f ¼ 10 kHz
for (a) model DDME2; (b) model NL3. The result for the density nB=n0 ¼ 3 in panel (b) should be replaced by the blue dotted line
around the minimum.
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bulk viscosity of neutrino-trapped npeμ matter from the
Urca processes is not sufficiently large to affect the
evolution of binary neutron-star mergers in the initial hot
regime and could have an impact close to the neutrino
untrapping temperature ∼5 MeV.

V. CONCLUSIONS

In this work, we studied the bulk viscosity of neutrino-
trapped npeμ matter from Urca processes under the
conditions relevant to binary neutron star mergers. We
first generalized the computation of the rates of relevant
β-equilibration processes (i.e., the neutron decay and lepton
capture) as well as those of relevant susceptibilities
performed in Ref. [22] to include the relativistic corrections
to the nucleonic spectra. We find that these corrections
enhance the equilibration rates by factors from 1 to 10. The
numerical computations were carried out within the rela-
tivistic density functional theory for two different EoS
models of nuclear matter.
An interesting feature of full relativistic rates is their

strong dependence on the scaled-to-temperature neutrino
chemical potential ανl . It turns out that if ανl ≥ −3 then the
neutron decay rate is Boltzmann-suppressed, and the only
equilibration process is the lepton capture. This is the case
for DDME2 model which has a composition where the net
neutrino densities are mainly positive in the relevant
density-temperature range. The picture is quite different
in the case of model NL3 where the net neutrino densities
are positive only in the low temperature and low-density
sector, and the antineutrino population increases with both
density and temperature. At low densities and high temper-
atures, the lepton capture dominates as in the case of
DDME2 model, but in the low-temperature and high-
density domain, we have the opposite limit. Here the
antineutrino population is dominant, and the neutron decay
is the main equilibration process as long as ανl ≤ −6. For
intermediate values −6 ≤ ανl ≤ −3 both processes are
important, and there is a transition point at around ανl ≃
ð−5Þ to (−4) where the rates of neutron decay and lepton
capture become equal. Close to this point the net equili-
bration rate has a sharp minimum.
The relativistic susceptibilities are found to be signifi-

cantly (up to orders of magnitude) smaller than their
corresponding nonrelativistic counterparts at densities
nB=n0 ≥ 2. Similar to the nonrelativistic case we find that
the susceptibilities corresponding to the partial bulk vis-
cosities from electronic and muonic Urca processes vanish
at a critical density where the electron/muon fraction has a
local minimum as a function of density at high temper-
atures T ≳ 30 MeV. At that point the system becomes
scale-invariant: there is no chemical reequilibration induced
by compression which implies zero bulk viscosity on the
time scales relevant to mergers.
Neutrino-trapped matter is always in the regime of fast

β-equilibration, i.e., the relaxation rates are much higher

than the typical frequencies of density oscillations. As a
result, the bulk viscosity is independent of the frequency
and decreases with the temperature. This decrease is
followed by sharp drops to zero at the points where the
system becomes scale-invariant. In the case of model NL3
the bulk viscosity shows also local maxima at intermediate
temperatures where the transition between the antineutrino-
and neutrino-dominated regimes occurs.
The proper inclusion of muons in the computation of

bulk viscosity requires analysis of relative rates of Urca
processes and the rates of pure leptonic processes, i.e.,
muon decay, and neutrino/antineutrino absorption. We
find that the rates of the leptonic reactions are slower than
the Urca process rates almost in the entire temperature-
density range. An exception occurs only in the narrow
vicinity of the transition point in the case of NL3 model.
We, therefore, conclude that the bulk viscosity of npeμ
matter can typically be computed in the slow lepton-
equilibration limit. The numerical results show that the
bulk viscosity is enhanced by factors from 1 to 10 as
compared to the viscosity of npe matter. Note that our
study neglects so far the neutrino flavor conversion, which
can affect our results. We plan to address this issue in a
separate study.
Our estimates of the damping timescales of the density

oscillations show that the bulk viscosity of relativistic npeμ
matter in the neutrino-trapped regime is not an important
source of damping of density oscillations over character-
istic time-scales of neutron star mergers. However, long-
lived remnants of mergers, which do not collapse to a black
hole, can experience bulk viscous dissipation. Young
protoneutron stars formed in supernova explosions offer
another setting where the bulk viscosity of hot stellar matter
could be important for assessing their oscillation spectrum
and damping time scales.
We finally note that, the methods applied here can be

used to obtain other microscopic characteristics of dense
matter, such as, for example, neutrino opacities. The fully
relativistic treatment of the rates should be of interest in a
broader context of radiation and transport in thermal
quantum field theories with applications to a wide range
of relativistic systems.
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APPENDIX A: PHASE SPACE INTEGRALS

Here we extend the technique of computing the phase-
space integrals discussed in [21,22] to fully relativistic case.
Substituting the matrix element of the Urca process (10)

into the rates (8) and the inverse of (9) and introducing
a “dummy” integration [we use the same the mapping
between the particles and their momenta ðlÞ → k,
ðνl=ν̄lÞ → k0, ðpÞ → p, and ðnÞ → p0 as before] we obtain

Γn→plν̄ðμΔl
Þ ¼ 2G2

Z
d4q

Z
d3p

ð2πÞ3p0

Z
d3p0

ð2πÞ3p0
0

Z
d3k

ð2πÞ3k0

Z
d3k0

ð2πÞ3k00
ðk · pÞðk0 · p0Þ

× f̄ðkÞf̄ðpÞf̄ðk0Þfðp0Þð2πÞ4δð4Þðkþ p − qÞδð4Þðk0 − p0 þ qÞ ¼ 2G2

Z
d4qI1ðqÞI2ðqÞ; ðA1Þ

Γnν→plðμΔl
Þ ¼ 2G2

Z
d4q

Z
d3p

ð2πÞ3p0

Z
d3p0

ð2πÞ3p0
0

Z
d3k

ð2πÞ3k0

Z
d3k0

ð2πÞ3k00
ðk · pÞðk0 · p0Þ

× f̄ðkÞf̄ðpÞfðk0Þfðp0Þð2πÞ4δð4Þðkþ p − qÞδð4Þð−k0 − p0 þ qÞ ¼ 2G2

Z
d4qI1ðqÞI3ðqÞ; ðA2Þ

where

I1ðqÞ ¼
Z

d3p
ð2πÞ3p0

Z
d3k

ð2πÞ3k0
f̄ðkÞf̄ðpÞðk · pÞð2πÞ4δð4Þðkþ p − qÞ; ðA3Þ

I2ðqÞ ¼
Z

d3p0

ð2πÞ3p0
0

Z
d3k0

ð2πÞ3k00
f̄ðk0Þfðp0Þðk0 · p0Þδð4Þðk0 − p0 þ qÞ; ðA4Þ

I3ðqÞ ¼
Z

d3p0

ð2πÞ3p0
0

Z
d3k0

ð2πÞ3k00
fðk0Þfðp0Þðk0 · p0Þδð4Þð−k0 − p0 þ qÞ; ðA5Þ

with δð4Þðkþ p − qÞ ¼ δðkþ p − qÞδðϵk þ ϵp − ω − μΔl
Þ, and δð4Þð�k0 − p0 þ qÞ ¼ δð�k0 − p0 þ qÞδð�ϵk0 − ϵp0 þ ωÞ.

Here the energy conservation δ-function has been transformed according to δðk0 þ p0 � k00 − p0
0Þ ¼

δðϵl þ ϵp − ϵn � ϵν̄l=νl − μΔl
Þ, where we added and subtracted μΔl

in the argument of the δ-function, and denoted

by ϵi the energies of the particles computed from their (effective) chemical potentials, e.g., ϵp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm�2

p

q
− μ�p. Since

the rates of the inverse processes can be obtained by interchanging in Eqs. (A1) and (A2) fðpiÞ ↔ f̄ðpiÞ for all particles,
the problem reduces to the computation of three q-dependent integrals I1ðqÞ, I2ðqÞ and I3ðqÞ given by Eqs. (A3)–(A5).
To compute the integral I1ðqÞ we integrate over proton momentum and separate the angular part of the remaining

integral, which gives

I1ðqÞ ¼ ð2πÞ−1
Z

∞

ml

kdk0
p0

f̄ðϵkÞf̄ðω̄ − ϵkÞ
Z

1

−1
dxðω̄0k0 − qkx −m2

l Þδðϵk þ ϵq−k − ω̄Þ; ðA6Þ

where ω̄ ¼ ωþ μΔl
, ω̄0 ¼ ω̄þ μ�p þ μl, and x is the cosine of the angle between k and q. The angular integral is done by

using the δ-function to obtain [recall that f̄ðϵÞ ¼ fð−ϵÞ]

I1ðqÞ ¼
1

4πq
½ðμl þ μ�p þ ω̄Þ2 −m2

l −m�2
p − q2�

Z
μ�pþω̄

ml−μl
dϵk f̄ðϵkÞfðϵk − ω̄Þθð1 − jx0jÞ; ðA7Þ

where x0 is the zero of the argument of the δ-function

x0 ¼
1

2kq
½−ðϵk − μ�p − ω̄Þ2 þm�2

p þ k2 þ q2�; ðA8Þ

and the limits of integration are found from the limits on the lepton energy ϵk
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ðk − qÞ2 þm�2
p ≤ ðϵk − μ�p − ω̄Þ2 ≤ ðkþ qÞ2 þm�2

p : ðA9Þ

The energy integral in Eq. (A7) could be done analytically, but for numerical implementation, the form given above is more
suitable.
The computation of the remaining integrals proceeds in full analogy to the above. For integral I2ðqÞ we find

I2ðqÞ ¼
1

2ð2πÞ5q ½−ðμνl þ μ�n þ ωÞ2 þm2
νl þm�2

n þ q2�
Z

∞

mνl
þμνl

dϵk0 f̄ðϵk0 Þfðϵk0 þ ωÞθð1 − jy0jÞ; ðA10Þ

where y0 is the zero of the argument of the δ-function, i.e.,

y0 ¼
1

2k0q
½ðϵk0 þ μ�n þ ωÞ2 −m�2

n − k02 − q2�; ðA11Þ

and the step-function sets the following limits on the neutrino energy ϵk0

ðk0 − qÞ2 þm�2
n ≤ ðϵk0 þ μ�n þ ωÞ2 ≤ ðk0 þ qÞ2 þm�2

n : ðA12Þ

For the integral I3ðqÞ we find

I3ðqÞ ¼
1

2ð2πÞ5q ½ðμνl þ μ�n þ ωÞ2 −m2
νl −m�2

n − q2�
Z

ωþμ�n

mνl
−μνl

dϵk0 fðϵk0 Þf̄ðϵk0 − ωÞθð1 − jz0jÞ; ðA13Þ

where z0 is the zero of the argument of the δ-function, i.e.,

z0 ¼
1

2k0q
½−ðϵk0 − μ�n − ωÞ2 þm�2

n þ k02 þ q2�; ðA14Þ

and the step-function sets the following limits on the neutrino energy ϵk0

ðk0 − qÞ2 þm�2
n ≤ ðϵk0 − μ�n − ωÞ2 ≤ ðk0 þ qÞ2 þm�2

n : ðA15Þ

The expressions for the integrals (A7), (A10) and (A13) are slightly more general than used in the main body of the text
because they include the nonzero mass of neutrinos. As we do not consider neutrino oscillations they can be neglected
hereafter, i.e., we putmνl ¼ 0. Combining Eqs. (A1), (A2), (A7), (A10) and (A13), we obtain the final expressions (13) and
(14) of the main text.
Now we are in a position to compute the derivatives of Γn→plν̄ and Γpl→nν with respect to μΔl

. Note that only the
integral I1 depends on μΔl

, and, exploiting the following identity between the Fermi and Bose functions

f̄ðzÞfðz − yÞ ¼ gð−yÞ½fðzÞ − fðz − yÞ�; ðA16Þ
from Eq. (A7) we obtain

∂I1
∂μΔl

¼ 1þ gðω̄Þ
4πqT

�
gðω̄ÞΛ1ðω̄Þ − T

∂
∂ω̄Λ1ðω̄Þ

�
; ðA17Þ

where

Λ1ðω̄Þ ¼ ½ðμl þ μ�p þ ω̄Þ2 −m2
l −m�2

p − q2�
Z

μ�pþω̄

ml−μl
dϵk½fðϵkÞ − fðϵk − ω̄Þ�θð1 − jx0jÞ: ðA18Þ

The rate derivatives then take the form

∂
∂μΔl

Γn→plν̄ðμΔl
Þ ¼ −

G2

ð2πÞ5T
Z

∞

−∞
dω

Z
∞

0

dq gðωÞ½1þ gðω̄Þ�
�
gðω̄ÞΛ1ðω̄Þ − T

∂
∂ω̄Λ1ðω̄Þ

�
Λ2ðωÞ; ðA19Þ
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∂
∂μΔl

Γnν→plðμΔl
Þ ¼ −

G2

ð2πÞ5T
Z

∞

−∞
dω

Z
∞

0

dq gðωÞ½1þ gðω̄Þ�
�
gðω̄ÞΛ1ðω̄Þ − T

∂
∂ω̄Λ1ðω̄Þ

�
Λ3ðωÞ; ðA20Þ

where

Λ2ðωÞ ¼ ½ðμνl þ μ�n þ ωÞ2 −m2
νl −m�2

n − q2�
Z

∞

mνl
þμνl

dϵk0 ½fðϵk0 Þ − fðϵk0 þ ωÞ�θð1 − jy0jÞ; ðA21Þ

Λ3ðωÞ ¼ ½ðμνl þ μ�n þ ωÞ2 −m2
νl −m�2

n − q2�
Z

ωþμ�n

mνl
−μνl

dϵk0 ½fðϵk0 Þ − fðϵk0 − ωÞ�θð1 − jz0jÞ: ðA22Þ

The derivatives of the inverse rates can be obtained by replacing gðωÞ → 1þ gðωÞ, gðω̄Þ ↔ 1þ gðω̄Þ in Eqs. (A19) and
(A20). For the λ–coefficients we obtain

λn↔plν̄ ¼
G2

ð2πÞ5T
Z

∞

−∞
dω

Z
∞

0

dq

�
gðω̄Þ½1þ gðω̄Þ�Λ1ðω̄Þ þ ½gðωÞ − gðω̄Þ�T ∂

∂ω̄Λ1ðω̄Þ
	
Λ2ðωÞ; ðA23Þ

λpl↔nν ¼
G2

ð2πÞ5T
Z

∞

−∞
dω

Z
∞

0

dq

�
gðω̄Þ½1þ gðω̄Þ�Λ1ðω̄Þ þ ½gðωÞ − gðω̄Þ�T ∂

∂ω̄Λ1ðω̄Þ
	
Λ3ðωÞ: ðA24Þ

In β-equilibrium ω̄ ¼ ω which along with the relations I1 ¼ −½1þ gðω̄Þ�Λ1ðω̄Þ, I2 ¼ −gðωÞΛ2ðωÞ, I3 ¼ −gðωÞΛ3ðωÞ
leads to Eqs. (18) and (19) of the main text.

1. Low-T limit of Urca process rates

In the limit of low temperature the inequalities (A9), (A12) and (A15) reduce to

θx ¼ θðpFl þ pFp − qÞθðq − jpFl − pFpjÞ; ðA25Þ

θy ¼ θðpFνl þ pFn − qÞθðq − jpFνl − pFnjÞ; ðA26Þ

θz ¼ θðpFνl þ pFn − qÞθðq − jpFνl − pFnjÞ; ðA27Þ

where we used the notations θx, θy and θz introduced in Eqs. (13) and (14). Then the integrals (A7), (A10) and (A13)
(in β-equilibrium) can be approximated as

I1ðqÞ ≃
gð−ωÞ
4πq

½ðμl þ μ�pÞ2 −m2
l −m�2

p − q2�θx
Z

μ�pþω

ml−μl
dϵk½fðϵkÞ − fðϵk − ωÞ�

≃ −
ωgð−ωÞ
4πq

θxðp2
Fp þ p2

Fl þ 2μlμ
�
p − q2Þ; ðA28Þ

I2ðqÞ ≃
gðωÞ

2ð2πÞ5q ½−ðμνl þ μ�nÞ2 þm2
νl þm�2

n þ q2�θy
Z

∞

mνl
þμνl

dϵk0 ½fðϵk0 Þ − fðϵk0 þ ωÞ�

≃ −
gðωÞT
2ð2πÞ5q θyðp

2
Fνl

þ p2
Fn þ 2μνlμ

�
n − q2Þ ln

���� 1þ exp ð− mνl
þμνl
T Þ

1þ exp ð− mνl
þμνlþω

T Þ

����; ðA29Þ

I3ðqÞ ≃
gðωÞ

2ð2πÞ5q ½ðμνl þ μ�nÞ2 −m2
νl −m�2

n − q2�θz
Z

ωþμ�n

mνl
−μνl

dϵk0 ½fðϵk0 − ωÞ − fðϵk0 Þ�

≃ −
gðωÞT
2ð2πÞ5q θzðp

2
Fn þ p2

Fνl
þ 2μνlμ

�
n − q2Þ ln

���� 1þ exp ð− mνl
−μνl
T Þ

1þ exp ð− mνl
−μνl−ω
T Þ

����: ðA30Þ

Note that in I1ðqÞ the integral is approximated as ω because baryons are highly degenerate; in the remaining integrals, the
logarithmic factor should be kept since neutrinos are thermal. In the low-temperature neutrino-trapped matter μνl=T → ∞,
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which implies I2 ¼ 0 and Γn↔plν̄ ¼ 0. In this case the logarithm in Eq. (A30) is −ω=T, and for Γpl↔nν from Eqs. (A2) we
find (we put again mνl ¼ 0)

Γpl↔nν ¼ −2G24π

Z
∞

−∞
dωω2

Z
∞

0

q2dq
gð−ωÞ
4πq

θðpFl þ pFp − qÞθðq − jpFl − pFpjÞðp2
Fp þ p2

Fl þ 2μlμ
�
p − q2Þ

×
gðωÞ

2ð2πÞ5q θðpFνl þ pFn − qÞθðq − jpFνl − pFnjÞðp2
Fn þ p2

Fνl
þ 2μνlμ

�
n − q2Þ

¼ G2T3

48π3

�ðpFl þ pFpÞ5 − ðpFn − pFνlÞ5
5

−
ðpFl þ pFpÞ3 − ðpFn − pFνlÞ3

3

× ðp2
Fp þ p2

Fl þ 2μlμ
�
p þ p2

Fn þ p2
Fνl

þ 2μνlμ
�
nÞ þ ðpFl þ pFp þ pFνl − pFnÞ

× ðp2
Fp þ p2

Fl þ 2μlμ
�
pÞðp2

Fn þ p2
Fνl

þ 2μνlμ
�
nÞ
	
θðpFl þ pFp þ pFνl − pFnÞ: ðA31Þ

In the nonrelativistic limit for nucleons μ�N ≃m�
N ≫ pFN . Therefore

Γpl↔nν ≃
G2T3

12π3
m�

nm�
pμlμνlðpFl þ pFp þ pFνl − pFnÞθðpFl þ pFp þ pFνl − pFnÞ; ðA32Þ

which coincides with our previous calculation if we assume massless leptons μl ¼ pFl [see Eq. (24) of Ref. [22] ].
In the case where the trapped species in the degenerate matter are antineutrinos rather than neutrinos we have

μνl=T → −∞, therefore I3 ¼ 0 and Γpl↔nν ¼ 0. The logarithm in Eq. (A29) in this case is ω=T and

Γn→plν̄ ¼ −
G2T3

48π3

�ðpFl þ pFpÞ5 − ðpFn − pFν̄lÞ5
5

−
ðpFl þ pFpÞ3 − ðpFn − pFν̄lÞ3

3

× ðp2
Fp þ p2

Fl þ 2μlμ
�
p þ p2

Fn þ p2
Fν̄l

− 2jμνl jμ�nÞ þ ðpFl þ pFp þ pFν̄l − pFnÞ

× ðp2
Fp þ p2

Fl þ 2μlμ
�
pÞðp2

Fn þ p2
Fν̄l

− 2jμνl jμ�nÞ
	
θðpFl þ pFp þ pFν̄l − pFnÞ: ðA33Þ

In Fig. 13 we show the ratios of summed electron
Urca rates Γe to their low-temperature limit given by
Eqs. (A31) and (A33). We see that the exact rates differ
significantly from their low-temperature limit typically

at T ≥ 10 MeV, where the deviation between the exact
and the approximate rates reaches up to an order of
magnitude. Note that the exact rates are mainly larger
than their low-temperature limit in neutrino-dominated

1 10 100
T [MeV]

0.1

1

10

e/ 
e 

(T
 

n
B
/n

0
 = 1

n
B
/n

0
 = 3

n
B
/n

0
 = 5

DDME2

(a)

1 10 100
T [MeV]

0.1

1

e/ 
e 

(T
 

n
B
/n

0
 = 1

n
B
/n

0
 = 3

n
B
/n

0
 = 5

NL3

(b)

FIG. 13. The ratios of summed electron Urca rates Γe to their low-T limit given by (a) Eq. (A31) for model DDME2 and (b) Eq. (A33)
model NL3 (b). The analogous ratios for muonic Urca rates are similar and are not shown.
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matter and smaller in the antineutrino-dominated matter.
The analogous ratios for muonic Urca rates are similar
and are not shown.

APPENDIX B: COMPUTATION OF
SUSCEPTIBILITIES Aj

To compute the susceptibilities Aij ¼ ð∂μi∂njÞ0 we use the

following formula for the particle densities

ni ¼
gi
2π2

Z
∞

0

p2dp½fiðpÞ − f̄iðpÞ�; ðB1Þ

where gi is the spin degeneracy factor, and fðpÞ and f̄ðpÞ
are the distribution functions for particles and antiparticles,
respectively. For neutrons, protons, electrons and muons
we have gi ¼ 2, and for neutrinos gν ¼ 1.
Differentiating the left and right sides of Eq. (B1) with

respect to nj and exploiting the expressions

∂fi
∂nj ¼ −fið1 − fiÞ

1

T

�
m�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m�2 þ p2
p ∂m�

∂nj −
∂μ�i
∂nj

�
;

∂f̄i
∂nj ¼ −f̄ið1 − f̄iÞ

1

T

�
m�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m�2 þ p2
p ∂m�

∂nj þ
∂μ�i
∂nj

�
; ðB2Þ

in the case of baryons we obtain

δij ¼ −
�∂m�

∂nj
�
I−1i þ

�∂μ�i
∂nj

�
Iþ0i; ðB3Þ

where

I�qi ¼
1

π2T

Z
∞

0

p2dp

�
m�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m�2 þ p2
p

�
q
½fið1 − fiÞ � f̄ið1 − f̄iÞ�; i ¼ fn; pg: ðB4Þ

The average values of the meson fields are given by [51]

gωω0 ¼
�
gω
mω

�
2

ðnn þ npÞ; gρρ03 ¼
1

2

�
gρ
mρ

�
2

ðnp − nnÞ; ðB5Þ

which gives (recall that μ�i ¼ μi − gωω0 − gρρ03I3i − Σr)

Bij ≡ ∂μ�i
∂nj ¼ Aij −

�
gω
mω

�
2
�
1þ 2nB

gω

∂gω
∂nB

�
− I3i

�
gρ
mρ

�
2
�
I3j þ

nn − np
n0

aρ

�
−
∂Σr

∂nj : ðB6Þ

The scalar field is given by

gσσ ¼ m −m� ¼ −
gσ
m2

σ

∂UðσÞ
∂σ þ 1

π2

�
gσ
mσ

�
2X
i¼n;p

Z
∞

0

p2dp
m�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þm�2p ½fiðpÞ þ f̄iðpÞ�; ðB7Þ

with UðσÞ being the self-interaction potential of the scalar field, therefore up to terms ∂gσ=∂nB (which are small and can be
neglected) we find

∂m�

∂nj ¼ gσ
m2

σ

∂2UðσÞ
∂σ2

∂σ
∂nj þ

�
gσ
mσ

�
2
�∂m�

∂nj
�
ðIþ2n þ Iþ2pÞ −

�
gσ
mσ

�
2

ðBnjI−1n þ BpjI−1pÞ

−
�
gσ
mσ

�
2
�∂m�

∂nj
�X

i¼n;p

1

π2

Z
∞

0

p2dp
p2

ðp2 þm�2Þ3=2 ½fiðpÞ þ f̄iðpÞ�: ðB8Þ

Denoting

Ĩþ2i ¼ Iþ2i −
1

π2

Z
∞

0

p2dp
p2

ðp2 þm�2Þ3=2 ½fiðpÞ þ f̄iðpÞ�; i ¼ n; p; ðB9Þ

we obtain

∂m�

∂nj ¼ −
ð gσmσ

Þ2ðBnjI−1n þ BpjI−1pÞ
1 − ð gσmσ

Þ2ðĨþ2n þ Ĩþ2pÞ þ 1
m2

σ

∂2U
∂σ2

: ðB10Þ

BULK VISCOSITY FROM URCA PROCESSES: npeμ … PHYS. REV. D 104, 103027 (2021)

103027-23



Substituting this into Eq. (B3) we obtain the following equations for coefficients Bij

BijI
þ
0i − γðBnjI−1n þ BpjI−1pÞI−1i ¼ δij; ðB11Þ

where

γ ¼ 1

Ĩþ2n þ Ĩþ2p − β
; β ¼

�
mσ

gσ

�
2
�
1þ 1

m2
σ

∂2U
∂σ2

�
: ðB12Þ

In the case of i ≠ j we find from Eq. (B11)

Bnp ¼ γBpp

I−1pI
−
1n

Iþ0n − γI−21n
; Bpn ¼ γBnn

I−1nI
−
1p

Iþ0p − γI−21p
: ðB13Þ

Substituting these expressions into Eq. (B11) for i ¼ j we obtain

Bnn ¼
Iþ0p − γI−21p

Iþ0nI
þ
0p − γIþ0pI

−2
1n − γIþ0nI

−2
1p

; Bpp ¼ Iþ0n − γI−21n
Iþ0nI

þ
0p − γIþ0pI

−2
1n − γIþ0nI

−2
1p

; ðB14Þ

and

Bnp ¼ Bpn ¼
γI−1pI

−
1n

Iþ0nI
þ
0p − γIþ0pI

−2
1n − γIþ0nI

−2
1p

: ðB15Þ

Substituting Eqs. (B14) and (B15) in Eq. (B6) and recalling the definitions An ¼ Ann − Apn, Ap ¼ App − Anp we obtain

An ¼
Iþ0p − γI−1pðI−1p þ I−1nÞ

Iþ0nI
þ
0p − γIþ0pI

−2
1n − γIþ0nI

−2
1p

þ
�
gρ
mρ

�
2
�
1

2
−
nn − np

n0
aρ

�
; ðB16Þ

Ap ¼ Iþ0n − γI−1nðI−1p þ I−1nÞ
Iþ0nI

þ
0p − γIþ0pI

−2
1n − γIþ0nI

−2
1p

þ
�
gρ
mρ

�
2
�
1

2
þ nn − np

n0
aρ

�
: ðB17Þ

For leptons we have simply

Al ¼
1

Iþ0l
; Aνl ¼

2

Iþ0νl
; l ¼ fe; μg: ðB18Þ
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