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Stars that approach a supermassive black hole (SMBH) too closely can be disrupted by the tidal
gravitational field of the SMBH. The resulting debris forms a tidal stream orbiting the SMBH, which can
collide with itself due to relativistic apsidal precession. These self-collisions dissipate energy, causing the
stream to circularize. We perform kinematic simulations of these stream self-collisions to estimate the
efficiency of this circularization as a function of SMBH mass M• and penetration factor β, the ratio of
the tidal radius to the pericenter distance. We uncover two distinct regimes depending on whether the time
tc at which the most tightly bound debris circularizes is greater or less than the time tfb at which the mass
fallback rate peaks. The bolometric light curve of energy dissipated in the stream self-collisions has a single
peak at t > tfb in the slow circularization regime (tc > tfb) but two peaks (one at t < tfb and a second at tfb)
in the fast circularization regime (tc < tfb). Tidal streams will circularize in the slow (fast) regime for
apsidal precession angles less (greater) than 0.2 radians, which occur for β ≲ ð≳ÞðM•=106 M⊙Þ−2=3. The
observation of prominent double peaks in bolometric tidal disruption event light curves near the transition
between these two regimes would strongly support our model of tidal-stream kinematics.
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I. INTRODUCTION

Tidal disruption events (TDEs) occur when stars
approach closely enough to a supermassive black hole
(SMBH) that the tidal gravitational field of the SMBH rips
the star apart [1]. Although subsequent work showed that
TDE rates were insufficient to fuel most active galactic
nuclei (AGN) emission [2–4], TDEs could still power
bright electromagnetic flares lasting several years in gal-
axies hosting SMBHs at their centers [5]. Several TDE
candidates were discovered in the ROSAT all-sky survey
[6–10]; see [11–13] for recent reviews of the observed
optical-UV, x-ray, and radio properties of TDE candidates.
After tidal disruption, about half of the mass of the star

remains bound to the SMBH and forms a stream, with each
stream element orbiting the SMBH on its own highly
eccentric orbit [14]. Upon returning to pericenter, the
leading stream elements experience relativistic apsidal
precession, causing their orbits to intersect with those of
trailing elements [15]. Energy dissipation in the resulting
stream self-collisions may produce prompt optical-UV
emission [16,17] and circularize the stream orbits, promot-
ing the subsequent formation of an accretion disk about the
SMBH [18–25].
It was initially suggested that the timescale for this tidal-

stream circularization would be shorter than the fallback

time of the most tightly bound tidal debris, implying that
the bolometric TDE light curve would trace the mass
fallback rate onto the SMBH [5]. Multiband photometry of
the TDE candidate PS1-10jh [26] was well fit by a
numerical model [27] predicated on this assumption.
However, observations of two TDE candidates found by
the All-Sky Automated Survey for SuperNovae (ASASSN)
showed different time evolution in the optical-UVand x-ray
light curves, suggesting that both could not simultaneously
trace the mass fallback rate. X-ray variations in the TDE
candidate ASASSN-14li were correlated with optical-UV
fluctuations with a lag of 32� 4 days [28]. One proposed
explanation was that the optical-UVemission was produced
promptly in the stream self-collisions, while the correlated
x-ray emission was produced when the same stream
elements returned to pericenter. Observations of the TDE
candidate ASASSN-15oi between 200 and 400 days after
its discovery showed that the x-ray emission had increased
by an order of magnitude, while the optical-UV emission
dropped by a factor of 100 [29]. This delay could be
explained by inefficiency in tidal-stream circularization,
with the early optical-UVemission generated in the stream
self-collisions and the late-time x-ray brightening occurring
after the accretion disk had fully assembled. An alternative
model for ASASSN-15oi is that an optically thick outflow
reprocesses x-ray emission from the inner disk into early
optical-UV emission [30], but these x-rays can reveal
themselves at late times once the outflow is fully ionized.
It is unclear how reprocessing could cause the optical-UV
emission to lead the x-ray emission as in ASASSN-14li.
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Inspired by these observations and previous theoretical
work, we have undertaken a new kinematic study of tidal-
stream circularization. We assume that the tidal stream is
one-dimensional and confined to the initial orbital plane of
the star and that the collision is fully inelastic; i.e., the
leading edge of the part of the stream that has passed through
pericenter (stream I) merges completely into the part of the
stream that is returning to pericenter for the first time
(stream II). Bonnerot et al. [22] made these same assump-
tions and also assumed that colliding stream elements had
the same mass and orbital energy. This latter assumption
greatly simplified their model of the tidal-stream evolution
but is inconsistent with the time-dependent mass fallback
rate. It necessitated the artificial decomposition of the
luminosity of the stream collision into two distinct compo-
nents: a “stream self-crossing shock luminosity” associated
with stream I colliding with itself and a “tail shock
luminosity” associated with the merger of stream II into
stream I. By self-consistently tracking the mass along the
lengths of our one-dimensional streams I and II, we are able
to preserve the integrity of the single stream-collision point
and model the mass ratio of the colliding streams.
We use our new model to predict the efficiency of tidal-

stream circularization as a function of SMBH mass and
penetration factor. We hope that it will provide a useful
intermediate step between the evenmore simplifiedmodel of
Bonnerot et al. [22] and vastly more sophisticated general
relativistic hydrodynamics simulations such as those pre-
sented in Shiokawa et al. [18].We describe ourmethodology
inmuch greater detail in Sec. II, present the predictions of our
model in Sec. III, then briefly discuss their implications in
Sec. IV. A short appendix examines how kinematic effects
cause our assumption of a one-dimensional stream to break
down beyond a certain time in our simulation.

II. METHODOLOGY

A. Initial conditions

We consider a star of mass M⋆ and radius R⋆ approach-
ing a nonspinning SMBH of mass M• on a parabolic orbit
with specific angular momentum,

J ¼
�
2GM•rt

β

�
1=2

¼ Jtβ−1=2; ð1Þ

where rt ¼ ðM•=M⋆Þ1=3R⋆ is the tidal radius, the penetra-
tion factor β ¼ rt=rp is the ratio of tidal and pericenter
radii, and Jt ≡ ð2GM•rtÞ1=2 is the specfic angular momen-
tum of an orbit with β ¼ 1. The extreme mass ratio q≡
M⋆=M• ≪ 1 between the star and SMBH implies a
hierarchy between the specific self-binding energy E⋆ ≡
GM⋆=R⋆ of the star and the specific binding energy,

Et ≡ GM•R⋆
r2t

¼ q−1=3E⋆ ≫ E⋆; ð2Þ

of the most-bound tidal-stream element following tidal
disruption.
We parameterize the tidal debris distribution using the

dimensionless fallback time,

SðEiÞ≡ τðEiÞ
τmb

− 1 ¼
�
Ei

Et

�
−3=2

− 1; ð3Þ

where τðEiÞ is the orbital period of a tidal-debris element of
initial specific binding energy, Ei, τ⋆ ¼ ðR3⋆=GM⋆Þ1=2 is
the stellar dynamical timescale, and

τmb ¼ τðEtÞ ¼
πτ⋆

ð2qÞ1=2

¼ 0.112 yr

�
M•

106 M⊙

�
1=2

�
M⋆
M⊙

�
−1
�
R⋆
R⊙

�
3=2

ð4Þ

is the initial orbital period of the most tightly bound tidal
debris. Since Et > Ei > 0, Eq. (3) implies that 0 < S < ∞,
with S ¼ 0 (S ¼ ∞) labeling the leading (trailing) edge of
the tidal stream.
In terms of this new parameter, we calculate the initial

mass distribution dM=dS along the tidal stream using the
“freeze-in”model of Lodato et al. [27] in which the specific
energy distribution of the tidal debris immediately following
disruption is equated to the distribution of gravitational
potential for a spherical star. We adopt a polytropic index
n ¼ 3 appropriate for a solar-type star and apply the freeze-
inmodel at the tidal radiuswhere disruption occurs [31]. The
hierarchy E⋆ ≪ Et makes this model an excellent approxi-
mation for the extreme mass ratios q < 10−5 relevant to the
tidal disruption of main-sequence stars by SMBHs.
This initial mass distribution dM=dS is shown in Fig. 1.

It is independent of M• and β for our dimensionless
parameters, and the total mass M⋆=2 of the bound tidal
stream implies that the area under the curve is unity for the
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FIG. 1. The mass per unit dimensionless fallback time dM=dS
as a function of dimensionless fallback time S in the freeze-in
model of Lodato et al. [27] applied at the tidal radius rt for a star
with polytropic index n ¼ 3.
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normalization adopted in this figure. In the freeze-in model,
each stream element S corresponds to a slice through the
star perpendicular to the line of separation between the star
and SMBH a distance RðSÞ ¼ R⋆ð1þ SÞ−2=3 from the
center of the star. This implies that dM=dS ¼ 0 at the
leading edge of the stream (S ¼ 0), since this corresponds
to a slice of cross section π½R2⋆ − R2ðSÞ� ¼ 0. The distri-
bution reaches a maximum value of ð2=M⋆ÞdM=dS ¼
0.0367 at Smax ¼ 4.78, and half of its mass is found at
S < S1=2 ¼ 22. Along the trailing edge of the stream, it
approaches the limit,

lim
S→∞

2

M⋆
dM
dS

¼ 4R⋆
3M⋆

dM⊥
dR

ð0ÞS−5=3 ≈ 2.95S−5=3; ð5Þ

where dM⊥=dR is the mass per unit thickness of a slice of
the star passing a minimum distance of R from its center.
The scaling ∝ S−5=3 in Eq. (5) is consistent with the late-
time scaling ∝ t−5=3 of the mass fallback rate [5,32].
We choose the origin of our coordinate system to be the

location of the SMBH, the xy plane to coincide with the
orbital plane of the star, and the x axis to be along the line of
separation between the SMBH and star at tidal disruption
(when r ¼ rt). In this coordinate system, the initial posi-
tion, specific binding energy, and specific orbital angular
momentum of the tidal-stream elements are given by

ri
rt
¼ 1 −

RðSÞ
rt

¼ 1 − q1=3
Ei

Et

¼ 1 − q1=3ð1þ SÞ−2=3; ð6aÞ
Ei

Et
¼ GM•

Et

�
1

r
−

1

rt

�
≈ ð1þ SÞ−2=3; ð6bÞ

J
Jt

¼ β−1=2
�
1 −

RðSÞ
rt

�
≈ β−1=2; ð6cÞ

where RðSÞ is the distance of stream element S from the
center of the star at tidal disruption, and the approximations
are to lowest order in RðSÞ=rt ≤ q1=3 ≪ 1. Equations (6)
can be used to calculate the initial semimajor axis,
eccentricity, true anomaly, and argument of pericenter,

ai
rt

¼ GM•

2Eirt
¼ q−1=3

2
ð1þ SÞ2=3; ð7aÞ

1 − e2i ¼
J2

GM•ai
¼ 4q1=3

β
ð1þ SÞ−2=3; ð7bÞ

cos fi ¼
1

ei

�
aið1 − e2i Þ

r
− 1

�
≈
2

β
− 1; ð7cÞ

ωi ¼ −fi; ð7dÞ

where fi (ωi) is negative (positive) for β > 1.

B. Ballistic evolution

We assume that the tidal-stream elements orbit the
SMBH ballistically between collisions. This ballistic evo-
lution can be calculated most easily in terms of the
eccentric anomaly E given by

tan
E
2
¼

�
1 − e
1þ e

�
1=2

tan
f
2
: ð8Þ

Inserting Eqs. (7b) and (7c) into Eq. (8) yields the initial
eccentric anomaly EiðSÞ < 0 and thus, the time,

t0ðSÞ
τmb

¼ 1þ S
2π

ðei sin Ei − EiÞ; ð9Þ

at which stream element S first passes through pericenter.
This equation indicates that t0 ¼ 0 when tidal disruption
occurs at pericenter (β ¼ 1), while t0 ≪ τmb for all rea-
sonable values of β given that the initial apocenter satisfies
ra ≈ 2ai ≫ rt according to Eq. (7a).
The subsequent time evolution of the eccentric anomaly

is then found by solving the transcendental equation,

EðS; tÞ − eðSÞ sin EðS; tÞ ¼ ½2EðSÞ�3=2
GM•

½t − t0ðSÞ�: ð10Þ

Given that relativistic apsidal precession is strongly peaked
near pericenter on the highly eccentric orbits of the tidal-
stream elements, we model it as an instantaneous increment
in the argument of pericenter at each pericenter passage
(E ¼ 2πn) by an amount,

Δω ¼ 6π

�
GM•

Jc

�
2

¼ 0.2β

�
M•

106 M⊙

�
2=3

�
M⋆
M⊙

�
1=3

�
R⋆
R⊙

�
−1
; ð11Þ

given by the first post-Newtonian correction to the equation
of motion [33]. The position of stream element S according
to this ballistic evolution is given by

rðS; tÞ
rt

¼ að1− e2Þ
rtð1þ e cosfÞ ¼

2

β½1þ eðSÞ cosfðS; tÞ� ; ð12aÞ

ϕðS; tÞ ¼ fðS; tÞ þ ωðSÞ; ð12bÞ

where fðS; tÞ is found from Eqs. (8) and (10), and its
velocity is given by

vrðS; tÞ
vt

¼ GM•e sin f
Jvt

¼ β1=2

2
eðSÞ sin fðS; tÞ; ð13aÞ

vϕðS; tÞ
vt

¼ J
rvt

¼ β1=2

2
½1þ eðSÞ cos fðS; tÞ�; ð13bÞ
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where

vt ≡ Jt
rt

¼ q−1=3ð2E⋆Þ1=2: ð14Þ

C. Initial stream self-intersection

Evolving the positions of the stream elements according to
Eq. (12), we find that the leading element (S ¼ 0) first
collides with a trailing stream element at a time tcol;1st shown
as a function of penetration factor β for different SMBH
massesM• in Fig. 2. For small β andM•, apsidal precession is
negligible according to Eq. (11). In this limit, the first
collision occurs when the leading element returns to the
tidal radius for the second time and laps the element S ¼ 1

that is returning for the first time (tcol;1st → 2τmb). In the
opposite limit of large β and M•, strong apsidal precession
causes the leading element to collide almost immediately
after its first return to pericenter (tcol;1st→ t0ð0Þþτmb≈τmb).
The distance rcol;1st of this initial collision point from the

SMBH as a function of SMBH mass and penetration factor
is shown in Fig. 3. This distance would approach the tidal
radius for negligible apsidal precession, but this limit is not
achieved even for M• ¼ 105 M⊙, β ¼ 1, for which
Δω ≈ 2.5°, according to Eq. (11). As M• increases in the
left panel, apsidal precession increases, and the initial
collision point is located further from the tidal radius.
The black curve shows the initial apocenter ra;mb ≈ q−1=3rt
of the most tightly bound stream element; the initial
collision occurs at apocenter (tcol;1st ¼ t0ð0Þ þ 1.5τmb)
for values of M•, at which, this curve is tangent to the
colored curves showing rcol;1st for different values of β. As
M• increases beyond this point, the initial collision occurs
closer to pericenter. Although rcol;1st continues to increase

because the initial semimajor axis ai ∝ M1=3
• according to

Eq. (7a), it eventually reaches a maximum and turns over as
rcol;1st → rt=β in the limit of large apsidal precession. This
maximum occurs at smaller values of M• for larger
penetration factors because Δω ∝ β according to Eq. (11).
The right panel of Fig. 3 shows rcol;1st as a function of

penetration factor β for four different SMBH masses M•.
The two smaller masses, M• ¼ 105 M⊙ and 105.5 M⊙, are
below the value of M• of the tangent point between the
apocenter curve ra;mbðM•Þ and the rcol;1stðM•Þ curve for
β ¼ 1 in the left panel. This implies that rcol;1stðβÞ will
increase for these SMBH masses until the initial collision
occurs at apocenter, then decreases as rcol;1st → rt=β in
the limit of large apsidal precession. For the two larger
masses, M• ¼ 106 M⊙ and 106.5 M⊙, the initial collision
happens before the second passage through apocenter
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FIG. 2. Time of the first stream collision in units of the period
of the most-bound stream element as a function of penetration
factor β for SMBH masses M• of 105 M⊙, 105.5 M⊙, 106 M⊙,
and 106.5 M⊙.
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FIG. 3. Distance rcol of the initial collision point from the SMBH in units of the tidal radius rt. The left panel shows this distance as a
function of SMBH massM• for penetration factors β of 1, 1.5, and 2. The black curve shows the apocenter distance ra;mb=rt ≈ q−1=3 of
the most bound stream element. The right panel shows rcol as a function of β for M• ¼ 105 M⊙, 105.5 M⊙, 106 M⊙, and 106.5 M⊙.
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(tcol;1st < 1.5τmb in Fig. 2) even for β ¼ 1. The distance of
the initial collision point from the SMBH is therefore a
monotonically decreasing function of β for these masses.

D. Stream circularization

After the initial stream self-intersection described in the
previous section, we assume that streams I and II merge
inelastically into a new stream III. If S1ðtÞ and S2ðtÞ are the
elements of streams I and II reaching the collision point at
time t, conservation of mass implies that the mass dis-
tribution of the newly formed stream element S3ðtÞ of
stream III will be given by

dM
dS

ðS3Þ ¼ ½1þQðtÞ� dM
dS

ðS2Þ; ð15Þ

where

QðtÞ≡ dM
dS

ðS1Þ
�
dM
dS

ðS2Þ
�
−1 dS1=dt

dS2=dt
ð16Þ

is the ratio of the mass flux of stream I to II at the collision
point. We choose without loss of generality that the new
element of stream III inherits the label of its parent from
stream II (S3 ¼ S2 ⇒ dS3=dt ¼ dS2=dt). This coordinate
choice is convenient because it preserves the continuity of S
as a label for the elements of stream III following the initial
collision.
This inelastic collision preserves specific orbital angular

momentum (and thus, the azimuthal velocity vϕ) but not
specific energy. The radial velocity vr of the new element of
stream III is given by conservation of linear momentum:

vrðS3Þ ¼
vrðS2Þ þQðtÞvrðS1Þ

1þQðtÞ : ð17Þ

We assume that this collision is effectively instantaneous,
i.e., on a timescale much shorter than the orbital period.
Using the position of the collision point and the velocity of
the new element of stream III, we can calculate its semi-
major axis aðS3Þ, eccentricity eðS3Þ, argument of pericenter
ωðS3Þ, and eccentric anomaly EðS3Þ using the standard
definitions of the Keplerian orbital elements. We then
evolve this element balistically as described in Sec. II B
until it collides with a new element of stream II when it
returns to the collision point.
Four snapshots of this evolution for the tidal disruption

of a solar-type star with penetration factor β ¼ 1 by a
SMBH of mass 106 M⊙ are shown in Fig. 4. The top left
panel shows the entirety of stream I at the time of the initial
stream self-intersection. This intersection occurs at tcol;1st ≈
1.25τmb at a collision point a distance rcol;1st ≈ 85rt from
the SMBH consistent with Figs. 2 and 3. The top right
panel shows a close-up view of the collision point shortly
after this initial self-intersection. A key feature of this panel

is that the newly formed stream III is nearly parallel to the
extrapolation of stream II through the collision point. This
can be understood by recognizing that at the time tcol;1st of
the initial stream self-intersection, S1 ¼ 0, and therefore,
dM=dSðS1Þ ¼ 0 as shown in Fig. 1. This requires
Qðtcol;1stÞ ¼ 0 according to Eq. (16), and therefore,
vrðS3Þ ¼ vrðS2Þ according to Eq. (17). This feature is
crucial because it implies that the leading edge of stream III
smoothly connects to the trailing edge of stream I. The
topology of the tidal stream therefore always consists of a
single closed loop of stream I and III with the infalling
stream II providing a tail at the collision point as in the top
left panel of Fig. 4. There is no need to assume that stream I
self-intersects at a different location providing a “stream
self-crossing shock luminosity” distinct from the “tail
shock luminosity” as in Bonnerot et al. [22].
The bottom two panels in Fig. 4 show the collision point

at later times. As S1ðtÞ increases, dM=dSðS1Þ, and thus,
QðtÞ, increase rapidly. They increase even more rapidly
than shown in Fig. 1 once the leading element S3ðtcol;1stÞ of
stream III returns to the collision point, but they remain
continuous because Qðtcol;1stÞ ¼ 0. The angle between
stream III and stream II increases with time as QðtÞ
increases; stream III is nearly parallel to stream I
(vrðS3Þ ≈ vrðS1Þ) at the final time tcol ¼ 4.72τmb depicted
in the bottom right panel of Fig. 4.

E. Extrapolation

The final time tcol ¼ 4.72τmb shown in Fig. 4 was not set
by choice but because our model breaks down shortly after
this time. This breakdown, explored in detail in the
Appendix, is caused by the rapid increase in QðtÞ and
thus, the energy dissipated at the collision point. Trailing
elements of stream III develop higher binding energies and
thus, shorter orbital periods than leading elements. When
this effect becomes large enough, the trailing elements are
able to overtake the leading elements before they have
passed through the collision point. A kink is formed in the
tidal stream as shown in Fig. 10, breaking the “loopþ tail”
topology essential to our model. A hydrodynamics simu-
lation could address this feature by forming a shock, and we
speculate that this effect could contribute to the delayed
formation of shock 2b in the hydrodynamics simulation of
Shiokawa et al. [18]. As our purely kinematic model does
not include shocks, we have developed an even more
approximate model to extrapolate beyond the time of this
breakdown.
This new approximate model assumes that stream III

asymptotically approaches circularization at late times. We
cannot quantify the effects of internal shocks like shock 2b
of Shiokawa et al. [18] without performing our own
hydrodynamics simulations. Qualitatively, however, dissi-
pation of the bulk orbital kinetic energy at internal shocks
should supplement that at the collision point to promote
stream circularization. Consistent with this assumption of
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asymptotic stream circularization, we extrapolate the true
anomaly f2ðS2Þ of stream II at the collision point by fitting
the function,

cos f2ðS2Þ ¼
1

2
tanh½kðS2 − CÞ� − 1

2
; ð18Þ

to our previous kinematic simulations, where k and C are
fitting parameters. We chose this function because of the
limits of the hyperbolic tangent:

lim
x→∓∞

tanh x ¼ ∓1: ð19Þ

This implies that cos f2 → −1 (f2 → −π) at early times
consistent with rcol;1st ≫ rt as shown in Fig. 3. At late
times, the orbit of stream II will approach a parabola of
specific angular momentum L ¼ Ltβ

−1=2, while that of
stream I will approach a circle of radius,

rc ¼
L2

GM•
¼ 2rt

β
; ð20Þ

with the same specific angular momentum. These two
orbits intersect at f2 ¼ −π=2 (cos f2 ¼ 0) consistent with
Eq. (18) in the limit S2 → ∞.
Equation (18) also allows us to calculate the time tðS2Þ

when element S2 arrives at the collision point. We use
Eq. (8) to calculate the eccentric anomaly from the true
anomaly, then Eq. (10) to determine the time of the
collision.
We also need to extrapolate from our kinematic simu-

lations to determine the element S1ðS2Þ of stream I that
collides with element S2 of stream II. We fit the function,

S1ðS2Þ ¼ S2 −
τc
τmb

− A expð−BS2Þ; ð21Þ
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FIG. 4. Snapshots of the tidal stream after its first self-intersection forM• ¼ 106 M⊙ and β ¼ 1. The top left panel is at the time of the
first self-intersection; stream I (II) will reach the collision point after (before) returning to the tidal radius. The remaining panels show the
collision point at times tcol=τmb ¼ 1.25, 3, and 4.72 after tidal disruption. Stream I (II) is shown before the collision by the solid blue
(red) line and extrapolated after the collision by the dashed blue (red) line. Stream III is formed in the collision and shown by the solid
green line.
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where

τc ¼ 2π

�
r3c

GM•

�
1=2

¼ 8

�
q
β3

�
1=2

τmb ð22Þ

is the orbital period at the circularization radius rc, and A
and B are fitting parameters. This function was chosen to
satisfy the limit S1 → S2 − τc=τmb as S2 → ∞ because it
will take a time τc for the newly formed element S1 of
stream III to travel around the loop and return to the
collision point as part of stream I.
Once we have fit Eq. (21) to our kinematic simulations,

we can calculate dS1=dS2 and use conservation of mass
(15) with QðtÞ replaced by

QðS2Þ≡ dM
dS

ðS1Þ
�
dM
dS

ðS2Þ
�
−1 dS1

dS2
ð23Þ

to evolve the mass distribution of the tidal stream beyond
the end of our kinematic model. We can use our fit (18) and
the requirement that r1 ¼ r2 at the collision point to find
the true anomaly of stream I,

cos f1ðS1Þ ¼
eðS2Þ
eðS1Þ

cos f2ðS2Þ; ð24Þ

then use Eq. (13a) to determine the radial velocities of
streams I and II and conservation of linear momentum (17)
to determine the radial velocity of stream III. This implies
that the specific binding energy of stream III is given by

EðS3Þ ¼
GM•

rcol
−
1

2
½v2rðS3Þ þ v2ϕðS3Þ�

¼ EðS2Þ þQEðS1Þ
1þQ

þQ
2

�
vrðS1Þ − vrðS2Þ

1þQ

�
2

: ð25Þ

This equation allows us to calculate the bolometric lumi-
nosity released at the collision point,

LðS2Þ ¼ ½ð1þQÞEðS3Þ − EðS2Þ −QEðS1Þ�
dM=dS
dt=dS2

ðS2Þ

¼ Q½vrðS1Þ − vrðS2Þ�2
2ð1þQÞ

dM=dS
dt=dS2

ðS2Þ: ð26Þ

The first term in upper line of Eq. (26) is the rate at which
stream III caries binding energy away from the collision
point, while the second and third terms are the rates at
which streams II and I supply binding energy away to the
collision point. By conservation of energy, the difference of
these terms is the rate of energy dissipation.

F. Late-time limit

In the limit of late times:
(1) The mass flux ratio goes to infinity (Q → ∞),
(2) Stream I circularizes [vrðS1Þ → 0],

(3) Stream II is on a parabolic orbit at the circularization
radius [v2rðS2Þ → 2GM•=rc − v2ϕ ¼ βEt=2q1=3],

(4) Stream element S2 collides after an orbital period
[S2ðtÞ → t=τmb, dt=dS2 → τmb],

(5) The dimensionless mass fallback rate approaches the
limit of Eq. (5) [dM=dS2 → 1.475M⋆ðt=τmbÞ−5=3].

If we insert the first four of these conditions into Eq. (26),
the circularized bolometric luminosity at late times is

L∞ðtÞ ¼
β

4q1=3
Et

τmb

dM
dS2

½S2ðtÞ�; ð27Þ

L∞

LEdd
¼ 21.3β

�
M•

106 M⊙

�
−5=6

�
1

M⋆
dM
dS2

½S2ðtÞ�
�

×

�
M⋆
M⊙

�
7=3

�
R⋆
R⊙

�
−5=2

; ð28Þ

where Eq. (28) has been normalized to the Eddington
luminosity LEdd ¼ 4πGM•mpc=σt. Inserting the fifth con-
dition into Eq. (28) yields

L∞

LEdd
¼ 31.4β

�
M•

106 M⊙

�
−5=6

�
t

τmb

�
−5=3

×

�
M⋆
M⊙

�
7=3

�
R⋆
R⊙

�
−5=2

: ð29Þ

This limit shows that the stream self-intersection can indeed
power an Eddington-luminosity electromagnetic transient
during a TDE provided that the circularization time tc after
which, it applies is not too much greater than the minimum
fallback time τmb.

III. RESULTS

We now explore the predictions of our model for the
efficiency of tidal-stream circularization and the accom-
panying bolometric light curve of energy dissipated at the
collision point.
The distance rcolðtÞ of the collision point from the

SMBH evolves with time as shown in Fig. 5. The initial
self-intersection occurs at rcol;1st ≲ ra;mb ≈ q−1=3rt. At first,
the distance rcolðtÞ increases with time, because the trailing
elements S of stream I initially have larger semimajor axes
aiðSÞ than the most-bound element (S ¼ 0) as indicated by
Eq. (7a). Although the initial self-intersection points are at
comparable dimensionless distances from the SMBH for
the three values of the SMBH mass M• depicted in Fig. 5
(these three values straddle the maximum of the blue β ¼ 1
curve in the left panel of Fig. 3), the tidal stream circular-
izes more rapidly for more massive SMBHs because the
specific energy dissipated at the collision points scale as
v2t ∝ q−2=3 according to Eq. (14). The tidal stream even-
tually circularizes for all three values of M• when the
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distance rcolðtÞ reaches the circularization radius rc given
by Eq. (20).
Energy dissipation at the collision point causes stream III

to become increasingly bound with time as shown in Fig. 6.
As the inelastic stream collisions conserve specific angular
momentum, stream III becomes fully circularized when it
reaches a specific binding energy,

Ec ¼
GM•

2rc
¼ β

4
q−1=3Et: ð30Þ

Although TDEs with higher SMBH masses M• and
penetration factors β have higher circularization energies
Ec, the greater apsidal precession given by Eq. (11) implies
that they circularize faster. Our extrapolation (18) of the
true anomaly of stream II implies that the collision point,

rcolðS2Þ ¼
aið1 − eiÞ2
1þ ei cos f2

≈
2rc

tanh½kðS2 − CÞ� þ 1
; ð31Þ

approaches the circularization radius rc by construction at
late times (S2 → ∞), but it can take a very long time
(tc ≫ τmb) to do so as indicated in Figs. 5 and 6 for
M• ¼ 5 × 105 M⊙ and β ¼ 1. If the breakdown of the
“loopþ tail” topology described in the Appendix had not
necessitated such an extrapolation, our kinematic simula-
tions might have demonstrated that energy dissipation at
the collision point was too inefficient to circularize the tidal
stream for such mild apsidal precession.
The bolometric luminosity associated with this energy

dissipation at the collision point is shown in Fig. 7 for our
default choice of parameters M• ¼ 106 M⊙, β ¼ 1. Its
rapid rise from zero at t ¼ tcol;1st can be understood from
Eq. (26): The stream mass ratio Q, radial velocities vrðSiÞ,
and mass distribution dM=dSðS2Þ all grow rapidly as the
collision point approaches the circularization radius rc. It
reaches a maximum of Lpeak ≈ 0.75LEdd at tpeak ≈ 6.48τmb

as the factor Q=ð1þQÞ asymptotes to unity, the radial
velocity vrðS1Þ → 0 as stream I circularizes, and
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FIG. 5. Distance rcol of the stream collision point from the
SMBH as a function of time t after tidal disruption for TDEs with
penetration factor β ¼ 1. The black, blue, and red curves
correspond to SMBH masses of M•=M⊙ ¼ 5 × 105, 106, and
2 × 106, respectively. The solid (dashed) portions of each curve
show the results of our kinematic simulations and late-time
extrapolations.
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FIG. 6. (Left panel) The specific binding energy E3 of stream III as a function of time t for TDEs with penetration factor β ¼ 1 and
SMBHmassesM•=M⊙ ¼ 5 × 105 (blue), 106 (black) 1.5 × 106 (red), and 2 × 106 (green). (Right panel) The specific binding energy E3

of stream III as a function of time t for TDEs with SMBH massM• ¼ 5 × 105 M⊙ and penetration factors β ¼ 1 (blue), 1.5 (black) 1.75
(red), and 2 (green). In both panels, the solid portions of the curves show kinematic simulations, the dashed portions show late-time
extrapolations of these simulations, and the horizontal dotted lines show the circularization energy Ec=Et ¼ βq−1=3=4.
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dM=dSðS2Þ passes through its own maximum at S2 ¼
Smax ≈ 4.78 as shown in Fig. 1. After stream I has
circularized at tc ≈ 9.85τmb, the light curve traces the mass
fallback rate as indicated by Eq. (28). The relative prox-
imity tðSmaxÞ ≃ tc of the two times leads to a significant
enhancement of the peak bolometric luminosity Lpeak

above the circularized prediction of Eq. (28).
For comparison, we also show the predictions of the

models of Bonnerot et al. [22] for the same choice of
parameters, conserved angular momentum (Alfvén velocity
vA ¼ 0), and perfect radiative efficiency (η ¼ 1). The solid
purple curve in Fig. 7 shows the prediction of Bonnerot
et al. [22] assuming an initially flat energy distribution of
the tidal debris consistent with a mass distribution,

dM
dS

¼ dM
dEi

���� dEi

dS

���� ¼ M⋆
3

ð1þ SÞ−5=3: ð32Þ

This monotonically decreasing function vastly overesti-
mates the mass distribution at early times compared to the
more accurate freeze-in model of Lodato et al. [27] as can
be seen by comparing it to dM=dS shown in Fig. 1. It also
underestimates the mass distribution at late times (S → ∞)
by a factor ≈0.226 as can be seen in comparison with the
limit given by Eq. (5). These discrepancies are largely
responsible for the disagreements between the black and
solid purple curves in Fig. 7.
The dot-dashed purple curve in Fig. 7 shows the prediction

ofBonnerot et al. [22] using the same initialmass distribution
of Lodato et al. [27] adopted by our model. There is much
greater agreement, although the Bonnerot et al. [22] model
still overestimates (underestimates) the bolometric light

curve at early (late) times t < tc prior to circularization.
This residual disagreement is primarily due to their
assumption that the stream mass ratio Q is always equal
to unity in the “stream self-crossing shock luminosity”
contribution Ls

sh to the bolometric light curve.1 Once stream
I circularizes,Ls

sh → 0 and the light curve is dominated by the
“tail shock luminosity” Lt

sh equal to the product of the mass
fallback rate and the assumed homogeneous specific energy
of stream I. After circularization, Lt

sh agrees with our late-
time prediction L∞ of Eq. (27). One might expect greater
disagreement between our model and that of Bonnerot et al.
[22] for TDEs by smaller SMBH massesM• whose streams
circularize more slowly and have light curves that remain
dominated by the “stream self-crossing shock luminosity”
until later times.
In Fig. 8, we explore the dependence of our predicted

TDE bolometric light curves on SMBH mass M• for fixed
penetration factor β ¼ 1. The solid (dashed) black curves
show the light curves given by our kinematic simulations
(extrapolations) described in Secs. II D and II E, respec-
tively, while the solid red curves show the circularized
bolometric luminosity L∞=LEdd given by Eq. (28). These
latter curves are all proportional to the mass fallback rate
dM=dS shown in Fig. 1 and reach a peak at tfb ¼
ð1þ SmaxÞτmb ¼ 5.78τmb. They are proportional to
M−5=6

• , implying that they only predict super-Eddington
peak luminosities for M• ≲ 3.3 × 105 M⊙.
Although our model agrees with the late-time limit L∞

after stream I circularizes (t > tc), there are significant
deviations at earlier times. As the SMBH mass increases,
the apsidal precession angle Δω increases proportional to
M2=3

• as given by Eq. (11). This implies that the circulari-
zation time tc decreases as can be seen in Fig. 5 and the left
panel of Fig. 6. These circularization times are also listed in
Table I below. For small SMBH masses, stream I circular-
izes after the peak in the mass fallback rate (tc > tfb). In this
regime of “slow” circularization, considerable mass builds
up in stream I, the “loop” of our “loopþ tail” topology,
before energy dissipation at the collision point is efficient
enough to achieve circularization. This implies a single
peak in the bolometric light curve near the time at which the
factor fv ≡ ½vrðS1Þ − vrðS2Þ�2 in Eq. (26) is maximized.
For the smallest SMBH masses, such asM• ¼ 5 × 105 M⊙
shown in the top left panel of Fig. 8, the time tpeak at which
this peak occurs can be much greater than the time tfb at
which the mass fallback peaks. For larger SMBH masses,
for which tc is not much greater than tfb, such as M• ¼
106 M⊙ shown in the top right panel of Fig. 8, the peaks in
the factors fv and dM=dS in Eq. (26) can overlap.
This leads to a significant enhancement of the light curve
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FIG. 7. Bolometric light curves associated with the energy
dissipated in stream collisions for a TDE with SMBH massM• ¼
106 M⊙ and penetration factor β ¼ 1. The solid and dashed black
curves are the predictions of our kinematic simulation and
extrapolation, while the solid and dot-dashed purple curves are
the predictions of Bonnerot et al. [22] using a flat energy
distribution and the freeze-in model of Lodato et al. [27].

1This disagreement shown in Fig. 7 is smaller than would be
inferred from Fig. 8 of Bonnerot et al. [22]; we were unable to
precisely reproduce their light curve despite our best efforts.

TWO REGIMES OF TIDAL-STREAM CIRCULARIZATION BY … PHYS. REV. D 104, 103019 (2021)

103019-9



(≈90% for M• ¼ 106 M⊙) above the circularized predic-
tion L∞ given by Eq. (28).
In the opposite regime of “fast” circularization (tc < tfb),

larger apsidal precession Δω leads to more efficient energy
dissipation, which circularizes stream I prior to the peak in

themass fallback rate at tfb. This leads to two distinct peaks in
the bolometric light curve: a first peak at which the velocity
factor fv is maximized, and a second peak at tfb when the
mass fallback rate is maximized. When tc is not much less
than tfb, such as for M• ¼ 1.5 × 106 M⊙ shown in the
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FIG. 8. Bolometric light curves for TDEs by SMBHs with masses M•=M⊙ ¼ 5 × 105, 106, 1.5 × 106, and 2 × 106. The penetration
factor is β ¼ 1. The solid (dashed) black curves depict our kinematic simulations (extrapolations), and the red curves show the late-time
luminosity limit L∞=LEdd of Eq. (28).

TABLE I. SMBH mass M•, penetration factor β, apsidal precession angle Δω, time tpeak of the first luminosity peak, time tc at which
stream I circularizes, luminosity Lpeak of the first luminosity peak, and circularization regime. Circularization is slow (fast) if tc is greater
(less) than the time tfb ¼ 5.78τmb at which the mass fallback rate peaks.

M•=M⊙ β Δω tpeak=τmb tc=τmb Lpeak=LEdd Circularization

5 × 105 1 0.126 17.91 141.14 0.68 Slow
5 × 105 1.5 0.189 5.80 8.58 2.21 Slow
7 × 105 1.2 0.189 6.07 9.29 1.38 Slow
106 1 0.2 6.48 9.85 0.75 Slow
5 × 105 1.75 0.220 3.91 5.31 2.29 Fast
5 × 105 2 0.252 2.87 3.36 1.32 Fast
1.5 × 106 1 0.262 3.65 4.56 0.43 Fast
106 1.5 0.3 2.19 2.33 0.30 Fast
2 × 106 1 0.318 2.43 2.81 0.13 Fast
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bottom left panel of Fig. 8, the maxima of the factors fv and
dM=dS in Eq. (26) overlap and the first peak dominates over
the second. At the largest SMBH masses, such as for M• ¼
2 × 106 M⊙ shown in the bottom right panel of Fig. 8, stream
I circularizes extremely rapidly (tc ≪ tfb), the first peak is
merely a small fluctuation on the rising light curve, and the
bolometric luminosity dissipated at the collision point traces
themass fallback rate consistent with Eq. (26) for most of the
duration of the TDE. Note that this regime is still distinct
from the canonical scenario of Rees [5], in which the
bolometric luminosity is assumed to trace the mass fallback
rate because the circularization time tc is much shorter than
the viscous time at the circularization radius rc. Our model
implies a radiative efficiency,

η∞ ¼Ec

c2
¼ βE⋆
4q2=3c2

¼ 5.3×10−3β

�
M•

106 M⊙

�
2=3

�
M⋆
M⊙

�
1=3

�
R⋆
R⊙

�
−1
; ð33Þ

at late times, unlike the canonical scenario, which predicts a
radiative efficiency ηISCO ≈ 0.1 consistentwith the innermost
stable circular orbit of the SMBH.
In Fig. 9, we examine how our bolometric light curves

depend on the penetration factor β for a fixed SMBH
massM• ¼ 5 × 105 M⊙. The top left panel of this figure is
identical to that of Fig. 8, but the other panels appear
qualitatively similar as well. This is primarily because the
apsidal precession angle of Eq. (11) that determines the
efficiency of circularization is also a monotonically increas-
ing function of the penetration factor (Δω ∝ β). The overall
normalization of these light curves is different, however, as
according to Eq. (28), the circularized bolometric lumnos-
ity increases with penetration factor (L∞=LEdd ∝ β), while
it decreases with SMBH mass (L∞=LEdd ∝ M−5=6

• ). As the
penetration factor β increases, the circularization time tc
rapidly decreases. The circularization regime transitions
from “slow” to “fast” for some penetration factor
1.5 ≤ βtransðM•Þ ≤ 1.75, and by β ¼ 2, the light curve
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FIG. 9. Bolometric light curves for TDEs with penetration factors β ¼ 1, 1.5, 1.75, and 2. The SMBHmass isM• ¼ 5 × 105 M⊙. The
solid (dashed) black curves depict our kinematic simulation (extrapolations), while the red curves show the late-time luminosity limit
L∞=LEdd of Eq. (28).
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traces the mass fallback rate even for this comparatively
small SMBH mass.
In Table I, we summarize the results of the simulations

depicted in Figs. 8 and 9, along with two additional
simulations. Although the circularization time tc is not a
monotonically decreasing function of the apsidal preces-
sion angle Δω for all choices of the parameters, all of the
TDEs in the “fast” regime have Δω≳ 0.2. If we use this
criterion as a crude estimate of the boundary between the
“slow” and “fast” circularization regimes, then according to
Eq. (11), TDEs with penetration factors,

β ≳ βtransðM•Þ ¼
�

M•

106 M⊙

�
−2=3

; ð34Þ

circularize promptly. TDEs deep within the fast regime
(β ≫ βtransðM•Þ) will have bolometric light curves L∞ðtÞ
given by Eq. (27) that trace the mass fallback rate as in the
bottom right panels of Figs. 8 and 9.

IV. DISCUSSION

A star that passes sufficiently within the tidal radius rt of
a SMBH will inevitably be disrupted, but the luminsoity
and timescale of the electromagnetic emission by the
resulting tidal debris is highly uncertain. In the absence
of relativistic apsidal precession, elements of the tidal
stream will have different semimajor axes and eccentricities
but will share a common argument of pericenter. Whether
such a highly eccentric tidal stream could successfully
develop a magneto-rotational instability [34] that would
transform it into an accretion disk about the SMBH is
unclear. Fortunately for astronomers, relativistic apsidal
precession causes the tidal stream to intersect with itself,
leading to continuous inelastic collisions between a loop of
circularizing debris (stream I) and a tail (stream II) falling
back to pericenter for the first time.
Global hydrodnamic simulations of tidal disruption and

stream circularization are extraordinarily computationally
expensive given the huge dynamical range of time and
length scales (see Sec. 3.1 of Stone et al. [35] for a brief
review of these numerical challenges). This computational
expense suggests that the one-dimensional kinematic sim-
ulations of the model presented in this paper can be useful
to gain qualitative insight into tidal-stream circulation and
more rapidly explore the parameter space. Our model
would need to be supplemented with three-dimensional
radiation hydrodynamic simulations such as those pre-
sented in Jiang et al. [17] to quantitatively predict the
radiative efficiency and effective temperature of these
stream collisions. These simulations indicate that stream
collisions can indeed produce much of the optical-UV
emission associated with TDEs, which might help to
explain observed delays between optical-UV and x-ray
emission [28,29].

The primary finding of our study, shown in Figs. 8 and 9
and summarized in Table I, is that tidal-stream circulari-
zation can be divided into slow and fast regimes depending
on whether the time tc on which the debris within the loop
circularizes is longer or shorter than the time tfb at which
the mass fallback rate peaks. In the slow regime, the mass
contained in the fallback peak assembles into an eccentric
loop that slowly radiates in a single broad peak as it
circularizes. In the fast regime, the eccentric loop rapidly
circularizes, producing a first narrow peak in the bolometric
light curve. This is followed by a second broader peak as
the mass fallback rate of the tidal tail (stream II) onto the
already circularized loop passes through its own peak at tfb.
TDE circularization occurs in the fast regime for apsidal
precession angles Δω≳ 0.2, which occur for penetration
factors β ≳ βtransðM•Þ ¼ ðM•=106 M⊙Þ−2=3.
This criterion most likely overestimates the efficiency of

tidal-stream circularization (underestimates βtrans) for sev-
eral reasons: (1) stream collisions are unlikely to be fully
inelastic as assumed in our model, (2) the extrapolation
beyond the breakdown of our kinematic simulations
assumed that the stream circularizes exponentially, and
(3) we have neglected nodal precession that can delay the
first stream self-intersection [36]. If circularization is so
inefficient that it fails entirely, the TDE may fail to produce
an observable flare in the optical-UVor x-ray. The rate _N of
TDEs by intermediate-mass black holes (IMBHs) with
masses M• ≲ 106 M⊙ is dominated by the full loss-cone
(pinhole) regime in which the distribution of penetration
factors is d _N=dβ ∝ β−2 [37,38]. This implies that only a
small faction of TDEs by IMBHs may be observable,
which would help to reconcile the observed distribution of
TDE host galaxies (for which 106 M⊙ ≲M• ≲ 107 M⊙ is
inferred from the M• − σ relation [39,40]) with theoretical
predictions that the TDE rate would be dominated by dwarf
galaxies hosting IMBHs [41]. Although it is challenging to
make more specific observational predictions without
radiative simulations, the identification of TDEs with
double-peaked bolometric light curves associated with
the transition between the slow and fast regimes of stream
circularization by future high-cadence optical-UV surveys,
like the Legacy Survey of Space and Time by the Vera
Rubin Observatory, would be a powerful indication that our
model describes a key feature of TDE dynamics.
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APPENDIX: MODEL BREAKDOWN

Our kinematic model of tidal stream circularization
described in Sec. II D is predicated on the stream main-
taining the “loopþ tail” topology pictured in the top left
panel of Fig. 4. This topology allows us to determine the
element S1 of stream I that collides with infalling element
S2 of stream II and thus, use Eqs. (15) and (17) to calculate
the mass and velocity of the newly formed element S3 ¼ S2
of stream III. However, while performing these simulations,
we discovered the emergence of a kink in stream I that
eventually prevented the identification of a unique collision
point. Figure 10 shows a snapshot of the tidal streams
for our default parameters M• ¼ 106 M⊙ and β ¼ 1 at
t ¼ 4.82τmb, shortly before the kink causes our model to
break down.
Although we assumed at first that this kink was a

numerical artifact, its existence and location were robust
to changes in our numerical resolution. After careful
investigation, we concluded that it was a consequence of
the inversion of specific binding energy in the loop, which
allows trailing elements to overtake leading elements
before they return to the collision point.
The tidal stream is created at t ¼ 0 when the tidally

disrupted star first crosses the tidal radius rt. All the bound
elements S are within a stellar diameter 2R⋆ at that time, but
the distribution of initial specific binding energy EiðSÞ ¼
ð1þ SÞ−2=3Et given by Eq. (6b) causes the less tightly
bound elements (with longer orbital periods) to trail the
more tightly bound (shorter period) leading elements. This
standard ordering of the specific binding energy for tidal
streams is expressed in our notation by a monotonically
decreasing function EðSÞ such as that for stream II

E2ðS2Þ ¼ EiðS2Þ, which has yet to experience its first
inelastic collision. This function is shown by the blue
curve in Fig. 11. This ordering is initially preserved
because the stream mass ratio Q ¼ 0 at the initial stream
self-intersection implies that no energy is dissipated at
t ¼ tcol;1st. However, as Q increases, increasing energy
dissipation at the collision point causes the specific binding
energy E3ðS3 ¼ S2Þ to reach a minimum at Smin ¼ 0.84
and then monotonically increase with time. If this curve
becomes sufficiently steep, trailing elements will have high
enough binding energies (short enough periods) to overtake
the leading elements before they make it around the loop
and return to the collision point. We can crudely estimate
the criterion for this steepness as dτ=dt≲ −1, which
implies

dðE3=EtÞ
dS

≳ 2

3

�
E
Et

�
5=2

: ðA1Þ

This criterion is satisfied by the black curve E3ðSÞ=Et in
Fig. 11 before t ¼ 4.82τmb when the leading edge of the
kink shown in Fig. 10 overtakes its trailing edge before
reaching the collision point.
In a genuine hydrodynamics simulation, the tidal streams

will have finite thickness, and the formation of shocks will
prevent kinks like those that cause our kinematic simu-
lations to break down. The delayed “Shock 2b” formed in
the general relativistic hydrodynamics simulations of
Shiokawa et al. [18] and depicted in the right panel of
their Fig. 12 may result from an inversion in the ordering
of the specific energy in the “loop” like described above. If
hydrodynamic forces are able to smooth out the kink
without disrupting the “loopþ tail” morphology of the

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

S

0

1

2

3

4

5

FIG. 11. Specific binding energy E as a function of dimension-
less fallback time S for M• ¼ 106 M⊙ and β ¼ 1. The blue and
black curves show stream II and III. The curve for stream III ends
at t ¼ 4.82τmb.
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FIG. 10. Snapshot of the tidal stream at t ¼ 4.82τmb for M• ¼
106 M⊙ and β ¼ 1. Beyond this time, the kink in stream I
destroys the simple “loopþ tail” topology essential to our model
of stream circularization.
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tidal stream, it is possible that the kinematic approach of
our model can still qualitatively describe the evolution of
the tidal stream all the way to circularization. This
assumption motivates the extrapolation described in

Sec. II E that replaces the conservation of linear momentum
given by Eqs. (17) with the fits of Eqs. (18) and (21) to
model stream circularization beyond the breakdown in our
kinematic simulations.
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