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The electroweak properties of light and charmed D and Ds pseudoscalar mesons are investigated within
a unified covariant constituent quark model. The quark-antiquark-meson vertices are assumed to have a
symmetric form by the exchange of quark momenta, which is successful in describing the light
pseudoscalar meson properties. The flavor decomposition of the elastic electromagnetic form factors,
electromagnetic charge radii, and weak decay constants are calculated. Based on the results a discussion on
the SU(3) and SU(4) symmetry breaking is made and a comparison with the pion and kaon properties to
highlight the Higgs contribution to the structure of these mesons.
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I. INTRODUCTION

The interplay between dynamical and explicit chiral
symmetry breaking in quantum chromodynamics (QCD),
drives the properties of the heavy-light pseudoscalar mesons,
like D and Ds, where dressing of the light quarks comes
together with the mass of the heavy partner from the coupling
to the Higgs boson. The consequence of the dynamical chiral
symmetry breaking is the dressing of the light quarks ðu; d; sÞ
and the Goldstone boson nature of the pion and kaon (see,
e.g., [1,2]), while in heavy sector the charm quark basically
acquires its mass from the Higgs coupling, breaking badly the
SU(4) flavor symmetry, separating the Goldstone bosons
formed by ud̄ and us̄ from the cd̄ and cs̄ pseudoscalars (see,
e.g., [3,4]).
The evolution of the structural properties of the pseudo-

scalar mesons within the SU(4) multiplet allows to study the
competition between the two mass generation mechanisms,
as the constituent quark masses change from a couple of
hundreds of MeV, of the order of ΛQCD, to the GeV scale.
Each meson encodes the full complexity of QCD in
Minkowski space, namely its wave function, for example
in the light-front (LF), is spread out over an infinite set of
Fock-components [5], while by itself the dressed quark
degree of freedom encodes such rich structure and it is
considered a building block, since the primordial era of
studies of the strong interaction. Nowadays, QCD studies of

mesons are far beyond such naive representations with
several groups performing lattice (LQCD) calculations over
the world. Also, the dressing of light quarks, gluons and
ghosts have been computed within LQCD (see, e.g., [6])
strengthening the concept of effective quark and gluon
degrees of freedom as the building blocks in phenomeno-
logical descriptions of hadrons. On the other hand the heavy
quarks are barely dressed by gluons, and the Higgs coupling
being the dominant effect to acquire their masses.
The well separated mass scales of the light and the charm

quarks should manifest in the heavy-light meson internal
structure, as already recognized long ago (see, e.g., [7,8]).
The combined study of mesons, where the largest compo-
nent in their wave functions are the non-exotic ones, namely
a qq̄, formed by a dressed light quark and antiquark or a
heavy-light qq̄ pair, should allow us to follow the transition
in the internal structure when a light quark is substituted
by a heavy one. In the extreme situation where the heavy
mass tends to infinity, the heavy quark in the qq̄ valence
component is placed at the center of mass of the meson,
while the light quark explores the confining QCD inter-
action. The pseudoscalar mesons radically change from the
Goldstone boson nature of the pion and kaon, associated
with dynamical symmetry breaking, to for example D and
Ds, where the chiral symmetry is explicitly broken. Such
physical transition should be manifested in the structure of
these mesons, and in particular in their charge distribution. In
the heavy quark limit part of the charge should be distributed
at the short-range, while an another part at larger distances,
while for the pion and kaon, both the quark and antiquark
should bring somewhat similar charge distributions, apart
the individual charge carried by each constituent. This
sharp modification in the structure of the light-light to the
heavy-light pseudoscalars should be reflected in the elastic
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electromagnetic (EM) form factors, and in particular in their
flavor decomposition.
Experimental information on the EM form factors of the

pion and kaon are available in Refs. [9–13] and [14,15],
respectively. Furthermore the charge radii of the pion and
kaon are quite well determined to be, respectively, rπ ¼
0.672� 0.08 fm and rK ¼ 0.560� 0.03 fm (see [16] and
references therein). However, it is still missing experimental
information on the elastic EM form factors of the charged D
and Ds mesons, which would be essential to address the
structural modifications moving from Goldstone bosons to
the heavy-light pseudoscalars. On the other side, ab-initio
calculations of theD andDs charge radii at the physical pion
mass point are not yet available, although some results were
obtained within a 2þ 1 flavor LQCD [17] for pion masses
from 300 up to 700 MeV and with twisted boundary
conditions [18] for pion masses of 300 and 315 MeV. The
extracted charge radius were found around 0.4 fm for the
Dþ and somewhat smaller for theDþ

s , indicating the decrease
in the size of these mesons with respect to the charged pion
and kaon, as follows from the Higgs coupling to the heavy
quarks in opposition to the light ones acquiring dynamically
their masses. The performed flavor decomposition of the
charge radius clearly supports the physical picture outlined
before. Additionally, the EM form factors and the corre-
sponding flavor decomposition for the Dþ up to 1.5 GeV2

[17] and for Dþ and Dþ
s below 1.2 GeV2 were computed

within LQCD [18]. It is of note that the scarce information of
the EM structure of the pseudoscalar mesons is contrasted by
the knowledge of the weak decay constants from the
experiments and LQCD calculations (see, e.g., [16]), which
is an important piece of information of the meson valence
wave function at short distances, and necessary to be taken
into account by phenomenological models.
The above discussion featuring the evolution of the

pseudoscalar meson structure from light to heavy-light
mesons as represented by their charge distributions, moti-
vates our study of πþ, Kþ, Dþ, and Dþ

s within a common
and covariant framework with a minimum number of
scale parameters, besides the constituent quark masses,
all embody in a Bethe-Salpeter (BS) amplitude model. It
corresponds to the matrix element of an interpolating
operator between the vacuum and the meson state which
is built with a minimum number of field operators charac-
terized by the meson quantum numbers [19]. The BS model
has a constituent quark and antiquark and a pseudo scalar
vertex with one scale parameter, in a generalization of the
model proposed in [20], applied with success to compute
the pion electroweak properties, and later on used to study
the kaon and Dþ electromagnetic form factors [21,22].
Furthermore, the projection of the qq̄BS amplitude to the LF
gives the valence component of the wave function (see, e.g.,
[23,24]), which allows one to explore the valence quark
momentum distributions (see, e.g., [25,26]).

In the present work, the BS amplitude model [20] is
applied to compute the EM form factors of πþ, Kþ, Dþ
and Dþ

s , as well as their flavor decomposition, via the
Mandelstam formula [27], represented by the triangle
Feynman diagram. The model has constituent quarks u, d,
s and c, with fixed masses and one individual scale
parameter fitted to the well known value of each meson
decay constant. The model is covariant and conserves the
EM current, as the constituent quarks are point like, with a
bare current, which trivially satisfy the Ward-Takahashi
identity [19]. In addition, the decay constant is computed
from the antialigned quark spin component of the LF
valence wave function, which is derived from the BS
amplitude model.
In Sec. II, an analytical form for the Bethe-Salpeter

amplitude in terms of constituent quarks for the pseudosca-
lars, πþ, Kþ, Dþ and Dþ

s is proposed within a unified
covariant model, and from that the weak decay constant is
derived, and its association with the antialigned quark spin
component of the valence LF wave function is presented. In
Sec. III, the electromagnetic current for the elastic process is
constructed, the flavor decomposition of the elastic electro-
magnetic form factors is derived, and the method for treating
numerically the loop integrations with LF technique is
discussed. The results for the static electroweak observables
are provided in Sec. IV, and discussed in comparison with
LQCD calculations and other models. The electromagnetic
form factors from our model are discussed in Sec. V and
compared with the vector meson dominance model and with
experimental data for the pion and kaon, while for Dþ and
Dþ

s with LQCD results. The work is closed in Sec. VI with a
summary of the main results.

II. THE COVARIANT FRAMEWORK

A. Quark-meson spin coupling: Effective Lagrangian

We adopt here a simple scheme to build the spin
coupling of the quark-antiquark pair to build the meson
starting from an effective Lagrangian. Note that, later on a
meson vertex will be introduced carrying a mass scale
dictated by the weak decay constant.
We start by coupling the quark to the pseudoscalar

meson field within the SU(4) flavor symmetry scheme,
which is expressed by the following effective Lagrangian:

LI ¼ −{gΨ̄MSUð4Þγ5Ψ≡ −{
gffiffiffi
2

p
X15
i¼1

ðΨ̄λiγ5ΨÞφi; ð1Þ

where g is a coupling constant, λiði ¼ 1;…; 15Þ are the
SU(4) Gell-Mann matrices [28], φi is the Cartesian com-
ponents of the pseudoscalar meson fields, the quark field
is ΨT ¼ ðu; d; s; cÞ (T: transposition) decomposed in its
quark-flavor components and

MOITA, DE MELO, TSUSHIMA, and FREDERICO PHYS. REV. D 104, 096020 (2021)

096020-2



MSUð4Þ ¼
1ffiffiffi
2

p

0
BBBBBBBB@

π0ffiffi
2

p þ ηffiffi
6

p þ ηcffiffiffiffi
12

p πþ Kþ D̄0

π− − π0ffiffi
2

p þ ηffiffi
6

p þ ηcffiffiffiffi
12

p K0 D−

K− K̄0 −
ffiffi
2
3

q
ηþ ηcffiffiffiffi

12
p D−

s

D0 Dþ Dþ
s − 3ηcffiffiffiffi

12
p

1
CCCCCCCCA
; ð2Þ

is the SU(4) pseudoscalar meson field matrix [29–31].
In particular, the positively charged pseudo-scalar mesons

which we focus in this study are selected from the SU(4)
meson matrix through the traces

πþ ¼ Tr ½MSUð4Þ λπþ�; Kþ ¼ Tr ½MSUð4Þ λKþ�;
Dþ ¼ Tr ½MSUð4Þ λDþ�; Dþ

s ¼ Tr ½MSUð4Þ λDþ
s
�; ð3Þ

where the flavor matrices are given by:

λπþ ¼ 1ffiffiffi
2

p ðλ1 þ {λ2Þ; λKþ ¼ 1ffiffiffi
2

p ðλ4 þ {λ5Þ;

λDþ ¼ 1ffiffiffi
2

p ðλ11 − {λ12Þ; λDþ
s
¼ 1ffiffiffi

2
p ðλ13 − {λ14Þ; ð4Þ

and the corresponding physical mesons are indicated by the
subindices.

B. Bethe-Salpeter amplitude model

The effective Lagrangian from Eq. (1), is associated to a
meson vertex without structure and pointlike, introduced
only to guide us in a practical form to build both the spin
and favor composition of each meson. In what follows,
we will allow the meson vertex to have an extension,
represented by a scalar function to keep the covariance of
the model. In this way, the Bethe-Salpeter amplitude
model for the pseudoscalar mesons considered in this
study is given by:

ΨMðk; pÞ ¼ SqðkÞγ5gΛMðk; pÞλMSqðk − pÞ; ð5Þ

where the constituent quark propagator is

SqðkÞ ¼ i½=k − m̂q þ {ϵ�−1; ð6Þ

and the quark constituent mass matrix is diagonal,

diag½m̂q� ¼ ½mu;md;ms;mc�:

The vertex function for the pseudoscalar mesons,
M ¼ ðπ; Kþ; Dþ; Dþ

s Þ, adopted in the present work is

gΛMðk; pÞ ¼
CM

k2 − μ2M þ {ϵ
þ ½k → p − k�; ð7Þ

which generalizes the model proposed in Ref. [20] for the
pion and the kaon [22] to the heavy-light case. The model
assumes that the infrared (IR) dynamics of QCD is
translated to the mass scale, μM, for each pseudoscalar
meson in the SU(4) flavor multiplet. The ultraviolet (UV)
physics is reflected in the analytic form of the vertex
function. The constant CM also depends on the meson and
it is determined by the covariant normalization of the BS
amplitude:

2ipμ ¼ NcTr
Z

d4k
ð2πÞ4 g

2Λ2
Mðk; pÞ

× ½γ5λMSqðk − pÞγμSqðk − pÞγ5λ†MSqðkÞ
þ γ5λ†MSqðkþ pÞγμSqðkþ pÞγ5λMSqðkÞ�; ð8Þ

where it was made the simplified assumption that the
kernel which would have given origin to this particular
vertex function had no dependence on the total momen-
tum, as it is the case of the ladder approximation of the BS
equation (see, e.g., [26,32]).
The breaking of the SU(4) symmetry is reflected in the

variation of the mass scale μM and the constituent quark
masses as a consequence of both mass generation by the
Higgs mechanism and the dynamical chiral symmetry
breaking. In particular, μM is obtained by fitting fM, the
weak decay constant of the meson M, for a given set of
constituent quark masses.
We observe that the masses of the constituent quarks are

associated to an energy scale characteristic of each meson.
Such energy scale sets the initial condition for the
evolution to obtain the parton distribution function at
the different energy scales. For practical applications, it is
about 0.5 GeV for the pion (see, e.g., [25], but could
change with the meson.
Another comment is appropriate, in order to keep the

simplicity of the present phenomenological covariant model,
we have adopted the same form of the vertex function for
all mesons, which at large momentum behaves as 1=k2.
Such asymptotic form should naively correspond to the
situation where the quark and antiquark, exchange a very
large momentum, flowing through the one-gluon exchange
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interaction, that due to the asymptotic freedom dominates the
short-distance dynamics of the system (see, e.g., Ref. [33]).
Of course, we could have other types of vertices, at the
expense of introducing more parameters, but we chose to
keep the minimal number of scale parameters in this work,
namely one per meson.

C. Weak decay constant

The pion weak decay constant is a measure of the strong
interaction dynamical scale, and as such a fundamental
requirement that a model satisfies. The weak decay constant
comes as a balance of both short-range and long-range QCD
physics to the meson valence wave function, and therefore a
necessary constrain in phenomenological models. In the
present work, the chosen model satisfies such physical
requirement not only for the pion but also for all the
pseudoscalar mesons. The pseudoscalar meson decay con-
stants encode relevant physical information on the structure
of the pseudoscalar mesons, allowing together with the
Cabibbo-Kobayashi-Maskawa (CKM) matrix elements
[16,34] via the leptonic weak decay, M → lνl (l represents
the charged leptons, l ¼ e, μ, τ) to obtain the weak decay
width. In the lowest order it is given by [16,34]:

ΓðM → lνlÞ ¼
G2

F

8π
f2Mm

2
l mM

�
1 −

m2
l

m2
M

�
2

jVq1q2 j2; ð9Þ

where, GF is the Fermi coupling constant, ml is the lepton
mass, mM is the pseudoscalar meson mass, and Vq1q2 is the
corresponding CKM matrix element.
The pseudoscalar meson decay constant, fM, is defined

through the matrix element of the axial-vector current
operator [19,35],

h0jAj
μjMki ¼ {pμfMkδjk; ð10Þ

where Aj
μ ¼ q̄ð0Þγμγ5 λj

2
qð0Þ is the axial-vector current. The

indices j and k identify the isospin (flavor) components of
the current operator and pseudoscalar meson.
According to the diagram shown in Fig. 1, we obtain the

following expression for the decay constant, with the vertex
function from Eq. (7):

{pμfM ¼ Nc

Z
d4k
ð2πÞ4

1

2
Tr ½γμγ5λ†MΨðk; pÞ�; ð11Þ

where the pseudoscalar meson is simply labeled by M and
the trace is taken over the spinor and flavor spaces. Nc ¼ 3
is the number of quark colors.
The decay constant fM in (11) is evaluated in the rest

frame of the pseudoscalar meson, pμ ¼ ðmM; 0⃗Þ, consider-
ing the plus component of the axial-vector current corre-
sponding to γþγ5 ¼ ðγ0 þ γ3Þγ5, and the loop integration is
performed with LFmomentum. After integration over the LF
energy k−, we obtain:

fM ¼ Nc

4π3

Z
d2k⊥

Z
1

0

dxψMðx; k⃗⊥;mM; 0⃗⊥Þ; ð12Þ

where ψM is the momentum part of the antialigned quark
spin component of the pseudoscalar meson valence wave
function, given by:

ψMðx; k⃗⊥;pþ; p⃗⊥Þ ¼
pþ

mM

gCM

m2
M −M2ðmq;mq̄Þ

×

�
1

ð1 − xÞðm2
M −M2ðmq; μMÞÞ

þ 1

xðm2
M −M2ðμM;mq̄Þ

�

þ ½mq ↔ mq̄�; ð13Þ

where, x ¼ kþ
pþ, 0 < x < 1, and

M2ðm1; m2Þ ¼
jk⃗⊥j2 þm2

1

x
þ jp⃗⊥ − k⃗⊥j2 þm2

2

1 − x
− jp⃗⊥j2:

ð14Þ
Note that, the valence wave function is obtained from the

Bethe-Salpeter amplitude (5), by integration over the light-
front energy, k−, after the instantaneous terms of the quark
propagators are dropped out (see Ref. [23] for more details).
The plus component of the axial-vector current in (11) due to
the property ðγþÞ2 ¼ 0 kills the instantaneous terms of the
quark propagator and the choice of γþγ5 to obtain the decay
constant selects the valence wave function with antialigned
quark spins (see Refs. [24,26]).

III. ELECTROMAGNETIC CURRENT

The quark electromagnetic current operator for the
photo-absorption process in a pointlike constituent quark
is defined by,

jμ ¼ 2

3
ūγμuþ 2

3
c̄γμc −

1

3
d̄γμd −

1

3
s̄γμs ð15Þ

where u, d, s, and c are the quark fields. In the flavor space
FIG. 1. Diagrammatic representation of the pseudoscalar meson
weak decay amplitude.
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diag½Q̂� ¼ ½eu; ed; es; ec� ¼ ½2=3;−1=3;−1=3; 2=3�;

is the charge operator defined by a diagonal matrix.

The matrix element of the electromagnetic current for
each meson is obtained from the Mandelstam formula
represented by the Feynman diagrams depicted in Fig. 2
(cf. Hutauruk et al. [36]):

hp0;Mjjμ1jp;Mi ¼ −iNc

Z
d4k
ð2πÞ4 gΛMðk; p0ÞgΛMðk; pÞTr ½γ5λMSqðk − pÞQ̂γμSqðk − p0Þγ5λ†MSqðkÞ�;

hp0;Mjjμ2jp;Mi ¼ −iNc

Z
d4k
ð2πÞ4 gΛMðk; p0ÞgΛMðk; pÞTr ½γ5λ†MSqðkþ p0ÞQ̂γμSqðkþ pÞγ5λMSqðkÞ�; ð16Þ

where the trace is performed over the Dirac and flavor
indices, and the total microscopic current is

hp0;Mjjμjp;Mi¼hp0;Mjjμ1jp;Miþhp0;Mjjμ2jp;Mi: ð17Þ

Note the above expression contains the two diagrams
shown in Fig. 2, and they are written in flavor space and
represent the photon being absorbed by each quark of
the meson.
The spacelike elastic electromagnetic form factor is

extracted by equating the covariant expression (16) to
the macroscopic formula of the current:

hp0;Mjjμjp;Mi ¼ ðp0μ þ pμÞFMðq2Þ; ð18Þ

where q ¼ p0 − p is the momentum transfer and FMðq2Þ is
the elastic electromagnetic form factor.
We point out that the normalization constant CM appear-

ing in the vertex function (7) is determined by FMð0Þ ¼ 1,
i.e., the form factor normalization. In addition, the mass
scale, μM, is fitted to reproduce the experimental weak
decay constant. The constituent quark mass values (mq) are
chosen according to previous studies [20,22,37] with
similar covariant models.

A. Flavor decomposition

We can separate the individual contribution from each
quark in Eq. (16) by writing the two traces as the sum of
two terms: one associated with the photon being absorbed
by the quark with charge þ2=3; and other one corresponds
to the antiquark with charge þ1=3. Therefore, we have that
for the sum of the two traces:

Tr½� ¼ 2

�
2

3
Δμ

ab̄a
þ 1

3
Δμ

b̄ab̄

�
; ð19Þ

which can be rewritten simply as:

Δμ
aba ¼ Tr ½γ5Saqðk − pÞγμSaqðk − p0ÞSbqðkÞγ5�; ð20Þ

the same as (16) jμ1, where the diagonal matrix element of
the quark propagator is Saq for flavor a. The photon probes
in each case the quark or antiquark labeled a in the first
term and b̄ in the second term of Eq. (19), corresponding
to the quarks (u or c) and to the antiquarks (d̄ or s̄),
respectively.
Therefore, the matrix element of the current can be

decomposed in the quark flavor content according to:

hp0;Mjjμjp;Mi ¼ −2iNc

Z
d4k
ð2πÞ4 gΛMðk; p0ÞgΛMðk; pÞ

×

�
2

3
Δμ

ab̄a
þ 1

3
Δμ

b̄ab̄

�
; ð21Þ

where the photon interacts with the quark a in the first term
and with the antiquark b̄ in the second one. From that we
can write the flavor decomposition of the form factors

Fπþðq2Þ ¼
2

3
Fud̄uðq2Þ þ

1

3
Fd̄ud̄ðq2Þ;

FKþðq2Þ ¼ 2

3
Fus̄uðq2Þ þ

1

3
Fs̄us̄ðq2Þ;

FDþðq2Þ ¼ 2

3
Fcd̄cðq2Þ þ

1

3
Fd̄cd̄ðq2Þ;

FDþ
s
ðq2Þ ¼ 2

3
Fcs̄cðq2Þ þ

1

3
Fs̄cs̄ðq2Þ: ð22Þ

FIG. 2. Feynman diagrams representing the electromagnetic
interactions with pseudoscalar mesons for calculating the elastic
electromagnetic form factors in the present work, where
expressions for each meson are given in Eq. (22).
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In the SU(2) isospin symmetry limit with the u and d quark
masses being equal, Eq. (21) implies that Fπþðq2Þ ¼
Fud̄uðq2Þ ¼ Fd̄ud̄ðq2Þ. For Kþ, Dþ and Dþ

s , respectively
the SU(2), S(3) and SU(4) symmetries are broken. By the
charge conservation, it is required that

Fus̄uð0Þ ¼ Fs̄us̄ð0Þ ¼ 1;

Fcd̄cð0Þ ¼ Fd̄cd̄ð0Þ ¼ 1;

Fcs̄cð0Þ ¼ Fs̄cs̄ð0Þ ¼ 1: ð23Þ

The partial quark contributions to each meson form factor
becomes different when increasing the momentum transfer,
despite the same normalization, as will be shown by our
calculations.

B. LF technique

The calculation of the elastic photo-absorption
transition amplitude, Eq. (21), is performed in the
Breit frame, with the choice of initial and final meson

four-momentum pμ ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

M þ 1
4
q2x

q
;− 1

2
qx; 0; 0Þ and

p0μ ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

M þ 1
4
q2x

q
; 1
2
qx; 0; 0Þ, respectively. Furthermore,

the meson light-front momentum components are
chosen as pþ ¼ p0þ ¼ p− ¼ p0−, p0⊥ ¼ ðqx=2; 0Þ and
p⊥ ¼ ð−qx=2; 0Þ, which corresponds to qþ ¼ 0 fulfilling
the Drell-Yan condition [38]. The form factor is obtained
from the plus component of the EM current Jþ ¼ J0 þ J3,
implying in the usage of the quark current associated with
γþ ¼ γ0 þ γ3 in Eq. (21), when the relevant Dirac trace is
performed, to give:

FMðq2Þ ¼
1

2pþ hp0jjþMjpi: ð24Þ

We should stress that the choice γþ eliminates the instanta-
neous terms of the fermion propagators attached to the quark
EM current. The loop integration is carried out analytically

over k−, the light-front energy, and, after the integrations
over kþ and k⊥ are performed. Relevant to observe that the
choice of the Drell-Yan frame and plus component of the
current is enough to eliminate the end-point singularities for
this pseudoscalar model (see [20,39]). However, for frames
with qþ ≠ 0, in order to preserve the full covariance of the
model, it is necessary to take into account a nonvalence
contribution to the form factor [20,40].
As a technical remark, the Feynman parametrization

could be used alternatively to evaluate the one-loop
integrals, keeping the explicit covariance of the model at
all steps of the calculations. For our purpose, using the
light-cone variables, as we did, or Feynman parametrization
should not affect the quantitative results.

IV. STATIC ELECTROWEAK OBSERVABLES

The Bethe-Salpeter amplitude model for the π, K,D, and
Ds has for each meson three parameters: the constituent
quark masses mq with q from fu; d; s; cg and a mass scale
μM [see Eqs. (5) and (7)]. The parameter μM constrains the
model to provide the observed weak decay constant. We
work here with six sets of parameters, namely (A,B,C,D,E,
F), which respectively correspond to the pseudoscalar
mesons (πþ; πþ; Kþ; Kþ; Dþ; Dþ

s ), as well as to the differ-
ent choices of quark masses as given in Table I. The choices
of constituent quark masses are: for the light quark mass
values of 384 MeVas estimated in [37] (386 MeV was used
in [37]) and 220 MeV [20]; the strange constituent mass
values of 508 MeV [37] and 440 MeV [22]; and, the charm
constituent mass value of 1623 MeV from [37], (see also,
the reference [37] for discussions). Note that, the constitu-
ent quark mass values for all the models (A), (C), (E),
and (F) are from Ref. [37] in the calculation. However, we
are assuming that the energy scale associated with each
meson should be the same, which may not be valid. We will
return to this point later.
The static observables considered, i.e., the charge radius

and decay constant, are shown in Table I, where the

TABLE I. Pseudoscalar meson static electroweak observables. The notation for the entries, (A,B,C,D,E,F) respectively correspond to
the different model parameters and pseudoscalar mesons for (πþ; πþ; Kþ; Kþ; Dþ; Dþ

s ). In particular, the results with models B and D
are from Ref. [22]. Note that, all the relevant constituent quark mass values for the models A, C, E, and F, are from Ref. [37]. The
experimental data come from Refs. [16,34]. The masses mq;mq̄, μM, binding energy ðϵMÞ and decay constant ðfMÞ are given in [MeV].
The charge radius ðrMÞ is given in [fm].

Model/meson Flavors IðJPÞ mq mq̄ mM ϵM μM rM fM rExptM fExptM

(A) πþ ud̄ 1ð0−Þ 384 384 140 628 225 0.665 92.55 0.672(8) 92.28(7) [16]
(B) 220 220 300 600 0.736 92.12

(C) Kþ us̄ 1
2
ð0−Þ 384 508 494 398 420 0.551 110.8 0.560(3) 110(1) [16]

(D) 220 440 166 600 0.754 110.8

(E) Dþ cd̄ 1
2
ð0−Þ 1623 384 1869 138 1607 0.505 144.5 144(3) [16]

(F) Dþ
s cs̄ 0ð0−Þ 1623 508 1968 163 1685 0.377 182.7 182(3) [16]

179(5) [34]
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available experimental data for these two quantities come
from Ref. [16], and from [34] for the Dþ

s weak decay
constant. In addition, the model binding energy shown in
the table is given by:

ϵM ¼ mq þmq̄ −mM > 0: ð25Þ

The pion and kaon appear as strongly bound systems with
binding energies ranging from about 600 to 400 MeV,
respectively, for the best agreement with the charge radius by
fitting the decay constants. Both mesons are the Goldstone
bosons of the dynamically broken chiral symmetry, and their
masses in the chiral limit vanishes according to the Gell-
Mann-Oakes-Renner relation, indicating that these states
should form strongly bound quark-antiquark systems with
constituent quark degrees of freedom.
The Cutkosky rules [19] applied to the triangle diagram

(see Fig. 2) taking into account our model for the vertex
function, give that the relevant cuts as function of mM that
have branch points in the regions:

μM þmq −mM > 0 and μM þmq̄ −mM > 0: ð26Þ

These branch points are also clear in the analytic form of
Eq. (13) for the wave function. The minimum value of the
position of the branch point is actually the dominant scale
that determines the charge radius. From the perspective of
the closest value to the continuum, namely corresponding
to the minimum value among ϵM and the branch points in
Eq. (26), we can analyze the results for the parametrizations
after fitting the decay constants as given in Table I.
For the pion, one finds for sets (A) and (B), 469 and

680M MeV, respectively, for the closest branch point to the
continuum. That shows a strongly bound system of con-
stituent quarks, and not surprisingly closer values for the two
sets than the binding energies. For the kaon, the sets (C) and
(D) present the branching points at 310 and 326 MeV,

respectively, that are somewhat closer than considering the
comparison only of the binding energies.
For theDþ, set (E), one realizes that in agreement with the

constraint coming from Eq. (26), the value of μM ∼mc, and
the minimum branch point is actually at 122 MeV, that is
associated with the charge radius of 0.505 fm, while for the
Dþ

s we find 225 MeV, and a radius of 0.377 fm. The larger
value of theDþ

s branch point and the concomitant decreasing
of the radius with respect to Dþ come from the larger value
of fDþ

s
and ms in comparison to fDþ and md. Therefore, the

quarks in Dþ
s are in a more compact configuration than

the corresponding ones in Dþ, and it is expect in general
that rDþ

s
< rDþ .

Analogous qualitative explanation of the fact that
rKþ < rπþ should be valid. As we will discuss later on,
LQCD results obtained using consistent data sets shows
that rDþ

s
< rDþ [17,18], supporting our expectation.

The minimum value of the position of the branch point
is actually the dominant scale that determines the charge
radius. From the perspective of the closest value to the
continuum, namely corresponding to the minimum value
among ϵM and the branch points in Eq. (26).

A. Pion and kaon

In Table II we present our results for the pion (A) and
kaon (C) charge radii for the sake of comparison with other
calculations [32,36,41–46]. Our collection of results from
the literature is by no means complete, and our intention is
just to place our model with respect to a sample that covers
continuum approaches to QCD with Euclidean Schwinger-
Dyson and Bethe-Salpeter, phenomenological ones with
and without confinement. In the table, we also show the
experimental results from [16,34].
The results obtained with the Euclidean Schwinger-

Dyson and Bethe-Salpeter equations with phenomenologi-
cal kernels that satisfy the axial-vector Ward-identities,
having dynamical chiral symmetry breaking in the

TABLE II. Decay constants and electromagnetic radii of πþ (model A) and Kþ (model C) in the present model,
compared with the other works in the literature, as well as the experimental data in particle data group (PDG) [16].
The decay constants are in [MeV], and the charge radius are in [fm].

Reference fþπ fþK rπþ rKþ fKþ=fπþ

This work 92.55 110.8 0.665 0.551 1.196
Maris & Tandy [32] 92.62 109.60 0.671 0.615 1.182
Faessler et al. [41] 92.62 113.83 0.65 1.23
Ebert et al. [47,48] 109.60 165.45 0.66 0.57 1.24
Bashir et al. [42] 101
Chen & Chang [43] 93 111 1.192
Hutauruk et al. [36] 93 97 0.629 0.586 1.043
Ivanov et al. [44] 92.14 111.0 1.20
Silva et al. [45] 101 129 0.672 0.710 1.276
Jia & Vary [46] 142.8 166.7 0.68(5) 0.54(3) 1.166

PDG [16] 92.28(7) 110(1) 0.672(8) 0.560(3) 1.192(14)
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SU(3) sector were taken from Refs. [32,42]. A modern
approach along this direction [43] has the quark-antiquark
interaction composed by a flavor dependent IR part and a
flavor independent UV part. We also compare with results
from a relativistic constituent quark model, which imple-
ments a linear realization of chiral symmetry [41].
The solution of the Bethe-Salpeter equation for the

Nambu and Jona-Lasinio (NJL) model with proper-time
regularization is given in [36]. The results for the covariant
confining quark model treated in Euclidean space were
reviewed in Ref. [44].
Calculations performed in LF approaches [45,46] were

also presented in Table II. In Ref. [45] a refined light-
front phenomenological model for the pion and kaon
elastic form factors, relying on the use of Pauli-Villars
regulators in a non-symmetrical form, presents result
close to our findings. In Ref. [46], a model with color
singlet NJL and confining interactions was studied within
basis of light-front quantization.
The pion and kaon are strongly bound systems of con-

stituent quarks in the models presented, and in general they
are able to provide reasonable reproduction of their decay
constants and charge radii. This is the main feature learned
fromTable II, andonce the decay constant is reproduced in the
strongly bound system the charge radius follows [49,50].

B. D+ and D +
s mesons

The comparison of our results and a selection of models
from the literature [41,42,44,51–54] is presented in

Table III, together with the outcomes of LQCD calculations
]17,18,55–58 ]. In the table we present the charge radii and

weak decay constants forDþ andDþ
s mesons, as well as the

experimental data from Refs. [16,34], and in particular the
ratio fDþ

s
=fDþ ¼ 1.226ð31Þð2Þð3Þ [16].

The results within Euclidean Schwinger-Dyson and
Bethe-Salpeter equation framework with phenomenological
quark-antiquark interaction kernel that entails infrared con-
finement and ultraviolet one-gluon exchange from QCD
applied to the heavy-light mesons were taken from Ref. [42].
The calculations within light-cone phenomenological mod-
els with confinement come from Refs. [51,52,54]. A con-
fining potential model in instant form applied to describe the
heavy-light mesons were used in [53]. The results from
LQCD for decay constants were taken from Refs. [55,56],
the Dþ charge radius comes from [17] and for Dþ and Dþ

s
from [18]. In general, the decay constants are quite close to
the experimental values, while for the charge radii there is a
spread in the theory results.
Our results for the charge radii, rDþ ¼ 0.505 fm and

rDþ
s
¼ 0.377 fm, are somewhat larger than the ones com-

puted within LQCD [17,18] and the models with confine-
ment [52,53]. The present model does not have explicit
confinement, as the meson is formed as a bound state with
about 100MeV binding energy, and even considering that the
decay constants were fitted the charge radii, it is not strongly
constrained. Differently from the pion and kaon, the decay
constant does not seem to determine definitively the charge
radius. We can trace back this behavior to the dominant factor

TABLE III. Dþ and Dþ
s weak decay constants in [MeV], and the electromagnetic radius in [fm] for various

models. Experimental data from [16,34].

Reference fDþ fDþ
s

rDþ rDþ
s

fDþ
s
=fDþ

This work 144.50 182.70 0.505 0.377 1.26
Faessler et al. [41] 149.20 156.98 1.05
Bashir et al. [42] 155.4 205.1 1.32
Ivanov et al. [44] 145.7 182.2 1.25
Choi [51] 149.2 179.6 1.20
Hwang [52] 145.7(6.3) 189(13) 0.406−0.012þ0.014 0.300−0.018þ0.023 1.30(4)
Das et al. [53] 0.510 0.465
Dhiman & Dahiya [54] 147.8 167.6 1.13
Tang et al. [59] 295(63) 313(67) 1.06(32)

LQCD
Aubin et al. [55] 142(2)(12) 176(2)(11) 1.24(1)(7)
Follana et al. [56] 147(3) 170(2) 1.16(3)
Chen et al. [57] 143.1(1.6)(1.8) 182.9(0.8)(2.0) 1.28(3)
Carrasco et al. [58] 146.6(2.6)(0.6) 174.8(2.8)(1.0) 1.19(3)(1)
Can et al. [17] 0.371(17)

0.390(33)
Li & Wu [18] 0.402(61) 0.286(19)

0.420(82) 0.354(18)

PDG [16] 144(3) 182(3) 1.26(5)
Ablikin et al. [34] 178.8(2.6)
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mc=x carried by the valence wave function, Eq. (13), to the
expression for the decay constant, Eq. (12), as the charm
constituent mass is substantially larger than the light quark
ones, in other words the heavy quark is close to the center of
mass of the system, which corresponds to the region that the
wave function is probed in the weak decay amplitude.
Therefore, naively it is quite reasonable that the light quark
in the BS amplitude is loosely constrained by fitting the decay
constant, however its contribution to the charge radius is far
more important than the charm one as one can check, e.g., in
the LQCD calculations [17,18].
The light quark within the heavy meson can explore larger

distances where the QCD infrared physics is relevant and
from where the meson gains weight, i.e., the mass is formed,
and thus, one should expect a correlation of the charge radius
and the actual value of mass of the charmed mesons found
within LQCD. In Table IV, we compare the charge radius of
Dþ and Dþ

s with the LQCD results from Refs. [18]. For the
Ds meson the LQCD radius increases with the mass and
indicates that our result would be compatible, within their
uncertainties. For the D, although there is a slight increase of
the radius with the mass, these LQCD results have large
errors to make a firm conclusion from the comparison. In the
table we also show our calculation for the charge radius
changing the mass of theDþ mesons according to the LQCD
values. We observe that the tendency of increasing radius by
increasing the Dþ and Dþ

s meson masses as found in the
LQCD calculation seems to somewhat reproduced by our
model. This feature comes in our model due to the decreasing
of the binding energy, which leads to the increase of the
meson size. This suggests that the quantum mechanical
binding mechanism is somewhat acting in these heavy-light
mesons, even though the complexity of the quark confine-
ment mechanism.

The flavor decomposition of the charge radii of the
Dþ andDþ

s mesons is presented in Table V, where we also
compare our model with LQCD results from the linear fit
and quadratic fit extrapolating to the physical pion mass
given in Ref. [17], and from the ensembles (B1) and (C1)
used in Refs. [18]. The flavor contribution to the Dþ and
Dþ

s charge radius squared are defined as:

r2Dþ;c ¼ 6
∂
∂q2 Fcd̄cðq2Þjq2¼0;

r2
Dþ;d̄ ¼ 6

∂
∂q2 Fd̄cd̄ðq2Þjq2¼0;

r2Dþ
s ;c

¼ 6
∂
∂q2 Fcs̄cðq2Þjq2¼0;

r2Dþ
s ;s̄

¼ 6
∂
∂q2 Fs̄cs̄ðq2Þjq2¼0; ð27Þ

and the relations to the meson charge radius are

r2Dþ ¼ 2

3
r2Dþ;c þ

1

3
r2
Dþ;d̄;

r2Dþ
s
¼ 2

3
r2Dþ

s ;c
þ 1

3
r2Dþ

s ;s̄
: ð28Þ

The full charge radii given in Table V are largely
dominated by the light quark contribution, and we observe
this property is also shared by the LQCD calculations. The
heavy quark predominantly is placed close to the center of
mass of the heavy-light meson, while the light one is in the
region of about 0.6–1 fm distance from the meson center.
Amazingly, even being at the confinement region the
charge radius contribution from the light quark is quite
consistent with the more recent LQCD results from

TABLE IV. Pseudoscalar meson static observables with the
masses for D and Ds mesons from LQCD ensembles (B1), (C1)
used in Refs. [18] to compute the EM form factors; and the present
model (E,F) parameters: mc ¼ 1623 MeV, mu ¼ 384 MeV,
ms ¼ 508 MeV, μDþ ¼ 1607 MeV, and μDþ

s
¼ 1685 MeV. The

mass and decay constant are given in MeV, while the charge radius
is given in fm.

Inputs (B1) (C1) (E,F)

mþ
D 1737 1824 1869

mDþ
s

1801 1880 1968

Static observ. (B1) (C1) (E,F)

rDþ [18] 0.402(61) 0.420(82)
rDþ 0.347 0.422 0.505
fDþ 205.5 170.3 144.5

rDþ
s
[18] 0.286(19) 0.354(18)

rDþ
s

0.281 0.312 0.377
fDþ

s
243.3 219.4 182.7

TABLE V. Flavor decomposition of the charge radii of the
Dþ and Dþ

s mesons. Comparison with LQCD results from the
linear fit (L) and quadratic fit (Q) extrapolating to the physical
pion mass from Ref. [17], and from the ensembles (B1) and (C1)
used in Refs. [18].

Radius (fm) LQCD [17] LQCD [18] This work

rDþ 0.371(17) (L) 0.402(61) (B1) 0.505
0.390(33) (Q) 0.420(82) (C1)

rDþ;c 0.226(24) (L) 0.17(15) (B1) 0.233
0.272(29) (Q) 0.20(19) (C1)

rDþ;d̄ 0.585(57) (L) 0.692(61) (B1) 0.810
0.566(104) (Q) 0.718(82) (C1)

rDþ
s

0.286(19) (B1) 0.377
0.354(18) (C1)

rDþ
s ;c 0.119(50) (B1) 0.218

0.222(33) (C1)

rDþ
s ;s̄ 0.461(12) (B1) 0.576

0.545(15) (C1)
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Refs. [18], although we observe the tendency to over-
estimate these lattice calculations.

V. EM FORM FACTORS

A. Pion and kaon

The extraction of the pion charge form factor from the
experimental cross section for the exclusive pion electro-
production on the proton relies on the dominance of the
Sullivan process, due to the pion pole close to the allowed
kinematic region for small t’s [1]. In principle, it is possible
to perform exclusive electroproduction of Kþ in experi-
ments on the proton, to extract the form factor at higher
momentum transfers [1,60]. However, in the case of Kþ,
there is no recent experimental data for the EM form factor.
The experimental data obtained at CERN in 1986, come
from the most precise measurement for the Kþ meson [15]
that exist up to the present, and what will be used in the
study of our model.
We start the discussion of the light pseudoscalar

EM form factors based on the vector meson dominance
(VMD) model, formulated by Sakurai and others
[61–63]. The charge form factors of πþ and Kþ within
the VMD description are parametrized by the vector
mesons masses mρ and mϕ, as:

Fπþðq2Þ ¼ ðeu þ ed̄Þ
m2

ρ

m2
ρ − q2

; ð29Þ

FKþðq2Þ ¼ eu
m2

ρ

m2
ρ − q2

þ es̄
m2

ϕ

m2
ϕ − q2

; ð30Þ

where in the spacelike region Q2 ≡ −q2 > 0. We assume
within the SU(3) flavor symmetry that the coupling constants
of the ρ and ϕ are flavor independent, i.e., gρ;u ¼ gρ;d ¼ gϕ;s,
which implies in the expressions written in Eqs. (29) and
(30). From that the ratio between the two contributions to the
form factor at Q2 ¼ 0 are the same as the quark charge ratio,
as in our formulation of the form factor for Kþ due to the
charge conservation expressed by Eq. (23). As a matter of
fact, this is also verified in our model when the charm and
light quark contributions are separated in the Dþ and Dþ

s
form factors.
Furthermore, at the level of the VMD, we found that

the ratio between the quark contributions to FKþðq2Þ for
Q2 ≫ m2

ϕ is given by:

es̄Fs̄us̄

euFus̄u

m2
ϕ

m2
ρ

����
ðq2≫m2

ϕÞ
→

1

2

m2
ϕ

m2
ρ
¼ 0.86; ð31Þ

where the experimental meson masses are used [16]. For
comparison, the present model gives ≃0.56 (at 10 GeV2)
with parameters from set (C) (see Tables I and VI).

In Fig. 3, we present the results for the pion EM form
factor obtained with the parameter sets (A), (B) (see
Table I) and the VMD model in Eq. (29). In both panels
the experimental data from [9–13] are also shown. In the
upper panel of the figure, the individual quark contributions
are shown up to 10 GeV2 for set (A), and the contributions
from the u and d̄ quarks are in the ratio 2∶1, as it should be
from the model with SU(2) flavor symmetry.
The comparison between the results for sets (A), (B) and

the VMD model is presented in the lower panel of Fig. 3.
Note that the set (A) reproduces well the experimental
values of πþ charge radius and decay constant, while set (B)
performs better at large momentum transfers, but the charge
radius is overvalued (see Table I). However, both sets have

TABLE VI. Partial ratios for the electromagnetic form factors
of pion (A) and kaon (C) at 10 GeV2, compared with the NJL
model from Ref. [36].

Model Fus̄u
Fud̄u

Fs̄us̄
Fd̄ud̄

es̄Fs̄us̄
euFus̄u

This work 0.80 1.10 0.69
NJL [36] 0.36 2.74 0.56
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FIG. 3. Pion electromagnetic form factor as a function of
q2 < 0. Upper panel: flavor decomposition of Fπðq2Þ for the
parameter set (A) (see Table I). Pion form factor (solid line), u
contribution—euFud̄u (dashed line) and d̄ contribution—ed̄Fd̄ud̄
(short-dashed line). Lower panel: comparison between the
parameter sets (A) (solid line) and (B) (dashed line) with the
VMD model (dotted line) from Eq. (29). Experimental data
are from Refs. [9–13].
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form factors with the same analytical behavior at large
momentum transfer region, and only their normalizations
differ by a couple of tenths of percent. This suggests a
limitation in the chosen form of the vertex function to
describe the pion charge distribution. Indeed, models with
running quark masses and incorporating the asymptotic QCD
counting rules are known to perform better with respect to the
experimental data (see, e.g., [32,42,64]).
In order to overcome the limitation of the model, we

allowed a �20% parameter variation in sets (A) and (B),
keeping the pion mass fixed in Fig. 4. This changes both the
decay constant and charge radius, while it allows that
results with the variation of set (A) becomes much closer to
the experimental data, set (B) produces a band englobing
almost all the experimental data. In the chiral limit, where
the pion becomes massless the changes in the constituent
quark masses and mass scale parameter by a factor λ will
give for the new form factor, f0πðq2Þ, the scaling relation:

f0πðq2Þ ¼ fπðλ2q2Þ; ð32Þ

and it represents reasonably well the band that one sees in
the figure.
A last comment on the pion form factor is in order. The

pion and heavy meson energy scales can be different, as we

have pointed out earlier. The pion is a strongly bound
system of the constituent quarks, and therefore should be
associated with a somewhat larger energy scale with respect
to the heavy meson ones. This explains why the pion form
factor at large momentum transfers is better reproduced
with model B having lighter u and d quarks, in contrast with
model A, where the quark mass is appropriate for the heavy
mesons.
We present the results for the Kþ form factor in Figs. 5

and 6 obtained with the two sets of parameters (C) and
(D) (see Table I). We also compare the results with the
VMD model and the experimental data from [14,15]. We
remind that the set (C) presents a charge radius and weak
decay constant in agreement with the experimental values.
The parameter set (D) reproduces the decay constant but
has about 20% difference with the experimental value of the
kaon charge radius. In the upper panel of Fig. 5, we show
the results obtained with the set C, for the full and the u and
s̄ quark contributions for the kaon form factor. In the figure,
it is possible to see, that the SU(3) flavor symmetry is
slightly broken, as the ratio es̄Fs̄us̄=ðeuFus̄uÞ > 1=2 for
Q2 ≠ 0. The same feature is also found in the NJL
model [36].
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FIG. 4. Pion electromagnetic form factor calculated with
variation of the model parameters. Upper panel: band for set
(A) with �20% variation of the model parameters. Lower panel:
band for set (B) with �20% variation of the model parameters. In
both panels: set (A) (solid line), set(B) (dashed line) and VMD
(dotted line). Experimental data are from Refs. [9–13].
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FIG. 5. Kaon electromagnetic form factor as a function q2 < 0.
Upper panel: kaon form factor (full line), u contribution—euFus̄u
(dashed line) and s̄ contribution—es̄Fs̄us̄ (short-dashed line),
computed with the parameter set (C) (see Table I). Lower panel:
jFKþ j2, comparison between the results from parameter sets
(C) (full line), (D) (dashed line) and the VMD model from
Eq. (30) (dotted line). Experimental data from [14,15].

EXPLORING THE FLAVOR CONTENT OF LIGHT … PHYS. REV. D 104, 096020 (2021)

096020-11



In the lower panel of Fig. 5 we compare the results for
the kaon form factor in the low momentum transfer region
up to 0.5 GeV2 obtained with set (C), (D) and the VMD
model together with the experimental data [14,15].
One can see that this data cannot unambiguously resolve

between sets (C) and (D), with both somewhat consistent
with the experimental results. From Table I, we have that
set (C) reproduces the experimental kaon charge radius and
it is also consistent with the VMD form factor, therefore
taking that into account we could say that it presents an
overall better consistency with the data.
In the upper panel of Fig. 6, we examine the effects of a

�20% variation in the model parameters on the kaon EM
form factor using set (C). The band now encapsulates the
experimental data for the form factor. Although, the validity
of an analogous scaling property as verified for the pion in
Eq. (32) is questionable, as the constituent quark masses,
mass scale parameter and binding energy are large enough,
a similar band is found as in the pion case. However, the
20% change in the parameters of set (D) keeping the kaon
mass fixed as presented in the lower panel of the figure,
shows a quite large band. This is due to the fact that
decreasing the masses in set (D) by 20% makes the binding
energy drops from 166 MeV (Table I) to only 34 MeV,
producing a large increase in the radius, and consequently
the wide band observed in the figure.

The breaking of the SU(3) flavor symmetry is analyzed
using the sets (A) and (C) in Fig. 7, where we show several
ratios of form factors to evidence such effect in the spacelike
region. The ratio of the kaon and pion form factors goes
above unity at low momentum reflecting the more compact
charge distribution of the kaon with respect to the pion one,
while at large momentum transfers we observe that the ratio
stays below the unity. This can be traced back to the fact
that set (A) produces a pion form factor above the exper-
imental data at large momentum transfers, as well as above
the VMD results (see Fig. 4), while the kaon form factor
for set (C) agrees with the VMD one (see the lower panel of
Fig. 5). The VMD model from Eqs. (29) and(30) gives the
ratio at large momentum transfers:

FKþðq2Þ
Fπþðq2Þ

→ eu þ es̄
m2

ϕ

m2
ρ
¼ 1.24; ð33Þ

while QCD for Q2 ≫ Λ2
QCD predicts that [65]:

FKþðq2Þ
Fπþðq2Þ

→
f2K
f2π

¼ 1.42� 0.03; ð34Þ

where we have used the experimental value for the decay
constant ratio [16]. If we had chosen set (B) for the pion with
set (C) for the kaon to compute FKþðq2Þ=Fπþðq2Þ, we would
have had a value somewhat larger than unity, toward the
QCD results, however the model does not have the pertur-
bative QCD dynamics built in, and we do not expect to
reproduce Eq. (34) in the asymptotic momentum region.
Indeed, emphasizing that our model is to be applicable at
low momentum transfers, we computed for Q2 ¼ 200 GeV2

the product Q2FπðQ2Þ, which is already saturated around a
value of 1.96 GeV2 for set A and 1 GeV2 for set B from
Table I, while the asymptotic QCD formula Q2FπðQ2Þ →
16παsðQ2Þf2π [65] for Q2 ¼ 200 GeV2 gives ∼0.1 GeV2

with αsðQ2Þ from [16].
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FIG. 6. Kaon electromagnetic form factor square with variation
of the model parameters. Upper panel: band for set (C) with
�20% variation of the model parameters. Lower panel: band for
set (D) with �20% variation of the model parameters. In both
panels: set (C) (solid line), set(D) (dashed line) and VMD (dotted
line). Experimental data from Refs. [14,15].
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FIG. 7. The electromagnetic form factor ratios for the pion
and kaon using sets (A) and (C), respectively. Ratios of flavor
contributions to the pion and kaon form factors: FKþ=Fπþ (solid
line); euFus̄u=ðed̄Fd̄ud̄Þ (dot-dashed line), Fus̄u=Fud̄u (dashed line);
Fs̄us̄=Fd̄ud̄ (dotted line); es̄Fs̄us̄=ðeuFus̄uÞ (dot-dot-dashed line). A
thin solid line is the reference for the SU(3) flavor symmetry.
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In addition, in Fig. 7 the ratios of flavor contributions for
the pion and kaon form factors are shown. The ratio of the u
quark contribution to the kaon and pion form factors,
denoted by Fus̄u=Fud̄u follows a similar trend as the ratio of
the full form factor, as well as euFus̄u=ðed̄Fd̄ud̄Þ apart the
factor 2 from the charge ratio, as for the pion Fud̄u ¼ Fd̄ud̄.
At small momentum transfers, we observe that the con-
figuration where photon is absorbed by the u quark in the
pion is somewhat larger than in the kaon. The ratio of s̄
contribution in the kaon to the d̄ one in the pion given by
Fs̄us̄=Fd̄ud̄ presents a dependence onQ

2, similar as we have
discussed, i.e., it reflects the more compact configuration of
the kaon with respect to the pion. We should say, that
despite the large momentum behavior of the pion form
factor for set (A) overestimate the experimental data, its
prediction in lower momentum transfer region should be
reasonable. As shown in the figure, the ratio between the s̄
and u contributions to the kaon form factor, namely
es̄Fs̄us̄=ðeuFus̄uÞ, clearly is above the flavor symmetric
value of 1=2 for larger momentum transfers as 10 GeV2.
Such an effect is quite visible in Fig. 5, when looking to the
individual flavor contribution to the kaon charge form
factor.
In Table VI, the ratios of flavor form factors of the pion

and kaon for the sets (A) and (C), respectively, and
presented in Fig. 7 are compared with the results from
the NJL model obtained in Ref. [36] at the particular value
of Q2 ¼ 10 GeV2. The results in the table illustrate once
more the SU(3) flavor symmetry breaking through the
flavor form factor ratios. Our results show the deviation of
Fus̄u=Fud̄u and Fs̄us̄=Fd̄ud̄ from unity, which are consi-
derably smaller than in the NJL model reflecting that
set (A) overestimates the pion form factor at large momen-
tum. The results of the NJL model from Ref. [36] show a
larger symmetry breaking for these ratios. The ratio
between the s̄ and u flavor contributions to the kaon form
factor (fourth column in Table VI) are consistent, even
taking into account that quark current is dressed in
Ref. [36], and in addition it shows that our Bethe-
Salpeter model has a small, namely about 10%, flavor
symmetry breaking for the up and strange quarks within the
kaon. One important difference to be pointed out is that the
NJL model as studied in Ref. [36], has infrared and
ultraviolet scales, while our model is less flexible, having
just one mass scale, which makes the present model more
robust against flavor symmetry breaking among the quark
contributions to the kaon form factor.
From the Phragmén-Lindelöf’s theorem it follows that at

large momentum transfers the asymptotic behavior of the
form factors in the spacelike and timelike regions must be
the same [66,67]. Therefore, in principle, we could com-
pare our results for space like form factors at large
momentum transfers with the experimental timelike
ones [68,69]. In Table VII, we present the ratios of
Fπþ=FKþ at some large Q2 values for our model calculated

with sets (A) and (C), compared to results from other
models [36,70,71]. In the flavor SU(3) symmetry limit, all
the ratios presented in the table should be unity, which is
clearly not the case. Furthermore, QCD predicts that for
Q2 ≫ ΛQCD the ratio between the form factors approaches
f2π=f2K ≃ 0.70 [65], which suggests by comparing this ratio
with the timelike experimental data, that Q2 ∼ 17 GeV2 is
still not in the asymptotic region. In particular our results
for the ratio using set (A) and (C), for the pion and kaon
respectively, overestimate the ratio, and if we had used
instead set (B) for the pion we would have found a value
below the unity, as the other models. We emphasize, that
the parameter set (A) for the pion was chosen to analyze the
pion, as it gives a better representation of the form factor at
low momentum transfers, and in addition larger light quark
masses of this set avoid to unbind the Dþ and Dþ

s , as we
have already shown when discussing the static observables
of these heavy-light mesons.

B. D+ and D +
s mesons

We study in what follows the Dþ and Dþ
s EM form

factors and their flavor decomposition. In particular, we
illustrate quantitatively the manifestation of the SU(4)
flavor symmetry breaking on the contributions of each
quark to the form factor. We have used the parameter sets
(E) and (F) given in Table I, which fit theDþ andDþ

s decay
constants, respectively. The masses of these heavy-light
mesons are the experimental ones and given in the table.
The comparison will be made with LQCD results of the
form factors for Dþ [17,18] for Dþ

s [18], even though the
physical masses of these mesons were not achieved in these
calculations. This has an impact on the charge radius, as it
was verified in our discussion of Table IV. However taking
into account the quoted errors of the lattice calculations
our results are quite consistent with ensemble C1 used in
Refs. [18]. Such a trend will be confirmed by comparing
the form factors and the corresponding quark contributions
with such LQCD results.

TABLE VII. Ratio of the electromagnetic form factors for pion
(A) and kaon (C), compared with calculations from [36,70,71]
and experimental timelike data [68,69].

Reference Q2 [ðGeV=cÞ2] Fπþ=FKþ

This work 10.0 1.10
13.48 1.14
14.2 1.13
17.4 1.16

Hutauruk et al. [36] 10.0 0.87
Bakulev et al. [70] 13.48 0.53
Shi et al. [71] 17.4 0.81

Pedlar et al. [68] 13.48 1.19(17)
Seth et al. [69] 14.2 1.21(3)
Seth et al. [69] 17.4 1.09(4)
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To have a phenomenological handle on the computed
form factors, we exploit the VMD applied for Dþ and Dþ

s :

FDþðq2Þ ¼ 2

3

m2
J=ψ

m2
J=ψ − q2

þ 1

3

m2
ρ

m2
ρ − q2

; ð35Þ

FDþ
s
ðq2Þ ¼ 2

3

m2
J=ψ

m2
J=ψ − q2

þ 1

3

m2
ϕ

m2
ϕ − q2

: ð36Þ

The expressions for the form factors based on the VMD
where the masses of J=Ψ, ρ and ϕ determines the closest
poles to the spacelike momentum region in the photon-
absorption amplitude. The values of the vector meson
masses come from [16]. The VMD model form factor
gives for Dþ a charge radius of rDþ ¼ 0.381 fm and for
Dþ

s it gives rDþ
s
¼ 0.302 fm. These values are somewhat

close to the present model and also to the lattice results
(see the Table III).
The results for the EM form factors of the Dþ and Dþ

s
mesons are presented in Figs. 8 and 9, respectively. In
addition the flavor decomposition and the comparison with
LQCD results from [17,18] are shown. The three panels of
Fig. 8 are dedicated to the Dþ form factor, where our
calculations with parameter set (E) given in Table I, and the
corresponding quark contributions, namely Fd̄cd̄ and Fcd̄c,
are compared with LQCD results and the VMDmodel from
Eq. (35). In the upper panel, the LQCD form factors [17]
are shown together with the VMD, and set (E) models. As
anticipated in the analysis of the charge radii in Table V we
observe consistently that our model form factors are below
the results from [17] up to 2 GeV2.
The heavy quark contribution to the Dþ form factor

shown in Fig. 8 decreases slowly as it sits at the center of
mass of the meson, while the light quark form a “halo”
charge distribution around the heavy quark, exploring the
confinement region. Despite of that the behavior of Fd̄cd̄
with Q2 is smooth making useful our model to represent
the heavy-light meson charge distribution. The LQCD
calculations from Ref. [18] were done with two ensem-
bles, namely (B1) and (C1), with the last one providing
the closest value of the Dþ meson mass to the exper-
imental value (see Table IV). These LQCD results are
compared to our model, which are shown in the figure
middle and lower panels. Up to the errors of the form
factor computed with ensemble C1, we found agreement
with our model, which does not happen with the VMD
form factor. The light quark halo charge form factor from
LQCD ensemble C1 is also reproduced, as well as the
charm contribution to the Dþ form factor.
In Fig. 9, we show results for the Dþ

s electromagnetic
form factor and the corresponding flavor decomposition for
our model obtained with the parameter set (F). The com-
parison with VMD model and LQCD calculations from
Ref. [18] with ensembles B1 (upper panel) and C1 (lower

panel) is alo shown. The form factor FDþ
s
, and flavor

contributions Fcs̄c and Fs̄cs̄ underestimate the results from
the LQCD ensembles B1, and the VMD model, are given in
the upper panel of the figure. This result is expected as the
computed radii are larger than the ones obtained with
ensemble B1 (see Table V). The Dþ

s form factor and its
flavor content obtained with our model are in agreement with
the outcomes from the lattice ensemble C1 as shown in the
lower panel of the figure, a finding consistent with the one
observed for Dþ presented in the lower panel of Fig. 8. The
consistency found for both Dþ and Dþ

s form factors
and flavor content with the LQCD results from ensemble
C1, suggests that the IR physics embedded within our
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FIG. 8. Dþ electromagnetic form factor with the corresponding
quark contributions and comparison with lattice calculations. Our
results: Dþ form factor (full line), d̄ contribution—ed̄Fd̄cd̄ (short-
dashed line) and c contribution—ecFcd̄c (dashed line). VMD
(dotted line) from Eq. (35). LQCD results for Dþ form factor
(circles), d̄ contribution (squares) and c contribution (triangles).
Upper panel: comparison with LQCD results from Ref. [17].
Middle panel: comparison with LQCD results from ensemble
(B1) [18]. Lower panel: comparison with LQCD results from
ensemble (C1) [18].
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parametrization and constituent masses reflect consistently
the QCD long-distance effects in these heavy-light mesons.
Important to observe that our choice of parametrization
(A) for the pion and (C) for the kaon, describe both their
charge radii and decay constants, quantities carrying the
QCD nonperturbative IR physics.
In the following we discuss the manifestation of the SU(4)

symmetry breaking inDþ andDþ
s form factors. For that aim

in Fig. 10, we present several ratios of the electromagnetic
form factors of the D mesons and their flavor components
with the pion ones from model (A). In the upper panel, we
present the ratio FDþ=Fπþ , which tends to a value close to 2
for large momentum transfers. This ratio flattens above
Q2 ¼ −q2 ≳ 3 GeV2 that indicates the momentum region
where the difference in the constituent quark masses and
values of the regulator scales μM are somewhat irrelevant for
the dependence on q2, while the value of the ratio ∼2 seems
to be more particular to our model. However, we should
convey that the normalizations of the form factors are
essentially determined at low momentum scales which
should be more constrained with the fitting of the decay
constant and charge radius. On the other hand, taking into

account the ratio of decay constants squared the present
value is about half of the value that it should be for FDþ

s
=Fπþ

(lower panel), while for FDþ=Fπþ ∼ 2 is consistent with
that ratio.
The ratios of the d̄ contribution to theDþ and Dþ

s to pion
form factor, namely Fd̄cd̄=Fd̄ud̄ (upper panel) and Fs̄cs̄=Fd̄ud̄
(lower panel), respectively, exemplify two aspects of the
SU(4) flavor symmetry breaking, a strong one in the
distribution of the d̄ charge in the Dþ, which is extended
with respect to the one in the pion, while the effect is
somewhat weaker in the Dþ

s , where the s̄ is heavier than d̄
and its charge distribution in Dþ

s is similar to the pion
one. This last observation is corroborated by the similar
radii rDþ

s ;s̄ and rπ (see Tables I and V). The ratios
ed̄Fd̄cd̄=ðeuFud̄uÞ (upper panel) and es̄Fs̄cs̄=ðeuFud̄uÞ (lower
panel) just reflect what we have already discussed. The
heavy quark contribution to theDþ andDþ

s form factors and
the associated evidence of SU(4) flavor symmetry breaking
is clearly seen in the ratios Fcd̄c=Fud̄u (upper panel) and
Fcs̄c=Fud̄u (lower panel), which saturate above ∼3 GeV2,
attaining a ratio about 3, in connection with the strong
localization of the heavy quark at the meson center of mass.
Such large ratio would be even increased if we had chosen a
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FIG. 9. Dþ
s electromagnetic form factors with the correspond-

ing quark contributions and comparison with lattice calculations.
Our results: Dþ

s form factor (full line), d̄ contribution (short-
dashed line) and c contribution (dashed line), VMD (dotted line)
from Eq. (35). LQCD results for Dþ

s form factor (circles), s̄
contribution (squares) and c contribution (triangles). Upper
panel: comparison with LQCD results from ensemble (B1)
[18]. Lower panel: comparison with LQCD results from ensem-
ble (C1) [18].
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FIG. 10. The electromagnetic form factor ratios for the pion (A)
and D mesons. Upper panel: FDþ=Fπþ (solid line); Fd̄cd̄=Fd̄ud̄
(dashed line); ed̄Fd̄cd̄=ðeuFud̄uÞ (dot-dashed line); Fcd̄c=Fud̄u
(dotted line); ecFcd̄c=ðed̄Fd̄ud̄Þ (dot-dot-dashed line). Lower
panel: FDþ

s
=Fπþ (solid line); Fs̄cs̄=Fd̄ud̄ (dashed line); es̄Fs̄cs̄=

ðeuFud̄uÞ (dot-dashed line); Fcs̄c=Fud̄u (dotted line); ecFcs̄c=
ðed̄Fd̄ud̄Þ (dot-dot-dashed line). The thin solid line is the reference
for the SU(4) flavor symmetry.
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pion model that fits the form factor like model (B) at large
momentum, and the flavor symmetry breaking would
be even enhanced. These characteristics are visible in the
ratios ecFcd̄c=ðed̄Fd̄ud̄Þ (upper panel) and ecFcs̄c=ðed̄Fd̄ud̄Þ
(lower panel).
In Fig. 11, we show the effect of the variation of 5% in the

parameters for both the form factors ofDþ (upper panel) and
Dþ

s (lower panel). For reference, we include in the figure the
LQCD results from [18]. The band width is larger for the case
of Dþ because it has a smaller biding energy, making the
form factor much more sensitive to changes in the quark
masses and regulator mass ðμMÞ, while for the Dþ

s one
observes a smaller band width. In both cases such parameter
change is enough to englobe the LQCD results from
ensembles B1 and C1 of Refs. [18], and for Dþ also the
calculations from Ref. [17] not shown in the figure.
Finally, to close our discussion we show in Fig. 12 the

heavy-light meson charge radii obtained with the change
of mc while keeping the other parameters of set (E) and
(F) fixed. The heavier the charm quark mass becomes, the
charge radius of the Dþ and Dþ

s tends to saturate in a
decreasing behavior and the main contribution comes from
the light quark, which in our model perceives the minimum
branch point value, namely, md̄ðs̄Þ þ μDþðDþ

s Þ −mDþðDþ
s Þ,

which is not affected by the increase of the charm mass and

its corresponding localization. Such mechanism is particu-
lar to the present model, and mimics the realization of
the heavy quark limit of QCD, where the center of the
confining force is fixed at the position of the heavy quark.
In our case, such physics is simulated by keeping the lowest
branch point fixed. However, it is necessary to distinguish
that the present model, although baring some properties
that QCD dictates to these heavy-light mesons, it does not
posses the absolute confinement of the quarks.

VI. SUMMARY

In the present work, the electroweak properties of light
and charmed D and Ds pseudoscalar mesons are inves-
tigated within a unified covariant constituent quark model,
where the quark-antiquark-meson vertices are assumed
to have a symmetric form by the exchange of quark
momenta, which were successful in describing the light
pseudoscalar meson properties [20,22]. The model has
constituent quark masses up, down, strange and charm,
which embody dynamical chiral symmetry breaking and
the Higgs contribution to the masses. In addition, each
meson has one mass regulator parameter tuned to repro-
duce the weak decay constant. Consistently with the
infrared relevance of the dynamical chiral symmetry
breaking, we chose a light quark constituent mass that
reproduces the pion charge radius, even losing fit at large
momentum of the experimental form factor data.
The reason for such a choice was to study the kaon,

Dþ, Dþ
s electromagnetic form factors at low spacelike

momentum transfer squared up to about 1 GeV2, where
experimental data for the kaon is available [14,15], as
well as lattice calculations for the Dþ [17,18] and Dþ

s
[18]. In particular, we gave attention to the SU(3) and
SU(4) flavor symmetry breaking as a consequence of the
Higgs contribution to the quark masses, where from the
LQCD calculations also provide the flavor decomposition
of these heavy-light meson form factors. Furthermore,
we have compared our charge radius results with some
models from the literature, which can be useful for
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FIG. 11. Dþ and Dþ
s electromagnetic form factors, together

with bands for parameter variations. Upper panel:Dþ form factor
band for set (E) with �5% variation of the model parameters.
Lower panel:Dþ

s form factor band for set (F) with�5% variation
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contextualizing our effort within what has been done. The
charge distribution of s̄ is somewhat more compact
than the corresponding one for the u, a feature that will
be strongly emphasized for the charmed heavy-light
pseudoscalars.
Each of the form factors were decomposed in its flavor

content, Fud̄uðq2Þ and Fd̄ud̄ðq2Þ for the pion, Fus̄uðq2Þ and
Fs̄us̄ðq2Þ for the kaon, Fcd̄cðq2Þ and Fd̄cd̄ðq2Þ for Dþ,
Fcs̄cðq2Þ and Fs̄cs̄ðq2Þ for theDþ

s . Each of these flavor form
factors has particular properties with respect to the flavor
symmetry. The model has SU(2) flavor symmetry and
trivially we have Fud̄uðq2Þ ¼ Fd̄ud̄ðq2Þ ¼ Fπþðq2Þ, which
we used constituent quark mass that reproduced quite well
the pion charge radius, favoring a better description of the
infrared properties of the model. The SU(3) flavor symmetry
is slightly broken within the kaon expressed by Fs̄us̄ðq2Þ ≳
Fus̄uðq2Þ by about 10% above 3 GeV2, as consequence of
the Higgs contribution to the strange quark, which makes it
about 30% heavier than the up quark in our model. The study
of the flavor contribution to the Dþ and Dþ

s form factors
within the model, showed that the charm quark is localized
close to the center of the meson, while the light quark forms
a halo exploring larger distances where the confining force
of QCD is active, and the infrared physics dominating. Such
strong asymmetry is a direct consequence of the Higgs
providing a large mass to the charm quark in comparison
with light ones. The flavor decomposition of the charge radii
provided by the model is consistent with the lattice QCD
calculation from Refs. [18] where the ensemble C1 was
used, and the Dþ and Dþ

s masses were found close to the
experimental values.
We found that the heavier is the charm quark, the charge

radius of theDþ andDþ
s decrease and saturates, as dominant

contribution to the charge radius comes form the light quark.
The contribution of the light quark to the heavy-light form
factor is essentially dependent on the minimum branch point
value at md̄ðs̄Þ þ μDþðDþ

s Þ −mDþðDþ
s Þ, which is insensitive to

the increase of the charm quark mass, and its corresponding
localization. Such feature is particular to the present model,
and is able to incorporate aspects of the heavy quark limit of
QCD, where the force center of the confining force stays at

the meson center of mass, and therefore the charge distri-
bution becomes independent of the heavy quark mass.
However, the present model does not posses the absolute

confinement of the quarks, and they are represented as
bound states of constituents quarks. The SU(4) flavor
symmetry is largely broken as manifested in the contribu-
tions to the form factors, where we found in the case of the
Dþ that Fcd̄cðq2Þ > Fd̄cd̄ðq2Þ and saturating the ratio above
3 GeV2, attaining the ratio a value ∼5. For the Dþ

s , we
observe the same behavior as for the Dþ having that
Fcs̄cðq2Þ > Fs̄cs̄ðq2Þ and the ratio saturating at a value
around 5 above 3 GeV2. This is a strong manifestation of
the SU(4) flavor symmetry breaking in the structure of
these heavy-light pseudoscalar mesons. We also found that
the flavor decomposition of theDþ andDþ

s form factors are
in agreement with the lattice QCD calculation from
Refs. [18] where the ensemble C1 was used, with results
in the spacelike region up to 1.2 GeV2. The structure of
the Dþ and Dþ

s mesons can be studied in much more
detail within this model, like for generalized parton
distributions, generalized transverse momentum distribu-
tions and finally fragmentation functions of the heavy
quarks, left for future investigations as well as the
application of the model to study B; ηc; J=ψ ; ηb, and ϒ
mesons.

ACKNOWLEDGMENTS

This work was supported in part by CAPES, and by
the Conselho Nacional de Desenvolvimento Científico e
Tecnológico (CNPq), Grants, No. 308486/2015-3 (TF),
Process, No. 307131/2020-3 (JPBCM), Process, No. 313063/
2018-4 (KT), and No. 426150/2018-0 (KT), and Fundação
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