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The basic expressions for the differential nuclear bremsstrahlung cross section at high electron energy,
as derived under different theoretical approaches and approximations to quantum coherence effects,
are compared. The Baier-Katkov treatment is reformulated to allow introduction of the same value of the
radiation length in all calculations. A dedicated Monte Carlo code is employed for obtaining photon energy
spectra in the framework of the Baier-Katkov approach taking into account multiphoton emission,
attenuation by pair production, and pile-up with photons from the background. The results of Monte Carlo
simulations for both the Migdal and Baier-Katkov descriptions are compared to all available data that show
the Landau-Pomeranchuk-Migdal suppression. The issue of the sensitivity of the experiments to the
difference of the two approaches is investigated.
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I. INTRODUCTION

Ever since the pioneering papers by Sauter [1], Bethe
and Heitler [2,3], and Racah [4], the bremsstrahlung
process undergone by electrons and positrons in crossing
matter has attracted the interest of theorists and experimen-
talists. As a matter of fact, a huge range of disciplines
directly or indirectly benefits from any progress of the
research in this field, from elementary particle physics,
to cosmic ray studies, which need accurate simulations
of shower development. At the highest energies, one of
the most important steps forward in the theory was the
recognition by Landau and Pomeranchuk [5,6] of the
possible suppression of the intensity of the bremsstrahlung
radiation due to a reduction of the coherence length
caused by the multiple scattering suffered by the radiating
particle. These authors used pure classical arguments, while
Migdal [7] developed a fully quantum-mechanical theory
of the bremsstrahlung process including the mentioned
suppression. This effect, named the LPM effect after the
discoverers (Landau-Pomeranchuk-Migdal), becomes pro-
gressively more important as the energy of the electron/
positron increases since the suppression extends up to a
larger fraction of the total radiated spectrum [8]. Early
review papers further clarifying the LPM effect were

written by Feinberg and Pomeranchuk [9] and Galitsky
and Gurevich [10], while more recent surveys are due to
Klein [8] and Baier and Katkov [11]. Although the LPM
effect was postulated for QCD [12–16] and weak inter-
actions [17], direct experimental evidence under controlled
conditions was gathered only in the QED case [18–22].
Conceptually, the LPM effect is interesting because it

goes beyond the standard perturbative formulation of
quantum field theory describing the point interaction of
free particles: the photon emission requires a formation
length, which can also be interpreted as a coherence length,
to be fully emitted and behave as a particle independent
from the radiating electron. Any disturbance during this
phase reduces the coherence length, thereby leading to a
suppression. In the QED case, the electromagnetic inter-
action has an infinite range and this gives rise to a
nonperturbative effect also lying outside the standard
perturbative formulation: the Coulomb correction. Bethe
andMaximon discovered that such nonradiative corrections
can be treated, with appropriate wave functions, at the
leading order of αZ in the high-energy limit [23]. Data
with systematic uncertainties low enough to validate
this conclusion were only recently obtained [24]. The
original quantum treatment of the LPM suppression
by Migdal [7] did not include the Coulomb correction,
which has since been taken into account semiempirically
by expressing his cross section in terms of the radiation
length and then adding the Coulomb correction to the
latter [18]. Needless to say, without this rescaling, Migdal
theory cannot reproduce the data for high-Z elements.
A complete treatment of the LPM effect directly
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embodying the Coulomb correction was developed by
Baier and Katkov [11]. Recent work was also published
improving the original approach by Migdal and essentially
justifying the renormalization procedure to the radiation
length [25]. However, the comparison with data of these
approaches: the one by Migdal, with rescaling, and the one
by Baier and Katkov, directly dealing with the Coulomb
correction, was performed in a quite unsystematic way up
to now. The Migdal treatment was implemented in several
Monte Carlo codes allowing to accurately take into account
the emission of multiple photons by the same electron
crossing the target and the absorption of the photons by pair
production. Moreover, in some experimental conditions, it
is necessary to consider the pile-up of photons from the
target with photons from the background, which reach
simultaneously the calorimeter. In the case of the Baier-
Katkov approach, only multiphoton emission was taken
into account by an approximate analytic treatment [11],
while the other effects were never accounted for and are,
altogether, actually larger than the difference between the
theories. The first Monte Carlo implementation of the
Baier-Katkov description is performed in the present work,
allowing a comparison with measurements on the same
footing as was done for the Migdal one. Moreover, again
for the first time, the Baier-Katkov formulas are rewritten in
a form that allows to use the same value of the radiation
length introduced in the Migdal ones. Only then it is
possible to find out whether the data have enough sensi-
tivity to show a clear preference. We cover all available
accelerator experiments for amorphous targets with good
quality: SLAC E-146 [18–20], CERN LPM [21,22], and
CERN LOW-Z [26].
From the point of view of applications, it should be

stressed that, to the best of our knowledge, all publicly
available Monte Carlo codes for particle physics (GEANT 4

[27], EGS5 [28], and EPICS [29]) or cosmic rays (AIRES [30],
CORSIKA [31], and COSMOS [32]) implement the Migdal
cross sections. The highest-energy single-photon spectra
measured under controlled laboratory conditions were
collected by the LHCf collaboration [33] reaching up to
≈3 TeV. The authors found discrepancies in the shower
profile between experiment and EPICS simulations, espe-
cially in the initial part of the shower, where the LPM
suppression is strong. They attribute them to problems in
the channel-to-channel calibration or the description of the
LPM suppression (based on the Migdal approach, as
mentioned). Important motivations to improve as far as
possible the basic electromagnetic cross sections under
strong LPM suppression, used in simulations, derive also
from the recent opening of PeV gamma ray astronomy
[34,35] and the present differences between experiments in
the measured electron and positron primary cosmic ray
fluxes in the TeV region [36,37].
The paper is structured as follows. The available theo-

retical descriptions of the LPM suppression are presented in

Sec. II, with particular emphasis on the Migdal (see
Sec. II C) and Baier-Katkov (see Sec. II D) ones. The
reformulation of the Baier-Katkov approach to use a given
radiation length is described in Sec. II D 3. A first simplistic
comparison between the theories, without the Monte Carlo,
is discussed in Sec. III. Then the need for Monte Carlo
simulations is fully motivated in Sec. IV by showing that the
multiphoton effect (see Sec. IVA) and the pile-up with the
background (see Sec. IVC) are more important than the
difference between the approaches. The implementation of
the Monte Carlo code is briefly summarized in Sec. V, while
most of the technical details are reported in Appendixes A,
B, C, and D. The comparison with the data is presented in
Sec. VI and, finally, the conclusion is offered in Sec. VII.

II. THE BASIC FORMULAS FOR THE DIFFERENT
THEORETICAL APPROACHES

The most important expressions that different authors
proposed over the years to account for bremsstrahlung at
high energies are described in the following with particular
focus on those that take into account quantum coherence
effects. The basic quantity is the probability per unit length
dpγ=dx for an ultrarelativistic electron of total energy E to
emit a photon of energy k, differential in the fractional
photon energy x ¼ k=E, while crossing matter. For a thin
amorphous and homogeneous target of number density n
this can be related to the usual differential cross section per
atom by the expression

dpγ

dx
¼ n

dσ
dx

: ð1Þ

The expressions may not coincide with those in the
original papers and are reported in the precise form utilized
in our calculations since they have been “normalized” (as
far as possible) to a common (modern) radiation length as
given in Tsai [38,39], in order to allow a meaningful
detailed comparison. The reader interested in the historical
development of the theory can find more detailed infor-
mation in the review papers quoted above.

A. Bethe-Heitler

As the simplest expression for the radiation probability
in the collision of a high-energy electron with a single atom
we will adopt the one appearing as Eq. (3.84) in the review
paper by Tsai [38] (corresponding to Eq. (11) by Klein [8]),

dpBH
γ

dx
¼ 1

3X0x
fx2 þ 2½1þ ð1 − xÞ2�g; ð2Þ

valid for the so-called “complete screening limit.” In the
following, we refer to this result as the Bethe-Heitler (BH)
expression.
For the radiation length X0 we assume the numerical

values tabulated in Ref. [38] according to the definition
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X0 ¼
�
4nαr2e

�
Z2

�
ϕ1

4
−
1

3
lnðZÞ − fðαZÞ

�

þ Z

�
ψ1

4
−
2

3
lnðZÞ

���
−1
; ð3Þ

where α is the fine-structure constant, re the classical
electron radius and Z the atomic number of the material.
The function fðαZÞ describes the Coulomb correction
which is due to the distortion suffered by the impinging
plane wave of the electron as it approaches the atomic
nucleus [23], while ϕ1 and ψ1 are Z-independent quantities
characterizing the amount of screening of the nuclear and
electrons electric field. Their detailed expressions, calcu-
lated using the Molière representation of the Thomas-Fermi
model, are also given in Ref. [38]. In particular, in case
of complete screening, −ϕ1=4 ¼ 5.216 ¼ lnð184Þ≡ lnðBÞ
[40]. For later use we also define a “simplified” radiation
length Xc

0 which does not include the Coulomb correction
fðZαÞ and the inelastic scattering term (proportional to Z),
namely

Xc
0 ¼ ½4nαr2eZ2 lnðB=Z1

3Þ�−1: ð4Þ

Equation (2) constitutes a very useful reference commonly
adopted to characterize quantitatively the amount of radi-
ation suppression occurring when the influence of the
medium on the bremsstrahlung process is taken into
account [42].
To arrive at Eq. (2), it is necessary to neglect a term

which does not scale with X0 [compare Eq. (3.83) with
Eq. (3.84) in Ref. [38]] amounting to a maximum reduction
of cross section for x ≈ 0 between ≈1.6% at low Z and
2.4% at high Z. Moreover, the complete screening con-
dition, implying that the atomic elastic and inelastic form
factors are evaluated in the low momentum transfer limit, is
applied for all values of x. While this is certainly correct in
the high-energy limit for E and at small x, it is bound to fail
when x ≈ 1 (i.e. at the high-energy end of the spectrum,
denoted as short-wavelength limit (SWL) in the rest of this
work), when the momentum transfer is not small. It is then
interesting to test Eq. (2) against a more complete calcu-
lation, including the Coulomb correction at the leading
order [23,43,44] with the Furry-Sommerfeld-Maue wave
functions [45,46] and screening with the Olsen-Maximon-
Wergeland [47] additivity rule. Such an approach was
recently validated against accurate experimental data mea-
sured for 500-MeV electrons at MAMI in Ref. [24] and
using exact partial-wave calculations at low energies [48].
The comparison is shown in Fig. 1, adopting the realistic
Hartree-Fock-Slater atomic form factors by Hubbell et al.
[49,50]. When x is small, Eq. (2) is indeed accurate as
expected and any limitation due to the Molière approxi-
mation of the form factors or the exclusion of the term
not proportional to X0 is hardly visible. However, for
E ¼ 500 MeV the discrepancy increases for x≳ 0.5,

reaching ≈10% for x ≈ 0.9. It grows further for x > 0.9.
For E ¼ 2 GeV, the situation is better and at x ≈ 0.9
the discrepancy is about half the value quoted for
E ¼ 500 MeV.

B. The formation length

The BH expression for the probability of emission of a
quantum of radiation of energy k refers to the interaction of
a high-energy electron with a single atom and as such does
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FIG. 1. Comparison of the best available bremsstrahlung cross
sections (SM-LO continuous line), obtained with the Furry-
Sommerfeld-Maue wave functions at the leading order, with the
BH high-energy approximation (dashed line) given in Eq. (2).
The power spectrum kdσ=dk is actually shown to cancel the BH
divergence at low values of k. The SM-LO results take into
account the screening correction with the Olsen-Maximon-
Wergeland additivity rule and the atomic form factors by Hubbell
et al. [49,50].
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not take into account the effect of the environment
(typically represented by the presence of nearby atoms
in a target bombarded by an electron beam) on the radiative
process. The idea of a formation (or coherence) length of
the photon, which was first conceived by Ter-Mikaelyan in
the early fifties of the past century [51], proved to be of
crucial importance in providing physical insight in the
description of high-energy electromagnetic processes and
in estimating the effect of the different influences of the
environment or medium on the radiated energy spectrum.
The concept was described at length in the old and recent
literature (see e.g. Refs. [8–10,42,52]). In its simplest form,
which considers an electron, with a high energy E, colliding
on a single atom and neglects the small scattering angle of
the order mc2=E ¼ 1=γ, it is based on the recognition that
for γ ≫ 1, the minimum value of the uncertainty of the
component of the momentum delivered to the atom, parallel
to the momentum of the impinging electron, is given
approximately by the expression [53]

qk ¼
m2c3x

2Eð1 − xÞ : ð5Þ

It follows, from the Heisenberg uncertainty relation, that
the actual longitudinal dimension of the region in which the
photon is created is of the order

lf0ðE; kÞ ¼
ℏ
qk

¼ 2ℏEðE − kÞ
m2c3k

: ð6Þ

This is usually called the “vacuum formation length” and
is thought of as the distance where coherence of the emitted
wavelets is maintained. It can be shown (see Ref. [10])
that the radiation intensity (as well as the cross section per
atom differential in the photon energy) emitted in the whole
solid angle, for any given k and E, is proportional to the
formation length, meaning that any influence of the
medium in altering this length will reflect as a factor on
the radiated intensity. Limiting the analysis to radiative
electromagnetic processes occurring in amorphous media,
it turns out that the presence of the medium inevitably
results in a shortening of the formation length compared
to lf0. Strictly speaking, this only applies to the nuclear
bremsstrahlung process, namely the one having a Z2

dependence, while the possible suppression of the brems-
strahlung involving atomic electrons is still an open
question, perhaps to be investigated by studying brems-
strahlung on low-Z elements. In turn, the relation lf ≤ lf0
suggests that the BH expression, given above for the
emission probability in a collision with a single atom, is
to be interpreted as a kind of maximum for the radiation
intensity (see e.g. Fig. 1 in Ref. [9]). Such an upper
limit must be respected by any theory utilizing the same
basic physical ingredients and parameters (like electron
screening and radiation length) as Eq. (2) and aimed at

quantitatively describing the influence of the medium in
reducing (by a factor depending both on E and k) the
intensity of the associated bremsstrahlung. It is also worth
noting that, for a fixed energy E of an electron impinging
on a given medium, the radiation probability given in
Eq. (2) is proportional to the formation length lf0 (up to
first-order terms in x ¼ k=E). This further supports the idea
of an upper limit for the radiation emission, although no
definite and rigorous argument valid for the whole radiated
spectrum is known to the authors.
Leaving aside the case in which an external field is

present (typical of the facilities for synchrotron radiation),
the two most important “influences” of the environment in
modifying the formation length and the ones most relevant
to the present work, are the multiple scattering affecting an
electron during the time it takes for the photon to be formed
[5,6] and the so-called “polarization” effect [51,54]. The
main features of the two processes are briefly discussed
hereafter. As is well known, the average multiple scattering
angle θms for an electron of energy E crossing a distance d
of a medium characterized by the radiation length X0 is
given by θms ¼ Ems=E

ffiffiffiffiffiffiffiffiffiffiffi
d=X0

p
where Ems ¼ mc2

ffiffiffiffiffiffiffiffiffiffiffi
4π=α

p
.

This results in an additional contribution to the longitudinal
momentum transferred to the nucleus [to be added to that
given in Eq. (5)] which is of the order ≃kθ2ms=c and thereby
to an overall formation length lf < lf0. Obviously, it is
expected that the multiple scattering will be important
when this contribution to qk exceeds the quantity in Eq. (5).
In particular, when the latter is much smaller than the
former, the coherence length is found to be given by the
expression lf ¼ mc2=Es

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2X0lf0

p
and a suppression factor

due to the multiple scattering can be defined as

SmsðE; kÞ≡ lf
lf0

¼ m2c4

Es

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kX0

EðE−kÞℏc
q ; ð7Þ

which actually reduces the section of the spectrum below a
photon energy kLPM ≃ ðE2E2

sℏcÞ=ðm4c8X0Þ. For instance,
kLPM ≃ 125 MeV for 25-GeV electrons in lead.
The polarization effect (also called the “longitudinal

density effect”) is caused by a phase change in the wave
function of the emitted photon due to a sequence of forward
Compton scatterings on the electrons of the medium.
This can be macroscopically described to a good approxi-
mation (see p. 128 in Ref. [52]) by considering the
modified phase velocity of the photon v ¼ c=N ðkÞ
where N ðkÞ is the refraction index of the medium for
the photon energy k. The relevant medium parameter in
this case is the well-known plasma frequency ωp given by

ωp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4πnZαℏc3Þ=ðmc2Þ

p
. For photon frequencies far

exceeding the atomic ones (as is here the case, the minimum
photon energy we are interested in being ≃1MeV) one can
write N ðkÞ ¼ 1 − k2ϵ=k2 where kϵ ¼ ℏωp. Again the proc-
ess implies the addition of one more term to the longitudinal
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momentum imparted to the atom leading to a reduced
formation length and finally resulting in an attenuation factor

SdðE; kÞ ¼
k2

k2 þ ðγkϵÞ2
: ð8Þ

Clearly, this effect is particularly important for photon
energies k ≤ kp ¼ γkϵ. As it turns out (see p. 118 in
Ref. [52]), the polarization effect significantly reduces the
intensity of the photon spectrum only for k ≤ 10−4–10−5E.
We only have given a short summary of the individual

main effects leading to a reduced intensity of the radiated
photon spectrum, whereas they should be simultaneously
considered in a proper description of their influence on the
shape of the photon spectrum. Such a discussion can be
found in Ref. [10]. Finally, it should also be clear that the
above considerations are only meant to supply a general
guide to the shape of the photon spectrum to be expected in
the bremsstrahlung process for high-energy electrons cross-
ing an amorphous medium, while detailed theories are
needed for a quantitative comparison with experimental
data. The description of some of them is summarized in the
following sections.

C. The Migdal approach

In the papers by Landau and Pomeranchuk [5,6], starting
from the classical expression for the energy radiated (per
unit solid angle and unit frequency interval) by a charged
particle moving along a path rðtÞ;−∞ < t < ∞ (see e.g.
p. 676 in Ref. [55]) approximate expressions were given for
the modification to the BH photon energy spectrum
induced by the multiple scattering of the particle in crossing
the formation length lf0 in a medium. Shortly after, Migdal
[56], still in a completely classical framework, derived a
kinetic equation of the Fokker-Planck type to be obeyed
(when the momentum of the radiated photon is neglected)
by the distribution function of electrons suffering multiple
scattering in atomic collisions determined by a screened
Coulomb potential. The solution of this equation (see
p. 164 in Ref. [52]) leads to an expression describing
the reduced intensity of the low-energy section of the
photon spectrum fully consistent with the reduction factor
given in Eq. (7) above.

1. Effect of multiple scattering

The decisive step in obtaining a fully quantum-mechanical
description of the bremsstrahlung process (taking into
account the momentum of the radiated photon and the
influence of the medium) and one valid over the whole
radiated spectrum was taken by Migdal in Ref. [57].
Indeed, he realized that the state of the radiating particle
in presence of multiple scattering is of mixed type and
therefore properly described by a density matrix in the
momentum representation of the positive energy spinor

eigenfunctions of the free-particle Hamiltonian. A quantum
kinetic equation obeyed by the density matrix (including
the spin degree of freedom and averaged over the spatial
coordinates of the scattering centers) was set up in Ref. [57]
using the Born approximation. This was then utilized in
Ref. [7] where the transition probability from the initial to the
final state was connected to the density matrix. The integral
equation satisfied by the average density matrix is then
simplified by using a series expansion up to second order in
the small parameter given by the change in the momentum
component of the electron, transverse to the photon momen-
tum, in a single scattering process obtaining again a differ-
ential equation of the Fokker-Planck type (see Eq. (24)
in Ref. [7]).
After a long series of transformations, this equation is

solved in terms of the functions ΦðsÞ and GðsÞ (to be
discussed below) where the basic quantity s, defined by
(see Eq. (47) in Ref. [7])

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2c4 X0 αk
4π ℏc 8EðE − kÞ

s
; ð9Þ

essentially expresses (when polarization is neglected) the
square root of the ratio of the minimum longitudinal
momentum given in Eq. (5) to the additional longitudinal
momentum transferred to the nucleus due to multiple
scattering (see also pp. 157–158 in Ref. [52]). It follows
that s ≫ 1 corresponds to the high-energy section of the
photon spectrum, where the effect of the multiple scattering
is negligible, while s ≪ 1 characterizes the suppressed low-
energy section of the spectrum.
A further refinement, aimed at taking into account the

weak energy dependence of the ratio of the maximum to
minimum scattering angle in the single bremsstrahlung
process, led Migdal to define implicitly a parameter sM
slightly different from that given in Eq. (9):

sM ≡ sffiffiffiffiffiffiffiffiffiffiffiffi
ξðsMÞ

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2c4 X0 αk
8EðE − kÞ4π ℏcξðsMÞ

s
: ð10Þ

The function ξðsMÞ is a slowly varying monotonic function
of sM defined by

ξðsMÞ ¼
8<
:

2 if s ≤ s1
1þ lnðsMÞ= lnðs1Þ if s1 < sM < 1

1 if sM ≥ 1

: ð11Þ

In Migdal’s paper the quantity s1 was defined as
s1 ¼ ðZ1

3=190Þ2, while in order to comply as far as possible
with our constraint to consistently refer to a common
value for the radiation length, we must adopt as
explained in detail in Ref. [58] the value defined by
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lnðs1Þ ¼ −ð2α r2eZ2 X0nÞ−1. Notice that the first derivative
of ξðsMÞ is discontinuous for sM ¼ 1 and sM ¼ s1.
Equation (10) should in principle be solved recursively
for sM. As a final expression for the probability per unit
target length of emitting a photon differential in the
fractional photon energy x ¼ k=E, the following relation
is adopted:

dpM
γ

dx
¼ ξðsMÞ

3X0k
fx2GðsMÞ þ 2½1þ ð1 − xÞ2�ΦðsMÞg: ð12Þ

The functions ΦðsÞ and GðsÞ, introduced by Migdal [7],
describe the influence of the LPM effect:

ΦðsÞ ¼ 6s2
�
−
π

4
þ
Z

∞

0

dz e−sz
sinðszÞ
tanhðzÞ

�
; ð13aÞ

GðsÞ ¼ 12s2
�
π

4
−
Z

∞

0

dz e−sz
sinðszÞ
sinhðzÞ

�
: ð13bÞ

It can be seen that GðsÞ and ΦðsÞ approach unity for high
values of the variable s and in this limit Eq. (12) goes over
to Eq. (2).
As a matter of fact, the original treatment by Migdal,

whose solution of the quantum kinetic equation for the
density matrix is based on the Born approximation, did not
include the Coulomb correction, which is, however, auto-
matically brought in when a modern value of X0 is adopted
in Eq. (12). Such a procedure has been applied since the
first detailed comparison with experimental data performed
by Anthony et al. [18,20], but received a full theoretical
support only recently in the work by Voskresenskaya et al.
[25]. As a first step, the Molière multiple scattering theory
was improved to take into account the Coulomb correction
in the elastic cross section [59]. This was then used for
the calculation of the LPM suppression. From Fig. 2 of
Ref. [25], it is possible to see that the approximation of a
Coulomb correction independent from x (or s), as implied
by Eq. (12), is only approximately true. However, for gold,
the largest variation shown is few percent of the asymptotic
value of the Coulomb correction, which is only several
percent of the total cross section, well below present
experimental uncertainties.

2. Effect of the polarization of the medium

In his fundamental paper [7], Migdal tackled also the
problem of including the polarization effect at low photon
energies. To this end, he introduces the quantity Γ ¼ 1þ
ðkp=kÞ2 where kp ¼ γℏωp. It was then shown that to
account for the suppression due to the polarization effect,
it suffices to replace ΦðsMÞ in Eq. (12) with ΦðsMΓÞ=Γ
neglecting the term containing the function G which is
of minor importance at low photon energies. When the

substitution sM → sMΓ is applied consistently to all the
sM-dependent quantities appearing in Eq. (12), we obtain

dpM
γ

dx
¼ ξðsMΓÞ

3X0x

�
x2

GðsMΓÞ
Γ2

þ 2½1þ ð1 − xÞ2�ΦðsMΓÞ
Γ

�
:

ð14Þ

D. The Baier–Katkov approach

Baier and Katkov (BK in the following) also studied
the LPM effect in a series of papers [41,42,60,61], trying
to improve on the original treatment by Migdal [7] and
including several additional features like boundary radia-
tion and multiphoton effects. In order to simplify the
comparison with other theoretical approaches, we restrict
the description of their work to the case of a semi-infinite
target. In addition, the polarization effect will be neglected
for the moment and introduced at a later stage.

1. Effect of multiple scattering

Starting from the general expression (based on the
quasiclassical operator method [62]) for radiation emission
by high-energy electrons along a given classical trajectory,
Baier and Katkov solve the problem of averaging over all
possible trajectories in an amorphous medium by using the
classical kinetic equation method arriving at the following
expression for the mean transition probability differential in
the fractional photon energy x ¼ k=E:

dpBK
γ

dx
¼ 2α

γ2
ℜ

�Z
∞

0

dt expð−itÞðR1φ0ð0; tÞ

þ R2p · φð0; tÞÞ
�
; ð15Þ

where

R1 ¼
x2

1 − x
; ð16aÞ

R2 ¼
1þ ð1 − xÞ2

1 − x
; ð16bÞ

and p is the momentum operator in the two-dimensional
transverse (to the original electron momentum) space
and the functions φμ ≡ ðφ0;φÞ satisfy a Schrödinger-type
equation in the two-dimensional space of the impact
parameter ρ ¼ b=γ where b is measured in units of the
reduced Compton wavelength ƛc ¼ ℏ=ðmcÞ.
The Schrödinger-type equation is arrived at by intro-

ducing the Fourier transform of the scattering cross section
on a screened Coulomb potential evaluated in the Born
approximation and reads (using nondimensional variables
as detailed in Ref. [11])
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i
∂φμ

∂t ¼ Hφμ;

H ¼ p2 − iVðρÞ;
p ¼ −i∇ρ; ð17Þ

to be solved using the initial conditions φ0ðρ; 0Þ ¼ δðρÞ
and φðρ; 0Þ ¼ pδðρÞ.
In Eq. (17), the “potential” V (which, due to the

azimuthal symmetry around the initial electron momentum,
depends only on the magnitude of ρ) reads

VðρÞ ¼ −Qρ2
�
lnðγ2θ21Þ þ ln

�
ρ2

4

�
þ 2C − 1

�
; ð18Þ

where Q ¼ ð2πðℏcÞ3Z2 α2 nEð1 − xÞÞ=ðm4c8xÞ, C is the
Euler-Mascheroni constant (C ¼ 0.577::), and θ1 ¼
ðℏcÞ=ðEasÞ is the angular parameter appearing in the
scattering cross section (as ¼ 0.81Z−1=3 Å is the screening
radius). The potential V is then refined to take into
account the Coulomb correction by defining a parameter
θ2 ¼ θ1efðZαÞ−1=2 where f is the Bethe-Maximon Coulomb
correction rederived, by a different method, in Appendix A
of Ref. [41]. The authors then determine the effective
impact parameter ρc giving the main contribution to the
cross section. As it turns out, when the root-mean-square
scattering angle over a distance of a formation length is
much less than 1=γ, one can assume ρc ¼ 1, whereas, in the
opposite case, ρc can be found by solving the transcen-
dental equation

4Q ρ4c ln

�
1

γ2 θ22 ρ
2
c

�
¼ 1; ð19Þ

which always results in a value ρc ≤ 1. The authors
then define the all-important function Lc ≡ LðρcÞ ¼
− lnðγ2 θ22 ρ2cÞ. This function has an obvious minimum
value L1 ≡ Lð1Þ ¼ − lnðγ2 θ22Þ which is estimated as

L1 ¼ 2 lnðBZ−1
3Þ − fðZαÞ: ð20Þ

The function Lc has also a maximum value since, if ρc
becomes comparable to the nuclear radius Rn, the form of
the potential VðρÞ changes completely (it acquires a
harmonic oscillator form [11]) and the expressions derived
below would no longer be valid. The maximum value of Lc
is currently estimated as 2L1. The next step is to decompose
the potential VðρÞ in Eq. (18) (with the substitution
θ1 → θ2) as a sum of two terms, a main one given by Vc ¼
QLðρcÞρ2 and a minor one (that will be treated as a
perturbation) given by vðρÞ ¼ −Q ρ2ð2Cþ lnðρ2=ð4ρ2cÞÞÞ
(notice that a term lnð1=ρ2cÞ has been added and subtracted
in Eq. (18) so that the final result for the total radiation
probability will be independent of ρc up to the first order
in vc). Through a lengthy and complex calculation, Baier

and Katkov were able to solve Eq. (17), where only the
main term Vc is considered, and after inserting this solution
into Eq. (15) arrive at the following expression for the
probability of radiation per unit length, differential in the
fractional photon energy x ¼ k=E [63],

dpBKM
γ

dx
¼ αν20mc2

12π γ ℏc

�
R1G

�
sBK
2

�
þ 2R2Φ

�
sBK
2

��
; ð21Þ

where ν20 ¼ 4QLc, sBK ¼ 1=ð ffiffiffi
2

p
ν0Þ ¼ 1=ð2 ffiffiffiffiffiffiffiffiffiffiffi

2QLc
p Þ, R1

and R2 have been defined in Eqs. (16), and the functions G
and Φ are those defined in Eqs. (13). A discontinuity in the
slope of the photon energy spectrum is expected for the
minimum value of k resulting in ρc ¼ 1.
It is interesting to compare the radiation intensity given

in Eq. (12) by Migdal with that given in Eq. (21) by Baier
and Katkov. However, since the Coulomb correction and
inelastic scattering were not included in the Migdal theory,
a proper comparison is only obtained by setting fðZαÞ ¼ 0
in Eq. (20) and substituting the previously defined (in
Sec. II) Xc

0 for X0 in both Eq. (10) [which influences the
definition of ξðsMÞ] and Eq. (12). The ratio R of the main
term in the BK approach to the probability of the Migdal
theory is given by

R ¼ L1 − lnðρ2cÞ
ξðsMÞ lnðB=Z1

3Þ : ð22Þ

As an example, the value of R as a function of the photon
energy k for a 287-GeV electron beam crossing an iridium
medium is shown in Fig. 2. It is seen that differences up to
13% occur, the Migdal approach always lying above the
main term of the BK theory. The discontinuities of the first
derivative of R around k ¼ 30 GeV and k ¼ 153 GeV are
due to the discontinuities of the derivative of ρcðkÞ (at
ρc ¼ 1) and of ξðsMÞ (at sM ¼ 1), respectively.
As anticipated above, the correction vðρÞ to the potential

is treated perturbatively by expanding the electron propa-
gator and keeping terms up to first order in vðρÞ.
The final expression for the correction term to the

radiation probability requires the definition of several
functions such as

GBKðzÞ ¼
Z

z

0

ð1 − y cothðyÞÞdy

¼ z −
z2

2
−
π2z
12

lnð1 − e−2zÞ þ Li2ðe−2zÞ
2

;

gBKðzÞ ¼ z coshðzÞ − sinhðzÞ;
dðzÞ ¼ Hð1 − ν0Þ lnðν0Þ − lnðsinhðzÞ − CÞgBKðzÞ

− 2GBKðzÞ coshðzÞ; ð23Þ

where H and Li2 represent the Heaviside unit step function
and the dilogarithmic function, respectively.
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In addition, it is necessary to introduce the functions
D1ðν0Þ andD2ðν0Þ via the following integral representations:

D1ðν0Þ¼
Z

∞

0

dz
expð−pzÞ
sinh2ðzÞ

�
dðzÞsinðpzÞþπ

4
gðzÞcosðpzÞ

�
;

ð24aÞ

D2ðν0Þ¼
Z

∞

0

dz
expð−pzÞ
sinh3ðzÞ

��
dðzÞ−1

2

�
½sinðpzÞþcosðpzÞ�

þπ

4
gðzÞ½cosðpzÞ−sinðpzÞ�

�
; ð24bÞ

where p ¼ 1=ð ffiffiffi
2

p
ν0Þ.

The final expression for the correction term of the
radiation probability per unit length then reads

dpBKC
γ

dx
¼ αmc2

4πγ ℏcLc
ðD1ðν0ÞR1 þD2ðν0ÞR2

ffiffiffi
2

p
ν0Þ: ð25Þ

2. Effect of the polarization of the medium

Baier and Katkov also estimated the influence of the
medium polarization on the radiation probability. They first
introduce the basic quantity κ (similar to the quantity Γ of
the Migdal approach introduced in Sec. II C 2),

κ ¼ 1þ E
E − k

�
kp
k

�
2

: ð26Þ

As it turns out, to include the polarization effect, it suffices
to implement the following substitutions (listed on p. 298

of Ref. [11]) in Eq. (21) and Eq. (25) of the previous
subsection:

ρ → ρ̃ ¼ ρ
ffiffiffi
κ

p
; ð27aÞ

Q → Q̃ ¼ Q
κ2

; ð27bÞ

R1 → R1; ð27cÞ

R2 → R̃2 ¼ κR2; ð27dÞ

L̃c ≡ L̃ðρ̃cÞ ¼ ln

�
κ

γ2 θ22 ρ̃
2
c

�
; ð27eÞ

ν0 → ν̃0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Q̃ L̃ ρ̃c

q
: ð27fÞ

Notice in particular that L1 ≡ Lðρc ¼ 1Þ ¼ L̃ðρ̃c ¼ 1Þ. The
main consequence of these substitutions is that ρ̃c can
assume the value 1 not only for high enough values of
x ¼ k=E but also for small enough values of x. In addition,
the quantity ν̃0 is no longer a monotonic decreasing
function as k increases, but starting from zero (due to
the fact that Q̃ → 0 as k → 0) reaches a maximum and then
decreases monotonically. This in turn will imply that the
slope of the photon energy spectrum could possibly exhibit,
depending on the energy E, two discontinuities. As stated
in Sec. II B, the polarization effect results in a strong
suppression of the radiation only for photon energies
below ≃10−4E.

3. Normalization to an arbitrary radiation length

In presenting the BK approach for the spectral distribu-
tion of the radiation in an infinite amorphous medium, no
reference has yet been made to the concept of radiation
length, since the really basic quantity of the theory is L1.
However, as remarked at the beginning of Sec. II, in order
to compare different theories on the same basis, we need to
refer them, for any given material, to the same radiation
length which we have chosen to be the one reported in
Ref. [38]. Fortunately, the authors of Ref. [11], when
discussing the integral characteristic of bremsstrahlung,
provide a very useful relation between the radiation length
and L1 (see Eq. (2.36) in Ref. [11]) which is here reported
using our notation

X0 ¼
9L1

1þ 9L1

L0
rad; ð28Þ

where L0
rad ¼ ðm2c4Þ=ð2Z2α3nðℏcÞ2L1Þ.

Indeed one can invert this relation and derive L1 from the
value of the radiation length given in Ref. [38]. This value
of L1 is then substituted for the one given by Eq. (20),
which defines the minimum value assumed by the function
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FIG. 2. Ratio of the main term of the BK radiation intensity to
the Migdal one; see Eq. (22). To compare both approaches on the
same footing, the Coulomb correction is omitted from the BK
expression and Xc

0 is used for X0 in both Eq. (10) and Eq. (12).
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LðρcÞ, whenever appropriate to obtain the final expressions
actually used in our calculations [see Eqs. (21) and (25)].
It is anyway interesting to compare (for each atomic

number Z) the radiation length obtained from Eq. (28),
using for L1 the value of Eq. (20), and the one given in
Ref. [38]. The percentage deviation between the two values
is reported in Fig. 3 as a function of Z. It is seen that
important differences arise for low-Z materials so that a
direct comparison of the BK approach with different
theories would have been misleading had we avoided to
“normalize” to a common radiation length. The discrepancy
is most probably due to the different atomic form factors
adopted. In Ref. [11], a simple parametrization of the atomic
screening function with a single exponential was used
resulting in the Schiff approximation for the form factor
(see Eq. (2.14) in Ref. [11]). The parameter of the expo-
nential is adjusted to reproduce on average all atoms with
a Z dependence taken from the Thomas-Fermi model. In
Ref. [38], a sum of three exponentials is used to approximate
the screening function leading to the Molière approximation
for the form factor (see Eq. (3.66) in Ref. [38]). Again, the
parameters of three exponentials are adjusted to reproduce
on average all atoms with a Z dependence taken from the
Thomas-Fermi model. It is in general expected that the
Molière approximation is superior to the Schiff one [64].

E. The Blankenbecler-Drell approach

A completely different approach to the problem of the
LPM suppression was taken by Blankenbecler and Drell
[65] (BD in the following). They started by solving a
Klein–Gordon equation in an eikonal approximation
including terms up to first order (in the inverse electron

initial and final momentum) in the total phase of the wave
function while neglecting these terms in the expression for
the amplitude. This approximation enables also to include
electron spin effects in a simple way at a later stage of the
calculation (see Ref. [15] in Ref. [65]). Such an approach
basically takes into account, in the stated approximation,
the total phase difference and momentum variation accu-
mulated by the wave function as the electron propagates
between all possible pair of points having coordinates
ðz1; z2Þ (with z1 ≤ z2) along the axis of cylindrical sym-
metry provided by the initial direction of the impinging
electron; these points can even lie outside the physical
dimensions of the target. The approach does not include the
concept of cross section per atom as it considers the whole
target as a single unit. The theory is valid for any target
thickness t and even for inhomogeneous amorphous targets
including the case of several slabs of any composition
separated by gaps [66]. For the simplest case of a
homogeneous target of thickness t and radiation length
X0 (for which no “adjustment” is necessary so that the
above-mentioned tabulated values of Tsai [38] can safely
be used) the final result for the probability of emission
per unit length, differential in the fractional photon energy
x ¼ k=E can be concisely written as

dpBD
γ

dx
¼ 4ð1 − xÞ Jðt; xÞ

3X0x
: ð29Þ

Here the calculation of the function Jðt; xÞ requires, for
each value of x, the careful evaluation of a double integral
of oscillating functions of two variables ðb1 ¼ z1=lf ; b2 ¼
z2=lfÞ (with b1 ≤ b2) each ranging from −∞ to þ∞. All
the details can be found in Ref. [66]. The proper evaluation
of the integral [which is actually conveniently split over
four integration regions in the ðb1; b2Þ plane] requires the
introduction of a convergence factor and has been imple-
mented in a dedicated code. It must also be mentioned that
in a subsequent paper [67], Blankenbecler added a correc-
tion term (usually referred to as δ term) to the previous
formula in an attempt to take into account correlations
between amplitude and phase change in the wave function
during the electron propagation. This generally leads to a
significant predicted reduction (up to about 20%; see
Ref. [67]) of the radiation intensity. The question whether
the inclusion of the δ term could result in an improved
matching of the theory to the experimental data remained
somewhat controversial for some time [8,26,68]. However,
the authors of Ref. [69] eventually not only presented
convincing experimental data which clearly support the
superiority of the approach developed in Ref. [65] without
corrections, but also raised some doubts about a possible
inconsistency in the procedure of adding the δ term, given
that terms of the first order in the inverse electron
momentum in the amplitude of the wave function had
been neglected in the original eikonal approximation.
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FIG. 3. Relative difference of the radiation length, X0, obtained
from the BK expression, Eq. (28), using for L1 the value of
Eq. (20) from the value tabulated in Ref. [38] and used in the
present work by a redefinition of L1, as explained in the text.
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This is why the results of our calculations including the δ
term (which also point to an excessive suppression) are not
reported in this paper. Unfortunately, the BD approach does
not include the dielectric suppression at low photon
energies and, while taking into account in a natural way
the surface effects, cannot easily be corrected for multi-
photon emission, which plays an important role in almost
all experimental conditions as remarked by Klein [8].
Finally, no discontinuity in the slope of calculated radiation
spectra appears anywhere in this approach.

F. Other theoretical approaches

The accurate measurement of the LPM effect at SLAC
[20] encouraged theoreticians to find alternative and
possibly more accurate methods to describe the suppression
effects. We very briefly describe the ones not mentioned
above and give some explanations why they are not
considered any further in the present work.
Baier et al. [70] based their theory on the multiple

scattering of high-energy electrons on a large number of
scattering centers fixed in the medium. The LPM sup-
pression was ascribed to the destructive interference
between radiation amplitudes from a number of scattering
centers. However, only the soft photon limit was consid-
ered and no general formula was given for an accurate
description of the radiation process valid over the whole
photon energy range. Moreover, different mechanisms
for suppression, like that due to the polarization of the
medium, were not considered.
Zakharov [12] introduced since 1996 the so-called

“light-cone path integral approach” to describe the LPM
suppression effect. The intensity of the photon radiation
is expressed in terms of the Green function of a two-
dimensional Schrödinger equation. Simple expressions for
the radiation probability are only obtained for the soft
photon limit and an infinite medium (see Eq. (45) in
Ref. [71]) and, in such a case, the results are almost
coincident with those by Migdal. In the general case, very
complicated expressions for the radiation probability,
involving multiple integrals, are given (see e.g. Eq. (52)
in Ref. [71]). These were successfully compared both to the
SLAC E-146 data in Ref. [71] and to the high-energy
CERN LPM data in Ref. [72]. However, the lack of
adequate information in the description of the relevant
formulas, as well as the absence of any consideration of
dielectric suppression, led us to renounce the implementa-
tion of a Monte Carlo code for this approach.
As a last issue, it should be mentioned that Baier and

Katkov [11], as well as Zakharov [71], developed versions
of their approaches capable of dealing with the presence of
boundary surfaces for finite targets like the BD approach.
These effects are very interesting and lead to a direct
measurement of the formation length with structured
targets [26]. However, these formulations are incompatible
with the basic Monte Carlo philosophy, since they do not

localize the emission of a photon in a particular region of
the target [8].

III. GENERAL COMPARISON OF THE THEORIES

We are now in a position to compare the results of the
three approaches including quantum coherence effects for
a few specific cases. A general preliminary remark is in
order: in the BD theory, one has to introduce a specific
value for the target thickness and no restriction on the
validity of the results is introduced by the consideration of
the (k-dependent) coherence length. On the contrary, an
infinite medium is assumed both in the Migdal approach
and in the version of the BK theory which is considered
in the present work, so that the comparison with the BD
approach is only meaningful for the section of the spectral
probability distribution for which the coherence length is
smaller than the assumed target thickness in the BD theory.
It must also be noted that a comparison of this type was
previously reported in Fig. 9 in Ref. [26] for a 178-GeV
electron beam impinging on a thin (1.97% X0) carbon
target. However, in that study no attempt was made to
compare the three approaches for the same value of the
radiation length, as is done in the present work, so that the
drawn conclusions might be different in some details from
those presented hereafter. Figure 4 shows the spectral
distribution of the quantity xdpγ=dx in units of mm−1

for a 287-GeVelectron beam impinging on a 128-μm-thick
iridium foil (one of the cases covered by the CERN LPM
experiment). The BH result is compared to the three
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FIG. 4. Comparison of the predicted power spectra for a
287-GeV electron beam impinging on a 128-μm-thick iridium
target. Different curves are calculated according to the BH,
Migdal, BD, and BK approaches as specified in the legend.
For the latter, the main term as well as the correction term are
reported separately. Polarization effects are completely negligible
for the photon energy range considered.
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theories considered here for the LPM suppression (for
the BK approach both the contribution of the main and
correction terms are shown separately together with their
sum). In this case, the coherence length, as given in Eq. (6),
is larger than the target thickness for photon energies lower
than 1 GeV. The polarization effect is quite negligible for
the photon energy range displayed in the figure so that a
valid comparison with the results of the BD approach,
which does not include this effect, is possible. Here is a list
of comments to this figure.
(1) All approaches agree with the BH limit at the SWL,

where the formation length is smallest.
(2) The Migdal theory overshoots the BH approach in

the 45–125 GeV range with a maximum deviation
of 2.6% at 72 GeV. This was already pointed out at
lower energies in Ref. [20]. The most probable
origin are the numerous approximations in the
theory even though it is almost impossible to
pinpoint the reason for the discrepancy in that
particular energy range.

(3) The Migdal approach exceeds the BK theory
(mainþ correction term) by 5% in the photon
energy range 15–45 GeV, suggesting the possibility
of an experimental check to discriminate between
the two theories.

(4) The correction term in the BK approach reaches a
maximum of 8% of the total probability at 31 GeV
where a discontinuity in the derivative of the
spectrum is apparent. A less apparent discontinuity
(of the opposite sign) is also present at the same
energy in the main term, so that the total spectrum
appears smooth at the 1% level.

(5) Remarkably, for photon energies larger than 1 GeV
the BK and BD approaches, based on quite different
approaches, agree to within 4%.

As an example which illustrates the influence of the
polarization effect on the predicted theoretical photon
spectrum, we report in Fig. 5 the calculated spectra for a
25-GeV electron beam impinging on a 3% X0 aluminum
target (one of the cases covered by the SLAC E-146 data)
showing separately the Migdal and BH spectra and
the main term, the correction term, and their sum for the
BK approach, including and excluding the polarization
effect. The above- mentioned condition for a formation
length (reduced by the LPM and polarization effect) smaller
than the target thickness is satisfied for photon energies
larger than ≈0.3 MeV. One notes that the polarization
effects are indeed most important in the k≲ 5-MeV region.

IV. CONSIDERATIONS ON MULTIPHOTON
EFFECTS

The theoretical calculations of the bremsstrahlung cross
section described in Sec. II cannot be directly compared to
experimental data because of the thickness of the targets
considered here. In particular, a lower limit on the thickness

is imposed by the neglect of the presence of boundary
surfaces, as mentioned in Sec. III. Three main sources of
distortions have then to be taken into account. They are
discussed in turn in the following subsections. The most
straightforward way to handle all of them, and the one
followed in the present work, is to implement the theo-
retical cross sections in a Monte Carlo program, as
described in Sec. V. To justify the need for such an effort,
the magnitude of the three distortions is illustrated under
typical conditions by using such a code.

A. Direct multiphoton effects

A single crossing of the target by one electron can result
in the emission of multiple photons, which, reaching the
calorimeter, give rise to a signal proportional to the sum of
their energies. For such a reason, it is necessary to clearly
distinguish between the energy of the photon radiated in a
single bremsstrahlung act, indicated by k, and the total
energy deposited in the calorimeter as the sum of all the
emitted photons by a single electron, indicated by K
hereafter. The area of the spectrum is not altered by
multiphoton emission (if not at least one photon is emitted,
no energy is deposited in the calorimeter), but its shape is.
In particular, photon pile-up tends to deplete the low-
energy part of the spectrum and enrich the high-energy
one [20]. A typical example is shown in Fig. 6 for the BK
approach and the CERN LPM data. It is apparent that the
bremsstrahlung cross section is far from the data, while
the Monte Carlo, accounting for the emission of multiple
photons, is much closer.
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FIG. 5. Comparison of the predicted power spectra for a
287-GeV electron beam impinging on a 3% X0 aluminum target.
Different curves are calculated according to the BH, Migdal, and
BK approaches both including and excluding dielectric suppres-
sion as specified in the legend. For the latter, the main term as
well as the correction term are reported separately.
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The need to include multiphoton emission was recog-
nized both in the experimental [20,22] and theoretical
works [11,60]. However, while the former employed
Monte Carlo simulations, which are essentially exact, the
latter developed analytic approximations giving explicit
correction formulas. The accuracy of such expressions was
investigated in detail in our previous publication [73] for
the BH and Migdal cross sections. Here we extend that
study by considering the BK approach.
A multiplicative multiphoton correction factor is defined

in analytic calculations [11,60,72] as

fðKÞ ¼ K dN
dk

N tnðk dσ
dkÞk¼K

; ð30Þ

where N is the total number of events in the dN=dK
spectrum (not to be confused with the total number of
impinging electrons N0 used in Sec. VI) and t is the target
thickness. The same quantity can be obtained from the
Monte Carlo simulations as [73]

fMCðKÞ ¼
ðdNdKÞmph

ðdNdkÞfph k¼K

1 − expð−t=λÞ
t=λ

; ð31Þ

where multiphoton “mph” and first photon only “fph”
spectra refer to the same set of events and λ is the mean-free
path for the bremsstrahlung interaction. All other processes
are disabled for the simulations considered in the present
subsection.

Baier and Katkov [11,60] started from the Landau
solution of the kinetic equation valid under the assumption
that the particle energy loss is much smaller than the
particle energy. Then they were able to find an expression
for f valid in the case of the BH cross section even when an
arbitrary number of hard photon is emitted, namely

fBHBKðKÞ ¼ ð1þ βÞ1=4
�
1þ β

4

�
3=4
�
K
E

�
β

; ð32Þ

where β ¼ 4t=ð3X0Þ. Baier and Katkov claim that this
expression is valid for all photon energies and all tar-
get thicknesses, but this could not be confirmed by
Monte Carlo simulations [73]. However, it is a reason-
able approximation for the thicknesses considered in the
present work.
Baier and Katkov [11,60], starting again from the Landau

solution, found also the expression for f in the case of
strong LPM suppression (described by their approach) valid
for β ≪ 1:

fLPMBK ðKÞ ¼
�
kc
E

�
β

Γð1þ βÞð1þ βÞ1=4
�
1þ β

2

�
3=4

e−βðCþc1Þ

×

 
1þ 3π

2
ffiffiffi
2

p β

ffiffiffiffiffi
K
kc

s !
; ð33Þ

where Γ is the Euler Gamma function, the constant c1 can be
calculated, once and for all, from the integral

c1 ¼ 12

Z
∞

0

ln z

�
1

z3
−
cosh z
sinh3z

�
dz; ð34Þ

and

kc ¼
4π

α
ℏc

γ2

L0
rad

ð35Þ

is the photon energy below which the LPM suppression
shows up. By assumption, Eq. (33) is valid only for k ≪ kc,
where the LPM suppression is strong.
Finally, Baier and Katkov [11,60], still employing the

Landau solution, give an expression for a thin target β ≪ 1
and an arbitrary cross section,

f1BKðKÞ ¼ exp

�
−tn

Z
E

K

dσ
dk

ðE; kÞdk
�
: ð36Þ

Here, this integral has been evaluated numerically employ-
ing the cross section corresponding to the sum of
Eqs. (21) and (25).
All the three previous approximations, Eqs. (32), (33),

and (36), are compared to Monte Carlo simulations in
Fig. 7 for the case of a 287-GeV electron beam impinging
on a 128-μm-thick iridium target. The expression for the
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FIG. 6. Comparison of the BK approach (continuous line) [see
Eqs. (21) and (25)] with the CERN LPM data for a 287-GeV
electron beam impinging on a 128-μm-thick iridium target (solid
triangles). The result of a Monte Carlo simulation, based on the
same theory, and with all other interaction processes disabled, is
also shown (solid circles).
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LPM case [Eq. (33)] works with an error of ≈2% for
K ≲ 10 GeV, but then fails more and more deeply close to
the SWL. The expression for the BH case [Eq. (32)] works
essentially in the complementary region K ≳ 10 GeV.
Finally, Eq. (36) performs better than Eq. (33) for
K ≲ 30 GeV, but still fails more than Eq. (32) close to
the SWL. Baier and Katkov [11] state that to compare their
approach with the CERN LPM data they employed
Eq. (36). For the SLAC E-146 measurements, they mention
[11,60] an interpolation of Eqs. (32) and (33) with no
further details. Given the present comparison with exact
Monte Carlo simulations, it is difficult to imagine that their
accuracy is better than ≈2%, getting worse close to
the SWL.

B. Multiphoton effects coupled to self-absorption

Beyond multiphoton emission, a Monte Carlo code
allows to take into account other sources of distortion in
the shape of the spectrum that are not included (and hardly
could be) in the approximate analytic approaches [11,60]:
namely pair production, Compton scattering, and photo-
electric absorption in the target. To illustrate their impor-
tance in one typical case, a 25-GeV electron beam
impinging on a 3.12-mm-thick aluminum target is consid-
ered in Fig. 8. The difference of a simulation with
bremsstrahlung (BK approach) and pair production
enabled with respect to one where only the former is
taken into account (solid squares), clearly indicates that for
K ≳ 20 MeV an attenuation is present, which increases up

to to ≈2% at the SWL. The enhancement for K ≲ 20 MeV
is less expected and it is an example of a hard to predict
consequence of multiphoton emission [73]. Consider an
event where one low-energy and one high-energy photon
have been emitted by the same electron crossing the target.
The calorimeter only registers the sum of the two energies,
resulting in the depletion of the low-energy part of the
spectrum. However, if the high-energy photon is absorbed
in the target by pair production, the surviving low-energy
one can reach the calorimeter producing a signal (remem-
ber that electrons and positrons are swept away by the
magnets present in the setup and do not reach the
calorimeter). If beyond pair production, also Compton
scattering and photoelectric absorption are enabled, the
difference with respect to a simulation with only brems-
strahlung (solid circles) is now a reduction of the spectrum
for all values of K with a steep increase in attenuation at
the lower end. It can be mentioned that few simulations
have also been performed taking into account the influence
of the Fermi motion of bound electrons inside atoms
on Compton scattering with the GLECS extension by
Kippen [74]. No differences were found for the photon
energy range of interest in the present work.
We note that the photon path was kept in vacuum in the

SLAC E-146 setup to allow to reach down to photon
energies of 200 keV. The only material present between the
target and the calorimeter was a thin aluminum window
with a thickness of 0.7% X0 [20]. However, since pair
production in this material hardly results in a loss of signal
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Monte Carlo calculations [see Eq. (31)] for a 287-GeV electron
beam impinging on a 128-μm-thick iridium target. The three
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(the window acting like a preshower) no account in the
simulation is necessary. The photon path was not kept in
vacuum in the CERN LPM experiment, but the lowest
photon energy considered was 2 GeV [22]. Thus, the only
relevant attenuation process is pair production, which leads
to a loss of collected energy in the calorimeter only if it
happens in the small distance between the target and the
deflecting magnet. Background estimates [22] suggest that
all the crossed materials are equivalent to 0.7% X0 [22].
The setup of the CERN LOW-Z experiment was also not
kept in vacuum and the minimum photon energy consid-
ered was about 0.05 GeV. The background intensity was
somewhat worse, corresponding to 3% X0 [26]. The
attenuation in such media is approximately taken into
account when the secondary target, representing the back-
ground, is placed after the primary one in the Monte Carlo
simulations (a detailed account would require inclusion of
the full setup).
To summarize, the neglect of secondary processes can

produce an error in the theoretical predictions at least
around 1 to 2%, depending on the value of K and the
amount of background. Such a correction was taken into
account in previous comparison of the experiments with the
Migdal approach [22,58,73,75], but not in the only avail-
able confrontation with the BK one [11,60], based on
the analytic approximations. Thus, the uncertainty in the
inclusion of the multiphoton and secondary processes in the
results presented by Baier and Katkov are possibly rather
close to the discrepancy between theirs and the Migdal
approach. The first comparison of the Migdal and BK
approaches on the same footing is the one presented in the
present work.

C. Multiphoton effects coupled
to background subtraction

The CERN LPM experiment covered the highest ener-
gies reached so far in measurements of the LPM suppres-
sion. As a result of the more difficult experimental
conditions, despite all efforts [21,22], the photons from
the background amounted to 0.7% X0, as mentioned. The
employed thicknesses of the targets were ≈4% X0, leading
to a non-negligible probability of photons from brems-
strahlung interactions in the target and the background
media simultaneously reaching the calorimeter. As a
consequence, their energy is summed causing a distortion
of the measured spectrum, closely resembling that origi-
nated by multiphoton emission in a single event. As first
shown in Ref. [68], the simple subtraction of a “no-target”
run is not a full solution to this problem and does not allow
to completely remove all distortions resulting from pile-up
of photons emitted from the target with the background.
Thus, it is necessary to apply the same background
subtraction in the simulation: one run is performed with
the nominal target (e.g. iridium with a thickness of 128 μm)
and a secondary target (e.g. carbon because most of the

elements producing the background have low Z) and
another run with the secondary target alone. Then the
two results are subtracted, to reproduce the procedure
employed in the experiment. The comparison with mea-
surements of the target-only Monte Carlo and the more
correct procedure just described is shown in Fig. 9. The
distortion produced by the background subtraction is not
negligible and well comparable to the difference between
the Migdal and BK approaches. It was not taken into
account in all previous publications [11,21,22,58,73,75]
and is included for the first time in the present work.
On account of the distortions produced by background

subtraction, as realized in Ref. [68], it was chosen not to
apply this procedure in the analysis of the CERN LOW-Z
data [26]. Consequently, the data can only be compared
with Monte Carlo simulations including the pile-up with
the background and cannot be handled by the analytic
approximations discussed in Sec. IVA.

V. DEDICATED MONTE CARLO

First numerical implementations of approaches describing
the LPM effect were developed for Monte Carlo codes in
the seventies by three groups: one in Japan, one in the U.S.,
and one in Bulgaria. The main emphasis was the study of
electromagnetic showers initiated by ultrahigh-energy cos-
mic rays. The first group worked alone and validated the
results against analytic approximations [76], while the other
two joined [77], arriving at a common consensus that has
been the basis of all subsequent efforts. Nowadays, the
Migdal approach is available in Monte Carlo codes for the

0

0.001

0.002

0.003

0.004

0.005

1 10 10
2

Ir
E =   287 GeV

data

only target

target with backgr. sub.

Total rad. energy K [GeV]

d
N

/d
lo

g
(K

) 
/ N

0

FIG. 9. Comparison of a full Monte Carlo simulation, employ-
ing the BK approach and taking into account all secondary
processes, with the CERN LPM data for a 287-GeV electron
beam impinging on a 128-μm-thick iridium target. The target
alone (solid circles) and the target and background with back-
ground subtracted (solid squares) are shown.

A. MANGIAROTTI, P. SONA, and U. I. UGGERHØJ PHYS. REV. D 104, 096018 (2021)

096018-14



simulation of extensive air showers, like AIRES [30],
CORSIKA [31], or COSMOS [32] and even in general-purpose
packages, like GEANT 4 [27], EGS 5 [28], or EPICS [29]. We
also developed our version of the Migdal approach [58,75],
which improves on all the others for the careful handling of
the discontinuity present in the first derivative of the cross
section. It is based on the GEANT 3 [78], since, when the work
begun, GEANT 4 had not yet gained widespread acceptance.
It was used to compare with the CERN LPM data [58]. To
the best of our knowledge, no implementation of the BK
approach in a Monte Carlo code has yet been reported. Thus
we extend our previous work on theMigdal approach [58] to
the BK one by reusing, in particular, the careful handling of
the discontinuity of the first derivative of the cross section.
As discussed in Sec. IV B, the emitted photon can be

absorbed inside the target due to the pair production
process. This has the consequence that the program needs
to handle positrons as well. In the present implementations,
the same cross sections for electrons are applied to
positrons. Due to the different kinematics [8], the LPM
suppression in pair production is small for the energies of
interest here (e.g. for 1-TeV gamma rays in iridium, the
maximum reduction of the cross section over the full
electron-positron energy range is ≈1% [58]) and is there-
fore not taken into account.
In general, dielectric suppression is only important for

low photon energies (see Sec. II B), and its inclusion is not
necessary under some conditions, like those of the com-
parison with the CERN LPM data. Therefore, the program
has the option to disable dielectric suppression to simplify
the logic and speed up the computation.

A. Implementation

Two main difficulties have to be overcome for an efficient
implementation of the BK approach in a Monte Carlo code.
First, the functions G and Φ [see Eqs. (16)] and the

functions D1 and D2 [see Eqs. (24)] need to be evaluated
each time the photon energy k is sampled, so that direct
use of their definition is very inefficient. Approximate
methods for the evaluation ofG andΦ were given by Stanev
et al. [77] employing rational functions, and were widely
utilized in essentially all programs written afterwards
[27,28,58,75], one notable exception being Ref. [30], where
other approximations, still based on rational functions, were
proposed. Here, the original one by Stanev et al. [77] is
maintained. A fit to the functions D1 and D2 in terms of
rational functions of ν0 has been developed for different
ranges of the variable to ease the repetitive evaluation of D1

and D2 in the calculations presented here; an analysis of its
accuracy together with the values of the coefficients
employed can be found in Appendix A.
Second, for a given material, electron energy E, and

photon energy k, the corresponding value of ρ̃c has to be
determined by solving Eq. (19). The simple bisection
method has been employed because, once proper

bracketing points are selected, its convergence is always
guaranteed. Typically ≈ 20 iterations are needed to achieve
a relative precision better than 10−8, which can be very fast
given the simplicity of the function that needs to be
evaluated at each step. As remarked, ρ̃c cannot exceed 1.
Note that the efficiency can be improved by checking the
value of the variable ν̃21 ¼ 4Q̃L̃1: if it is greater than 1, the
variable ρ̃c can be set to 1 and the bisection procedure
skipped.
As discussed in Sec. II D 2, a discontinuity in the first

derivative of the cross section is present both in the main
term and in the correction term for the photon energy
k ¼ kd corresponding to ρ̃c ¼ 1. Although the effect on the
total cross section is much less severe than in the case of
Migdal approach (see Sec. III), an explicit handling has still
been implemented following closely Ref. [58]. More details
on the determination of the location of the discontinuity are
give in Appendix B, on evaluation of the total cross section
in Appendix C, and on the efficient sampling of the photon
energy in Appendix D.

B. Simulation parameters

The developed program has been run with 2 × 108 events
with the Geant 3 ABAN flag set to 0 (the default being 1),
as recommended in Ref. [79], to enforce effective tracking
of all electrons and positrons down to the chosen low-
energy cut Tmin ¼ 50 MeV. The low-energy cut for pho-
tons, TCUT, has been set to 10 keV, 50 MeV, and 10 keV in
the simulations for the SLAC E-146, CERN LPM, and
CERN LOW-Z data, respectively. Dielectric suppression
is enabled, disabled, and enabled for the previous sets,
respectively. The angular cuts have been set to 1.4, 1, and
0.6 mrad for the SLAC E-146 [20], CERN LPM [22], and
CERN LOW-Z [26] data, respectively, according to the
geometry of the setup described in the corresponding
publications. Although the program can include the effect
of the resolution of the calorimeter, this has been found to
be negligible for all datasets [58,75] and has thus been
switched off. The complete GEANT 3 configuration can be
found in Ref. [73] (see, in particular, the rightmost column
of Table III). Typical execution times on a modern multi-
core 64-bit unit running at 2.0 GHz (opteron 6128 HE
manufactured by AMD® processing one simulation per
core) are of the order of 21.0 and 21.2 μs per event for the
implementation of the Migdal and BK approaches, respec-
tively, in the case of the simulations for the SLAC E-146
data (these timings include tracking with one cylindrical
radiator volume and histogram filling).

C. Tests of the implementation

The program contains a sophisticated logic to monitor
the tracking status, including inconsistencies due to multi-
ple entering of an electron into a volume without an
intermediate exiting. This can happen due to the finite
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precision of the tracking steps; it is however limited, with
the selected tracking parameters, to a few cases out of
2 × 108 events. Multiphoton emission can be investigated
constructing a series of histograms like those in the detailed
studies presented in Ref. [73]. The first photon spectrum
can be employed to validate the present implementation: in
fact, a direct match with the BK approach is expected. The
case of a 25-GeVelectron impinging on iridium is shown in
Fig. 10. The differences of the simulation from theory are
well within the estimated statistical uncertainties (the bars
indicate one standard deviation) in almost all cases. More
than five orders of magnitude in photon energy are covered
in Fig. 10. A problem in the evaluation of the total cross
section would result in a systematic shift of all points, while
a mistake in the sampling would produce local deviations
from zero incompatible with the statistical fluctuations.
Due to simultaneous LPM and dielectric suppressions, the
number of events at low energies decreases dramatically,
resulting in larger error bars. To definitively confirm that
the total cross section is properly calculated, it is interesting
to compare the average deviation for all bins with the
corresponding statistical uncertainty. For iridium, copper,
and carbon, under the same conditions of Fig. 10, these
values are ð−0.034� 0.067Þ%, ð0.020� 0.050Þ%, and
ð0.027� 0.027Þ%, respectively. The same test has been
repeated for all the simulations employed for the compari-
son with data in Sec. VI, finding always very similar
results.
Finally, before accepting the results of the simulations, it

is fundamental to verify their stability. The most important
test concerns the effect of the electron or photon energy

cuts Emin and TCUT. For the SLAC E-146 case, TCUT and
Emin have been increased from 10 to 50 keVand from 50 to
250 MeV, finding no change within the statistical uncer-
tainty for all the cases compared to the data in Sec. VI. We
do not show the corresponding figures here, but they are
very similar to those displayed in Ref. [73] for the Migdal
approach (see in particular Figs. 13 and 14). For the CERN
LPM case, TCUTand Emin have been decreased from 50 to
5 MeV finding again no difference, within the statistical
uncertainty, for all the cases considered in Sec. VI. The cuts
for CERN LOW-Z simulations are identical to those of
the SLAC E-146 ones, but the beam energy is 178 versus
25 GeV and the lowest photon energy covered is 50 MeV
against 100 keV; thus any further testing has been deemed
unnecessary. The targets used in the SLAC E-146, CERN
LPM, and CERN LOW-Z experiments are rather thin, so
that a check of the impact of the boundary crossing
precision EPSIL on the final result is in order. Full stability
has been found when EPSIL is below 0.1 μm. The adopted
value for all the simulations compared with data in Sec. VI
is EPSIL ¼ 0.1 μm.

VI. COMPARISON WITH ALL
EXPERIMENTAL DATA

The direct measurements of the LPM suppression are
essentially limited to the SLAC E-146 [18–20], CERN
LPM [21,22], and CERN LOW-Z [26] experiments. The
main differences are the following.
(1) The SLAC E-146 experiment used 8- and 25-GeV

electron beams covering more than 3 orders of
magnitude in photon energy but limited below
500 MeV, thus leaving the region close to the
SWL unmeasured. The CERN LPM measurements
reached the highest beam energies so far, up to
287 GeV, and covered the spectral region of the
SWL, but was downward limited to a photon energy
above 2 GeV. The CERN LOW-Z data employed
178-GeV electrons but again covered only a part of
the spectrum from 50 MeV to 3.8 GeV. From the
considerations exposed in Sec. III, the highest
discriminating power between the Migdal and
BK approaches is expected for the CERN LPM
results.

(2) No inclusion of dielectric suppression is necessary
for the CERN LPM data so that it has been disabled
in the simulations. On the contrary, it is always taken
into account for comparing with the SLAC E-146
and CERN LOW-Z results.

(3) The SLAC E-146 experiment reached photon en-
ergies down to 200 keV, where transition radiation is
present and should be incorporated into the theo-
retical description. The dominance of such a con-
tribution can easily be spotted by the upturn of the
spectrum. The Monte Carlo employed in the present
work does not include transition radiation, so that
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FIG. 10. Difference between the simulated first photon spec-
trum and the BK cross section for an electron impinging on
iridium with an energy E ¼ 25 GeV. The dielectric suppression
is taken into account.
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the part of the spectrum at lower photon energies
must be excluded from the comparison to the data.

(4) The SLAC E-146 study included rather thin gold
targets corresponding to 0.1% and 0.7% X0 to
investigate surface effects. They cannot be compared
with the present Monte Carlo simulations based on
approaches valid for infinite targets (see Sec. III).

(5) The photon flight path, from the target to the
calorimeter, was ≈50 m in the SLAC E-146 experi-
ment and was kept in vacuum, except for a very thin
exit window in front of the calorimeter [20], as
mentioned. Note that even if this length can be
decreased using a larger field magnet to deflect the
electrons that crossed the target, this has the price of
a stronger and higher-energy synchrotron radiation.
As a matter of fact, synchrotron radiation was
present in the SLAC E-146 setup and had to be
removed by a special cut on the reconstructed
position of photon impact on the calorimeter
(which was segmented) [20]. The final amount of
background is quoted in Ref. [20] as, on average,
1 photon in the 200-keV to 500-MeV energy range
per 1000 electrons. The spectra shown in Fig. 4 of
Ref. [20] do not appear to have a definite BH profile,
but by assuming such a shape as a reasonable
approximation, an equivalent background of
0.01% X0 can be estimated. Thus, it is not necessary
to handle background subtraction in the Monte Carlo
code for the SLAC E-146 setup. As noted in
Sec. IV C, the same solution could not easily be
applied to the CERN LPM or CERN LOW-Z setups
employed at energies about an order of magnitude
larger. Indeed, the length of the photon path in the
CERN LPM case was ≈80 m, part in helium and
part in air [21,22]. The corresponding background,
mostly due to the aluminized mylar windows of the
first drift chamber located between the target and the
deflecting magnet, was found in Refs. [21,22] to
be equivalent to 0.7% X0. As demonstrated in
Sec. IV C, such a background level must be explic-
itly handled in the processing of the Monte Carlo
results by following the same subtraction procedure
adopted to derive the data. As shown in Fig. 5 of
Ref. [22], the background spectrum has, in quite
good an approximation, a BH shape. For all the
results shown here, we use a secondary carbon target
(placed downstream from the primary one) with a
thickness of 0.7% X0. To speed up the simulation, a
BH spectrum without LPM suppression is assumed
for the secondary target. The CERN LOW-Z case
was similar, except that background subtraction was
not performed, to avoid any distortion, and thus the
background has to be explicitly added in the sim-
ulations to compare with data. The background was
equivalent to 3% X0 [26] and again had a BH shape

to a quite good approximation for the energy range
covered by the final data (see Fig. 11 of Ref. [26]).
Again, a secondary target made of carbon with a
thickness of 3% X0 and a BH spectrum has been
placed downstream the primary one in all simulations.

It should be emphasized that all comparisons to be
presented here are absolute, i.e. no free overall normali-
zation factor is present. Moreover, both the Migdal and BK
approaches have been reformulated, as described in
Secs. II C and II D, respectively, to adopt the same radiation
lengths tabulated by Tsai [38,39].
The vertical scales of the data agree with the original

publications, to ease the comparison. Unfortunately, differ-
ent choices were made by the original authors. In general,
the number of events in each channel dN has always been
normalized to the total number of impinging electrons N0

(thus including those that do not radiate). In the case of the
SLAC E-146 values, a normalization to the target thick-
nesses t in units of X0, i.e. t=X0, has been included and, in
that of the CERN LOW-Z ones, the bin width wb has been
taken into account.
The comparison between the final full Monte Carlo

simulations (see Sec. V B for the parameters) and the SLAC
E-146 data, collected for E ¼ 8- and 25-GeV electron
beams, are shown in Figs. 11 and 12, respectively. The
main apparent feature is that the Migdal and BK spectra are
rather close, especially at low Z and for the lowest beam
energy E ¼ 8 GeV. As mentioned, the discriminating
power of the experiment is small, given also the statistical
and systematic uncertainties [20], so that we deemed
unnecessary to compare with all the measured targets;
we have excluded uranium and kept only one thickness for
each element. In agreement with the discussion of the basic
cross sections (see Sec. III), it remains true, even after the
full Monte Carlo, that the Migdal predictions are above the
BK one in the photon energy region of the transition
between the BH limit at the SWL and the strong LPM
suppression on the opposite side of the spectrum. On the
other hand, the discontinuity in the first derivative of the
basic cross section does not appear in the simulations due to
the smearing brought about by the multiphoton emission.
The effect of transition radiation is also very clear; note in
particular the tungsten target for E ¼ 25 GeV. Since it is
not included in the Monte Carlo, the simulated spectra
steady drop towards low photon energies and do not show
the characteristic upturn of the experiment.
A more objective comparison of the simulation with the

SLAC E-146 data can be made on the basis of the χ2

normalized to the number of degrees of freedom nDF. The
simulation has the same logarithmic binning of the data
(25 per decade) and a direct calculation of χ2 is possible
without interpolation. The contribution of the statistical
error of the simulations is negligible when compared to the
experimental one. The values of χ2=nDF are reported in
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FIG. 11. Comparison of the simulations based on the Migdal (solid circles) and BK approaches (solid squares) with the SLAC E-146
data at 8 GeV (solid triangles).
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FIG. 12. Comparison of the simulations based on the Migdal (solid circles) and BK approaches (solid squares) with the SLAC E-146
data at 25 GeV (solid triangles).
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Fig. 13 and Table I. Unfortunately, no clear-cut general
preference for either approach is apparent.
Considering first the data for E ¼ 8 GeV, most of the

targets show rather similar values of χ2=nDF, except for
tungsten and lead, which favor the Migdal and BK theory,
respectively. Direct examination of Fig. 11 confirms these
cases: in particular for lead, there is no doubt that the
Migdal approach is closer to the data. However, it is also
necessary to note that for iron, tungsten, and most notably
lead, the experiment has a tendency to overshoot all
simulations at the high-energy end of the spectrum.
Even considering all targets at E ¼ 8 GeV, half has a
lower χ2=nDF for the Migdal (carbon, aluminum, and
tungsten) and half for the BK (iron, gold, and lead)
approach, respectively.
For E ¼ 25 GeV, the clearest preferences appear for iron,

tungsten, gold, and lead, of which only the first is in favor
of the BK approach. Inspection of Fig. 12, clearly shows
that, in the case of iron, the BK approach is particularly
successful. Again, the tendency of the measurements to stay
higher in the uppermost energy section of the spectrum
results in the other three cases being better reproduced by the
Migdal formulas. Considering all targets, still half has a
lower χ2=nDF for the Migdal (tungsten, gold, and lead) and
half for the BK (carbon, aluminum, and iron) approach,
respectively. Only iron has the same preference for the same
theory at both energies. It is therefore safe to conclude that
the SLAC E-146 data do not allow to unambiguously single
out one of the approaches as the best.
The comparison of the final full Monte Carlo simulations

and the CERN LPM data are displayed in Figs. 14, 15,

and 16 for beam energies of E ¼ 149, 207, and 287 GeV,
respectively. All targets have been considered (note that
even though a carbon one was measured, it was used to
determine the efficiency of the calorimeter [22] and
therefore does not offer independent information). The
background subtraction procedure has been applied to the
simulations to be consistent with the data (see Sec. IV C).
Especially for Ta and Ir, the Migdal approach remains
clearly higher than the BK one by ≈5% around the
maximum of the power spectrum. Both approaches merge
into the BH limit at the SWL and get again rather close
towards the low-energy end: no discriminating power is
expected in those regions. Therefore, it is important to
measure the part of the spectrum around the maximum,
which was done only by the CERN LPM experiment.
The χ2=nDF of the comparison between simulations and

data is plotted in Fig. 17 and the values are given in Table II
(again both have the same 25 logarithmic bins per decade
and no interpolation is necessary in calculating the χ2).
Despite the difference between the Migdal and BK theories
in the region of the maximum being apparent, as mentioned
above, it is unfortunately of the same order of the statistical
uncertainties of the measurements so that, overall, the
results of the comparison are not different from those of
the SLAC E-146 case: indeed, of the 9 target–energy com-
binations, 5 favor the BK approach (clustered at E ¼ 149
and 207 GeV). Note that one of these cases is iridium at
E ¼ 149 GeV, which shows the worst χ2=nDF of all (as a
matter of fact the point corresponding to the Migdal theory
falls outside the scale of Fig. 17). Inspection of iridium at
E ¼ 149 GeV in Fig. 14 actually reveals that indeed the
measurements remain well below the data even in the SWL
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FIG. 13. Values of χ2=nDF for the comparison of the simulations
based on the Migdal (solid symbols) and BK approaches (open
symbols) with the SLAC E-146 data at 8 (circles) and 25 GeV
(squares) as a function of the atomic number of the target Z. The
bars represent the standard deviation of the reduced χ2.

TABLE I. Values of χ2=nDF for the comparison of the simu-
lations with the SLAC E-146 data. The uppermost energy is in all
cases the maximum reported in Ref. [20], i.e. 500 MeV. The
indicated low cut, Kmin, on the radiated energy has been applied
to avoid the contribution from transition radiation, which is not
taken into account in the Monte Carlo.

Kmin cut [MeV] χ2=nDF Migdal χ2=nDF BK nDF

8 GeV
C 6% 0.4 0.9 1.0 51
Al 3% 0.4 4.5 4.9 51
Fe 3% 0.5 1.9 1.7 76
W 2% 3.0 1.4 2.7 57
Au 6% 0.7 3.2 2.9 72
Pb 2% 0.7 1.0 2.4 47

25 GeV
C 6% 0.8 6.7 5.0 71
Al 3% 1.0 2.9 2.0 68
Fe 3% 6.0 6.8 2.4 49
W 2% 10.0 4.5 11.2 43
Au 6% 10.0 3.4 5.9 43
Pb 2% 10.0 3.2 9.0 43
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FIG. 14. Comparison of the simulations based on the Migdal
(solid circles) and BK approaches (solid squares) with the CERN
LPM data at 149 GeV (solid triangles).
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LPM data at 207 GeV (solid triangles).
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limit, where both cross section options merge into the BH
value. In general, the overall values of χ2=nDF are all
reasonable except for the mentioned case of iridium at
149 GeV, for both theories, and tantalum at E ¼ 149 GeV,
for the Migdal one. Unfortunately, from the CERN LPM
experiment, it is also not possible to conclude that one of
the approaches is to be preferred.
The comparison of the final full Monte Carlo simulations

and the CERN LOW-Z data for the beam energy of E ¼
178 GeV is depicted in Fig. 18. The aluminum reference
target has not been included because it consisted of 80 foils
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FIG. 17. Values of χ2=nDF for the comparison of the simu-
lations based on the Migdal (solid symbols) and BK approaches
(open symbols) with the CERN LPM data at 149 (circles),
207 (squares), and 287 GeV (triangles) as a function of the atomic
number of the target Z. The bars have the same meaning as
in Fig. 13.
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FIG. 16. Comparison of the simulations based on the Migdal
(solid circles) and BK approaches (solid squares) with the CERN
LPM data at 287 GeV (solid triangles).

TABLE II. Values of χ2=nDF for the comparison of the
simulations with the CERN LPM data. All the measured energy
range from 2 GeV to the SWL has been used.

χ2=nDF Migdal χ2=nDF BK nDF

149 GeV
Cu 4% 1.6 1.2 48
Ta 4% 4.2 1.1 48
Ir 4% 9.6 5.4 48

207 GeV
Cu 4% 1.1 1.7 51
Ta 4% 2.1 1.3 51
Ir 4% 2.0 1.5 51

287 GeV
Cu 4% 1.0 1.3 55
Ta 4% 1.0 1.3 55
Ir 4% 1.4 1.5 55
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FIG. 18. Comparison of the simulations based on the Migdal (solid circles) and BK approaches (solid squares) with the CERN LOW-Z
data at 178 GeV (solid triangles).
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with a thickness of 25 μm, to avoid any LPM suppression,
and it was used in the calibration of the calorimeter [26]. The
LDPE one is also not considered since our code cannot
handle mixtures, but again there is no loss of information
since its shape is almost BH. The background was not
subtracted in the experimental analysis to avoid distortions,
as mentioned, and is included in the simulation (mind that
the scale does not start from zero in Fig. 18). As in the SLAC
E-146 case, the Migdal and BK approaches give very close
results because the covered energy range is below the
maximum of the power spectrum and it is, once more,
not possible to discriminate between them within the
statistical and systematic uncertainties of the measurements.
The χ2=nDF of the comparison between simulations and

data is reported in Table III (here the experiment does not
follow the 25 logarithmic bins per decade adopted in the
simulations and a linear interpolation has been performed).
There is a general preference for the Migdal approach with
only one target, Ta, showing a preference for the BK one.
Unfortunately, the larger values of χ2=nDF, possibly indi-
cating somewhat higher systematic uncertainties, do not
allow, once more, to reach a firm conclusion about which is
the best theory.

VII. CONCLUSIONS

Quantum coherence effects, resulting in the LPM
suppression, are an essential ingredient to reproduce
bremsstrahlung measurements for high-energy electrons.
Traditionally, they have been coupled to the Coulomb
correction rescaling the Migdal cross section, which does
not include such a feature, by a realistic radiation length.
The Baier-Katkov approach to quantum coherence effects
embodies the Coulomb correction in a consistent way. The
first Monte Carlo implementation of this latter theory has
been presented. Enough details have been provided to
allow an independent development of a new code. We have
also shown how the Baier-Katkov formulas can be rewrit-
ten to allow the reference to an accurate radiation length.
The Monte Carlo simulations have enabled the compari-

son of the Migdal and Baier-Katkov approaches to all
available data collected for amorphous targets with accel-
erators under controlled conditions including multiphoton

emission, attenuation by pair production, and, finally, pile-up
with photons from the background. When all these effects
have been accounted for, the two theories end up being very
close and, unfortunately, currently available experiments
cannot discriminate between them within present statistical
and experimental inaccuracies. It would require a large effort
to reduce those uncertainties at the point of supporting one of
the two versions. If such an endeavor is undertaken in the
future, the present work clearly demonstrates the need to
cover the photon energy range around the maximum of the
power spectrum, where the LPM suppression sets in. So it
appears that the best results could possibly be achieved by
an experiment carried out under conditions similar to those
that produced the CERN LPM data. However, it would be
necessary to attain a background suppression at a fraction of
percent of X0 and combined statistical and systematic
uncertainties better than 2% around the maximum of the
power spectrum. All in all, there are no compelling reasons
to modify the Monte Carlo codes generally used to simulate
the response of calorimeters at the LHC or extensive air
showers, all based on the Migdal approach.
The LHCf collaboration reported inconsistencies in the

initial profile of the shower, where the LPM suppression is
strong. If this evidence should gain more support, the
present work suggests that the reasons should be looked for
in additional limitations of current theories. In particular,
the general arguments about the formation length would
lead to predict a correlation between the magnitude of
the scattering angle and the amount of suppression. No
experimental evidence was found within present uncertain-
ties [22], but theoretical predictions for the angular dis-
tribution under LPM suppression were made [80]. For the
accurate simulation of extensive air showers, the issue of
the LPM suppression in electron-electron bremsstrahlung,
which is always assumed to be the same as in nuclear
bremsstrahlung, should also receive attention in the future.
Finally, it would be interesting to develop a treatment of the
LPM suppression beyond the full screening approximation,
especially for the simulation of showers, when it is
necessary to follow the degradation of the initial energy
down to the detection threshold.
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APPENDIX A: APPROXIMATION OF THE D1
AND D2 FUNCTIONS

As anticipated in Sec. II D, we discuss here the evalu-
ation of the functionsD1ðν0Þ andD2ðν0Þ together with their

TABLE III. Values of χ2=nDF for the comparison of the
simulations with the CERN LOW-Z data at 178 GeV. All the
measured energy range from 0.05 to 3.8 GeV has been used.

χ2=nDF Migdal χ2=nDF BK nDF

Al 2.90% 11.2 18.9 37
Ti 2.68% 16.4 21.8 38
Fe 2.73% 11.2 13.1 38
Cu 2.58% 9.5 10.3 38
Mo 2.55% 27.2 32.1 38
Ta 2.56% 10.1 8.8 38

A. MANGIAROTTI, P. SONA, and U. I. UGGERHØJ PHYS. REV. D 104, 096018 (2021)

096018-24



fit by means of rational functions of ν0. For the numerical
integration of the functions appearing in Eqs. (24a) and
(24b), the routines included in the QUADPACK quadrature
package appropriate for each case are used [81]. For D1,
the integral is split in two ranges, namely 0 ≤ ν0 ≤ 1 and
1 < ν0 < ∞ and no problem arises in reaching a relative
precision of 10−5 for both ranges. The integral appearing
in the expression of D2 is more problematic as the
functions dðzÞ and GðzÞ defined in Sec. II D both suffer
from a logarithmic divergence which cancels in the limit
z → 0. Again, the integral has been split in two ranges
0 ≤ ν0 ≤ zmin and zmin < ν0 < ∞, where the choice of zmin
will be explained in a while. The numerical integration
on the second range is easily performed. Instead, to
execute the first integral, the integrand is developed in
a McLaurin series up to third order in z and the integral is
computed analytically choosing zmin in such a way that the
percentage relative difference between the integral includ-
ing the third-order term and the one including only up to
the second-order term is smaller than 0.001. The numeri-
cal values of D1 and D2, obtained by the procedure
described, are shown in Fig. 19 for ν0 from zero up to 20.
Note in particular the discontinuity for ν0 ¼ 1 and the
negative minimum of D1 close to ν0 ≈ 0.5. It has been
checked that the values calculated by the numerical
procedure described here agree with those shown in
Fig. 2 of Ref. [11].
Since the functionsD1 andD2 have to be used in lengthy

Monte Carlo calculations, a suitable approximation to the
“exact” calculated values is in order. A fit by means of
rational functions is chosen for each of three ranges of ν0,
namely

D1 ¼

8>>><
>>>:

a0þa1 ν0þa2 ν20þa3 ν30þa4 ν40
1þb1ν0þb2ν20

if ν0 ≥ 1

c0þc1 ν0þc2 ν20þc3 ν30þc4 ν40
1þd1ν0þd2ν20

if 0.1 ≤ ν0 ≤ 1

p1 ν0 þ p2 ν
2
0 if ν0 ≤ 0.1

; ðA1Þ

and similarly

D2 ¼

8>>><
>>>:

e0þe1 ν0þe2 ν20þe3 ν30þe4 ν40
1þf1 ν0þf2 ν20

if ν0 ≥ 1

g0þg1 ν0þg2 ν20þg3 ν30
1þh1 ν0þh2 ν20

if 0.1 ≤ ν0 ≤ 1

q1 ν0 if ν0 ≤ 0.1

: ðA2Þ

Actually, for the lowest range of ν0, the coefficients p1

and p2 have been determined by a fitting procedure and
subsequently rescaled to satisfy the requirement of the
continuity ofD1 for ν0 ¼ 0.1 (as fixed by the fit in the range
0.1 ≤ ν0 ≤ 1). The coefficient q1 has been determined by
requiring the continuity of D2 in ν0 ¼ 0.1. The numerical
values of the parameters appearing in Eqs. (A1) and (A2)
are listed in Table IV. In principle, this adjustment pro-
cedure does not grant the continuity of the first derivative
in ν0 ¼ 0.1. The fits to the functions D1 and D2 are plotted
in Fig. 20 for the range 0 ≤ ν0 ≤ 0.2. It is seen that,
nevertheless, the slope of the fit to D1 and D2 in the
0.1 ≤ ν0 ≤ 1 region joins smoothly in ν0 ¼ 0.1 to the slope
for ν0 < 0.1.
Finally, the percentage deviation of the fitted values from

the exact ones is reported for both D1 and D2 in Fig. 21. It
is seen that for D1 the maximum deviation is below 0.3%
while for D2 it reaches 3.5% for the lowest values of ν0. It
should be noted that this deviation refers to a first-order
correction to the main term for the total radiation intensity,
i.e to a contribution that is, in the worst case, no larger than
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FIG. 19. Values of the D1ðν0Þ and D2ðν0Þ functions defined by
Baier and Katkov obtained with the numerical procedure de-
scribed in the text.

TABLE IV. Parameters of the fit to the D1 and D2 functions by
Baier and Katkov with Eqs. (A1) and (A2).

Coef. Fit to D1 Coef. Fit to D2

a0 þ0.20892 e0 þ0.25752
a1 −0.39046 e1 þ0.10318
a2 þ0.35727 e2 þ0.28050
a3 −0.11675E − 3 e3 þ0.26376E − 4
a4 þ0.115128E − 5 e4 −0.33742E − 6
b1 þ0.82588 f1 þ0.97830
b2 þ0.45111 f2 þ0.62401
c0 −0.40185E − 3 g0 −0.94159E − 3
c1 þ0.80181E − 2 g1 þ0.99852E − 1
c2 −0.15769 g2 −0.23823
c3 þ0.15393 g3 þ0.67476
c4 þ0.12994
d1 −1.0680 h1 −0.87428
d2 þ1.8065 h2 þ2.0489
p1 −0.48175254E − 4 q1 þ0.7862369E − 1
p2 −0.11035494
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10% of the main term (see Fig. 4 in Sec. II D). Moreover,
the mentioned largest deviation is reached at small values
of ν0, where the correct behavior in the limit ν0 → 0, i.e.
quadratic for D1 and linear for D2, is more important then
the exact reproduction of the numerical values of the
functions to ensure, when inserted in Eq. (25), that the
correction term to the cross section vanishes in the short-
wavelength limit at the tip of the spectrum (see again Fig. 4

in Sec. II D). For this reason, it is not convenient to increase
the order of the parametrizations in the part ν0 ≤ 0.1.

APPENDIX B: LOCATION OF THE
DISCONTINUITY

For simplicity, in what follows, we refer to k ¼ kd as
discontinuity, being understood that we mean the one in
the first derivative. The behavior of the discontinuity is
markedly different according to whether dielectric suppres-
sion is taken into account or not. The two cases are
correspondingly handled differently in the program.
When dielectric suppression is not enabled, for a given
material and a given impinging electron energy E, there is
always one unique minimum value of the photon energy
k ¼ kd resulting in ρc ¼ 1 (see Sec. II D 1). It can actually
be directly determined analytically (this is in contrast to the
Migdal approach, where kd has to be found numerically,
even when no dielectric suppression is present [58]) and it
is shown in Fig. 22 with a dashed line. It clearly increases
with E and, for a fixed E, it decreases for lower atomic
numbers Z. To quote a value, for E ¼ 300 GeV electrons
impinging on iridium, kd ≈ 35 GeV, well in the region
covered by the CERN LPM data, and for E ¼ 8 GeV,
kd ≈ 29 MeV, again well in the region covered by the
SLAC E-146 data.
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parameters reported in Table IV. Note that two different para-
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FIG. 22. Value of the photon energy k ¼ kd at which ρc ¼ 1 (no
dielectric suppression) and ρ̃c ¼ 1 (dielectric suppression) as a
function of the impinging electron energy E for three materials.
Without dielectric suppression, there is always a value of k ¼ kd
for every value of E (dashed line). With dielectric suppression,
there is no value of k ¼ kd for E below a minimum value Ed. For
E above Ed, there are two values of k ¼ kld and k ¼ kud for one
value of E: therefore a lower (dotted line) and an upper (solid
line) branch are present. The two branches join for E ¼ Ed.
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When dielectric suppression is present, three cases are
possible. For a certain unique value of E ¼ Ed, there is
again one unique minimum value of the photon energy
k ¼ kd resulting in ρ̃c ¼ 1. However, for E < Ed, it is
always ρ̃c < 1, while for E > Ed, there is an interval of
values kld < k < kud for which ρ̃c ¼ 1 resulting in the
presence of two discontinuities: one for k ¼ kld and another
for k ¼ kud (see Sec. II D 2). The values of kld and kud are
plotted in Fig. 22 with dotted and continuous lines,
respectively: they have to be determined numerically.
The simple bisection method is used because of its
guaranteed convergence; here again typically ≈20 steps
are required to achieve a relative precision better than 10−8.
This part of the code works in double-precision (i.e.
64-bits) arithmetics to further improve the reliability. For
E above few times Ed, the values of kud are very close to the
corresponding ones of kd for no dielectric suppression.
Around Ed, kud gets reduced since it has to merge with kld:
this behavior is actually used in the code to tune the
bracketing strategy of the bisection method. An interesting
feature of kld apparent in Fig. 22 is that it rises much less
slowly with energy than kud and it is also much less sensitive
to the atomic number Z of the target material. To quote a
value, for an E ¼ 300 GeV electron impinging on iridium,
kld ≈ 6 MeV. This is a kind of “worst case” scenario for
the simulations of the CERN LPM data (not very sensitive
to Z), where a low-energy cut of TCUT ¼ 50 MeV is
applied for photon propagation. For E ¼ 25 GeV,
kld ≈ 1 MeV, which is not below the value of TCUT ¼
10 keV used in the simulations for the SLAC E-146 data.

This situation is very similar to what was found for Migdal
approach in Ref. [58].
Finally, the values of Ed for both the Migdal and BK

approaches are compared in Fig. 23. The general behavior
is quite similar, but the values for the former are approx-
imately one order of magnitude larger than for the latter.

APPENDIX C: TOTAL CROSS SECTION

The probability for an impinging electron with energy E
to emit a photon of energy k is controlled by the total cross
section, which has to be supplied to the Monte Carlo code
to fill the internal tables. It is given basically by the sum of
Eq. (21) and (25) [multiplied by the factor 1=ðnEÞ to
convert radiation probability per unit length to differential
cross section]:

dσ
dk

¼ α

12π ℏcn

�
ν20
γ2

�
R1G

�
sBK
2

�
þ 2R2Φ

�
sBK
2

��

þ 3

γ2 Lc

h
D1ðν0ÞR1 þD2ðν0ÞR2

ffiffiffi
2

p
ν0
i�

; ðC1Þ

where R1 and R2 have been defined in Eqs. (16), the
functions G and Φ in Eqs. (13), and the functions D1

and D2 in Eqs. (24). The dielectric suppression is taken
into account with the substitutions presented in Sec. II D 2.
A low- energy cut TCUT is applied for photon propaga-
tion in the Monte Carlo code, so that Eq. (C1) must be
integrated numerically over the range TCUT to E. Actually,
the maximum allowed value of k is given by the kinetic
energy of the electron TE corresponding to E, but this is a
small difference. In the present case, all formulas are valid
in the ultrarelativistic limit, but the same correction des-
cribed in Appendix D is applied to enforce energy con-
servation under all conditions during the simulations.
The adaptive Gaussian quadrature routine DADAPT from
the CERN mathlib library [82] is used and then a change
of integration variable from k to lnðkÞ is performed to
regularize the 1=k BH divergence of Eq. (C1), contained in
ν20. To improve the stability, if the discontinuity is located in
the region of integration, i.e. if kd > TCUT, the integral is
split into two parts: one from TCUT to kd − δkd and
another from kd þ δkd to E, where δkd is the estimated
uncertainty in the numerical localization of kd. The con-
tribution from kd − δkd to kd þ δkd is simply handled by
one application of the trapezoidal rule. If dielectric sup-
pression is active, only the upper discontinuity is handled
explicitly following Ref. [58] and in such a case kd ¼ kud.
Explicit handling of kld, which falls within the interval of
integration only for the simulations to be compared with the
SLAC E-146 data (see Appendix B), would increase too
much the complexity of the code. No problems have been
detected during the tests described in Sec. V C. All the
calculations are again made with double-precision (i.e.
64-bits) arithmetics to further improve the reliability with
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FIG. 23. Minimum value of the impinging electron energy
E ¼ Ed for which the discontinuity in the first derivative of
the cross section is present, when dielectric suppression is taken
into account, as a function of the atomic number of the target
element. Both the Migdal (solid circles) and BK approaches
(solid squares) are considered.
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the absolute tolerance in DADAPT set to zero and the
relative tolerance to 10−6. A typical value for δkd=kd is
10−8, as mentioned. The minimum number of initial
subdivisions performed by DADAPT is set to 25.
Typical results are shown in Fig. 24. It is apparent how

the LPM effect brings the initial growth of the total cross
section to saturation for increasing E and then steadily
reduces it. The inclusion of the dielectric suppression even
enhances this trend. Finally, a comparison of the Migdal
and BK approaches reveals that they are quite close, which
is to be expected from the discussion in Sec. III.

APPENDIX D: SAMPLING OF THE
DIFFERENTIAL CROSS SECTION

Once a bremsstrahlung emission has been selected to
happen by the code, it is necessary to sample the photon
energy k according to the differential cross section given by
Eq. (C1). Of course, it is not possible to find analytically the
primitive of Eq. (C1) and use directly the transformation
method. The straightforward application of the acceptance-
rejection method would be quite inefficient because of the
1=k BH divergence in Eq. (C1). This problem was tackled
by Butcher and Messel to perform the first Monte Carlo
simulations of electromagnetic showers in the fifties: they
introduced the “composition and rejection” method [83].
The natural variable for the sampling is the ratio y ¼ k=TE
which spans the interval TCUT=TE ≤ y ≤ 1, where TCUT
is the low-energy cut imposed on photon propagation in the

Monte Carlo code. Then y can be sampled from the
function 1=ðy lnðTE=TCUTÞÞ by the transformation

y ¼ expðr1 lnðTCUT=TEÞÞ; ðD1Þ

where the random number r1 is uniformly distributed over
the 0–1 range. Afterwards, the acceptance-rejection method
is applied to the rejection function

rðyÞ ¼ qðyÞ
qmax

ðD2Þ

by drawing a second random number r2, also uniformly
distributed between 0 and 1, and accepting it if r2 ≤ rðyÞ.
If this is not the case, the whole procedure is repeated
from the sampling of r1. Since the 1=k BH divergence of
Eq. (C1) is already taken into account in Eq. (D1), the
corresponding expression for qðxÞ reads

qðxÞ ¼ k

�
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2

��
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γ2 Lc

h
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ffiffiffi
2

p
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i�

: ðD3Þ

The dielectric suppression is included by means of the
substitutions given in Sec. II D 2. Although Eqs. (C1)
and (D3) are only valid in the ultrarelativistic limit, it is
necessary to enforce energy conservation exactly in the
Monte Carlo code; thus, it is assumed x ¼ yTE=E. This
distinction is always negligible except very close to the
lower cut Tmin ¼ 50 MeV, imposed for electron propaga-
tion. Indeed, the details of the cross section close to this
threshold do not affect appreciably the final result of the
simulation.
The value of qmax in Eq. (D2) has to be determined by

finding the maximum of Eq. (D3). Of course, qmax depends
on the target material and the electron energy E. The task is
performed by using the subroutine DMINFC from the
CERN mathlib library [84]. All the calculations are again
made with double-precision (i.e. 64-bits) arithmetics to
further improve the reliability, the relative accuracy param-
eter is set to 10−8, and the tolerance for boundary checking
is 10 times larger, following the recommendations given
in Ref. [84]. Unpredictable behavior of DMINFC with
jumps towards the limits of the search intervals have been
observed due to the discontinuity at kd. Therefore, it is
mandatory to search for the maximum separately in two
regions: the first below lnðkd=TEÞ and the second between
lnðkd=TEÞ and 0. It has been found advantageous to search
for the minimum using the variable lnðk=TEÞ, since
k=TE → 0 for decreasing Z. The maximum is found to
move from the branch above kd to the branch below kd
when the energy E increases. This is true both when
dielectric suppression is enabled or disabled, contrary to
the case of Migdal approach, where, without dielectric
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FIG. 24. Total bremsstrahlung cross section for the radiation of
a photon with energy k > TCUT ¼ 10 keV by an electron with
energy E impinging on the indicated material. The vertical scale
on the left is used for copper and iridium and the one on the right
for carbon. Three approaches are considered: the BK one without
dielectric suppression (dashed lines), the BK one with dielectric
suppression (solid lines), and, finally, the one by Migdal with
dielectric suppression (dotted lines).
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suppression, the maximum is always found below kd [58]. In
the case of dielectric suppression and for the energy range
of interest here, where Tmin ¼ 50 MeV, it is sufficient to
consider kd ¼ kud disregarding the presence of kld. To avoid
searching themaximum during each step of theMonte Carlo,
this is done once for every specific material at initialization
time for 1750 energy values between Tmin ¼ 50 MeV and
10TeV.Then a fit is performedwith a sixth degree polynomial
to represent the evolutionofqmax withE. Togive an ideaof the
inaccuracies involved, the deviation of the value calculated
from the polynomial with respect to the true one is shown,
over the full E range considered for the fit, for the usual
representative target elements in Fig. 25. Even in the worst
case, thedeviation does not exceed 0.3%.Due to the smoother
behavior of the BK approach, it has not been found useful to
use two separate sixth degree polynomials to represent the
evolution of qmax below and above kd, as it is necessary for
Migdal approach [58]. To save memory, the 1750 values for
the fit are stored in a temporary ZEBRA bank, which is
dropped afterwards, and only the coefficients of the poly-
nomial are stored in the JMATE data bank of GEANT for
each specific material. Then, these parameters can be
easily retrieved at tracking time and employed to evalu-
ate Eq. (D2).
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