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In order to extract maximal information from neutron-star merger signals, both gravitational and
electromagnetic, we need to ensure that our theoretical models/numerical simulations faithfully represent
the extreme physics involved. This involves a range of issues, with the finite temperature effects regulating
many of the relevant phenomena. As a step toward understanding these issues, we explore the conditions
for β-equilibrium in neutron star matter for the densities and temperatures reached in a binary neutron star
merger. Using the results from our out-of-equilibrium merger simulation, we consider how different notions
of equilibrium may affect the merger dynamics, raising issues that arise when attempting to account for
these conditions in future simulations. These issues are both computational and conceptual. We show that
the effects lead to, in our case, a softening of the equation of state in some density regions, and to
composition changes that affect processes that rely on deviation from equilibrium, such as bulk viscosity,
both in terms of the magnitude and the equilibration timescales inherent to the relevant set of reactions. We
also demonstrate that it is difficult to determine exactly which equilibrium conditions are relevant in which
regions of the matter due to the dependence on neutrino absorption, further complicating the calculation of
the reactions that work to restore the matter to equilibrium.
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I. INTRODUCTION

In terms of cosmic fireworks, neutron star mergers rank
(alongside supernovae) as the most spectacular. Reaching
temperatures similar to those recorded in intermediate-
energy collider experiments, with matter compressed to a
density that cannot be reached in the laboratory, these
events involve physics at the limit of our understanding—
and beyond. The excitement of observing such events in the
full glory of multimessenger astronomy, including gravi-
tational waves, is evident. The breakthrough observations
of GW170817 [1–3]—including the late inspiral gravita-
tional-wave signal, the short gamma-ray burst that followed
the merger and the kilonova emission associated with
nuclear reactions in the matter outflow [4]—raised the
stakes by providing a wealth of information. However, the
modeling of neutron star mergers still presents a severe
challenge [5,6], which can only be met by large-scale
numerical simulations with an increasing level of realism—
conceptually difficult and computationally expensive.
In this study, we focus our attention on the thermal

aspects of the problem. This is important for a number of
reasons. First of all, recent simulations have established that
neutron star mergers may reach higher temperatures than
one might naively expect (in some cases rising to almost
100 MeV [7–9]) and it makes sense to ask to what extent
this impacts on our understanding of the problem. Second,
recent theoretical work points to thermal effects impacting
on key physics aspects, like the meaning of chemical

equilibrium [10,11]. Again, we need to explore what
impact this new understanding may have on the simulations
and the interpretation of the results. This is a natural step
toward higher level issues which aim to sharpen the
questions we address with numerical relativity simulations.
Which aspects of the rich physics are within reach and
which are not?

II. THE CURRENT STATE OF THE ART

A. The equation of state

While it may be tempting to focus the discussion on
different aspects of our numerical simulations, the key
points we aim to make relate to the thermodynamics and
the microphysics encoded in the matter equation of state.
This means that we need to keep a keen eye on the input
physics—and to what extent this physics is encoded in the
simulation. Given this, and to provide the proper context
for the discussion, it makes sense to first take a closer
look at the assumptions associated with the simulated
matter model.
Neutron stars are complex physical systems, involving a

range of aspects from nuclear physics and condensed
matter physics through to electromagnetism and relativistic
gravity. As the different issues are (inevitably) linked, the
assembly of even moderately realistic models is a chal-
lenge. Unless we want to get stuck at the very first step, we
have to make simplifications. A natural starting point is to
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describe the star as a multifluid system. There are two good
reasons for this. First, we have a good intuitive under-
standing of (at least the basics of) the relevant fluid
dynamics. Second, the formalism required to model rela-
tivistic multifluid systems is fairly well developed [12]. It is
then relatively easy to argue [13] that we need to keep track
of (at least) four fluid degrees of freedom for a moderately
cold neutron star. We have to consider the usual bulk flow
along with the electromagnetic charge current, a heat flux
and a relative drift of superfluid neutrons in the star’s core.
If we focus on neutron star mergers, the thermal aspects
dominate and we inevitably have to consider the role of the
neutrinos that are generated as the matter composition
evolves. As we will see, this complicates the problem in a
number of ways.
In view of these different issues, the assumptions

required to reach the starting point for all current neutron
star simulations may seem rather drastic. We ignore all the
multifluid features and reduce the problem to a single
(perfect) fluid model (or, in the case of magnetohydrody-
namics, a single fluid alongside some simple closure
assumption for the charge current). This retains aspects
related to the matter composition and the heat, but ignores
intricate details regarding the expected relative flows. A
pragmatist might argue that this step is necessary to make
progress—which may well be true—but a realist might
want to urge some level of caution. We need to make sure
that we are not trying to draw (too many) conclusions about
physics that is not faithfully represented in the model.
The immediate advantage of the single-fluid model is

that we can make a direct connection with the thermody-
namics and the small scale physics. The natural starting
point for this discussion is the first law of thermodynamics,
which then states that the change in energy dE of a many-
particle-species system (with different species labeled by x,
all moving together) is given by

dE ¼ TdS − pdV þ
X
x

μxdNx; ð1Þ

where T is the temperature, dS is the change in entropy, p is
the pressure, dV is the change in volume and μx and dNx
are the chemical potential (the energy associated with
adding or removing a particle from the system) and change
in particle number, respectively, of species x. The first term,
TdS, may be identified as the heat put into the system; the
second, −pdV, corresponds to the work done on the
system; and the final term, μxdNx, is associated with a
change in number of each particle species, e.g., due to
nuclear reactions. Effectively, we have an equation of state
for the system, EðS; V; fNxgÞ, but in practice it is more
convenient to express the thermodynamics in terms of
densities. This leads to a Gibbs relation (essentially the
integrated and densitized version of (1)

e ¼ sT − pþ
X
x

nxμx; ð2Þ

where e is the total energy density, s is the entropy density
and nx is each species’ number density. Noting that

T ¼
�∂e
∂s

�
fnxg

; μx ¼
� ∂e
∂nx

�
s;fnyg

; ð3Þ

with y ≠ x, we see that the pressure is completely deter-
mined from an equation of state of form e ¼ eðnx; sÞ. So
far, the arguments are quite general.
The specific simulation we will consider implements the

APR equation of state from [14] (as implemented in the
CompOSE library [15]). This means that we have matter
composed of neutrons, protons and electrons1 (n, p and e).
Neutrinos, although key to many of the aspects we will
consider later, are not included in the equation of state
prescription (and hence will not be considered in the argu-
ments we sketch at this point). If the system retains local
charge neutrality (as wewill assume)we have np ¼ ne and if
we introduce the baryon number density nb ¼ nn þ np and
the electron fraction Ye ¼ ne=nb we have the three-param-
etermodele ¼ eðnb; Ye; sÞor, equivalently (after aLegendre
transform), f ¼ fðnb; Ye; TÞ where f ¼ e − Ts is the free
energy density. The required information is typically pro-
vided as an equation of state table.
As much of our discussion will focus on issues relating

to chemical equilibrium, let us explore what this involves.
In general, the system is in chemical equilibrium with
respect to the relevant reactions when the chemical poten-
tials balance (we will discuss the details later in Sec. IV).
This typically leads to an equation which can be solved for
the equilibrium matter composition, which then reduces the
number of parameters by one. We may, for example, use the
equilibrium relation to determine the electron fraction. In
essence, we are then assuming that nuclear reactions act to
reinstate equilibrium on a timescale much faster than the
dynamics we intend to study [16]. The upshot is that the
equilibrium equation of state for our system has only two
parameters, e ¼ eðnb; sÞ and if we also assume that the
matter is cold—not a useful assumption for neutron star
mergers—then we may ignore the entropy and work with a
simple barotropic model e ¼ eðnbÞ.
The arguments we have provided outlines why realistic

neutron-star simulations have to be based on a three-
parameter equation of state prescription. Reality may be
even more complicated, with additional particle species and
so on, but the three-parameter model is the minimum we
require to describe the hot merger dynamics.

1For clarity, we ignore the muons even though they are
expected to be present throughout the bulk of a neutron star’s
core. Including them would not be very difficult as they enter the
problem in the same way as the electrons.
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B. Simulations in context

Having considered the different assumptions and
approximations associated with the matter description we
are well placed to put existing simulations in context. In the
early days of numerical relativity little attention was paid to
the matter model. The first hurdle to overcome was to
simulate matter moving in a dynamical spacetime—a
challenging problem in itself. As a result, early simulations
were based on barotropic single-parameter models (poly-
tropes being particularly common). As these simulations
were (eventually) demonstrated to be robust, the first efforts
to account for thermal aspects were made. Much of this
work took the barotropic model as starting point and
introduced an effective model for the internal energy and
the heat. As this approach is still used in simulations (see
for example [17,18]), it is useful to explain the logic
involved.
Noting that the barotropic model leads to

p ¼ nbμn − e; ð4Þ

we may introduce

μn ¼ mþ μ̄; ð5Þ

where m is the baryon mass. In terms of the mass density
ρ ¼ mnb, we may use Eqs. (4) and (5) to define the
(specific) internal energy ϵ through

p ¼ ρþ ðnbμ̄ − eÞ ¼ ρð1 − ϵÞ; ð6Þ

where finite temperature effects can now be encoded in ϵ.
Phenomenologically (see [19] for a more detailed argu-
ment), comparing to the ideal gas law

p ¼ nkBT; ð7Þ

where kB is Boltzmann’s constant (later we use units such
that kB ¼ 1), we see that ϵ ¼ CvT, with Cv the specific heat
capacity (at fixed volume) while Mayer’s relation

kB
Cv

¼ mðΓ − 1Þ; ð8Þ

with Γ is the adiabatic index, leads to

p ¼ ρϵðΓ − 1Þ: ð9Þ

This argument motivates the so-called Gamma-law equa-
tion of state [20]. It has the advantage of being easy to
implement, but there is no reason to expect it to be
particularly realistic—at least not for neutron star mergers.
The next step up in complexity involves replacing

algebraic models like the polytrope with a tabulated
equation of state for cold nuclear matter in equilibrium.

Tabulated data must be used as the microphysics calcu-
lations required to evaluate the equation of state at any
given point are prohibitively expense to use live, hence
interpolation within a precalculated table becomes a neces-
sity. However, one has to pay careful attention because the
interpolation has to be thermodynamically consistent in
order to avoid modeling errors. The end result is a fairly
significant increase in computational cost (as well as
memory footprint, which impacts on the potential use of
GPUs for large scale simulations). The most simplistic
tabulated equation of state tables are barotropic, however
many modern simulations (see [21] for references to the
recent literature) use a cold tabulated equation of state in
combination with a Gamma-law prescription to approxi-
mate thermal effects. The table then includes pressure
pcoldðρÞ and specific internal energy ϵcoldðρÞ from a zero-
temperature nuclear physics derived equation of state, and
is augmented with a thermal contribution given by

pthðρ; ϵÞ ¼ ρϵthðρ; ϵÞðΓth − 1Þ; ð10Þ

where ϵth is the thermal component of the specific internal
energy ϵthðρ; ϵÞ ¼ ϵ − ϵcoldðρÞ. The total pressure is given
by the sum of the cold and thermal components. While this
approach is not expected to be realistic (see the discussion
in [22]), it is definitely a step in the right direction.
The key step toward realism involves working with a true

finite temperature equation of state. There are a number of
such models on the market [15], typically developed for
supernova simulations. The implementation of these mod-
els involves a more complex inversion from evolved to
“primitive” variables (as we discuss in Appendix Sec. 2)
but it does not add conceptual issues, unless we consider
problems involving phase transitions [9,23] or possible
mixed matter phases.
When it comes to the matter, the simplest option is to still

insist on local equilibrium. The question is if this is a
reasonable representation of reality. Are the nuclear reac-
tions fast enough for the equilibrium assumption to be
appropriate? Estimates suggest that the answer may be no
[24]—at least in parts of the simulated domain—so we
need to consider deviations from equilibrium. This raises
the complexity level as we need to keep track of the local
nuclear reaction rates and implement the associated
changes in composition as the simulation proceeds. As
an alternative, we may consider the slow-reaction limit, in
which the composition is effectively frozen. In the case of
npe-matter, this involves advecting the lepton fraction
along with the fluid flow. This is the assumption we make
in our simulation. This may not be an appropriate
assumption either, but it is a useful starting point for
discussions of out-of-equilibrium issues. We need to do
better, but (as we will argue in the following) there are
important lessons to be learned already at this level, and we
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need to pay attention to these lessons when developing the
next generation of simulations.

C. Going further

The discussion to this point has assumed a single fluid
mixture. That is, the different particle species are assumed
to move together with a single four velocity, and in addition
the fluctuations in each species must relax to the average on
negligible scales [25]. However, there is a range of regions
in spacetime and phase space relevant for neutron stars
where these assumptions are expected to fail. When dealing
with neutrinos the fluid approximation fails. When dealing
with superfluidity the single-fluid approximation fails [12].
When considering transport properties, or with phase
transitions, quantitative calculations must be done outside
the single fluid limit, and the application of these calcu-
lations on top of single fluid simulations needs care to
ensure the approximations remain reasonable. As an
example we may consider the estimate for the thermal
conductivity from [24], which suggests a relaxation time-
scale of order

trelax ∼
�

z
km

�
2
�

T
10 MeV

�
2

s; ð11Þ

where z represents the scale of thermal gradients. This
rough estimate suggests that gradients on a scale of a few
tens of meters would relax on about a millisecond, a
timescale similar to that of the anticipated postmerger
oscillations [26–28]. This estimate is interesting because;
on the one hand, it suggests that we could probably get
away with ignoring the heat flux (the inclusion of which
would require us to go beyond the perfect fluid assumption)
on the timescale of a typical merger simulations (especially
noting that thermal gradients of order 10 meters may not be
resolved in the simulation anyway). On the other hand, the
timescale resolvable by a typical simulation is of order a
fraction of micro-second (combine a grid resolution of
Δx ∼ 100 m with a typical time step determined by
Δt=Δx ≃ 0.1 to see that the resolvable time variation is
of order Δt ∼ 10−7 s). That is, the thermal relaxation may
take place on a timescale that should (at least in principle)
be resolvable. The issue of small scale thermal features is
also closely linked to questions of turbulence and the need
to consider a large-eddy approach to the simulations in the
first place [25,29].
To highlight the differences, in a multifluid context the

expression for the first law extends from Eq. (1) to

de ¼ Θadsa þ
X
x

μxadnax; ð12Þ

where the chemical potentials have been extended to
conjugate momenta μxa (with Θa for the entropy, x the
species label and a a spacetime index) and the particle

number extends to the fluxes nax [12]. In situations where
the different fluxes are not aligned, substantial changes in
the equilibrium state can be driven by, for example,
entrainment. It is important to note that these differences
are expected, and may in fact be essential, on some scales.
For example, on microscopic scales the difference in
charged species flows drives the charge current and hence
is required for the neutron star magnetic field. Similarly, on
larger scales, the difference between fluxes is central to the
hydrodynamical description of superfluids.
A fully quantitative discussion of transport properties

and the interaction of different phases of matter within a
neutron star will need to start from a micro-scale theory,
such as a multispecies Boltzmann equation based model
[30]. However, the dimensionality of these kinetic-theory
based calculations make them computationally prohibitive
in many dynamical situations. To estimate to what extent
the (single) fluid approximation is valid, the interaction
terms between and within each species need to be esti-
mated. Unfortunately, once the fluid approximation is made
the information required to confirm its validity is lost, and
hence the estimates must be used with care.
Having outlined how different equation of state models

are used in numerical simulations and sketched some of the
main points of concern, let us return to the elephant in the
room—the neutrino. It is well known that the neutrinos are
central to any discussion of hot neutron star merger
dynamics: They remove energy from the system, which
may drive matter outflows, and facilitate the reactions that
lead to a changing composition which may, in turn, lead to
dissipation acting on the fluid dynamics. Yet, current
simulations tend to either not include the neutrinos at all
or account for them approximately through some (suitably
simple) leakage scheme. In fact, many recent discussions
[7,8] are based on postprocessing simulation results. The
key point is that the neutrinos do not naturally lend
themselves to a fluid description. Instead, the strategy
for dealing with the neutrino problem is formally the same
as for photons. The relevant radiation transfer problem
must be solved, taking into account frequency dependence
and directionality. In current models this is done at different
levels of sophistication, starting from some kind of leakage
scheme alongside a suitable closure condition for the
moment expansion of the radiation stresses (recent exam-
ples include [31–33] with, in particular [34] paying
attention to the multifrequency aspects), increasing realism
by considering the angular dependency (as in [35,36]) or
taking a full-blown Monte-Carlo approach (as in [37–39]).
In essence, the problem is complex and extremely expen-
sive computationally.
However, and this is the main point we want to make

here, there are issues we need address before we can
introduce the neutrino aspects in a faithful fashion.
Somewhat simplistically, in order to establish how the
neutrinos impact on the dynamics we need to know to what
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extent they are trapped in the simulated “fluid elements”.
This is important as it, in turn, dictates the rate at which
weak interactions work to establish local beta equilibrium
[10,40]. The issue of deviation from equilibrium comes to
the fore and we need to carefully consider what we mean by
“equilibrium” in the first place.

III. PERFORMING AN OUT-OF-EQUILIBRIUM
SIMULATION

As a step toward studying how the equilibrium processes
affect the merger dynamics, we have performed a simu-
lation in which the composition of the fluid was advected
along with the fluid flow and reactions were ignored.
However, before we cover the details of said simulation, let
us discuss a few general issues that arise when simulating a
continuous fluid on a discrete grid.

A. Analysis quantities

Numerical simulations typically provide a limited set of
variables which may not be directly useful for extracting
physically interesting signatures. Each step in the analysis
process that leads to observable or interesting quantities
will add numerical error, and may also introduce additional
modeling errors in ways that are hard to disentangle.
The key quantities that are controlled in a simulation

(based on the standard Valencia formulation, see Appendix
Sec. 2 for a summary of the relevant evolution equations)
are the conserved variables—the relativistic equivalents of
rest mass density, spatial momenta, and energy. These are
represented as cell integral averages in the simulation, and
no information about the structure on subgrid scales is
available. While some simulations use large-eddy-style
approaches [25,29], these only give the (assumed) con-
tribution from physics on smaller scales, and not the
subgrid structure itself.
Many quantities of interest can be computed locally

using purely algebraic relations, for example thermody-
namical quantities from the equation of state. The accuracy
of these quantities is limited by the numerical error as well
as modeling errors. The modeling errors come from, in
particular, neglecting subgrid fluctuations, and hence
assuming that the average of the thermodynamical quantity
is equivalent to the thermodynamical quantity of the
average. This may be reasonable over the bulk of the
spacetime, but the modeling error is hard to quantify in
the (necessarily underresolved) turbulent region that forms
in the merger process. Notably, this is the hottest region of
the simulation.
Additional quantities can be calculated using nonlocal

operations. Examples include vorticities (using derivatives
of given or computed quantities) or optical depths (using
integrals of given or computed quantities). In addition to
the problems noted above, this will involve additional error
due to the numerical approximation of the nonlocal

operator. Moreover, as nonlocal operators are typically
less accurate at high frequencies (see, e.g., [41]), they will
again be problematic in the turbulent region of interest.
Different quantities of interest may be robust while others
are not. For example, the gravitational-wave signal depends
on bulk integrated quantities (in the sense of the quadrupole
formula) which are likely to be robust as they mainly
depend on low-frequency features. In contrast, emission
spectra may be less reliable due to the dependence on high-
frequency effects.
Finally, there are quantities that can be considered

“local” but which depend on nonlocal constructions. The
key example of this is Lagrangian tracers, which have been
used to investigate the dynamics of phase transitions and
other neutron star properties [9,23]. This relies on evalu-
ating the thermodynamic potentials and velocity field at a
“single particle point” which is then advected through the
spacetime. Using a set of point quantities, rather than cell-
integral-average quantities, one might hope to bypass the
subgrid structure issues discussed above. However, all the
problems of nonlocal operators and the modeling of
subgrid structure discussed above will enter through the
required interpolation scheme.
This is, in fact, an interesting problem. Lagrangian

tracers as an analysis probe of fluid properties have been
investigated in depth in the Newtonian literature (example
reviews include [42]). In particular, the discussion in [42]
emphasizes that three requirements must be met to get
accurate results from Lagrangian tracers. First, the simu-
lation must resolve sufficiently small scales in the instanta-
neous velocity field. This will severely limit the utility of
tracers passing through turbulent regions of neutron star
simulations. Second, the interpolation scheme used must be
of sufficiently high accuracy and differentiability. Finally, a
sufficient number of tracers must be used for statistical
accuracy (e.g., so that the average Lagrangian velocity is
sufficiently close to the average Eulerian velocity). This last
point highlights that Lagrangian tracer information should
be used statistically. The analysis in [42] also demonstrates
that the number of tracers required scales with the Reynolds
number, which may be impractically high for neutron star
applications. These issues highlight why we focus on local
grid-cell based analysis in the following.

B. Our setup

To take the first step toward quantifying the out of
equilibrium behavior in binary neutron star mergers we
focus on a single simulation performed using the Einstein
Toolkit [43]. We used the BSSN formalism of the ADM
equations as provided by McLachlan [44] for the spacetime
evolution and GRHydro [45] for the fluid evolution. The
microphysics is represented by the APR equation of state
[14] from the CompOSE database [15]. This model can be
seen as a “vanilla” representation of the relevant physics as
it assumes matter composed only of neutrons, protons and
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electrons and the obtained neutron star radii accord well
with current observational constraints (see for example
[46]). In order to perform the simulation, it was necessary
to make modifications to both GRHydro and EOS_Omni—
the general purpose equation of state interface available in
the Toolkit—in order to support the three-parameter tabu-
lated form of the APR equation of state from CompOSE.
We describe these modifications in the Appendix.
Initial data was obtained using LORENE [47], with a

fixed temperature of T ¼ 0.02 MeV across the entire
domain (we comment on this later in Sec. III C), and under
the assumption of cold β-equilibrium (see Sec. IVA). It is
important to note that, due to the low-temperature cut-off in
the equation of state table we have to assume an initial
temperature that is much higher than the expected core
temperature of a mature neutron star (below 106 K ∼
10−4 MeV or so). The reason this is an issue will become
clear in the discussion of Fig. 3 in Sec. III C. Finally, the
initial separation of the two stars was 40 km, and each star
had an initial baryon mass of Mb ¼ 1.4 M⊙.
While the composition of the fluid is fixed at the initial

data stage to be in β-equilibrium, this constraint was not
imposed on the fluid during the evolution, instead the
electron fraction Ye was advected along with the fluid flow.

The simulation does not feature reactions between the
constituent species of the fluid, neutrinos are not included,
and no magnetic fields are present. The simulation domain
uses adaptive mesh refinement for the grid setup, with the
finest grids being centered on and completely encompass-
ing each star, and the finest grid spacing being∼400 m, and
we use Δt=Δx ¼ 0.25.

C. Comments on the temperature

At a glance, the results of our simulation agree well with
other models considered in the literature (indicating that
our comparatively low numerical grid resolution has not
impacted significantly on the results, see for example
[7–9]) and we believe they provide a fair representation
of current simulation technology. The results we discuss
should not, in any sense, be “particular” to our chosen
model. This is evident if we compare the snapshots in Fig. 1
to similar results in the literature.
The results in Fig. 1 show the temperature T, electron

fraction Ye, rest-mass density with respect to nuclear
saturation density ρ=ρnuc, and the neutron chemical poten-
tial μn in the equatorial plane, both at the time of merger
(left panels) and 5 ms later (right panels). The results are
relevant for a range of questions one may want to answer

FIG. 1. Temperature T, electron fraction Ye, rest-mass density with respect to nuclear saturation density ρ=ρnuc, and neutron chemical
potential μn for a simulation of the merger of two 1.4 M⊙ neutron stars using the APR equation of state from [14]. The left column
coincides with the merger time, while the right column snapshots are 5.0 ms postmerger.
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with simulations. For example, while the shock heating
associated with the merger heats the matter up to temper-
atures well above 10 MeV, the high-density core of the
merger remnant remains relatively cold—the postmerger
configuration is effectively a rotating, fairly cold, high-
density “peanut” that lasts for some time (we have not
tracked the evolution through to the stage where the
remnant may eventually collapse to form a black hole as
our main interest is in the dynamics immediately following
the merger).
The temperature results impact on the expected post-

merger oscillations and issues relating to, for example, bulk
viscosity (which wewill return to in Sec. IV B). It is notable
that the thermal hotspots, which start out localized and
corotating with the high-density core, spread out as the
evolution proceeds. Finally, the results for the chemical
potential demonstrate that the matter outflow involves
relatively large values of μn, while the values for the
electron fraction are moderate. These features influence
the r-process (with lower values of Ye required to form
heavier elements) and the signature of the anticipated
kilonova emission. It is also worth noting the spiral nature
of the matter outflow, involving colder matter associated
with the rarefaction wave following the merger shock. This
feature is notable because it is yet another aspect that is
affected by the low-temperature cut-off in the equation of
state table. It is important to get this part right as it impacts
directly on both the r-process and possible jet formation.
There are (obviously) many interesting issues here, but we
focus on questions relating to the temperature and the
matter composition in the following.
Given this particular focus, it is worth remarking on the

robustness of the numerical implementation. As a measure
of the reliability of the thermal description we may consider
the total entropy per baryon, as shown in Fig. 2. This is a

useful measure (as it should not be negative) which
provides a good idea of to what extent the high-density
matter is hot or cold (in a nuclear physics sense). The
entropy results bring out the expectations—the high density
core remains cold—but they also highlight an artefact of the
simulations (also apparent in, for example, the results of
[7–9]). The region close to the neutron star surface is
artificially hot already from the early stages of the simu-
lation. This is also apparent from the temperature result in
Fig. 1. We see that, away from the shock region (where the
two stars first touch) the low density matter near each star’s
surface has reached a temperature well above 10 MeV. This
feature is clearly “unfortunate” as it means that we cannot
discuss the fine print of the thermal physics (e.g., the point
at which the neutron star crust melts).
The artificially high surface temperature may, perhaps

intuitively, be explained in terms of a numerical shock
associated with the transition from the high-density neutron
star interior to the low-density (artificial) atmosphere.
Consider any perturbation in the interior that leads to a
wave propagating outwards. As it travels “down” the
density gradient, the speed of sound (and hence the
characteristic speed) decreases, meaning that the perturba-
tion steepens and will eventually lead to a shock. There is
an assumption that this shock takes place before hitting
the atmosphere (a relevant toy problem demonstrating the
effect is discussed in [48]), which seems to match the
numerical results, but the subsequent propagation through
the atmosphere is certainly artificial. Such a feature may (to
some extent) be unavoidable. One may argue that this is not
a major problem, as the artificial heating is overwhelmed by
the entropy generated in the merger and therefore does
not feature prominently in the postmerger dynamics.
Pragmatically, this may be true on average and hence
sufficient for gravitational wave emission (which is

FIG. 2. Total entropy per baryon S for the simulation of the merger of two 1.4 M⊙ neutron stars using the APR equation of state from
[14]. The left panel coincides with merger time, while the right panel is 5.0 ms postmerger. Note that S ≤ 1 indicates degenerate matter
while S ≫ 1 indicates strongly nondegenerate matter.
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determined by the bulk matter dynamics), but may not be
true for determining correct local matter properties (which
is needed for e.g., electromagnetic and neutrino emission).
One would also like to be able to distinguish the (fairly
large) modeling error due to this artificial heating from the
robust merger physics.
The surface artefact warrants closer scrutiny since the

feature may cause problems for more the detailed modeling
of the neutrino aspects and the associated weak inter-
actions. In particular, the temperature is required to decide
if neutrinos are trapped (a point we return to in Sec. IV D).
The artificial surface feature may “confuse” any automated
neutrino treatment and hence it would seem important to
understand if this makes a—qualitative or quantitative—
difference.
It is also worth noting that there may be a link to the

initial data prescription. Our initial model assumes a
uniform temperature, which would not be a realistic
representation of a mature neutron star (more likely
represented by a uniform redshifted temperature). The
choice is due to the initial data construction within
LORENE, which requires a barotropic model. The imme-
diate alternative to our choice would be to assume a
uniform entropy distribution, but this does not represent
the expected physics either. Recent work [49] has consid-
ered more realistic entropy profiles, but these have not yet
been used in merger simulations. We are investigating this
issue in more detail but are not yet in a position to comment
on it further.
Finally, it is worth commenting on the temperature of the

relatively cold high-density region. As is evident from
the snapshots in Fig. 2, the temperature in the core of the
merger remnant is at the level of 5 MeV. This may be a
reasonable reflection of the physics but the result also has to
be considered with caveats. As the evolved internal energy

τ only depends weakly on the temperatures (see Appendix
Sec. 2 for a discussion of the evolved variables), the
numerical inversion to extract the temperature may be
associated with significant uncertainties. We can approxi-
mately quantify this by a condition number KA→B which
gives, to first order, the relative error in B given a relative
error in A. For the temperature, we assume an error Δτ in
the energy τ, which induces an error in T as

ΔT
T

¼ 1

T

�∂τ
∂T

�
−1
Δτ

¼
�
τ

T

�∂τ
∂T

�
−1
�
Δτ
τ

¼ Kτ→T
Δτ
τ
: ð13Þ

We then compute Kτ→T for a range of densities, velocities,
and temperatures, leading to the results shown in Fig. 3.
We see that the condition number, indicating the growth

in the inevitable numerical error, is largely insensitive to the
density and velocity. It is, however, extremely sensitive to
the temperature and grows rapidly as the temperature
decreases. While condition numbers only give a qualitative,
rather than quantitative indication, this suggests that work-
ing directly with the temperature will be prone to large
numerical errors. This is not a feature of all numerical
operations converting between conserved and primitive
variables, as the analogous condition number for the
densities KD→ρ ¼ 1.
If we want to do (significantly) better, we may have to

work with a different set of variables (e.g., the entropy).
This kind of development may be required if we want
to be able to explore astrophysically motivated questions
associated with the neutron star crust and high-density

FIG. 3. The condition number Kτ→T ¼ τ
T ð∂τ∂TÞ−1 which illustrates how an intrinsic numerical error in the energy τ is amplified to an

error in the temperature. The behavior is robust to changes in density and velocity (as encoded in the Lorentz factorW explicitly defined
in Appendix Sec. 2). For the APR equation of state from [14] we see the result generically diverges as the temperature decreases,
indicating serious problems with numerical accuracy at low temperatures.
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condensates, which come into play at temperatures below
about 1 MeV. However, as it would either involve a
different equation of state parametrization, or dealing with
nonconserved fluxes, it is unlikely to be a preferred
immediate direction of travel.
The simulation results also allow us to comment on

issues related to the finite temperature equation of state. In
particular, we may consider the degeneracy of the different
matter components. This is crucial, because the evaluation
of the thermodynamic integrals required to build the
equation of state in the first place is relatively “straightfor-
ward” for both degenerate matter (where we are essentially
dealing with a low-temperature expansion) and highly
relativistic matter. In the intermediate regime, the calcu-
lation is more involved (see for example [50]). Considering
the results from Figs. 2 and 4 we see that much of the high
density core remains strongly degenerate. However, as the
temperature varies significantly across the merger remnant
we always have to consider the (more challenging) cross-
over regions for the baryons, especially if we are interested

in the low-density matter dynamics. It is useful to keep this
in mind.

IV. THE ISSUE OF EQUILIBRIUM

As we declared from the outset, our aim is not to
consider the wider aspects of the neutron star merger
problem (like the detectable signatures in different chan-
nels, electromagnetic and gravitational). Rather, we want to
focus on the implementation of the physics. In particular,
we want to better understand which aspects of the rich
physics (that we would ideally like to probe) are realisti-
cally within reach of a simulation and which ones are not?
This may seem a somewhat conservative strategy given that
recent simulation work considers a much wider range of
issues (matter outflows and nucleosynthesis, electromag-
netism and jet launch leading to observed gamma-ray
bursts, neutrino transport and so on). However, as will
become evident, important questions remain to be resolved
already at this more “basic” level. In particular, we will

FIG. 4. Degeneracy parameter T=EFx
for protons p, neutrons n, and electrons e. The baryons are assumed to be nonrelativistic while

the electrons are assumed to be relativistic. The data relate to the simulation of the merger of two 1.4 M⊙ neutron stars using the APR
equation of state from [14]. The left column coincides with merger time, and right column is 5.0 ms postmerger. Note that T=EFx

≪ 1

indicates strongly degenerate matter, and T=EFx
≫ 1 indicates strongly nondegenerate matter.
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focus on the issue of local equilibrium, an issue of
immediate relevance for problems involving nuclear reac-
tions (from bulk viscosity to neutrino emission).

A. Cold chemical equilibrium

It is well known that β-equilibrium in neutron star matter
is dictated by a balance of the different electron capture
(ec in the following) and neutron decay (nd) reactions.
Schematically, these take the form

pþ e− þ… → nþ…; ðecÞ ð14Þ

nþ… → pþ e− þ…; ðndÞ ð15Þ

where one of the ellipses for each reaction contains a
neutrino, and they may both contain a spectator nucleon to
ensure momentum balance. When the fluid is cold, it is
transparent to neutrinos, and thus they may only appear as
products for each reaction. In fact, because of their long
mean-free path, the neutrinos depart the systems as soon as
they are formed. This leaves us with a total of 6 reactions
that may take place at T → 0: The direct Urca processes

pþ e− → nþ νe; ð16Þ

n → pþ e− þ ν̄e; ð17Þ

and the modified Urca processes (which require a bystander
nucleon)

pþ pþ e− → nþ pþ νe; ð18Þ

nþ p → pþ pþ e− þ ν̄e; ð19Þ

nþ pþ e− → nþ nþ νe; ð20Þ

nþ n → nþ pþ e− þ ν̄e: ð21Þ

Equivalent reactions involving muons will also be involved
at sufficiently high temperatures and densities, but we
ignore them here for simplicity. Moreover, as the electrons
are relativistic across the simulation domain (we have
μe ≫ T), positron occupation will be suppressed by a
factor of exp ð−μe=TÞ, so we can safely ignore reactions
involving them as well [10] (although positrons do play an
important role in other processes e.g., setting outflow
composition [51]).
To obtain a condition for equilibrium between the

relevant reactions, we need a relation of the form

Ni1Pi1 þ Ni2Pi2 þ… ↔ Nj1Pj1 þ Nj2Pj2 þ…; ð22Þ

where Pk are the particle species, and Nk are stoichiometric
coefficients representing the balance between products and
reactants in a given reaction. The principle of detailed

balance means that the reactions will be in equilibrium
when the chemical potentials obey the relation

Ni1μi1 þ Ni2μi2 þ… ¼ Nj1μj1 þ Nj2μj2 þ…; ð23Þ

where μk is the chemical potential of species Pk. However,
none of the 6 allowed reactions above are the inverse of any
other—as they all must feature the neutrino as a product—
so we cannot write the reactions in the form suggested in
Eq. (22). Instead, we assume that the neutrinos are
kinematically negligible (their energy will be on the order
of a few times the temperature [52]) allowing us to pair the
electron capture and neutron decay reactions together
(effectively assuming that they proceed at the same rate,
Γnd ¼ Γec) to give

n ↔ pþ e−; ð24Þ

nþ p ↔ pþ pþ e−; ð25Þ

nþ n ↔ nþ pþ e−: ð26Þ

These all have the equilibrium condition

μn ¼ μp þ μe; ð27Þ

which dictates the matter composition at T ¼ 0 (and holds
up to temperatures of around a few hundred keV [10]).
Given that our simulation does not enforce the equilib-

rium (the lepton fraction is advected with the fluid), we can
use the results to quantify the local deviation from the cold
beta-equilibrium. To measure this deviation we introduce

μΔ ¼ μn − μp − μe: ð28Þ

The results, which are provided (in the equatorial plane) in
Fig. 5, show that there are regions—notably associated with
the merger shock and the post-merger hotspots—where
μΔ ∼ 100 MeV. That is, the matter deviates significantly
from the cold equilibrium. Having said that, it is important
to note that the deviation is not uniform throughout the
simulation domain.

B. A step toward bulk viscosity

The results for μΔ from Fig. 5 represent a first step
toward a discussion of the reactions that serve to reinstate
equilibrium and issues relating to, for example, bulk
viscosity [10,53], as they allow us to quantify the rate at
which the system equilibrates and assess the relevance of
bulk viscosity on the fluid dynamics. This argument is
notably different from the recent discussion in [54]. Our
focus here is on the parameters required to determine the
relevant equilibration rates, while [54] mainly considers the
nature of the fluid flow during merger. The latter argument
is complicated as bulk viscosity is typically thought of as a

P. HAMMOND, I. HAWKE, and N. ANDERSSON PHYS. REV. D 104, 103006 (2021)

103006-10



resonant phenomenon [30], which is particularly important
when the dynamical motion of the fluid and the rate of
relaxation toward equilibrium occur on comparable time-
scales. The usual logic is perturbative and the calculation is
typically done in terms of a periodic solution for the
dimensionless parameter

A ¼ μΔ
T

: ð29Þ

The calculation of the viscosity from A (see Alford et al.
[55] for a detailed discussion) can be done in three regimes:
a general solution and two limiting cases. First of all, the
sub-thermal limit, where A ≪ 1, allows an analytic solu-
tion, essentially an expansion in small deviations from

equilibrium (where it may be sufficient to include only the
linear term). Meanwhile, the general solution and the
suprathermal limit, where A ≫ 1, are more complicated
as they both require numerical integration of the periodic
solution. Given this understanding, it is interesting to
quantify the regions in the merger simulation where each
assumption applies. As an indication of this, we plot in
Fig. 6 the value of jμΔj=T [using Eq. (28)] reached by the
matter in our simulation. As far as we are aware, this is the
first time this kind of information has been extracted from
numerical merger data. The results paint a complex picture.
While there are regions in the simulation that remain
subthermal (where a low-temperature expansion and a
perturbative analysis of bulk viscosity would suffice)
there are also large regions where the matter is in the

FIG. 5. Deviation from cold β-equlibrium μΔ ¼ μn − ðμp þ μeÞ for a simulation of the merger of two 1.4 M⊙ neutron stars using the
APR equation of state from [14]. The left panel coincides with merger time, and right panel is 5.0 ms post merger.

FIG. 6. Bulk viscosity regime parameter jμΔj=T for the simulation of the merger of two 1.4 M⊙ neutron stars using the APR equation
of state from [14]. The left panel coincides with the merger time, and the right panel is 5.0 ms postmerger. We see that there are regions in
the simulation that remain subthermal (where a low-temperature expansion and a perturbative analysis of bulk viscosity would suffice),
but there are also large regions where the matter is in the suprathermal regime.
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suprathermal regime. The upshot is that the analysis of the
impact of bulk viscosity in a live simulation would require a
careful on-the-fly identification of these regions.
We can also look at this in the μΔ − T plane, as we show

in Fig. 7. We see that the majority of the matter reaches the
point of merger around μΔ ¼ 0, but in the remnant we see
that the modal μΔ shifts to around μΔ ¼ 40 MeV. There is a
strong correlation between T and μΔ, which is perhaps
unsurprising as much of the temperature increase in the
simulation is driven by compression heating, and changes
in density are also able to drive changes in μΔ. In the left
panel we see that before merger most of the matter is in the
subthermal regime, whereas in the right panel most of the
matter has crossed the T ¼ jμΔj line to enter the supra-
thermal region. While most of this matter is at high
temperature, meaning that if reactions were included it
would have been quickly driven to a lower μΔ, we see that
there is some matter (corresponding to the inner core of the
remnant) with T ≲ 5 MeV and μΔ ∼ 40 MeV, meaning
that it may well be necessary to consider suprathermal bulk
viscosity.
In principle, we could proceed and use the results to

estimate the bulk viscosity. There are, however, a couple of
issues that prevent us from taking this step. First, as stated
in previous section, the calculation of μΔ assumes that the
fluid is at T → 0 (we are measuring the deviation from the
cold equilibrium). As T ≠ 0 is required for the calcu-
lation of A, we need to consider how the problem changes
for finite temperatures. The second issue we need to
acknowledge relates to the fact that the standard bulk
viscosity prescription involves an estimate of the local
dynamical timescale. The estimates from [53] suggest
that the bulk viscosity resonance may be relevant for

neutrino-transparent matter, but the outcome depends on
the local conditions and the required information is not
easily extracted from a live simulation, at least not in a way
that does not significantly ramp up the computational cost.
A more practical approach would likely involve imple-
menting the relevant reaction network directly, but this is
neither cheap nor easy.
Before we move on, it is worth commenting on the

timescales of the reactive problem (as estimated in for
example [53]). To outline the argument, following [42],
consider a general fluid quantity X varying in time and
space. Working on the fluid element scale, we can construct
Eulerian τE;X and Lagrangian τL;X timescales for this
quantity from

τE;X ¼
�
VarðXÞ
Varð∂X∂t Þ

�
1=2

; ð30Þ

τL;X ¼
�
VarðXÞ
VarðDX

Dt Þ
�

1=2
; ð31Þ

where D represents the appropriate convective derivative,
and VarðXÞ denotes the statistical variation of X.
It is typical in simulations to note that reactions typically

take place on the fast timescale of the weak interaction (of
order 10−8 − 10−10 s), and hence may be neglected on the
timescales that are resolved in the simulation (∼10−7 s). In
effect, we assume that the quantity X depends separately
on the slow timescale t and the fast timescale τfast ¼
t=ðtreaction=ΔtÞ and integral-average over the fast timescale.
The quantities used in the simulation are then considered
to be

FIG. 7. Distribution of baryon massMb in the μΔ − T plane for a simulation of the merger of two 1.4 M⊙ neutron stars using the APR
equation of state from [14], where μΔ ¼ μn − μp − μe. The left panel coincides with the merger time, and the right panel is 5.0 ms post
merger. The dashed line denotes T ¼ jμΔj. Matter above this line therefore has A < 1 and is in the sub-thermal regime, whereas matter
below the line hasA > 1 and is in the suprathermal regime. This distinction is replicated in the histograms to the side of and below each
plot, with blue indicating subthermal, and red indicating suprathermal.
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X̂ðtÞ ¼ lim
T→∞

1

T

Z
T

0

dτfastXðt; τfastÞ: ð32Þ

When the fluctuations induced by a given reaction decay
exponentially on timescales ∼τfast (which follows when
their statistics approximate a linear Markov process) then it
is reasonable to assume that the reaction takes place
“instantaneously” and so equilibrium should be imposed
on the simulated quantities. When the fluctuations instead
are oscillatory there can beOð1Þ differences between X and
X̂. This would be the case, for example, for bulk viscosity
and it would no longer be appropriate to ignore the fast
timescale dynamics.
Moreover, we need to keep in mind that the reactions

apply to fluid elements reacting on Lagrangian timescales,
while a typical simulation is working in an Eulerian frame
on Eulerian timescales. Interestingly, it is noted in [42] that,
in fully resolved Newtonian simulations, these two time-
scales need not match. In fact, they may be rather different.
In turbulent regions with high Reynolds number, the
hypothesis is that τE;X=τL;X ∼ Re1=2 (noting that while
the turbulence and reaction timescales are not necessarily
similar, the point to take away is that the Eulerian and
Lagrangian timescales could be quite different). This also
highlights that the assumptions leading to an imposed,
instantaneous equilibrium may not hold in the most
interesting regions of a neutron star merger. We clearly
need to approach these issues with some care.

C. Equilibrium at finite temperature

Let us return to the issue of equilibrium. When working
with cold matter, the momenta of the particles taking part in
the reactions are assumed to be at their respective Fermi
surfaces (this is known as the Fermi surface approxima-
tion). At low densities the Fermi momenta pF of the three
involved particles (neglecting the neutrinos) satisfy the
relation

pFn
> pFp

þ pFe
: ð33Þ

This blocks the direct Urca processes as there is no way to
balance the momenta, requiring the introduction of the
spectator nucleon in the modified Urca processes.
However, as the density increases, pFp

þ pFe
increases

faster than pFn
, and some equations of state allow the direct

processes to proceed above a threshold density at which
pFn

¼ pFp
þ pFe

[10]. For cold matter, this condition
typically requires a proton fraction of order 10% (in the
case of the APR model we consider here, the direct Urca
threshold is reached at a around 5ρnuc, beyond the densities
reached in our simulation).
By relaxing the Fermi surface approximation at finite

temperature for the direct processes, one finds that instead
of being forbidden, they are Boltzmann suppressed by a

factor depending on the single particle free energy γi,
defined by

γiðpÞ ¼ EiðpÞ − μi ¼ EiðpÞ − EF;i; ð34Þ

where p is the particle momentum. γiðpÞ therefore repre-
sents the energy difference between a particle on the Fermi
surface and a particle with momentum p. This will result in
Boltzmann suppression of the rates of electron capture and
neutron decay by a factor of exp ð−jγij=TÞ where each
reaction will be dominated by a particular γi. For neutron
decay, the dominant factor is finding a hole in the electron
Fermi sea below pFe

by an amount in the region of
γe ¼ 20–25 MeV, whereas for electron capture the energy
mismatch is lessened by the antialigning of the neutrino
produced with the resultant neutron, reducing the increase
of momentum needed on the initial proton to around γp ¼
10–15 MeV [10]. The upshot of this is that the reactions are
no longer in balance when Eq. (27) holds. In fact, as the
direct electron capture rate is suppressed to a lesser extent
than the neutron decay rate, there will be a net production of
neutrons when the cold equilibrium condition is satisfied.
To account for this, one may introduce a chemical potential
offset μδ, such that the fluid reaches its actual equilibrium
when [10]

μn ¼ μp þ μe þ μδ: ð35Þ

The offset is determined by balancing the rates of the Urca
processes, again setting Γec ¼ Γnd but now for a finite
temperature. This then allows us to work out the matter
composition assuming that the temperature is held fixed.
Alford et al. [10] (see also the recent discussion in [11])

demonstrate that, for temperatures of order 10 MeV the
required offset can be as large as μδ ¼ 20–25 MeV. We get
an immediate idea of the impact of this, by comparing to
the results for μΔ from Fig. 5. Clearly, there are large
regions in the simulation where the suggested effect would
be significant, bringing the matter closer to a de facto
equilibrium than one might have expected. The effect
becomes less important after the merger as the thermal
hotspots drive outflows and significant regions are driven
much further (≳100 MeV) from the cold beta-equilibrium.
Using the results for μδ from Alford et al. [10], we may

estimate the degree to which the shift of equilibrium causes
the equation of state to soften in equilibrated matter. This
provides a useful insight into the level at which the effect
may impact on, for example, the gravitational-wave signal.
In Fig. 8 we plot the adiabatic index Γ for the APR equation
of state and matter in “cold” equilibrium (μΔ ¼ 0) as well
as matter where the suggested temperature effects are taken
into account (setting μΔ ¼ μδ and using the results from
Fig. 4 in [10]). We see that there is a general trend toward
lower values of Γ as the temperature increases, and the
softening effect due to composition changes is most
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pronounced at intermediate temperatures, peaking at
around the 5% level for matter in the 1 − 2ρnuc density
range. While we cannot quantify the extent to which this
degree of softening impacts on observables, like the
frequency of the postmerger oscillations, it is clear that
this is a question worth returning to in future work (which
would require an equation of state accounting for the
temperature dependent μδ). Finally, it is worth noting that
the softening associated with the warm equilibrium is much
less pronounced at a temperature of 10 MeV (and above).
This is likely due to the general softening associated with
the thermal pressure, an effect that is evident in the top
panel of Fig. 8, dominating at higher temperatures.

D. Equilibrium in matter with trapped neutrinos

The equilibrium relations given in Eqs. (27) and (35)
both assume that the fluid is transparent to neutrinos, which
can then only appear as products in the allowed reactions.
However, at sufficiently high temperatures the neutrino
mean free path is expected to become short enough that
they begin to react with the fluid matter at a meaningful
rate, participating in the inverses of the six aforementioned
Urca reactions. Now that the processes are allowed to
proceed in both directions, it follows from Eq. (23) that all
six pairs of reactions have the equilibrium condition

μn þ μνe ¼ μp þ μe ð36Þ

where μνe ¼ −μν̄e is the electron-neutrino chemical
potential.
Under these conditions, the relaxation timescale is

expected to be (see Fig. 7 in [40]) of order 10−8 −
10−10 s (faster than any current numerical simulation is
likely to be able to resolve). This, in turn, leads to a

weakening of the bulk viscosity by several orders of
magnitude. As this has an obvious impact on the matter
dynamics—the new equilibrium that the matter will evolve
toward is rather different from the cold and warm cases—
we clearly need to consider the neutrinos. Unfortunately,
this is problematic. As the neutrinos were not included in
our simulation (or indeed the equation of state in the first
place!), we cannot directly measure the neutrino chemical
potential. We have to resort to approximations. For exam-
ple, we get some idea of the likely magnitude of the
neutrino chemical potential by assuming μν ∼ μΔ and then
considering the results shown in Fig. 5. Still, if we want to
do better then we need to account for the neutrinos in the
matter description. Similarly, we cannot reliably quantify
the rate at which the neutrinos are involved in reactions to
determine the regions of the simulation for which Eq. (36)
is the appropriate statement of β-equilibrium. However, we
can estimate these regions by postprocessing (as in [8]) the
opacity κ (which is related to the mean free path l
through l ¼ 1=κ).
Given a path λ of length L, the probability of a neutrino

being transmitted along that path is

PTðλÞ ¼ exp ð−κabLÞ; ð37Þ

where κab is the absorption opacity. Scattering increases the
effective length of the path taken through the fluid by the
neutrinos, which we can account for by using the effective
opacity κ� given by

κ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κabðκab þ κscÞ

p
ð38Þ

where κsc is the scattering opacity [56].
Hence, we can estimate the regions where neutrino

absorption will be significant by examining the magnitude

FIG. 8. Illustrating the impact of the warm equilibrium on the stiffness of the equation of state. Dashed lines assume the “cold” β-
equilibrium, while solid lines use the “warm” equilibrium prescription with μδ take from Fig. 4 in [10]. The results show that the effect
tends to soften the equation of state by up to 5% at densities up to 2ρnuc, but also that the impact is much less pronounced at higher
temperatures.
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of κ�L. In regions where κ�L ≫ 1, the probability of trans-
mission is very low, and thus neutrinos are available to
partake in reactions, whereas in the opposite limit they are
likely to escape freely. The question then is, what should we
take to be the relevant length scales? Pragmatically, inmerger
simulations there are two pertinent length scales: the grid
spacing Δx, which for the simulation under discussion is
Δx ≈ 400 m, and the size of the region containing hot matter
rhot, which here is ∼30–50 km ≈ 100Δx, see Fig. 1.
In regions where κ�Δx ≫ 1 the neutrinos are unlikely to

escape the computational cell in which they were emitted,
so for our purposes they are definitely trapped and available
for reactions. Similarly, in regions where κ�rhot ≪ 1 ⇒
κ�Δx ≪ 1=100 the neutrinos are likely to escape the
simulation without reacting, and so these regions should
evolve toward the cold/warm equilibrium conditions on
some relatively fast timescale. In the intermediate regime,
the neutrinos emitted in one place are not likely to be
absorbed locally (i.e., within the same computational cell),
but they are also unlikely to escape the simulation com-
pletely, hence it is difficult to make a definite statement one
way or the other—without directly simulating the neutri-
nos. These arguments show why the neutrino treatment is
problematic. The logic that the matter is either neutrino
transparent or not is too simplistic to describe the con-
ditions throughout much of the simulation domain.
Nevertheless, as one has to start somewhere, let us consider
where the estimates we have suggested take us.
The opacity of the fluid to neutrinos depends on the

equation of state parameters ðρ; T; YeÞ, the neutrino energy
Eν, and the neutrino species x. We use NuLib [57] to
calculate κ�ðρ; T; Ye; Eν; xÞ for the two most relevant
species, the electron neutrino/antineutrino. In order to
obtain an estimate for the appropriate neutrino energies,
we assume that there are sufficient neutrinos available to be

in chemical equilibrium, and that those neutrinos will be in
thermal equilibrium with the fluid. Endrizzi et al. [8] have
shown that this assumption is good enough to determine
equilibrium surfaces, which depend strongly on the absorp-
tion, and thus this approximation should work well for the
qualitative analysis here. The neutrinos then follow an
isotropic Fermi-Dirac distribution

fνðEνÞ ¼
�
exp

�
Eν − μν

T

�
þ 1

�
−1
; ð39Þ

where μνe ¼ −μν̄e ¼ μp þ μe − μn. We then calculate an
energy averaged opacity κ̃� for each species through (as we
focus on particle number transport [8])

κ̃�ðρ;T;Ye;xÞ¼
R
∞
0 fνðEνÞκ�ðρ;T;Ye;Eν;xÞE2

νdEνR
∞
0 fνðEνÞE2

νdEν
: ð40Þ

The results in Fig. 9 show that κ̃�Δx is small in the dense
core regions up to merger, and although some of the core
matter in the remnant has been heated enough that
absorption on the scale of grid cells has become significant,
there remains a transparent central region. The hotspots
mentioned in Sec. III C show large potential for absorption
of both species of neutrino, as expected. The outflowing
matter visible in the þ5 ms panel is mostly in the
intermediate regime, however it does highlight the differ-
ence between the values of κ̃� for the two different neutrino
species, with the electron neutrinos being subjected to a
stronger degree of absorption than their antiparticle. Hence
we are likely to see regions where the inverses of the Urca
processes are suppressed to different degrees, further
complicating the calculation of the equilibrium condition.

FIG. 9. Energy averaged electron neutrino and antineutrino effective opacities κ̃� multiplied by grid cell spacing Δx ¼ 400 m for a
simulation of the merger of two 1.4 M⊙ neutron stars using the APR equation of state from [14]. The left panel coincides with the
merger time, and the right panel is 5.0 ms post merger. The neutrino opacities were calculated using NuLib [57].
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E. Equilibration via the strong interaction

So far, we considered the electron to be the only
negatively charged particle (muons were ignored for
simplicity, but partake in similar reactions to the electrons),
meaning that equilibration relied on the weak interaction.
However, the situation may change as the temperature
ramps up. For example, one may argue that we should
account for the presence of thermal pions [58]. A small
population of pions could drastically change the story. At
high temperatures neutrons may decay to protons and pions
on the strong interaction timescale (which at 10−23 s is
instantaneous for all practical purposes). The system would
then reach an equilibrium where

μn − μp ¼ μπ ð41Þ

with the pions subsequently equilibrating with the electrons
on the weak interaction timescale (through pion decay). In
the first estimates of this effect, Fore and Reddy [58] show
that pion-equilibrated matter is more proton rich than the
weak equilibria we have discussed. As a result, the equation
of state may soften by as much at 10%-15%, which could
have a significant impact on the merger dynamics. In
addition, the presence of the thermal pions increases the
heat capacity, leading to the matter cooling which may self-
regulate the process. These are interesting ideas, but in
order to test them with simulations we would need an
equation of state that accounts for the thermal pions. In the
absence of such a model, the best we can do is estimate if
(and where) the thermal pions are likely to come into play.
Drawing on the estimates from Fore and Reddy [58],

which suggest that the effect becomes significant when
T ≳ 25 MeV, we may consider the results in Fig. 10, which
shows the distribution of matter in the μn − T phase space,

as indicative. We see that after merger the outflows from the
core lead to a substantial migration of matter to higher
chemical potentials, and the distribution of the matter has
shifted to higher temperature, with most of the matter now
above T ≳ 15 MeV—the spatial regions where this become
important will be discussed in Sec. V. Evidently, the
temperature reaches the level where the pions may play
a role throughout much of the matter. This suggests that we
should seriously consider the role of the thermal pions,
which inevitably involves moving toward a more complex
matter model.

V. SUMMARY AND OUTLOOK

In order to better understand how the extreme physics of
neutron star mergers is represented by large scale simu-
lations, we have explored issues associated with finite
temperature effects. While it is well established that the
matter equation of state softens when the temperate ramps
up and that the thermal effects also regulate the extent to
which the matter is transparent to neutrinos (with imme-
diate impact on the ability of the neutrinos to remove
energy from the system), the problem has more subtle
aspects which have not (in our view) been considered at the
level of detail they warrant. These aspects need attention if
we aim toward a faithful representation of the physics,
especially since they regulate the rates of nuclear reactions
that enter discussion of bulk viscosity and neutrino leakage.
Our particular focus was on the notion of β-equilibrium in
neutron star matter for the densities and temperatures
reached in a neutron star merger. By post-processing the
results from an out-of-equilibrium merger simulation, for
equal mass neutron stars described by the APR equation of
state [14], we explored how different notions of equilibrium
may affect the merger dynamics, and how this raises issues

FIG. 10. Distribution of baryon massMb in the μn − T plane for a simulation of the merger of two 1.4 M⊙ neutron stars using the APR
equation of state from [14]. The left panel coincides with the merger time, and the right panel is 5.0 ms post merger. The results suggest
that thermal pions, which may play a role at temperature above T ≳ 25 MeV [58], may impact on a significant fraction of the simulated
matter.
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when attempting to account for the relevant conditions in a
live simulation. We argued that this leads to a set of
problems, both computational and conceptual. In particular,
our results suggest that the finite temperature effects lead to
additional softening of the equation of state in some density
regions, and to compositional changes that affect the
processes that rely on deviation from equilibrium, such
as bulk viscosity, both in terms of the magnitude and the
equilibriation timescales. We have demonstrated that it is
far from straightforward to determine exactly which equi-
librium conditions are relevant in which regions of the
matter—the what and where of the problem—due to the
dependence on neutrino absorption, further complicating
the calculation of the reactions that work to restore the
matter to equilibrium.
As an attempt to summarize the discussion we provide the

schematic illustration in Fig. 11. The figure identifies regions
where the different equilibrium conditions discussed in
Sec. IV apply in our simulation (at merger and 5 ms later).
We distinguish regions with “cold” matter (T < 1 MeV)
where the condition (27) applies, “warm” (T > 1 MeV and
κ̃�rhot < 1, the transparent regime, for both neutrino species)
where we need to account for the imbalance of the nuclear
reaction by adding μδ as in (35), a “warm/hot”region which
involves matter with T > 1 MeV but with Δx=rhot <
κ̃�Δx < 1 (neither locally trapped, nor transparent) for at
least one of the neutrino species, a “hot” region where
κ̃�Δx > 1 (locally trapped) for both neutrino species, and
finally a “strong” region with matter at T > 25 MeV where

one might anticipate thermal pions to play a role. As these
regions evolve with time, a live identification of the appro-
priate local conditions is clearly far from trivial.
Admittedly, our discussion poses more problems than it

solves. The main message is that we have to be careful
when we consider how thermal effects enter the merger
problem, especially if we aim toward a realistic imple-
mentation of the neutrinos with an on-the-fly calculation of
the emission/absorption features. If the error bars associ-
ated with the inferred matter temperature are, indeed, as
large as our results suggest then this issue is problematic. If
we want to do better, the next steps are fairly clear. On the
one hand we need to quantify the uncertainties associated
with the temperature. While some of the aspects we are
trying to model are likely sensitive to these errors, other are
expected to be more robust. For example, the gravitational-
wave signal may not be hugely affected by the issues we
have discussed (although this remains to be quantified).
The natural next step would be to work toward simulations
that account for the different notions of equilibrium, either
with a consistent model for μδ for the chosen equation of
state or with the thermal pions explicitly included. Such
simulations are clearly within reach of our computational
technology, but require some effort on the nuclear physics
side. Similarly, we can take further steps toward a quanti-
tative understanding of the relevance of bulk viscosity on
the problem. A recent discussion of this effect [54] focused
on the bulk viscous pressure (associated with the diver-
gence of the fluid flow). Such results are indicative, but it is

FIG. 11. Schematic of where the different equilibrium conditions discussed in Sec. IV are expected to occur in a simulation of the
merger of two 1.4 M⊙ neutron stars using the APR equation of state from [14]. Left panel coincides with merger time, and right panel is
5.0 ms post-merger. The conditions on the matter are labelled as follows: “Cold” denotes matter with T < 1 MeV where the standard
cold β equilibrium condition eq. (27) is relevant, “Warm” denotes matter with T > 1 MeV and κ̃�rhot < 1 for both neutrino species
where the warm β equilibrium condition in Eq. (35) is relevant, “Hot” denotes matter where κ̃�Δx > 1 for both neutrino species, thus the
hot β equilibrium condition in Eq. (36) is relevant, “Warm/Hot” denotes matter with T > 1 MeV but with Δx=rhot < κ̃�Δx < 1 for at
least one of the neutrino species, where we cannot distinguish cleanly between hot and warm equilibrium, and “Strong” denotes matter
with T > 25 MeV where pions may be relevant.
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appropriate to raise a flag of caution. First of all, we need to
keep in mind that the representation of the bulk viscosity as
an effective contribution to the pressure is very much a
perturbative notion. It is not at all clear that it remains
appropriate for the nonlinear dynamics we are trying to
model. Secondly, and perhaps more critically, the bulk
viscosity arises as reactions strive to equilibrate the matter.
Effectively, this leads to the different species fraction (like
Ye in our case) not being conserved. Now one has to be
careful because the same effect is already accounted for in
schemes aimed at modeling the neutrinos. Hence, adding a
bulk viscous pressure may, in fact, lead to double counting.
Clearly, these issues require further thinking.

Source files, parameter files, and plotting scripts for this
work can be found at Ref. [63].
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APPENDIX: Code Modifications

1. Modifications to EOS_Omni

The EOS_Omni module provides native support for a
number of types of equation of state (including some
tabulated), but there is no ability to use three-parameter
tables in the format provided by the CompOSE database
[15]. Therefore, we have written our own interface to tables
in this form within the EOS_Omni framework, and added
the temperature inversion step required by some
conservative-to-primitive methods.
We use a set of tricubic interpolators (one for each

tabulated variable, p, ϵ, and c2s) defined piece-wise for each
cell in the table grid. In order to account for the large range
of values of the table parameters ρ and T, and all of the
tabulated variables we use the logarithm instead or the raw
value. An issue arises with ϵ as, unlike p and c2s , it is not
everywhere positive. Hence, instead of using logðϵÞ we use
arcsinhðϵÞ, which behaves like log for jϵj ≫ 1, but is also
defined for ϵ ≤ 0.
The interpolators each take the form (for a general

variable f to be interpolated)

fðlog ρ; logT; YeÞ ¼
X3
i¼0

X3
j¼0

X3
k¼0

aijkxiyjzk; ðA1Þ

where ðx; y; zÞ are the shifted and normalized values of
ðlog ρ; logT; YeÞ with respect to the table cell that contains
ðlog ρ; logT; YeÞ scaled such that each cell runs from

0 → 1 in all three dimensions. The polynomial coefficients
aijk are calculated using the values of the variable f and all
derivatives that contain at most first order terms in each of
the three parameters, evaluated at each of the eight corners
of the grid cell. These 64 values are arranged in a vector m
which we relate to a vector containing the elements aijk, a,
through a matrix B, giving

m ¼ Ba; ðA2Þ

where we now need to find the elements of B. This is done
by applying the same derivative terms in m to eq. (A1) and
reading off the numerical coefficients that appear in front of
each of the elements of a for each of the elements ofm. The
final step is to invert eq. (A2) to give

a ¼ B−1m; ðA3Þ

where the interpolation coefficients are now defined in
terms of the table variable f and its derivatives with respect
to the other table parameters. Constructing the table in this
form also allows easy calculation of derivatives of the table
variables with respect to the table values, however care
must be taken to undo the transformations (taking the log or
arcsinh) that were made when creating the table in the
first place.
The temperature inversion step is required when the

known values are ðρ; ϵ; YeÞ, and the value of T must be
calculated. This is used by one of the conservative-to-
primitive methods we mention below, in particular the more
stable backup method. As this step is only required in the
backup method, we do not need to ensure the inversion step
is fast, it is significantly more important that it be robust.
Hence we use an exhaustive search over all possible values
of T (in this context meaning within the limits of the table).
As the values of ρ and Ye are known, we can evaluate

those two respective sums in eq. (A1) to leave a cubic
polynomial in logT for each cell in the table. We then use a
standard cubic polynomial solver to find which of these
have solutions to ϵ ¼ ϵðρ; T; YeÞ in the correct limits by
disregarding solutions for a given cell that lie outside said
cell, which leaves us with the value of T that corresponds to
the input ϵ given ρ and Ye. There exists the possibility for
multiple solutions given an arbitrary equation of state table,
so if this does occur we choose T to minimise the change in
T compared to the value on the simulation grid at the
previous timestep.

2. Modifications to GRHydro

Modern GRMHD codes utilise the Valencia formulation
[45,59] of the relativistic hydrodynamics equations for the
evolution of the fluid, which take the form (neglecting the
magnetic field component)

∂tð ffiffiffi
γ

p
qÞ þ ∂iðα ffiffiffi

γ
p

f iðpÞÞ ¼ sðpÞ; ðA4Þ
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where α and γ are taken from the 4-metric, q denotes a
vector of conserved variables

q ¼ ðD; Si; τ; DYeÞ; ðA5Þ

and p denotes a vector of primitive variables

p ¼ ðρ; vi; T; YeÞ: ðA6Þ

The conserved variables are given analytically in terms
of the elements of p through

qðpÞ ¼

0
BBB@

D

Si
τ

DYe

1
CCCA ¼

0
BBB@

ρW

ρhW2vi
ρhW2 − p − ρW

ρWYe

1
CCCA; ðA7Þ

where the isotropic pressure p and specific enthalpy density
h ¼ 1þ ϵþ p=ρ are calculated from the equation of state,
and the Lorentz factor W ¼ ð1 − viviÞ−1=2. As the evolu-
tion of q depends on p we must calculate qðpÞ at each step.
As this is not possible analytically, a number of numerical
schemes have been developed (see Siegel et al. [60] for a
recent summary).
The conservative-to-primitive inversion method used by

GRHydro relies on the availability of the derivatives ∂p=∂ρ
and ∂p=∂ϵ from the EoS. However, most three-parameter
EoSs are tabulated by ρ, T, and Ye, with ϵ a function of
these parameters. This means that ∂p=∂ϵ must be calcu-
lated through

∂p
∂ϵ ¼ ∂p

∂T
∂T
∂ϵ þ ∂p

∂ρ
∂ρ
∂ϵ þ

∂p
∂Ye

∂Ye

∂ϵ
¼ ∂p

∂T
�∂ϵ
∂T

�
−1

þ ∂p
∂ρ

�∂ϵ
∂ρ

�
−1

þ ∂p
∂Ye

� ∂ϵ
∂Ye

�
−1

ðA8Þ

which, when any of the ∂ϵ=∂X terms approaches 0, can
explode to infinity, leading to instability.
To improve upon this, we have implemented two

methods from Siegel et al. [60] which are formulated in
terms more suited for ðρ; T; YeÞ tables. The first is based on
the 2-dimensional Newton-Raphson scheme presented by
Anton et al. [61], and solves for W and T. The second
method was suggested by Palenzuela et al. [62] and solves
for x ¼ hW on a bracketed interval, where we use Dekker’s
method for the bracketed root finding. These two methods
were chosen for a balance of speed and stability. The faster
2-D Newton-Raphson scheme is attempted first, and if it
fails then the more stable 1-D Dekker method is used.
It is possible that the evolution of the conserved variables

will cause them to no longer correspond to a physical
solution within the bounds of the equation of state table.
This typically occurs when the effective temperature of the
fluid falls below the lowest temperature available in the

equation of state table Tmin. In this case, we assume T ¼
Tmin and solve forW. Due to this mismatch in temperatures,
we know that the primitives we obtain will not correspond
exactly to the conservatives with which we started, and so
we must decide where we want this error to lie.
We experimented with trying to minimise the total

relative error across the conservatives, but found this
introduced spurious kinetic energy into the simulation.
Instead, we do our best to conserve the 3-momentum
density pi ¼ ρWvi ¼ Dvi. As the value of W will not
impact on the direction of pi, we can instead choose to
attempt to minimise the error in p2 ¼ pipi ¼ D2v2, and
because D does not depend on the equation of state we can
safely ignore it. Therefore, we must solve to minimise error
in v2.
The combination of conserved variables closest to v2 is

S2

ðτ þDÞ2 ¼
z2v2

ðz − pÞ2 ¼ v2
1

ð1 − p
zÞ2

; ðA9Þ

where z ¼ ρhW2, which reduces to v2 for p ≪ z. We can
also calculate this quantity from the primitive variables
using

v2
1

ð1 − p
zÞ2

¼ W2 − 1

W2ð1 − pðWÞ
zðWÞÞ2

; ðA10Þ

where pðWÞ and zðWÞ are calculated from the EoS using
ðρ¼D=W;T ¼Tmin;Ye ¼DYe=DÞ. Combining eqs. (A9)
and (A10) we define an error function f, which measures
the difference between the input S2=ðτ þDÞ2 and the value
calculated from our W guess, which takes the form

fðWÞ ¼ log

�
W2 − 1

W2ð1 − pðWÞ
zðWÞÞ2

�
− log

�
S2

ðτ þDÞ2
�
; ðA11Þ

where we have taken the log of each equation in order to
improve behavior far from fðWÞ ¼ 0. We also obtain better
behavior where v2≪ 1⇒W≈1 by using w ¼ logðW − 1Þ,
which yields

fðwÞ ¼ log

�
e2w þ 2ew

ðe2w þ 2ew þ 1Þð1 − pðwÞ
zðwÞÞ2

�

− log

�
S2

ðτ þDÞ2
�
: ðA12Þ

W is physically constrained by the lower bound 1 ≤ W,
which corresponds to −∞ ≤ w. However the limits of
floating point number representation limit meaningful
values of W > 1 to

W ¼ 1þ ε; ðA13Þ
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where ε is the machine epsilon (in the case of double
precision floating point numbers, ε¼ 2−52≈2.22×10−16),
thus giving a lower bound for w of

wmin ¼ log ε: ðA14Þ

We can obtain an upper bound for w by considering the fact
that if ρ drops below an atmosphere density ρatmo, the
simulation will consider that point to be part of the atmos-
phere and reset all of the fluid variables to pre-defined
defaults. This means that for the point in question wmust be
such that

D
ð1þ ewÞ ≥ ρatmo; ðA15Þ

to avoid resetting, which we can rearrange to

wmax ¼ log

�
D

ρatmo
− 1

�
: ðA16Þ

Using the two bounds for w and the function fðwÞ, we
again use Dekker’s method to solve for w such that
fðwÞ ¼ 0. If we find there is no solution for fðwÞ ¼ 0
on the interval wmin ≤ w ≤ wmax, we use a modified
objective function gðwÞ, defined by

gðwÞ ¼
�

e2w þ 2ew

ðe2w þ 2ew þ 1Þð1 − pðwÞ
zðwÞÞ2

�
−
�

S2

ðτ þDÞ2
�
;

ðA17Þ

to determine whether there is a solution on the interval
−∞ ≤ w ≤ wmin by observing that

lim
w→−∞

gðwÞ ¼
�

0

0þ 1

1

ð1 − pðwÞ
zðwÞÞ2

�
−

S2

ðτ þDÞ2

¼ −
S2

ðτ þDÞ2 ðA18Þ

If we find that gðwminÞ × gð−∞Þ ≤ 0, then we accept
W ¼ 1 as the solution. We can also test for a solution
on the interval wmax ≤ w ≤ ∞ by observing that

lim
w→∞

gð∞Þ¼ lim
w→∞

�
e2wþ2ew

ðe2wþ2ewþ1Þ×
�
1−

1

W2

1
ρð1þϵÞ

p þ1

�
−2
�

−
�

S2

ðτþDÞ2
�
; ðA19Þ

where we can immediately see that

lim
w→∞

�
e2w þ 2ew

ðe2w þ 2ew þ 1Þ
�

¼ 1; ðA20Þ

and we can use the dominant energy condition

p2 ≤ ρ2ð1þ ϵÞ2; ðA21Þ

to show that

1
ρð1þϵÞ

p þ 1
≤
1

2
: ðA22Þ

This leaves us with

lim
w→∞

gðwÞ ¼
�
1 ×

�
1 − lim

w→∞

1

2ð1þ ewÞ2
�−2�

−
�

S2

ðτ þDÞ2
�

ðA23Þ

¼ 1 −
�

S2

ðτ þDÞ2
�
: ðA24Þ

and so if gðwmaxÞ × gð∞Þ ≤ 0 then the solution is suffi-
ciently large that the point will be set to atmosphere, and
this is accepted as a solution. If both of these tests fail, then
Con2Prim fails, and the simulation is aborted.
Once we have a solution forW, we can use this and Tmin

to calculate the values of the primitives through

ρ ¼ D
W

; ðA25Þ

Ye ¼
DYe
D

; ðA26Þ

p ¼ pðρ; Tmin; YeÞ; ðA27Þ

vi ¼ γijSj
τ þDþ p

: ðA28Þ

As we know the primitive variables obtained will be
inconsistent with the conservative variables with which
we started, we calculate the values of the conserved
variables using Eq. (A7), and use these to replace the
previous values.
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