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Axionlike particles (ALPs) coupled with electrons would be produced in a supernova (SN) via electron-
proton bremsstrahlung and electron-positron fusion. We evaluate the ALP emissivity from these processes
by taking into account the ALP mass and thermal effects on electrons in the strongly degenerate and
relativistic SN plasma. Using a state-of-the-art SN simulation, we evaluate the SN 1987A cooling bound
on ALPs for masses in the range 1–200 MeV, which excludes currently unprobed regions down to
gae ∼ 2.5 × 10−10 at ma ∼ 120 MeV.
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I. INTRODUCTION

The QCD axion is a hypothetical pseudoscalar particle
predicted by the Peccei-Quinn solution of the strong CP
problem of the Standard Model (SM) [1–4]. Hadronic
axions, as the minimal Kim-Shifman-Vainshtein-Zakharov
model, interact with hadrons and photons, while the
interaction with leptons arises at further loop level [5].
On the other hand, nonhadronic models, such as the Dine-
Fischler-Srednicki-Zhitnitsky [6], predict a tree-level
axion-electron coupling, typical also of many axionlike
particle (ALP) models, which emerge in more general
theories, as grand unified theories and string theory [7–11].
In the following, we will consider ALPs predominantly
coupled with electrons. This coupling could be probed
through astrophysical arguments [12–16] and laboratory
experiments [17–30] (see Refs. [31,32] for a recent review).
In astrophysical context, stars in which electrons are more
degenerate, such as the core of red giants (RGs) and white
dwarfs (WDs), provide the most stringent bounds on the
axion coupling with electrons. Indeed, the RG bound
excludes gae ≳ 1.6 × 10−13 [15,16] and the WD bound
constrains gae ≳ 2.8 × 10−13 [12–14]. In these environ-
ments, due to the electron degeneracy, the leading ALP
production channel is the electron-ion bremsstrahlung e− þ
Ze → e− þ Zeþ a (see upper panel of Fig. 1). In Ref. [33],
the ALP emission rate for this process in nonrelativistic

electron conditions was revised. However, a similar work is
still lacking for relativistic conditions encountered in core-
collapse supernovae, since more attention is required in
this case.
A core-collapse supernova (SN) is an efficient cosmic

laboratory to probe ALPs and the detection of a neutrino
burst from SN 1987A is a milestone in this context. Indeed,
if ALPs had contributed to an excessive energy loss in the
SN core, they would have shortened the duration of the SN
1987A neutrino signal. In this way, constraints on ALPs
coupled to nucleons [34–36], photons [37–40], and muons
[41,42] have been obtained (see Refs. [43–45] for other
phenomenological consequences of the ALP production in

FIG. 1. Feynman diagrams of the electron-ion bremsstrahlung
and electron-positron fusion. Note that in the electron-ion
bremsstrahlung a second amplitude with the vertices inter-
changed is not shown.
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supernovae). On the other hand, in the literature, the SN
1987A cooling bound for ALPs coupled to electrons is
often overlooked. However, considering a generic ALP, the
coupling with electrons might be the only significant
coupling with a SM particle [46–48] and in this case, the
SN 1987A bound plays a major role [49]. This constraint is
even more relevant for ALP masses above 1 MeV, where
ALPs can decay into electron-positron pairs. Indeed, this
region is probed only by beam-dump experiments [17–24],
excluding couplings around 10−8 ≲ gae ≲ 10−3. The sim-
plified approach in Ref. [49]1 gives a bound stronger than
those obtained through beam-dump experiments. However,
the study ofALPproduction in a SNvia electron interactions
requires a dedicated investigation because thermal plasma
effects might significantly alter the ALP production rate.
Indeed, the Dirac equation of electrons (and positrons)
differs from the free-fermion case, affecting their dispersion
relations. In the hot plasma of a SN, the fermion energy-
momentum relation is modified and the electron (positron)
acquires an effective mass m�

e ∼Oð10Þ MeV [50]. In addi-
tion, in a plasma, a new quasiparticle appears, the plasmino
[50], which might participate in the ALP production.
The aim of this work is to perform the first accurate

calculation of the SN emissivity of ALPs coupled to
electrons. In the low ALP mass limit ma ≲Oð10Þ MeV,
ALPs are produced mainly via electron bremsstrahlung on
the free protons in the SN core. Unexpectedly, for ALP
masses larger than the effective electron mass, but lower
than the SN temperature (T ∼ 30–40 MeV), the brems-
strahlung emissivity starts to be suppressed and for ma ≳
30 MeV another process is found to be dominant, the
electron-positron fusion eþe− → a (see the lower panel of
Fig. 1), neglected in astrophysical context so far.
The plan of this work is as follows. In Sec. II, we show

how the fermion dispersion relation is modified in the
relativistic and degenerate SN plasma. In Sec. III, we
describe the ALP production processes in the SN core. In
Sec. IV, we calculate the SN 1987A bound on massive
ALPs. Finally, in Sec. V we conclude.

II. IMPACT OF THERMAL EFFECTS ON
FERMIONS AND AXIONLIKE PARTICLES

A. Fermion dispersion relation at finite temperature

In a SN core, the electron (positron) propagation is
nontrivial, since the extremely large temperature T ∼
30–40 MeV and the density ρ ∼Oð1014Þ g cm−3 make
the plasma ultrarelativistic and degenerate. At finite tem-
perature, a plasma characterized by the fluid velocity four-
vector uμ modifies the structure the Dirac equation [50–52],

without violating the Lorentz invariance [53]. In the plasma
rest frame uμ ¼ ð1; 0; 0; 0Þ [53].
In a ultrarelativistic and degenerate plasma, the Dirac

equation for an electron with a bare mass me is [51]2

ðð1þ AÞi=∂ þ B=u −með1 − CÞÞψ ¼ 0; ð1Þ
where A, B, and C are complex numbers related to the
thermal loop inside the electron propagator. The spinors
associated with this equation are explicitly calculated in [54].
The modified dispersion relation is determined by the

pole of the following propagator:

S¼ i
ð1þAÞ=KþB=uþmeð1−CÞ

ð1þAÞ2K2 þ 2ð1þAÞBðK · uÞ þB2 −m2
eð1−CÞ2 ;

ð2Þ
where Kμ ¼ ðω;kÞ and uμ ¼ ð1; 0; 0; 0Þ in the fluid rest-
frame velocity.
Plasma effects on the electron propagation give rise to a

dispersion relation with a nontrivial momentum depend-
ence, which must be taken into account in any calculation
in the plasma. It is also necessary to consider the residue of
the pole, which accounts for the strength with which the
particle is excited by the electron field and therefore the
strength with which it couples to other fields. The tran-
scendental equation

ð1þ AÞ2ðω2 − jkj2Þ þ 2ð1þ AÞBω
þ B2 −m2

eð1 − CÞ2 ¼ 0 ð3Þ

must be solved to determine the particle dispersion rela-
tions. This equation is solved in full generality with the A,
B, C functions determined by following Refs. [51,52],
where an explicit expression for A, B, C can be found:

A ¼ 1

k2

�
1

4
Tr½=KReðΣ0Þ� − ω

1

4
Tr½=uReðΣ0Þ�

�
;

B ¼
�
ω2

k2
− 1

�
ω
1

4
Tr½=uReðΣ0Þ� − ω

k2

�
1

4
Tr½=KReðΣ0Þ�

�
;

C ¼ −
1

4me
Tr½ReðΣ0Þ�; ð4Þ

with Σ0 the T-dependent part of the fermion self-energy and
k ¼ jkj. In particular, the traces in Eq. (4) are computed as
integrals over the quadrimomentum of the particle in the
loop. After simple integrations over the energy p0 and the
angular variables, one obtains an integral over the magni-
tude of the momentum p ¼ jpj,

1Note that the approximations used in Ref. [49] overestimate
the ALP emissivity, as discussed in Appendix B of Ref. [33].

2Equation (1) is the only Lorentz-invariant generalization of
the Dirac equation including the fluid velocity four-vector uμ and
the particle four-momentum operator i∂μ. This reduces to the free
Dirac equation in the vacuum [51,54].
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1

4
Tr½ReðΣ0Þ� ¼ αme

πk

Z
∞

0

dp

�
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þm2
e

p ðL2;þnF;− þ L2;−nF;þÞ − nBðL1;þ þ L1;−Þ
�
;

1

4
Tr½=KReðΣ0Þ� ¼ α

2π

Z
∞

0

dp

�
4pþ ω2 − k2 þm2

e

2k
ðL1;þ þ L1;−Þ

�
nB þ pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þm2
e

p �
2p −

ω2 − k2 þm2
e

2k
L2;þ

�
nF;−

þ pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

e

p �
2p −

ω2 − k2 þm2
e

2k
L2;−

�
nF;þ;

1

4
Tr½=uReðΣ0Þ� ¼ α

2πk

Z
∞

0

dpf½ωðL1;þ þ L1;−Þ þ pðL1;þ − L1;−Þ�nB þ pðL2;þnF;− − L2;−nF;þÞg; ð5Þ

where L1;� and L2;� are logarithmic functions arising from
the integration over the angular variable, given by

L1;� ¼� log
pðωþ kÞ� ðω2 − k2−m2

eÞ=2
pðω− kÞ� ðω2− k2 −m2

eÞ=2
;

L2;� ¼� log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2þm2

e

p
ωþpk�ðω2− k2þm2

eÞ=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2þm2

e

p
ω−pk�ðω2− k2þm2

eÞ=2
; ð6Þ

while nB is the Bose-Einstein distribution function and nF;�
are the Fermi-Dirac distribution for fermions (−) and
antifermions (þ). In this way, the most general dispersion
relation for an electron with bare mass me at finite
temperature T and nonvanishing chemical potential μe is
obtained.
Since me ≪ T for typical SN conditions, A, B, C can be

assumed real [51].
As pointed out in Ref. [50], Eq. (3) has four solutions:

two couples of solutions almost symmetric around zero for
each momentum. The couple of positive energies at higher
and lower energies represents the electron and plasmino
excitation, respectively. The plasmino is a collective mode
of the plasma that disappears in the high-momentum limit
(k=T ≳ 0.5). This behavior already suggests that extra
modes introduced by thermal effects in a SN plasma are
not relevant for the typical momenta close to the Fermi

energy for electrons and to the temperature for positrons.
The couple of solutions at negative energies are the
corresponding antiparticles. The particle and antiparticle
energies are not completely equal, reflecting the unequal
presence of electrons and positrons. Practically, these
differences are smaller (or even much smaller) than ∼5%
for the range of interest and would disappear completely for
a vanishing electron chemical potential.
In the ultrarelativistic and degenerate SN plasma, the

electron energy Ee− is on the order of the Fermi energy or
chemical potential μe, Ee− ∼ μe ∼Oð200Þ MeV; while the
positron energy Eeþ is comparable with the environment
temperature T, Eeþ ∼ T. Finding the poles of the propa-
gator, one obtains the dispersion relations of electrons
(solid black line) and positrons (dashed red line) in Fig. 2.
In the SN conditions, as shown in Fig. 2, the e− and eþ dis-
persion relations are well approximated (for high momenta)
by [50]

ω2 ¼ k2 þ 2ðm�
eÞ2; ð7Þ

where m�
e is the effective electron mass

m�
e ¼ me=2þ ðm2

e=4þM2Þ1=2; ð8Þ

with M2 ¼ e2ðμ2e þ π2T2Þ=8π2. The advantage of this
result, valid in the high-momentum limit, is the minimal

FIG. 2. Electron and positron dispersion relation in a SN for
electron chemical potential μe ¼ 200 MeV and temperature
T ¼ 30 MeV. The approximated dispersion relation is a good
approximation in the relativistic limit in which we are interested.

FIG. 3. Averaged electron and positron renormalization factors
as function of the temperature for μe ¼ 200 MeV.
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modification of the free-electron dispersion relation in a
degenerate and relativistic plasma, which requires just the
replacement me →

ffiffiffi
2

p
m�

e.
In this context, the coupling of the particle and hole

excitations to the plasma is rescaled through a renorma-
lization factor, which can be evaluated as [54]

Dðω; kÞ ¼ ð1þ AÞ2ðω2 − k2Þ
þ 2ð1þ AÞBωþ B2 −m2

eð1 − CÞ2;

Z−1
l ¼ ∂Dðω; kÞ

∂ω
����
ω¼El

; ð9Þ

where l can represent the electron, positron, or plasminos.
In Fig. 3, the thermal averaged electron and positron
renormalization factors as a function of the temperature
T at fixed value of the chemical potential μe ¼ 200 MeV is
shown. Since Ee− ∼ μe, the electron renormalization factor
Ze− ≈ 1, with a weak T dependence. On the other hand,
since Eeþ ≈ T, Zeþ < Ze− and it increases with T. However,
even the positron renormalization factor deviates less than
15% from unity.
By contrast, as shown in Fig. 4, the averaged renorm-

alization factors for plasminos are lower than 0.1, as
discussed in Ref. [50]. Therefore, the effects of the
plasmino pole disappear at high momentum (E ≈ k∼
T ≫ M), consistent with the identification of the plasmino
as a collective mode of the plasma like the plasmon. For
this reason, we will ignore the plasmino contribution to
ALP production.

B. ALP-fermion interaction in a relativistic plasma

The plasma effects in a SN could have impact also on the
ALP-electron coupling. Indeed, the ALP interaction with
electrons is described by the following Lagrangian:

Lae ¼
gae
2me

ψ̄eγ
μγ5ψe∂μa; ð10Þ

where ψe and a are, respectively, the electron and ALP
fields, me is the electron mass, and gae is the dimensionless

ALP-electron coupling. In the case of free-electron theo-
ries, exploiting the Dirac equation ði=∂ −meÞψe ¼ 0, one
can prove that the Lagrangian in Eq. (10) is equivalent to

Lae ¼ −igaeψ̄eγ
5ψea: ð11Þ

We stress that this equivalence is not general; e.g., it ceases
to be valid when two Goldstone bosons are attached to one
fermion line [55,56]. This equivalence was exploited in
Ref. [33] to revise the ALP production via electron-ion
bremsstrahlung. Below, we show that the equivalence
between the Lagrangians in Eqs. (10) and (11) still holds
in the degenerate and relativistic SN plasma. Applying the
Dirac equation in Eq. (1), the derivative coupling in
Eq. (10) is found to be equivalent to

ψ̄γμγ5ψ∂μa ¼ −2R
�
imeð1 − CÞψ̄γ5ψa − iBψ̄=uγ5ψa

1þ A

�
;

ð12Þ
which reduces to Eq. (11) in the vanishing limit of A, B, C.
As shown in Fig. 5, the averaged values of these quantities
for typical SN conditions are lower than 10−1 for positrons
(red lines) and even smaller 10−2 for electrons (black lines).
Therefore, considering the uncertainties related to the SN
conditions, the derivative and the pseudoscalar couplings
would be considered approximately equivalent in the limit
A;B;C ≪ Oð1Þ. Here we summarize the results obtained
in this section:
(1) The contribution of the (anti)plasmino in scattering

processes is negligibly small due to the behavior of
the renormalization factor at the typical energies.

(2) Since Ee− ∼ μe and Eeþ ∼ T, the renormalization
factors of electrons and positrons are close to 1.

(3) For such large energies, also the equivalence be-
tween pseudoscalar and derivative ALP couplings is
preserved.

(4) The fermion dispersion relation is similar to the free-
particle case with only a change in the mass.

Thus, to compute the ALP emissivity, it is possible to use
the standard recipe shown in Sec. III with the mass
replacement me →

ffiffiffi
2

p
m�

e.

FIG. 4. Averaged plasmino and antiplasmino renormalization
factors as function of the temperature for μe ¼ 200 MeV.

FIG. 5. Averaged electron and positron A, B, and C functions as
function of the fermion energy for μe ¼ 200 and T ¼ 30 MeV.
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III. ALP PRODUCTION MECHANISMS

A. Electron-ion bremsstrahlung

This section shortly introduces the electron-ion brems-
strahlung extensively discussed in Ref. [33]. This process
consists of the interaction of an electron with a ion electric
field, and the final electron emits an ALP. In this context,
given the equivalence between Eqs. (10) and (11), valid
also in a SN within the limits discussed in Sec. II, the
electron-ion bremsstrahlung matrix element is

Mj ¼
gaeZje2

jqjðjqj2 þ k2SÞ1=2

× ūðpfÞ
�
γ5

1

=P−me
γ0 þ γ0

1

=Q−me
γ5
�
uðpiÞ; ð13Þ

where uðpiÞ, and uðpfÞ are the electron spinors, pi, pf, and
pa are four-momentum of initial, final electrons, and ALP,
P ¼ pf þ pa, Q ¼ pi − pa, and q ¼ pf þ pa − pi is the
momentum transfer. The term ½jqjðjqj2 þ k2SÞ1=2�−1 is the
Coulomb propagator in a plasma and kS is the Debye
screening scale given by [57]

k2S ¼
4πα

P
jZ

2
jnj

T
; ð14Þ

where nj is the number density of ions with charge Zje and
α is the fine structure constant. The ALP flux is found to be

d2na
dtdωa

¼ 2π

Z
2d3pi

ð2πÞ32Ei

2d3pf

ð2πÞ32Ef

jpaj
ð2πÞ3

× ð2πÞδðEi − Ef − ωaÞjMj2fið1 − ffÞ

¼ 1

64π6

Z
d cos θiad cos θifdδdEf

× jpijjpfjjpajjMj2fið1 − ffÞ; ð15Þ
where ωa, Ei, and Ef are the energies of the ALP, initial,
and final electrons, respectively; fi;f are the electron
distribution functions; θia, θif ∈ ½0; π� are the angles
between the initial electron and the ALP and the final
electron moments, respectively; δ ∈ ½0; 2π� is the angle
between the two planes determined by the vectors pi − pa
and pi − pf, and jMj2 ¼ 1

4

P
j nj

P
s jMjj2 is the matrix

element in Eq. (13) averaged over the electron spins and
summed over all the target ions. The exact form of this
matrix element is given in Appendix A of Ref. [33]. For the
sake of clarity, we write here the matrix element for a
vanishing ALP mass

jMj2 ¼ 1

4

X
j

nj
X
s

jMjj2 ¼
g2aee2

2

k2ST
jqj2ðjqj2þ k2SÞ

×

�
2ω2

a
pi ·pf −m2

e −q ·pa

ðpi ·paÞðpf ·paÞ
þ 2−

pf ·pa

pi ·pa
−
pi ·pa

pf ·pa

�
;

ð16Þ
where q ¼ pf − pi.

We remark that the calculation above is valid in a
strongly interacting plasma as long as the equivalence
between Eqs. (10) and (11) holds and the appropriate
electron dispersion relation, modified by thermal effects, is
taken into account. Indeed, as discussed in Sec. II, electrons
acquire an effective mass in a SN core. For this reason, from
now on we will naively apply Eq. (15), by replacing the
bare electron mass with the effective one me →

ffiffiffi
2

p
m�

e,
following Eq. (7).
In particular, in order to evaluate the impact of the ALP

production via electron bremsstrahlung in a SN, one can
compute the ALP emissivity, i.e., the energy emitted per
unit mass and time, as

εa ¼
1

ρ

Z
∞

ma

dωaωa
d2na
dtdωa

; ð17Þ

where ρ is the matter density and d2na=dtdωa is evaluated
from Eq. (15), taking Z ¼ 1 (since electrons interact with
the free protons electric field in the SN core) and
n ¼ ρYe=mN , with Ye as the electron fraction and mN ¼
938 MeV as the nucleon mass. In the following, the main
features of the electron bremsstrahlung in the SN core will
be analyzed by assuming a schematic SN model with con-
stant representative values for temperature T ¼ 30 MeV,
density ρ ¼ 3 × 1014 g cm−3, and electron fraction Ye ¼
0.3 [58], to which we refer as “typical SN conditions.” For
these conditions, the effective electron mass and the
electron Fermi energy are m�

e ¼ 8.7 and EF ≈ 230 MeV,
respectively.

B. Mass suppression of the bremsstrahlung

An increase in the ALPmass determines a suppression of
the emissivity. In particular, in Ref. [33] we showed that in
conditions where the electron plasma is nonrelativistic
(T ≪ me), such as the Sun or red giants, the ALP emis-
sivity is suppressed as the mass increases, due to the
Boltzmann factor e−ma=T in Eq. (15). On the other hand, the
situation is strongly different in the relativistic and degen-
erate SN plasma (T; μe ≫ me). In Fig. 6, we show the ratio
between the massive and the massless ALP emissivity as a
function of the ratio between the ALP mass and temper-
ature ma=T for nonrelativistic (red line) and relativistic
(black lines) plasma conditions. In the nonrelativistic case,
solar conditions [58] (T ¼ 1.3 keV, ρ ¼ 1.6 × 102 g cm−3,
Ye ¼ 0.5) have been taken as a benchmark, while typical
SN conditions have been considered in the other case. In
this context, it is necessary to include plasma effects on the
propagation of electrons (and positrons), as described
in Sec. II.
As shown in Fig. 6, in nonrelativistic conditions, where

T ≪ me, the emissivity is Boltzmann suppressed at masses
ma ≳ T. On the other hand, in relativistic plasma conditions
the emissivity starts to decrease for masses ma ≪ T,
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precisely when ma ∼m�
eωa=

ffiffiffi
2

p
E, where ωa ∼ T is the

ALP energy and the electron energy is approximately equal
to the Fermi energy E ∼ EF. This counterintuitive behavior
can be explained by looking at the propagator-related
term P in the complete matrix element of the ALP
bremsstrahlung, shown in Appendix A in Ref. [33],

P ¼ 1

ð2ðpa · pfÞ þm2
aÞÞ2ðm2

a − 2ðpa · piÞÞ2
; ð18Þ

where i and f stand for the initial and final electron states,
respectively. In the case of relativistic electrons and light
ALPs (ma ≪ T), Eq. (18) can be approximated as

P≃
1

16ω4
aE2

i E
2
fð1− βiβa cosθafÞ2ð1− βfβa cosθaiÞ2

; ð19Þ

where Ei;f is the electron energy, and βi;f ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − m2

e
E2

q
and

βa ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − m2

a
ω2
a

q
are the electron and ALP velocities, respec-

tively. A further simplification can be done by observing
that the Coulomb scattering is mostly forward [58] and then
cos θai ≃ cos θaf ≃ 1, obtaining

P ≃
1

16ω4
aE2

i E
2
fð1 − βiβaÞ2ð1 − βfβaÞ2

: ð20Þ

Since in a SN the electrons are relativistic and degenerate,
assuming Ei ≃ Ef ≃ EF, where EF is the electron Fermi
energy, and ωa ≃ T, Eq. (20), expanded to the second order
in ma=T, becomes

P ≃
1

16E4
FT

4ð1 − βFÞ4
−

m2
aβF

8E4
Fð1 − βFÞ5T6

; ð21Þ

where βF is the Fermi velocity. As shown in Fig. 7 for
typical SN conditions, from Eq. (21) the P term starts to
decrease when

m2
a ≳ ð1 − βFÞ

T2

2βF
; ð22Þ

which expanded at the second order in me=EF gives

ma ≳meT
2EF

→
m�

eTffiffiffi
2

p
EF

; ð23Þ

where in the last step we have replacedme →
ffiffiffi
2

p
m�

e. In this
sense, the effective electron mass is an additional energy
scale that becomes relevant in a SN, where electrons are
relativistic and degenerate. This behavior is confirmed by
Fig. 6, where we compare the suppression in relativistic
conditions for two different electron masses, namely,
the bare electron mass (black solid line) and the effective
electron mass in a plasma (black dashed line). As dis-
cussed, the ALP emissivity is suppressed for ma≳
m�

eT=
ffiffiffi
2

p
EF, depending linearly on m�

e. Thus, the suppres-
sion begins at higher ALP masses as the electron mass
increases. We stress that the bare electron mass is shown in
Fig. 6 just for pedagogical purposes, since in a SN the
effective electron mass must be taken into account. We
remark that a similar phenomenon is reported in [59] in the
case of the dark-photon bremsstrahlung, but not fully
appreciated. Finally, this anomalous suppression is absent
in nonrelativistic conditions since, in this case, when the
Boltzmann suppression starts, me ≫ T ≃ma and the
propagator-related term in Eq. (18) can be approximated as

P ≃
1

16ω4
am4

e
; ð24Þ

independent of the ALP mass.

FIG. 6. Ratio εaðmaÞ=εað0Þ as function of the ALP mass for
nonrelativistic (red line) and relativistic conditions (black lines).
The solid black line is obtained by considering the bare electron
mass; the dashed one is calculated including the effective electron
mass m�

e ¼ 8.7 MeV. The vertical lines indicate the beginning of
the mass suppression: ma ¼ T for the nonrelativistic case (red),
ma ¼ meT=2EF for the relativistic cases, where me can be the
bare electron mass (solid black) or

ffiffiffi
2

p
m�

e, if the effective electron
mass is considered (dashed black).

FIG. 7. Suppression factorPðmaÞ=Pð0Þ as a function of theALP
mass for typical SN conditions, wherem�

e ≈ 8.7 MeV.Thevertical
dashed line corresponds to the threshold ma ¼ m�

eT=
ffiffiffi
2

p
EF.
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C. The electron-positron fusion

For ALP masses ma ≲ 30 MeV, the main production
channel in a SN is the bremsstrahlung on free protons p,
e− þ p → e− þ pþ a [58], while the Compton scattering
e− þ γ → e− þ a and the electron-positron photonic anni-
hilation eþ þ e− → γ þ a are suppressed by electron
degeneracy [58,60], and even more by the ALP mass.
At ALP masses ma > 2me, a new process might compete
with the electron-ion bremsstrahlung: the electron-positron
fusion eþ þ e− → a. The matrix element of this process is
given by

1

4
×
X

jMj2 ¼ g2aem2
a

2
; ð25Þ

and the ALP spectrum is obtained by integrating over the
electron and positron distributions

d2na
dtdωa

¼ g2aem2
a

16π3

Z
Emax

Emin

dEþfþf−; ð26Þ

where E∓ and p∓ are the electron-positron energy and
momentum, f∓ are the electron-positron distributions, and
due to the energy-momentum conservation 2ωaEþ ¼
m2

a þ 2pa · pþ, implying the limits of integration

Emin;max ¼
ωa

2
∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
am2

a −m4
a − 4jpaj2m2

e

p
2ma

: ð27Þ

As shown in Fig. 8 for typical SN conditions, the electron-
positron fusion becomes the dominant process at ALP
masses ma ≳ 30 MeV. This threshold strongly depends on
the effective electron mass m�

e, evaluated through Eq. (8),
therefore it is strictly related to the SN properties determin-
ing m�

e.

IV. THE SN 1987A BOUND

In the following, in order to place a bound on the ALP-
electron coupling gae, we consider the SN simulations of
Ref. [61]. These are based on the general relativistic neutrino
radiation hydrodynamics model AGILE-BOTZTRAN, featur-
ing three-flavor Boltzmann neutrino transport [62,63],
including a complete set of weak interactions (see Table I
in Ref. [61]). The equation of state used in Ref. [61] is the
modified nuclear statistical equilibrium (NSE) model of
Ref. [64] for the description of heavy and light nuclei (for a
recent comparison of the NSE model with the generalized
density-functional approach, see Ref. [65]), combined with
the DD2 density-dependent relativistic mean field model of
Ref. [66]. The SN simulations were launched from the
18 M⊙ progenitor of the stellar evolution calculations of
Ref. [67]. In spherical symmetry, neutrino-driven explosions
cannot be obtained [68], except for the class of electron-
capture supernovae associated with progenitors of zero-age
main sequence masses of about 8–9 M⊙ [69–71]. Hence, in
order to trigger the neutrino-driven explosion in spherical
symmetry, in Ref. [61] the charged-current rates have been
enhanced in the gain region, following the recipe described
inRef. [70]. It results in the explosion onset at around500ms
after core bounce with the continuous expansion of the SN
shock to increasingly larger radii, after which the standard
charged-current rates are used again.
Here, the screening scale is computed following

Ref. [72],

k2S ¼
4παneffp

T
; ð28Þ

where neffp ¼ 2
R d3p

ð2πÞ3 fpð1 − fpÞ is the effective number of
protons in a SN core. In Fig. 9, we show the radial profiles
of some relevant quantities for the 18 M⊙ SN model used
in this paper. The effective electron mass m�

e is determined
by Eq. (8) and it is plotted in Fig. 10. The effective electron

FIG. 8. Ratio of the electron-positron fusion and bremsstrah-
lung emissivities as function of the ALP mass for typical SN
conditions.

FIG. 9. Radial profiles of density (black solid line), temperature
(black dashed line), screening scale (red solid line), and electron
chemical potential (red dashed line) at tpb ¼ 1 s for the SNmodel
with 18 M⊙ progenitor mass.
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mass is about ∼15 times larger than the bare mass in the
very inner SN core (r≲ 5 km) and it decreases at
larger radii.
In a SN, an additional cooling channel would “steal”

energy to the neutrino burst, shortening its duration. As
recently proposed in Refs. [40,73], the ALP luminosity is
calculated as

La ¼ 4π

Z
Rν

0

drr2
Z

∞

ma

dωaωa
d2na
dtdωa

e−τaðωa;r;RÞ; ð29Þ

where Rν is the neutrino-sphere radius, τaðωa; r; RÞ ¼R
R
r

dr̃
λa

is the ALP optical depth, and λa is the ALP mean
free path including all the possible ALP absorption proc-
esses. Only ALPs reaching a distance larger than R subtract
energy from the star, with R > Rν being the so-called gain
radius [40]. Depending on the value of the optical depth, we
identify two different regimes for the ALP emission. If
τa ≪ 1, ALPs are in the free-streaming regime and are
emitted from the entire volume of the star; if τa ≫ 1, ALPs
are in the trapping regime and are emitted as a blackbody
spectrum from a spherical surface called axion sphere.
In Fig. 11, we show the time evolution of the ALP

luminosity in the free-streaming regime, for gae ¼
5 × 10−10 and two mass values ma ¼ 2 MeV (black solid
line) and ma ¼ 40 MeV (black dashed line), at postbounce
times tpb ≳ 0.5 s. The time evolution depends on the
dominant production process: the electron-ion bremsstrah-
lung for ma ¼ 2 MeV and the electron-positron fusion for
ma ¼ 40 MeV. In particular, the bremsstrahlung luminos-
ity, which is proportional to ρT4, increases in the first 3 s
and then slowly decreases. On the other hand, the fusion
luminosity depends only on the temperature T and steeply
decreases with time. As shown in Fig. 11, the ALP
luminosity is comparable to the total neutrino luminosity
Lνtot (red line), obtained by summing the contributions of all
the (anti)neutrino flavors. It means that the ALP feedback
effect on the neutrino signal cannot be ignored and should

be self-consistently included in SN simulations. We post-
pone this task to a future work.
In this study, in order to constrain the ALP-electron

coupling, we follow a strategy similar to the one proposed
in Ref. [74], based on the observation of the SN 1987A
neutrino burst, which requires La ≲ Lνtot for typical SN
conditions. Specifically, we impose [73]

La < Lνtot ≃ 3 × 1052 erg s−1 ð30Þ

at tpb ¼ 1 s. At this time, we take as benchmark values
Rν ¼ 21 and R ¼ 24 km [40].
As the ALP mass or the coupling with electrons

increases, it becomes more difficult for ALPs to escape
freely and drain energy from the SN core. The only
absorption processes are inverse bremsstrahlung (aþ e−þ
p → e− þ p) and ALP decay into an electron-positron pair
(a → eþ þ e−). The former contributes to trapping light
ALPs (ma ≲ 30 MeV) and the latter is more important for
heavy ALPs. Indeed, both the processes produce particles
that quickly thermalize in the stellar plasma and redistribute
the ALP energy in the star. This means that, if the ALP is
absorbed in the SN core, it does not contribute to the energy
loss. With standard methods [58], we obtained the follow-
ing ALP mean free path against inverse bremsstrahlung,
important for ma ≲ 30 MeV,

λ−1a;B ¼ eωa=T

32π3ωa

Z
d cos θaid cos θafdδdEf

× jpijjpfjjMj2fið1 − ffÞ; ð31Þ

and decay, relevant for ma ≳ 30 MeV,

λ−1a;D ¼ g2ae
8π

ma

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
e

m2
a

s
ðβγÞ−1; ð32Þ

FIG. 10. Radial profile of the ratio between the effective and
bare electron mass m�

e=me at tpb ¼ 1 s for the SN model with
18 M⊙ progenitor mass.

FIG. 11. Time evolution of the ALP luminosity for two
different ALP masses ma ¼ 2 MeV (black solid line) and ma ¼
40 MeV (black dashed line) and a coupling gae ¼ 5 × 10−10. For
comparison, the total neutrino luminosity (red line) is shown.
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where γ ¼ ωa=ma and β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ−2

p
. Thus, the total mean

free path is λ−1a ¼ λ−1a;B þ λ−1a;D. By requiring that the
luminosity in Eq. (29) satisfies the constraint in
Eq. (30), the SN 1987A bound can be computed. The
resulting bound is shown in Fig. 12 (gray) and compared
with experimental bounds. A word of caution is needed
here. The bound obtained in this work from Eq. (30) is a
theoretical bound, which is not on the same footing as a
limit obtained from experimental data. Indeed, experimen-
tal bounds are the result of a solid statistical analysis and
statements about the statistical strength of the limit can be
made through the confidence level (C.L.). This is not the
case for our theoretical bound, affected, for instance, by
uncertainties on the SN structure and dynamics. In Fig. 12,
the reddish regions are excluded through beam-dump
experiments [17–24], valid at ma > 2me, in which ALPs
are produced by the bremsstrahlung of an electron beam on
target nuclei and then decay in flight into detectable
electron-positron pairs. The vertical lines in the pink
[17,18] and red [20] regions (excluded at 90% C.L.) are
due to the lack of data in the original papers. The strongest
beam-dump bound (dark red), given in Ref. [19], is a
95% C.L. limit in the range 1–300 MeVand it is rescaled to
account for very short-lived ALPs that cannot be observed.
The other bounds shown in Fig. 12 are 90% C.L. limits
from EDELWEISS III [27] (green) and GERDA [75]
(blue), which assume that ALPs constitute the whole dark
matter. In these experiments, the electron recoil generated
in the inverse electron bremsstrahlung might give a detec-
table signal in an array of cryogenic germanium detectors.
The nonobservation of any signal in EDELWEISS III and
GERDA allows one to exclude values of the ALP-electron
coupling gae ≳ 4 × 10−11 close toma ∼me and gae ≳ 10−11

close to ma ∼ 2me, respectively. Analogous experiments
[28,29,76–79] have a similar sensitivity to EDELWEISS
and GERDA in the range of interest. Another bound valid

at even lower ALP masses is given by Xenon100 [80],
which excludes gae ≳ 2 × 10−11 for ma ≲ 1 keV.
For ma ≲me, the SN 1987A bound excludes the

region 7.5 × 10−10 ≲ gae ≲ 1.5 × 10−8, already excluded
by EDELWEISS, GERDA, and the RG bound [15,16].
However, for me ≲ma ≲ 200 MeV, the bound calculated
in this paper is the strongest one, reaching gae ∼ 2.5 ×
10−10 atma ∼ 120 MeV. The obtained bound is affected by
uncertainties related to the choice of the SN model. Indeed,
as discussed in Refs. [40,45], the SN temperature increases
as the progenitor mass becomes larger. Comparing our
reference model with two other different progenitors,
namely, an M ¼ 11.2 M⊙ and an M ¼ 25 M⊙ model,
we estimated the uncertainty on the bound to be smaller
than a factor 2 in the free-streaming region (lower bound)
and even smaller in the trapping regime (upper bound),
with weaker constraints for lighter models.

V. CONCLUSIONS

In this work, we have investigated the production of
ALPs coupled with electrons in a SN core, extending the
study of the electron-ion bremsstrahlung of Ref. [33] to the
case of relativistic electron conditions. This extension has
been possible after a preliminary study on the strongly
degenerate and relativistic plasma in the SN core. Indeed, in
a plasma the structure of the Dirac equation is modified
through the introduction of three parameters A, B, and C,
which can be assumed real since the bare electron mass is
much lower than the typical SN-core temperature. In this
context, the modification of the Dirac equation affects the
dispersion relation of electrons and positrons, which
acquire an effective mass m�

e ∼Oð10Þ MeV in the con-
dition of interest. In addition, we have shown that, in the
limit in which A;B;C ≪ Oð1Þ (condition fulfilled in the
SN core, given the large electron and positron energies),
the ALP-fermion coupling can be equally described by a
derivative or by a pseudoscalar Lagrangian.
These considerations allowed us to consistently extend

the study of the electron-ion bremsstrahlung to the degen-
erate and relativistic electron plasma in the SN core. In this
environment, we proved that in the evaluation of the
bremsstrahlung rate the ALP mass cannot be neglected
when it is comparable to the effective electron mass, since
the emissivity starts to be suppressed for m�

eT=EF≲
ma ≪ T, in contrast with the usual Boltzmann suppression
occurring for ma ≳ T in a nonrelativistic plasma. Because
of this suppression, in a SN core the electron-ion brems-
strahlung is the dominant ALP production process for
ma ≲ 30 MeV, while at larger masses a previously
neglected process is found to be dominant: the electron-
positron fusion.
This detailed analysis allowed us to evaluate for the first

time the SN 1987A bound on ALPs for masses in the range
1–200 MeV, accounting for the plasma effects and the ALP
mass. This constraint is complementary to the direct

FIG. 12. The SN 1987A bound computed in this paper (gray)
compared with beam-dump bounds (reddish), the EDELWEISS
III bound (green), and the GERDA bound (blue). [The beam-
dump bounds are taken from [17,18] (pink), [20] (red), and [19]
(dark red).]

SUPERNOVA BOUND ON AXIONLIKE PARTICLES COUPLED … PHYS. REV. D 104, 103007 (2021)

103007-9



detection experiments in this region. In particular, in the
small mass limit ma < 1 MeV, the bound excludes values
10−9 ≲ gae ≲ 10−8, already constrained by EDELWEISS
and GERDA. On the other hand, at larger masses
ma ≳ 30 MeV, our new bound probes regions untouched
by laboratory experiments, excluding values gae ≳ 2.5 ×
10−10 at ma ∼ 120 MeV.
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