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The effect of the pulse envelope on electron-positron pair creation in a circularly polarized laser pulse is
investigated. Interference on the length scale of the pulse envelope, and smoothness of the pulse edges are
found to influence the pair spectrum. A toy model of a flat-top pulse is used to identify pulse envelope
effects inaccessible to local approaches. Broadening of channel openings and a widening of the energy and
transverse momentum distribution of the pair are found to receive contributions that are below the local
harmonic threshold. By comparing pair yields in a flat-top, sine-squared and Gaussian pulse, a link between
pulse shape and photon-polarized Breit-Wheeler pair creation is found. In the transverse momentum
distribution, a signal of pulse envelope interference is found in an azimuthal asymmetry, which appears in
intense fields and persists in long pulses.
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I. INTRODUCTION

The conversion of two photons to an electron-positron
pair was calculated by Breit and Wheeler in the 1930s [1].
The decay of a single photon into an electron-positron pair
in a classical electromagnetic field, is often referred to as
the “nonlinear Breit-Wheeler” process. “Nonlinear” refers
to the dependency on the charge-field coupling, which
generally can depend on high powers of the field intensity.
One of the challenges in calculating this process in a
classical background is that the amplitude can depend
strongly on how the background varies in space and time.
This can include interference from the process happening at
different points in the background, and gradient effects
from the rising and falling edge of the pulse. These effects
can mean that if the process is approximated by splitting the
background into infinitesimally short intervals, using the
probability for the process to occur in a constant (and
crossed) field in each interval and then integrating over all
the intervals the background was split into, the result can
differ substantially from the correct one. For high field
intensities this procedure can, however, in general provide a
good approximation, which is often referred to as the
“locally constant field approximation” (LCFA) [2–8], and
is the central approximation by which quantum electrody-
namical (QED) effects in intense classical backgrounds,
such as the nonlinear Breit-Wheeler process [9–31], are
included into numerical simulation frameworks [32–41].
In this paper, we will consider the situation where

the background field has two time scales. This is a
relevant situation for, e.g. experiments involving a laser

pulse, which has the fast time scale of the carrier frequency,
and the slow time scale of the pulse envelope. For a
strongly focused laser pulse, there may be other relevant
time scales, but we will model the laser pulse here as a
plane wave, which should be a good approximation
for a weakly focused pulse. We will consider laser
intensities that are routinely attained with weak focusing
in the lab.
The LCFA depends on the single parameter, χ, the

“quantum nonlinearity parameter,” which has no explicit
reference to any length scale of the field. Therefore, the
LCFA can be thought to include interference effects on the
sub-wavelength scale. (The length scale over which inter-
ference effects play a role, is sometimes referred to as the
“formation length” [2].) The advantage is that the LCFA
can be employed when the form of the classical background
is not known a priori. An alternative approximation, which
is useful when the form of the background is close to a
plane wave and is known not to change substantially in
interactions with e.g., a probe beam, is the locally mono-
chromatic approximation (LMA) [42]. The LMA treats the
fast time scale of the carrier frequency exactly and neglects
derivatives of the pulse envelope. It depends on two
parameters: the classical nonlinearity parameter ξ, which
is proportional to λ, the wavelength of the background, and
the (quantum) energy parameter, η, proportional to 1=λ.
Therefore the LMA can be thought to include interference
effects on the length scale of the wavelength (the “fast”
time scale). In the limit of large ξ and large outgoing
particle energy, the LMA depends only on the product
χ ¼ ξη, and tends to the LCFA, with all explicit depend-
ency on the background having disappeared. The explicit
definitions of ξ and η will be given in Sec. II.*b.king@plymouth.ac.uk
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Motivation for the current study comes from planned
upcoming experiments, such as E320 at SLAC and LUXE
[43] at DESY, which will use a conventionally accelerated
electron beam of Oð10 GeVÞ, to measure the nonlinear
Breit-Wheeler process in the “all-order” region where the
charge-field coupling, described by the classical nonlinear-
ity parameter, ξ, is ∼Oð1Þ. The interaction point of the
LUXE experiment is modeled using the simulation code
Ptarmigan [44], which implements the LMA for the non-
linear Compton [45] and nonlinear Breit-Wheeler [46]
processes. (A similar approximation framework [47] was
implemented to model the E144 experiment [48,49], and
was also used in CAIN [50] and IPStrong [51].) To
understand what is missed in local approaches is therefore
worthy of investigation.
The current paper will find two main effects that are

missed by local or “instantaneous” approaches. One effect
is due to interference on the length scale of the pulse
envelope (i.e., the “slow” time scale). Therefore, in addition
to ξ and η, the number of laser cycles, N, which is
proportional to the pulse length, will be used to specify
the input parameters. These effects persist in magnitude
(although they may move to lower energies) as the pulse
length is increased. Another effect is due to derivatives of
the pulse envelope, which are missed by local approaches
that only include the leading-order derivative (i.e., the
gradient) of the background. We will find that these effects
can be increased (decreased) in amplitude by making the
pulse envelope edges steeper (shallower), as quantified by
the bandwidth of the Fourier transform.
One may think that interference effects over long

spacetime scales are less important for pair creation than
e.g., for Compton scattering because pair creation is
typically strongly suppressed for lower field strengths,
and so only a small region around the laser pulse peak
field strength would contribute. (This is an explanation that
follows when ξ ≫ 1; see e.g., Ref. [52].) However, for
lower field strengths, it is exactly this strong suppression,
which makes the process sensitive to bandwidth effects
around the carrier frequency of the pulse.
The effect the pulse envelope can have on nonlinear

Breit-Wheeler pair creation has been investigated already in
several works by direct numerical evaluation of the QED
expressions, or by using a “slowly varying” envelope
approach. Line-broadening and sub-threshold enhancement
have been identified in triple differential spectra [12], and
an enhancement in energy spectra in the multiphoton region
in circularly [15] and linearly polarized [16] laser pulses
has been linked to finite bandwidth effects. Short, circularly
polarized pulses lead to an asymmetry in the azimuthal
spectrum of produced pairs [53], which is sensitive to the
pulse’s carrier envelope phase [54,55]. When double pulses
are used, various pulse shape effects can arise and be
controlled [23,56–58], and multiple pulses can lead to
coherent enhancement [59]. There also exist some

analytical solutions for nonlinear Breit-Wheeler pair cre-
ation in special ultra-short plane-wave pulses [27,28].
Apart from Breit-Wheeler pair creation, the pulse enve-
lope’s shape can also be crucial in determining pair
creation via the dynamically assisted Sauter-Schwinger
effect [60–64].
To investigate pulse envelope effects, we will use a

combination of direct numerical evaluation of QED cal-
culations for plane-wave pulses as well as an analytical “toy
model” of a circularly polarized “flat-top” monochromatic
pulse. This toy model has the advantage that any deviation
from the locally monochromatic spectrum can only be
caused by pulse-envelope interference, as it is only at the
beginning and end of the pulse where there is a variation in
the field strength. Therefore these deviations are beyond a
locally monochromatic (and therefore beyond a locally
constant) approximation.
Three different pulse envelopes will be referred to in this

paper, which are depicted in Fig. 1, centred on the origin for
comparison purposes. The flat-top envelope is described by
gðφÞ ¼ 1 for 0 < φ < Φ with gðφÞ ¼ 0 otherwise. The
sine-squared pulse is an example of a finite smooth pulse
with the envelope gðφÞ¼ sin2ðπφ=ΦÞ for 0 < φ < Φ with
gðφÞ ¼ 0 otherwise. The Gaussian pulse envelope is an
example of an infinitely extended, smooth pulse, defined as
gðφÞ ¼ exp½−2.3ð2φ=ΦÞ2�. The choice of the Gaussian
exponential factor is such that the amplitude is 10% of its
peak value at the edge of the sine-squared pulse. Since we
are studying nonlinear Breit-Wheeler pair creation, which
is strongly dependent on the intensity parameter, the value
of 10% was chosen so that two pulses were approximately
equal around the peak of the pulse (see Fig. 1).
The paper is organized as follows. In Sec. II the flat-top

potential toy model is introduced and the effect on the total
yield of pairs, the light-front momentum spectrum, and the
angular spectrum is illustrated. In Sec. III, a leading-order
perturbative analysis is given, corresponding to linear
Breit-Wheeler pair creation, and a link between pulse
duration and photon polarization is shown. In Sec. IV,
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FIG. 1. Three different normalized pulse shapes, g, used in the
current paper, centered at the origin.
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the direct numerical evaluation of the QED expressions for
a flat-top, sine-squared and Gaussian pulse are presented
and azimuthal asymmetry in the angular spectrum of pairs
is identified as a signal of pulse interference. We use natural
units ℏ ¼ c ¼ 1 throughout and the fine-structure constant
is α ¼ e2 ≈ 1=137.

II. TOY MODEL: FLAT-TOP POTENTIAL

Consider a circularly polarized potential of the form

a ¼ mξð0; cosφ; sinφ; 0Þ; 0 < φ < Φ

(otherwise a ¼ 0), where a ¼ jejA, ξ is the normalized
potential, φ ¼ ϰ · x is the background phase, and
ϰ ¼ ϰ0ð1; 0; 0; 1Þ, where ϰ0 is the laser carrier frequency.
The normalized potential is also the classical nonlinearity
parameter ξ and can be defined in a Lorentz- and gauge-
invariant way [65] as ξ ¼ ðjej=mÞ½hk · F · kiτ=ðϰ · kÞ2�1=2,
where F is the Faraday tensor, k is the momentum of the
probe particle and h·iτ is a proper time average.
The pulse phase length is Φ ¼ 2Nπ, where N is the

number of laser cycles. The energy parameter, η ¼ ðkþ
ϰÞ2=2m2 ¼ ϰ · k=m2 is a linear quantum parameter and
characterizes the center-of-mass energy of the collision. In
Ref. [66], nonlinear Compton scattering was studied in this
background, while here we calculate nonlinear Breit-
Wheeler pair creation.
Here, we give the main expressions and definitions for

the probability of nonlinear Breit-Wheeler pair creation, P
(more details about the method can be found in Ref. [67]):

P ¼ α

ð2πηÞ2
Z

dtd2r⊥
tð1 − tÞ

Z
dφdφ0e

i
R

φ

φ0 dϕ
k·πqðϕÞ
ηm2ð1−tÞ

× ½ΔΔ0 þ hðtÞða2Δ0 − 2a · a0 þ a02ΔÞ=ð2m2Þ�; ð1Þ

where t ¼ ϰ · q=ϰ · k, qμ is the asymptotic momentum of
the positron after leaving the potential and kμ is the photon
momentum, r⊥ ¼ q⊥=m − tk⊥=m, a ¼ aðφÞ and
a0 ¼ aðφ0Þ, with hðtÞ ¼ ð1 − 2tþ 2t2Þ=½2tð1 − tÞ�. The
instantaneous momentum of the positron in the field, πq is

πq ¼ q − aþ q · a
k · q

ϰ −
a2

2k · q
ϰ; ð2Þ

and

Δ ¼ 1 −
k · πq
k · q

¼ 2mr⊥ · a − a2

m2½1þ ðr⊥Þ2� ; ð3Þ

where Δ0 is analogous to Δ but with aðφÞ replaced
with aðφ0Þ.
To specialize Eq. (1) to the flat-top potential, we employ

the Jacobi-Anger expansion and integrate over the azimu-
thal transverse coordinate. This yields a total probability

that can be written as a sum over harmonics, n: P ¼
α=η

P∞
n¼⌈n�⌉

In where ⌈n�⌉ denotes the lowest integer
greater than or equal to n�, and here for the flat-top
potential, n� ¼ −∞. Then In is given by1

In ¼
Φ
η

Z
dtdr2

tð1 − tÞ δΦ
�
r2 − r2∞
2ηtð1 − tÞ

�
fw2J2nðzÞ − ξ2hðtÞ

× ½2wJ2nðzÞ − J2nþ1ðzÞ − J2n−1ðzÞ�=2g; ð4Þ

with r ¼ jr⊥j, where z ¼ ξr=ηtð1 − tÞ and we have defined
the regularized delta function

δΦðxÞ ¼
Φ
2π

sinc2
�
Φx
2

�
; ð5Þ

(sincx ¼ sin x=x) and the finite-duration factor w is

w ¼ 1þ r2∞
1þ r2

; r2∞ ¼ 2nηtð1 − tÞ − ð1þ ξ2Þ:

The function δΦðxÞ tends to the Dirac delta function δðxÞ in
the infinite pulse-length limit of Φ → ∞. In this limit, the
finite-duration factor w → 1 and Eq. (4) tends to the locally
monochromatic (and infinite monochromatic [10]) result.
As remarked in Ref. [66], the function δΦ can be written in
terms of harmonics as

δΦðn − ñ�Þ; where∶ ñ� ¼
1þ ξ2 þ r2

2ηtð1 − tÞ : ð6Þ

Our analysis of the result, Eq. (4), will focus on the
description in terms of harmonics.

A. Harmonic channel opening

In the locally monochromatic approach, we can acquire a
“threshold” harmonic n� → ñ� from Eq. (6), by finding the
minimum of ñ�, which occurs when r ¼ 0 and t ¼ 1=2,
i.e., n� ¼ 2ð1þ ξ2Þ=η. When the locally monochromatic
approach is applied to a pulse, aðφÞ, different parts of the
pulse can have different threshold harmonics, and therefore
access different harmonic “channels” to pair creation. In the
local approach, we can see that having a nonconstant pulse
envelope implies that some channels become accessible,
that would otherwise not be, if just the average pulse
intensity was assumed. However, in the flat-top model,
because aðφÞ is constant everywhere (apart from the edges
of the pulse), this local effect cannot access any channel
opening behavior.
When we take into account the finite pulse effect and

evaluate Eq. (4), we see several differences to the local
approach.

1The result in Eq. (4) has been numerically verified by direct
evaluation of Eq. (1) in a flat-top background.
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(i) Each harmonic is “broadened.” In the local ap-
proach, as δΦð·Þ → δð·Þ once the momentum of
the pair is given, the harmonic order is fixed to
be n ¼ ñ�. However, since the pulse is finite in
phase, it has a finite bandwidth in the light-front
momentum it can supply to the pair.

(ii) There is no longer a threshold harmonic. The central
peak of δΦ has a width such that the main con-
tribution is for a harmonic n within the range
approximately bounded by ñ� � π=Φ. The n ¼ 0
channel is opened and short pulses allow for the
contribution from negative harmonics.

(iii) The wave vector of the background ϰ, and therefore
also the energy parameter η are no longer constant.
A Fourier transform of the background of a pulse
reveals a width of momenta around the “central”
carrier envelope frequency.

The situation can be demonstrated by the use of a
Mandelstam plot. Using momentum conservation in a
monochromatic wave

kþ nϰ ¼ p̄þ q̄; ð7Þ

where p̄ ¼ p − ϰða2=2ϰ · pÞ (and likewise for q̄) is the
quasimomentum of the electron (positron), we can define
the Mandelstam variables s̄ ¼ ðkþ nϰÞ2=m2 ¼ 2nη, t̄ ¼
ðq̄ − nϰÞ2=m2 ¼ 1þ ξ2 − 2tnη and ū ¼ ðp̄ − nϰÞ2=m2 ¼
1þ ξ2 − 2ð1 − tÞnη. We see that, for fixed background
momentum ϰ and positive harmonic n, the variables t̄ and ū
cannot exceed 1þ ξ2. This defines a physically accessible
region, highlighted in Fig. 2. For the monochromatic
case, ξ is constant and using the threshold condition
n� ≥ 2ð1þ ξ2Þ=η, we see that s̄ ≥ 4ð1þ ξ2Þ. This region
is highlighted in Fig. 2, where for each harmonic, there is a
curve of values in the ðt̄; ūÞ plane given by varying the
parameter t between 0 and 1. The locally monochromatic

region would in general allow access to “subthreshold”
harmonics because 0 ≤ ξðφÞ ≤ ξ. The corresponding
region is also highlighted in the figure. In contrast, in a
finite pulse, Eq. (7) no longer holds absolutely, due to the
pulse edges spoiling the periodic symmetry along the pulse
propagation direction. This nonconservation is quantified
by the regularized delta function (6). In principle the
bandwidth can be wide enough that all harmonics, includ-
ing n ¼ 0 and negative n, are kinematically accessible.
(In the figure, the finite pulse region is suggested as
stretching into a region around the one accessible by a
local approach). This is particularly relevant for a flat-top
pulse, the Fourier transform of which is a sinc-squared
function, which, having an inverse-square dependency on
frequency, has a particularly wide bandwidth (this point
will be developed later).
We calculate the effect of these new harmonic channels

on the total pair yield in Fig. 3. Their contribution can be
seen most clearly in two places: (i) in the low-energy region
η ≪ 1; (ii) for parameter values close to a harmonic
transition.
Close to a harmonic transition, the “broadness” of the

harmonic can be clearly seen in Fig. 3. Even though the
number of laser cycles N (related to pulse duration via
Φ ¼ 2πN) is large enough to be in the long-pulse regime
where one would expect the locally monochromatic
approximation to work well, we see that the contribution
from the new harmonic channels remains approximately
independent of energy, with rising “edge” structures close
to each harmonic.
Also in the multiphoton regime ξ ≪ 1, whereas a local

approach gives a pair yield that is power-law suppressed as
∼ξ2n� [68], which for small enough ξ, leads to a strong
suppression, and the flat-top pulse result does not suffer
such a suppression. The reason for this is that the finite
pulse result has access to the linear Breit-Wheeler process,
due to the broad bandwidth of the flat-top envelope, which

FIG. 2. Mandelstam plot for the Breit-Wheeler process. Kin-
ematically accessible regions are highlighted: monochromatic
case (darkest shaded region, solid harmonics lines); locally
monochromatic (mid-darkest shaded region, long-dashed har-
monic lines); finite pulse (bandwidth suggested by lightest
shaded region).

0.5 1 1.5 2 2.5

-6

-5

-4

FIG. 3. The opening of harmonic channels as the collision
energy parameter η is increased, for ξ ¼ 0.5 and N ¼ 16 laser
cycles. Vertical dashed lines correspond to the position of the
lowest harmonic in the locally monochromatic approach: n� ¼ 1,
2, 3, 4 from right to left. The lowest harmonic accessible in the
local approach is given as ⌈n�⌉, where n� ¼ 2ð1þ ξ2Þ=η.
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is kinematically forbidden in the local approach. (This fact
has already been investigated in several works in the
context of universality [62,69], but here we link it explicitly
to a harmonic analysis.) (The linear Breit-Wheeler case is
studied in more detail later on.) Therefore this “enhance-
ment” at small η or small ξ is to do with the smoothness of
the pulse shape. We note that this enhancement is contrib-
uted to by harmonics above and below threshold.

B. Light-front momentum spectrum

The finite bandwidth of the background also affects the
shape of light-front momentum spectra. In the local
approach, most pairs are produced with the electron and
positron having similar light-front momenta (i.e., the
spectrum has a peak around t ¼ 1=2.). The probability
for one of the pair to take much more of the probe photon’s
light-front momentum than the other, is heavily suppressed
(i.e., the spectrum is suppressed at large/small t). However,
in the flat-top case, shorter pulses can greatly enhance the
relative proportion of pairs whose constituents can carry
very different light-front momenta. This is illustrated in
Fig. 4(a): the shorter the pulse, the flatter the spectrum, but
even for long pulses, the enhancement is clearly visible for
higher values of asymmetry as t → 1. In particular, the
absolute enhancement is independent of the pulse duration,
suggesting it originates in the higher derivatives at the
rising and trailing edges of the pulse. (We calculated the
light-front momentum spectrum in the smoother pulse
shapes of a sine-squared and Gaussian background, and
the asymmetry effect diminishes substantially, showing it to
be a consequence of the wide bandwidth of a flat-top
pulse.) Which harmonics are contributing to this enhance-
ment, is demonstrated in Fig. 4(b). We see that, indeed the
maximum contribution agrees with the locally monochro-
matic case, but that there is an important region just below
the monochromatic threshold, stretching to n ¼ −1, which
is entirely missed by local approaches. As the pulse is made
shorter, the relative contribution increases from these

“below threshold” harmonics and the light-front momen-
tum spectrum flattens.

C. Transverse momentum distribution

As a further demonstration of the role of the extra
harmonic channels, in Fig. 5, we plot the combined light-
front and transverse momentum dependency of produced
positron yield for the case ξ ¼ 0.5, η ¼ 1, N ¼ 4. There are
three main differences brought about by the pulse envelope.
i) Since the suppression of larger light-front momentum
fractions is softened in the finite pulse cases, there are more
harmonics visible in the large-/small-t part of the spectrum
in Fig. 5(a) compared to the plot of harmonics only
accessible in the locally monochromatic approach in
Fig. 5(b). The contribution from harmonics inaccessible
to a local approach, is shown in Fig. 5(c). ii) There appear
subharmonics between the main harmonic lines in
Fig. 5(b), which correspond to the subpeaks in the
regularized delta function in Eq. (4). The subthreshold
harmonics lines in Fig. 5(c) can further brighten these
subharmonics in the whole yield in Fig. 5(a) but also lead to
a splitting of the main harmonics at large/small t. iii) A
peak occurs at low transverse momentum (the r → 0
region) due to the opening of the jnj ≤ 1 harmonic channels
in the flat-top pulse. This link can be understood by
considering the regularized delta function in r2 in
Eq. (4). In the locally monochromatic approach, the radial
position squared of each harmonic is given by

r2∞ðφÞ ¼ 2nηtð1 − tÞ − ½1þ ξ2ðφÞ�; ð8Þ

and r2ðφÞ ¼ r2∞ðφÞ. The minimum perpendicular momen-
tum is then at r2 ≈ ⌈n�⌉η=2 − 1. However, in the flat-top
pulse, considering the additional width of each harmonic
supplied by the pulse envelope, we see r2ðφÞ is approx-
imately in the interval given by r2∞ðφÞ � ηtð1 − tÞ=N. So
we should expect that there is a signal in the transverse

FIG. 4. For ξ ¼ 0.5 and η ¼ 1. Left: the light-front momentum
fraction spectrum of the produced positrons. Because of the
symmetry dPðtÞ=dt ¼ dPð1 − tÞ=dt in (1), we only plot the
spectrum with t ≥ 0.5. Right: the contribution of each harmonic,
n, where the vertical dashed line is the lowest harmonic accessible
in the locally monochromatic case.

FIG. 5. Double differential in transverse momentum parameter
r and light-front momentum fraction t of positron yield
d2P=dtdr. (a) All the harmonic channels open in the flat-top
pulse; (b) only the harmonics accessible in a local monochro-
matic approach, n ≥ n�; (c) harmonics inaccessible to the local
approach, n < n�. The results are for ξ ¼ 0.5, η ¼ 1, N ¼ 4.
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momentum distribution (TMD) due to the pulse envelope,
at smaller transverse momenta than predicted by the local
approach. Because this is to do with the width of each
harmonic and contains the length scale 2Nλ [substituting
n → 1 and η → η� η=2N in Eq. (8) leads to the additional
width supplied by the pulse envelope], it can be related to
interference on the length scale of the pulse envelope. (A
similar behavior of the appearance of a linear peak
appearing at small r was noted for the Compton scattering
in a flat-top pulse [66].) (It was also recently observed that
the enhancement of harmonics at lower values of r can be
understood by considering angular-momentum conserva-
tion in the absorption of laser photons producing the
pair [70].)
Finally, another role of the finite pulse duration shown in

Fig. 6 is to induce an azimuthal asymmetry in the positron
yield distribution [55]. As shown in the figure, this
asymmetry appears not only in the distribution of the
positron yield from the harmonics accessible in the local
approach, but also in the distribution from the extra
harmonic channels opened by the finite pulse effect
[Figs. 6(b) and (c) respectively]. This asymmetry affects
the entire TMD and is enhanced in short pulses. Therefore,
it is associated with the shape of the pulse and higher-
derivative effects. In contrast, in Sec. IV, we will demon-
strate an asymmetry at the center of the TMD, to do with
pulse-envelope interference.

III. LINEAR BREIT-WHEELER

It was shown in the previous section that finite pulse
envelope effects are particularly strong in the multiphoton
regime at low background intensity. The reason for this is
simply that the yield, when calculated with a local
approach, is so strongly suppressed in this regime, that
the effect due to the pulse envelope, which is otherwise
small, becomes dominant. In this section, we analyze the
contribution to the yield to leading order in ξ2—also known
as linear Breit-Wheeler pair creation. The dominance of

pulse effects in the low-intensity (and strongly suppressed)
region has already been highlighted in the literature (see
e.g., Refs. [15,16]), and so here, we concentrate on the role
of the negative harmonics, and in doing so, will reveal a
connection between photon polarization channels and
pulse duration.
We can acquire the leading-order perturbative proba-

bility, Pl either by perturbatively expanding the integrand
in Eq. (1) and keeping only Oðξ2Þ terms, or by calculating
the linear Breit-Wheeler process from first principles in a
plane-wave background. In order to aid interpretation, we
define a momentum contributed by the background field,
νϰ, through the relation

νϰ þ k ¼ pþ q;

where ν ¼ s̄=2η, which is the center-of-mass energy
squared in units of 2ηm2. This is useful because ν is the
ratio of light-front momentum supplied by the background
over the light-front momentum supplied by the carrier wave
(i.e., the monochromatic limit), and so quantifies how wide
the pulse’s bandwidth must be to facilitate the process. The
probability for the linear Breit Wheeler process is then:

Pl ¼ α

πη

Z
1

0

dt
Z

∞

ν�
dν

jãðνÞj2
m2

�
1

2
hðtÞ þ ν=ν� − 1

ν2=ν2�

�
ð9Þ

where ν�ðtÞ ¼ 1=½2ηtð1 − tÞ� is the threshold parameter
required to create a pair with zero transverse momentum
(r2 ¼ 0) and ãðνÞ ¼ R

dφaðφÞeiφν.
The result in Eq. (9) clearly demonstrates the threshold

requirement ν > ν� to create a pair. We see that ν� ∝ 1=η,
i.e., the lower the photon energy, the higher the momentum
required from the background to create a pair. For a plane-
wave pulse then, the contribution depends on how the
Fourier spectrum decays as the frequency is varied away
from the carrier frequency. For the flat-top potential,

jãðνÞj2
m2

¼ ξ2Φ2

2

�
sinc2

Φðνþ 1Þ
2

þ sinc2
Φðν − 1Þ

2

�
ð10Þ

i.e., the spectrum has peaks at ν ¼ �1, but each with a
width that decays as ∼1=Φ2. Here we see the reason why
the pulse-envelope effect is dominant in the multiphoton
regime. For the monochromatic case, P ∼ ξ2n� , with
n� ¼ 2ð1þ ξ2Þ=η, and so when η ≪ 1, which is typical
for modern-day laser-particle experiments, there is a strong
decay in the pair yield as ξ is reduced since n� ≫ 1.
Contrast this with the linear Breit-Wheeler contribution
from the envelope, which only decays as ξ2, but is sup-
pressed by a constant factor that depends on the envelope’s
bandwidth. Eventually, for sufficiently small ξ, the linear
Breit-Wheeler effect, which originates from the pulse
envelope, will dominate the total signal for pair creation.

FIG. 6. Double differential in the transverse momentum param-
eters of the positron yield d2P=drxdry. (a) All the harmonic
channels open in the flat-top pulse; (b) only the harmonics
accessible in a local monochromatic approach, n ≥ n�; (c) har-
monics inaccessible to the local approach, n < n�. All the
parameters are the same as in Fig. 5.
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The role of negative harmonics can also be clearly seen
in the perturbative result. In Fig. 7, we plot the Fourier
transform of the flat-top pulse spectrum, Eq. (10). The
spectrum decays away from the positive [negative] fre-
quency peak, approximately as ∼ðν − 1Þ−2 [ðνþ 1Þ−2].
The positive (negative) frequency peaks correspond to the
n ¼ 1 (n ¼ −1) harmonics of the background. For a
sufficiently short pulse, or equivalently, broad bandwidth,
there is a significant contribution from the negative-fre-
quency peak, that can extend to the positive-frequency
range. This is another visualization of the effect discussed
in the Mandelstam plot Fig. 2: negative harmonics can
contribute in kinematically accessible regions. We empha-
size that here in the perturbative case, n ¼ −1 corresponds
to the negative-frequency component of the pulse. One
should contrast this with the nonperturbative case discussed
in the previous section and for larger values of ξ, where
n ¼ −1 corresponds to one net “photon” being emitted
back to the background.

A. Polarization signal

The contribution of the negative harmonic to linear Breit-
Wheeler pair creation suggests a further effect due to the
pulse envelope, on the relative contribution to each photon-
polarisation channel. This can be seen by considering a
head-on collision between the photon and a plane-wave
laser pulse. The potential for a circularly polarized pulse
can be written in the form

aðφÞ ¼ gðφÞ½Λ−eiφ þ Λþe−iφ�; ð11Þ

where gðφÞ is the envelope and Λ� ¼ ðΛ1 � iΛ2Þ=2 are
light-front helicity states of the probe photon,

Λ1;2 ¼ ε1;2 −
k · ε1;2
k · ϰ

ϰ; ð12Þ

for a head-on collision with k ¼ k0ð1; 0; 0;−1Þ, and in the
coordinates used so far in this paper, ε1 ¼ ð0; 1; 0; 0Þ,
ε2 ¼ ð0; 0; 1; 0Þ. From Eq. (11), we see that different
helicity states are associated with the positive- and neg-
ative-frequency parts of the background. Whereas a circu-
larly polarized probe photon will couple to just the Λþ or
Λ− state alone, a linearly polarized photon, being a
superposition of circularly polarized states, will be able
to couple the Λþ and Λ− states together at the level of the
probability [which contains a ða · ϵÞ2 term, for photon
polarization ϵ]. Therefore, for a linearly polarized photon, a
part of the probability will be proportional to the overlap of
the positive- and negative-frequency parts of the spectrum.
In this way, a connection between pulse duration and probe
photon polarization is made.
For a linearly polarized photon propagating in the

circularly polarized background, the linear Breit-Wheeler
probability is

Pl ¼ α

πη

Z
1

0

dt
Z

∞

ν�
dν

�jãðνÞj2
m2

�
1

2
hðtÞ þ ν=ν� − 1

ν2=ν2�

�

þ Γ
jãyðνÞj2 − jãxðνÞj2

2m2ν2=ν2�

�
; ð13Þ

where ãx (ãy) is the x (y) component of the Fourier-
transformed vector potential, Γ ¼ 1 if the photon is in
polarization state Λ1, and Γ ¼ −1 if the photon is in
polarization state Λ2. Defining g̃ðνÞ¼ R

dφgðφÞexp½iφν�,
we see that the unpolarized part of the probability is
proportional to

jãðνÞj2 ∝ jg̃ðνþ 1Þj2 þ jg̃ðν − 1Þj2:

However, the polarized part is proportional to the overlap of
the positive- and negative-frequency components:

jãyðνÞj2 − jãxðνÞj2 ∝ g̃ðνþ 1Þg̃�ðν − 1Þ þ c:c:

This overlap of the functions is an expression of the
interference in Fourier space, of the contribution from
positive- and negative-frequency components. Therefore
this coupling of polarization channels to pulse shape is a
higher-derivative effect and would depend sensitively on
the type of the pulse envelope gðφÞ.
To manifest this effect clearly, we consider finite pulses

with the three types of envelope discussed in the
Introduction and depicted in Fig. 1. The flat-top pulse
has envelope gðφÞ ¼ 1 if 0 < φ < Φ, and otherwise
gðφÞ ¼ 0; the sine-squared pulse has envelope gðφÞ ¼
sin2½φ=ð2NÞ� if 0 < φ < Φ, and otherwise gðφÞ ¼ 0; the
Gaussian pulse has envelope gðφÞ ¼ exp½−2.3φ2=ðNπÞ2�.
The pulse phase duration is defined as Φ ¼ 2Nπ.
To measure the relative importance of the photon

polarization, we define the quantity

− 3 − 2 − 1 0 1 2 3
0.1

1

10

100

1000

FIG. 7. Fourier spectrum of potential for a two-cycle flat-top
pulse (Φ ¼ 4π). Only the absorption of positive frequencies can
kinematically contribute to pair creation, but in a short pulse,
these can arise from the wide bandwidth of the negative
frequency part of the spectrum. Envelopes are plotted with
dashed lines and the contribution from the n ¼ −1 harmonic,
and the net difference, are both highlighted.
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R ¼ jPlðΓ ¼ −1Þ − PlðΓ ¼ þ1Þj
PlðΓ ¼ −1Þ þ PlðΓ ¼ þ1Þ : ð14Þ

The linear Breit Wheeler positron yield for different
probe photon polarizations, and how it is affected by pulse
duration, is illustrated in Fig. 8. In general, the yield
increases with pulse duration, but it does this slower than
linearly with Φ (unlike a local approach, which increases
the yield linearly with Φ). This is because the bandwidth
decreases and so too, the number of photons from the
background that would correspond to a center-of-mass
energy above the threshold for making a pair. This behavior
depends on the shape of the pulse: slightly different
dependencies are shown in Fig. 8(a) (flat-top pulse),
Fig. 8(c) (sine-squared pulse) and Fig. 8(e) (Gaussian
pulse). The effect of the pulse duration on the ratio of
polarized probabilities is shown in the second column of

Fig. 8. Similar to the yield, the ratio decreases as the pulse
duration is increased, and this is due to reduction of the
overlap of positive and negative frequencies of the back-
ground in the pulse spectrum. For a flat-top pulse, this
decrease is rather slow: for a single-cycle pulse the ratio is
10%, falling to 4% for a 20-cycle pulse. For a sine-squared
and Gaussian pulse [Figs. 8(d) and 8(f) respectively], the
decrease is much stronger (for the Gaussian pulse, the
decrease is rapid, as reflected by the relabeled pulse
duration axis), showing the importance of the pulse shape
in this effect.

IV. AZIMUTHAL ASYMMETRY

In this section, we calculate a signal of azimuthal
asymmetry at the center of the positron TMD, even though
the plane-wave pulse is circularly polarized. The asymme-
try for different pulse shapes is compared.
The asymmetry induced by the pulse envelope can be

illustrated by formulating the relative difference of the
transverse spectrum and the azimuthal-averaged spectrum:

A ¼ d2P=drdψ
1
2π

R
2π
0 ½d2P=drdψ �dψ − 1:

The result for a flat-top background with ξ ¼ 0.5, η ¼ 2
and N ¼ 16, in Fig. 9, (using rx ¼ r cosψ and
ry ¼ r sinψ ), amounts to uncovering a dipole-like distri-
bution, which is symptomatic of having linear polarization.
This dipole structure is strongest at small transverse
momenta r, which corresponds to contributions from the
pulse envelope for harmonics below the locally mono-
chromatic threshold. Whereas the carrier frequency is
circularly polarized, the pulse envelope multiplies both
polarization components of the potential a with the same
factor, and hence acts as a “linearly polarized” background.
We can demonstrate this by writing the Fourier transform as

ãðνÞ ¼ mξ½g̃ð1þ νÞΛ− þ g̃ð−1þ νÞΛþ�: ð15Þ

In a monochromatic wave, g̃ð·Þ → δð·Þ and the frequency
component associated with two different helicity states can
never overlap. However, if the pulse is finite in extent, the
overlapping between the differently polarized components
becomes possible. We pick ν ¼ νpulse ≈ 1=2N, to corre-
spond to the pulse envelope frequency, for a symmetric
spectrum (such as the flat-top, sine-squared and Gaussian
examples), g̃ð1þ νpulseÞ ≈ g̃ð−1þ νpulseÞ, and hence

ãðνpulseÞ ≈mξg̃ð1þ νpulseÞΛ1; ð16Þ

clearly exhibits the property of linear polarization.
The effect persists in pulses with smoother edges as

illustrated in Figs. 10(a) and (b) for a sine-squared pulse
and in Figs. 10(c) and (d) for a Gaussian pulse. We note that

FIG. 8. Left column: total yield, for η ¼ 2, of the positrons from
the linear Breit-Wheeler process normalized by the pulse duration
Φ and intensity ξ. Right column: relative importance of the probe
photon’s polarization in the positron yield R, given in Eq. (14).
First row: flat-top pulse, gðφÞ ¼ 1 if 0 < φ < Φ, and otherwise
gðφÞ ¼ 0. Middle row: sine-squared pulse, gðφÞ ¼ sin2½φ=ð2NÞ�
if 0 < φ < Φ, and otherwise gðφÞ ¼ 0. Last row: Gaussian pulse,
gðφÞ ¼ exp½−2.3φ2=ðNπÞ2�. The background potential is circu-
larly polarized and the probe photon is linearly polarized. The
pulse phase duration is defined as Φ ¼ 2Nπ.
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in these examples, N ¼ 16, i.e., this is not the short-pulse
effect described in Fig. 5. We also note the interference
fringes (although not their magnitude) depend sensitively
on the shape of pulse envelope; interference peaks appear at
different positions for different envelopes, and there appear
more interference fringes because of the variation of the
local intensity ξðφÞ. A noteworthy feature of the asymmetry
at the center of the positron TMD is that it becomes much
weaker when ξ is lowered below ξ ¼ 1 for the sine-squared
and Gaussian pulses, suggesting an all-order interaction
(but persists for ξ < 1 in the special case of the flat-
top pulse).

V. DISCUSSION

The nonlinear Breit-Wheeler process is often calculated
using some local approximation, such as the locally
constant field approximation, or the locally monochromatic
approximation. The focus of this paper has been to identify

signals of strong-field QED in the nonlinear Breit-Wheeler
process, that are beyond local approaches. In order to
achieve this, we calculated the process in a toy-model flat-
top pulse potential, which differs only from the infinite
monochromatic background in that it has edges. The
advantage of this background, is that one can make
analytical progress and cast the form of the probability
for this finite pulse, in a similar form to the probability in an
infinite monochromatic wave, and study the differences.
Any difference is then due to the finitude of the pulse, and
not due to variations of the field strength across the pulse
(which, e.g., the locally monochromatic approximation
would partially capture). We also calculated some spectra
in smoothly varying pulses, with sine-squared and
Gaussian envelopes, to investigate how the shape of the
pulse envelope influences “beyond local” signatures.
What is missed in a local monochromatic (and locally

constant) approach, can be seen by considering the two steps
made in approximating the Kibble mass [71], μ, where

μ ¼ 1þ ha2i − hai2; hfi ¼ θ−1
Z

φþθ=2

φ−θ=2
fðxÞdx:

Suppose we consider hai as an example, and apply the LMA
to the function aðφÞ ¼ exgðφ=ΦÞ cosφ. First, we can write

FIG. 9. Azimuthal asymmetry in the transverse momentum
distribution of the positron produced in a flat-top pulse for η ¼ 2,
N ¼ 16. Left column: plot of the angular spectrum, d2P=drxdry.
Right column: asymmetry measure, Aðrx; ryÞ. Upper panels:
ξ ¼ 0.5. Middle panels: ξ ¼ 1.0. Bottom panels: ξ ¼ 1.5.

FIG. 10. Azimuthal asymmetry in the transverse momentum
distribution of the positrons. Left column: plot of the angular
spectrum, d2P=drxdry. Right column: asymmetry measure,
Aðrx; ryÞ. Upper panels: sine-squared pulse, gðφÞ ¼
sin2½φ=ð2NÞ� if 0 < φ < 2Nπ, and otherwise gðφÞ ¼ 0. Bottom
panels: Gaussian pulse with the envelope exp½−2.3ϕ2=ðNπÞ2�.
The other parameters are given as ξ ¼ 1, η ¼ 2 and N ¼ 16.
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hai ¼ ex
θ

�
F

�
x
Φ

�
sin xþG

�
x
Φ

�
cos x

�
φþθ=2

φ−θ=2
;

where by repeated integration by parts, one finds

F

�
x
Φ

�
¼ g

�
x
Φ

�
−

1

Φ2
g00
�
x
Φ

�
þ…;

G

�
x
Φ

�
¼ 1

Φ
g0
�
x
Φ

�
−

1

Φ3
g000

�
x
Φ

�
þ…

For smooth, well-behaved envelopes, so far no approxima-
tion has been made. The LMA then consists of two
approximations: (i) higher derivatives of g are discarded;
(ii) the envelope is locally expanded, keeping only the
leading-order term i.e., g½ðφ� θ=2Þ=Φ� ≈ gðφ=ΦÞ. The first
approximation (also referred to as the slowly-varying-
envelope approximation) corresponds to neglecting deriva-
tives of the envelope, and the second to neglecting pulse-
envelope interference (which would also include some
derivatives of the envelope). Therefore, even if the pulse
is long, if the rising and falling edges are steep enough, then
signatures beyond a local approximation, can still persist. As
a result, we have identified effects on particle spectra due to
(i) pulse-envelope interference and (ii) pulse shape effects
(contributions from higher derivatives of the rising and
falling edge of the pulse).
Other works have already highlighted some interference

effects for very short (few cycle) pulses; the added interest
here, was to show that there are other pulse-length
interference effects that persist even in long (many-cycle)
pulses, the magnitude of which does not depend strongly
on the pulse shape. One may think that, if the pulse is made
long enough, outgoing particle spectra should eventually
tend to those in a monochromatic wave. However, the key
difference in the finite pulse case, is that the probe particle
(in this case, a photon), is, at some point, outside the pulse,
and must enter (and exit) it. In the infinite monochromatic
case, the probe particle is always inside the background.
The act of entering (and exiting) the pulse, is associated
with the probe particle experiencing field gradients. The

longer the pulse, the lower the gradients, but the longer the
scale on which they are probed.
For nonlinear Breit-Wheeler pair creation, pulse

envelope interference affected the positron transverse
momentum distribution by providing an extra “pulse
envelope peak” at smaller transverse momenta than the
threshold for a locally monochromatic approach. The
position of this pulse envelope peak is associated with
the long wavelength of the pulse envelope. The peak was
found to lead to a linearly polarized signal in a flat-top,
sine-squared and Gaussian pulses, the magnitude of which
did not depend significantly on pulse shape. In contrast,
effects were also identified that are related to the pulse
shape and the contribution from higher derivatives of the
envelope. In a flat-top pulse, the relative importance of
Breit-Wheeler pair creation for different photon polar-
izations was seen to be linked to the pulse duration, but
was suppressed in the smoother sine-squared and Gaussian
backgrounds. The short-pulse asymmetry across the entire
positron transverse momentum is another effect sensitive to
the pulse shape, and was demonstrated for the flat-top
background. A significant widening of the light-front
momentum spectrum was also found in a flat-top back-
ground, which was independent of the pulse duration.
To conclude: if pulse-shaping methods could be used to

generate steeper pulse edges, envelope shape effects could
be enhanced, and if low transverse pair momenta could be
detected, pulse-length interference effects could be mea-
sured in experiment.
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