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Due to the rapid longitudinal expansion of the quark gluon plasma created in heavy-ion collisions, large
local-rest-frame momentum-space anisotropies are generated during the system’s evolution. These
momentum-space anisotropies complicate the modeling of heavy-quarkonium dynamics in the quark
gluon plasma due to the fact that the resulting interquark potentials are spatially anisotropic, requiring real-
time solution of the 3D Schrödinger equation. Herein, we introduce a method for reducing anisotropic
heavy-quark potentials to isotropic ones by introducing an effective screening mass that depends on the
quantum numbers l and m of a given state. We demonstrate that, using the resulting effective Debye
screening masses, one can solve a 1D Schrödinger equation and reproduce the full 3D results for the
energies and binding energies of low-lying heavy-quarkonium bound states to relatively high accuracy. The
resulting effective isotropic potential models could provide an efficient method for including momentum-
anisotropy effects in open quantum system simulations of heavy-quarkonium dynamics in the quark gluon
plasma.
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I. INTRODUCTION

The ongoing heavy-ion collision experiments at the
Relativistic Heavy Ion Collider and the Large Hadron
Collider aim to create and study a primordial state of
matter called a quark gluon plasma (QGP). One of the key
observables that experimentalists are interested in is the
production of heavy-quarkonium bound states in nucleus-
nucleus (AA) collisions relative to their production in
proton-proton (pp) collisions. This observable is of
interest because it is expected that the formation of
heavy-quarkonium bound states is suppressed in AA
collisions relative to that in pp collisions. In early models
the suppression of heavy-quarkonium bound states was
solely due to the Debye screening of the interquark
potential [1–4]. Since these early works, it has been
shown that it is equally important to include effects of
in-medium singlet-octet transitions and Landau damping
of the exchanged gluons, which results in an imaginary
contribution to the heavy-quark (HQ) potential [5–14].

These effects can be modeled systematically using numerical
solutions of the Lindblad equation which governs the
evolution of the in-medium heavy-quarkonium reduced
density matrix [15–18].
One of the limitations of prior studies of the evolution

of the heavy-quarkonium reduced density matrix is that
they explicitly rely on an assumption of momentum-space
isotropy. This assumption allows one to simplify the
resulting dynamical evolution equations such that only
solution of a one-dimensional Schrödinger equation (SE)
subject to stochastic jumps is required [17]. This
assumption can, however, not be made in a real-world
quark gluon plasma due to the rapid longitudinal expan-
sion of the QGP and the existence of a finite relaxation
time of the system. As a result, the QGP develops a
high degree of momentum anisotropy in its local rest
frame (see, e.g., [19,20] and references therein). This
complication means that, in practice, one must solve a 3D
stochastic Schrödinger equation or corresponding
Lindblad equation, which is numerically prohibitive. In
this paper, we introduce a method to obtain effective 1D
isotropic potentials from underlying anisotropic poten-
tials. The method introduced can be used to simplify the
inclusion of momentum-space anisotropy effects on
heavy-quarkonium dynamics.
In order to develop and test this method, we will make

use of a widely used anisotropic distribution function
ansatz called the Romatschke-Strickland form [21,22]
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fanisoðkÞ≡ fiso
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ ξðk · nÞ2

q �
; ð1Þ

where the isotropic distribution function fiso is an arbitrary
isotropic distribution function that decreases sufficiently
rapidly at large momentum. In the above equation, the unit
vector n is used to denote the direction of anisotropy
and λ is a temperaturelike scale which, in the thermal
equilibrium limit, should be understood as the tempera-
ture T of the system. In addition, we use an adjustable
parameter ξ to quantify the degree of momentum-space
anisotropy

ξ ¼ 1

2

hk2⊥i
hk2zi

− 1; ð2Þ

where kz ≡ k · n and k⊥ ≡ k − nðk · nÞ correspond to the
particle momenta along and perpendicular to the direction
of anisotropy, respectively. By assuming n to be parallel to
the beam-line direction, the case ξ > 0 is relevant to high-
energy heavy-ion experiments.
Among the many new phenomena which emerge as a

consequence of QGP momentum-space anisotropy, herein
we are interested in the in-medium properties of quarko-
nium states. In the nonrelativistic limit, the binding energies
and the decay widths of the bound states can be obtained by
solving the 3D Schrödinger equation with a specified
heavy-quark potential which describes the force between
the quark and antiquark. Given the distribution function in
Eq. (1), the complex-valued potential has been computed in
the resummed hard-thermal-loop perturbation theory
[6,9,23].1 For arbitrary anisotropy ξ, the real part of the
potential has to be evaluated numerically and analytical
results can only be obtained in the limits, e.g., jξj ≪ 1,
ξ ≫ 1, and ξ → −1. On the other hand, the determination
of the imaginary part for general ξ has encountered
difficulties related to the presence of a pinch singularity
in the static gluon propagator [13]. As a result, this is still
an open question and we will focus on the real part of the
potential in the current work.
It is worth noting that the perturbative HQ potential in

an anisotropic plasma can be well fitted with a standard
Debye-screened function ∼e−rm̃Dðλ;ξ;θÞ=r, and therefore, is
formally analogous to its counterpart in equilibrium [24].
The determination of m̃Dðλ; ξ; θÞ requires a specific angle
θ denoting the quark pair alignment r with respect to the
direction of anisotropy n. However, such a θ dependence
results in an unclear physical interpretation of the screen-
ing mass and only makes sense in a classical picture where
the quark pair has a fixed alignment. In addition, solving
the three-dimensional SE makes the numerical determi-
nation of the binding energies of quarkonium states much

more complicated compared to the case where a spheri-
cally symmetric HQ potential can be used. At present,
this is the main obstacle to developing phenomeno-
logical applications which include momentum-anisotropy
effects.
In this work, we propose an angle-averaged screening

mass Mlmðλ; ξÞ in an anisotropic medium through the
following definition:

Mlmðλ; ξÞ ¼ hYlmðθ;ϕÞjm̃Dðλ; ξ; θÞjYlmðθ;ϕÞi

¼
Z

1

−1
d cos θ

Z
2π

0

dϕYlmðθ;ϕÞ

× m̃Dðλ; ξ; θÞY�
lmðθ;ϕÞ; ð3Þ

where Ylm are spherical harmonics with the azimuthal
quantum number l and magnetic quantum number m.
Notice that although no angular dependence appears in
Mlmðλ; ξÞ, this quantity is not universal for all the states
labeled by the set of quantum numbers l and m. As will be
discussed in this work, information on the physical proper-
ties of quarkonium states in an anisotropic QCD plasma
can be obtained at a quantitative level by analyzing the
corresponding problem in an “isotropic” medium charac-
terized by the angle-averaged screening massMlmðλ; ξÞ. In
this sense, Mlmðλ; ξÞ is also called the “effective screen-
ing mass.”
The rest of the paper is organized as follows. In Sec. II,

we introduce the model construction of the HQ potential in
an anisotropic QCD plasma and qualitatively explain the
rationality of our definition of the effective screening mass
as given by Eq. (3). In Sec. III, an anisotropic HQ potential
as given in Eq. (4) is Taylor expanded around an isotropic
configuration m̃Dðλ; ξ; θÞ ¼ Mlmðλ; ξÞ where the values of
l and m are specified based on the concept of the “most
similar state.” In Sec. IV, we demonstrate that highly
accurate results of the eigen/binding energies of quarko-
nium states can be obtained by solving the Schrödinger
equation with only the leading-order contribution in the
above Taylor expansion of the HQ potential. In addition, an
estimation on the discrepancy resulting from replacing
m̃Dðλ; ξ; θÞ with Mlmðλ; ξÞ in Eq. (4) is also obtained.
Some applications of the effective screening mass derived
herein are considered in Sec. V. We briefly summarize our
findings and give an outlook for the future in Sec. VI.
Finally, for several low-lying heavy-quarkonium bound
states, the exact 3D results of the eigen/binding energies
based on the potential model in Eq. (4), together with the
corresponding discrepancies from using the one-dimen-
sional potential model based on the effective screening
masses are listed in Appendix, which provides a direct
numerical check of our method.

1We consider fiso in thermal equilibrium which is simply the
Fermi-Dirac or Bose-Einstein distribution function.
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II. THE HEAVY-QUARK POTENTIAL IN AN
ANISOTROPIC MEDIUM WITH EFFECTIVE

SCREENING MASS

Previous works have demonstrated that the non-
perturbative contributions to the HQ potential are not
negligible for practical applications, therefore, the potential
derived from perturbation theory cannot fully capture the
in-medium properties of quarkonium states. In general,
describing the long-distance interaction between the quark
pair relies on the phenomenological potential models which
are constructed based on the lattice simulations. As a
popular research topic, continuous attention has been paid
on modeling the real part of the potential. In addition,
developing a complex potential model has also been
considered in recent years. However, most of the studies
on quarkonium physics were limited to a momentum-space
isotropic quark gluon plasma. Due to the absence of the
lattice simulations for a nonideal anisotropic system, the
corresponding potential models have to be introduced in an
indirect way.
A first attempt to model the heavy-quark potential in an

anisotropic plasma was carried out in Ref. [10]. As a
“minimal” extension of the isotropic Karsch-Mehr-Satz
(KMS) potential [1,2] based on the internal energy, the
anisotropic version was obtained by replacing the ideal
Debye mass mDðλÞ in thermal equilibrium with an aniso-
tropic screening scale m̃Dðλ; ξ; θÞ. Explicitly, one assumes
the following form for the (real part of the) potential model:

Vðr;m̃DÞ¼−
α

r
ð1þm̃DrÞe−m̃Drþ 2σ

m̃D
ð1−e−m̃DrÞ−σre−m̃Dr;

ð4Þ

where α is an effective Coulomb coupling at (moderately)
short distance and σ is the string tension. In the rest of the
paper, we choose α ¼ CFαs ¼ 0.385 and σ ¼ 0.223 GeV2

for numerical evaluations. These two parameters are
assumed to be unchanged in a hot medium, once deter-
mined at zero temperature. Following Ref. [10], the
isotropic Debye mass is given by mD ¼ Agλ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Nf=6

p
with Nf ¼ 2 and g ¼ 1.72. The factor A ¼ 1.4 which
accounts for nonperturbative effects has been determined
in lattice calculations. In addition, we assume the critical
temperature Tc ¼ 192 MeV.
For our purposes the most important feature of the KMS

potential model is that medium effects are entirely encoded

in the Debye massmDðλÞ and the very same screening scale
that appears in the perturbative Coulombic term also shows
up in the nonperturbative string contributions. Extending
this assumption to anisotropic plasmas, the feasibility
of the minimal extension depends on the extraction of
an angle-dependent screening mass m̃Dðλ; ξ; θÞ from the
perturbative potential which has been computed from
the first principles. Despite this choice of potential, we
emphasize that the generalization from an isotropic HQ
potential to the anisotropic one is not restricted to the use of
the KMS potential model. In fact, any other isotropic
model, as long it shares this feature with the KMS
model, can be generalized in a similar way. Some recent
examples of such HQ potential models can be found in
Refs. [14,25–28]. For definiteness, in the following dis-
cussions, we will consider the potential model as given
in Eq. (4).
From a phenomenological point of view, we expect that

nonzero anisotropy corrections only amount to a modifi-
cation on the isotropic Debye mass mDðλÞ. In fact, this
turns out to be reasonable based on an analysis of the
perturbative contributions in the HQ potential. In principle,
the anisotropic screening mass m̃Dðλ; ξ; θÞ can be defined
as the inverse of the distance scale over which jrVðrÞj drops
by a factor of e. For small anisotropy ξ, the screening mass
is given by [10]

m̃Dðλ; ξ ≪ 1; θÞ ¼ mDðλÞ
�
1 − ξ

3þ cos 2θ
16

�
: ð5Þ

As expected, the nonideal Debye mass m̃Dðλ; ξ; θÞ depends
not only on the anisotropy parameter ξ but also on the angle
θ between r and n. With this in hand, we can approximate
the anisotropic potential at short distances with a Debye-
screened Coulomb potential where the θ-dependent screen-
ing mass is given by Eq. (5). More interestingly, it is found
that, for arbitrary anisotropies, the perturbative potential
can also be perfectly parametrized by using the same
Debye-screened Coulomb potential, although in this case,
the anisotropic Debye mass m̃Dðλ; ξ; θÞ takes a much more
complicated form as [24]

m̃Dðλ; ξ; θÞ ¼ mDðλÞ½f1ðξÞ cos2 θ þ f2ðξÞ�−1
4; ð6Þ

where

f1ðξÞ ¼
9ξð1þ ξÞ32

2
ffiffiffiffiffiffiffiffiffiffiffi
3þ ξ

p ð3þ ξ2Þ
π2ð ffiffiffi

2
p

− ð1þ ξÞ18Þ þ 16ð ffiffiffiffiffiffiffiffiffiffiffi
3þ ξ

p
−

ffiffiffi
2

p Þ
ð ffiffiffi

6
p

−
ffiffiffi
3

p Þπ2 − 16ð ffiffiffi
6

p
− 3Þ ;

f2ðξÞ ¼ ξ

�
16

π2
−

ffiffiffi
2

p ð16=π2 − 1Þ þ ð1þ ξÞ18ffiffiffiffiffiffiffiffiffiffiffi
3þ ξ

p
��

1 −
ð1þ ξÞ32
1þ ξ2=3

�
þ f1ðξÞ þ 1: ð7Þ
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The above expression ensures the correct asymptotic limits
for small and large ξ and efficiently reproduces the short-
range anisotropic potential when compared to the direct
numerical evaluation of the full result [24]. The existence of
such a parametrization further guarantees the justification
of the model construction in an anisotropic medium as
proposed above. Namely, the behaviors of the potential at
short distances can be well described by the Debye-
screened Coulomb potential from which an anisotropic
screening mass can be extracted.
Although it is not surprising that a θ dependence emerges

in the anisotropic screening mass, one has to face the
technical difficulty of solving a two- or three-dimensional
SE. On the other hand, if we replace m̃Dðλ; ξ; θÞ with the
effective screening mass as introduced in Eq. (3), the
restoration of the spherical symmetry in the HQ potential
greatly simplifies the numerical evaluations as one only
needs to solve a one-dimensional problem. We believe this
is very important for many studies concerning quarkonium
physics in an anisotropic situation. Therefore, the key issue
is to demonstrate the rationality of the definition of
Mlmðλ; ξÞ introduced in Eq. (3). Qualitatively, it can be
understood by analyzing both the anisotropy and quantum
number dependence of the effective screening mass.
Using Eq. (5), for the anisotropic screening mass in small

ξ limit, the integrations in Eq. (3) can be performed
analytically, leading to

Mlmðλ; ξ < 1Þ ¼ mDðλÞ
�
1 −

ξ

8
kðl; mÞ

�
; ð8Þ

with

kðl; mÞ ¼ 6lðlþ 1Þ − 2ðm2 þ 2Þ
4lðlþ 1Þ − 3

: ð9Þ

As expected, the effective screening mass decreases with
increasing anisotropy ξ and a reduced screening effect
exists in an anisotropic plasma since the values of
Mlmðλ; ξÞ are always smaller than the ideal Debye mass
mDðλÞ. Furthermore, the observed polarization of quarko-
nium states with nonzero angular momentum in an aniso-
tropic plasma can be qualitatively explained by the
corresponding m dependence as given in Eq. (8). We find
that, instead of mDðλÞð1 − ξ=5Þ for P0 states, Mlmðλ; ξÞ
takes a different valuemDðλÞð1 − 3ξ=20Þ for P�1 states. As
a result, one can expect that the first excited states of
bottomonia2 with Lz ¼ 0 have a smaller screening mass
and therefore are bounded more tightly as compared to
those with Lz ¼ �1. For arbitrary ξ, the above discussions

also hold, although in this case, the values of Mlmðλ; ξÞ
need to be determined numerically. In addition, since the
function kðl; mÞ is in the range of 1 ≤ kðl; mÞ ≤ 8=5,
Eq. (8) suggests that, at a given temperaturelike scale λ
and anisotropy ξ, the effective screening mass has a
minimum value mDðλÞð1 − ξ=5Þ with l ¼ 1 and m ¼ 0
while its maximum, equaling tomDðλÞð1 − ξ=8Þ, is reached
when l → ∞ and m ¼ �l. Numerical evaluations on the
values ofMlmðλ; ξÞ for arbitrary ξ turn to support the same
conclusion and we give the corresponding results with
anisotropies ξ ¼ 5 and ξ ¼ 10 for different l and m in
Tables I and II, respectively.

III. PERTURBATIVE EVALUATIONS ON THE
ENERGIES OF QUARKONIUM STATES

The above discussions suggest that it is reasonable to
introduce an angle-averaged screening mass as defined in
Eq. (3) to replace the angle-dependent mass in Eq. (4).
However, the discrepancy resulting from such a replace-
ment has to be estimated at a quantitative level to ensure an
accurate determination on the physical properties of quar-
konium states in an anisotropic plasma. We start with the
stationary Schrödinger equation

−
1

2mQ

�
1

r2
∂
∂rr

2
∂
∂r−

1

r2
L̂2

�
ψðrÞ¼ ½E−VðrÞ�ψðrÞ; ð10Þ

where mQ is the reduced mass for the quarkonium bound
state with eigenenergy E and L̂2 is the square of the
angular-momentum operator. For an isotropic potential
VðrÞ without the dependence on the azimuthal angle θ

TABLE I. The ratio Mlm=mD at ξ ¼ 5.

l

m 0 1 2 3 10

0 0.6215 0.5860 0.6007 0.6001 0.6012
1 … 0.6393 0.6058 0.6048 0.6017
2 … … 0.6477 0.6180 0.6030
3 … … … 0.6526 0.6053
10 … … … … 0.6642

TABLE II. The ratio Mlm=mD at ξ ¼ 10.

l

m 0 1 2 3 10

0 0.5242 0.5001 0.5095 0.5094 0.5102
1 … 0.5363 0.5140 0.5127 0.5105
2 … … 0.5419 0.5223 0.5115
3 … … … 0.5451 0.5131
10 … … … … 0.5527

2They are the 1P states of bottomonium, identified with the χb.
In an isotropic medium, there is no preferred polarization of the
χb between states with different magnetic quantum number m.
Degeneracy is removed in an anisotropic medium where χb0 and
χb�1 correspond to Lz ¼ 0 and Lz ¼ �1, respectively.
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and polar angle ϕ, the wave function ψðrÞ can be separated
into a radial and an angular part as

ψ iso
nlmðrÞ ¼

RnlðrÞ
r

Ylmðθ;ϕÞ; ð11Þ

and the associated eigenenergy denoted by Enl is deter-
mined by the following equation:

�
1

2m

�
−
d2

dr2
þ lðlþ1Þ

r2

�
þVðrÞ

�
RnlðrÞ¼EnlRnlðrÞ: ð12Þ

In general, Eq. (12) cannot be solved analytically but the
numerical evaluations can be simply carried out. According
to the well-known nodal theorem, the level of excitations
can be identified by the number n of the nodes of
the reduced radial wave function RnlðrÞ. For a given l,
the ground-state wave function corresponds to n ¼ 0,
while the wave function of some radial excitations has a
nonzero and finite number of nodes. Therefore, the number
n ¼ 0; 1; 2; 3…. In addition, the spherical harmonics
Ylmðθ;ϕÞ in Eq. (11) is standard with m ¼ −l;−lþ
1;…; 0;…; l − 1; l and l ¼ 0; 1; 2; 3;….
Because of the breaking of the spherical symmetry, for

an anisotropic potential VðrÞ, the above separation of the
wave function is no longer true, namely, ψ iso

nlmðrÞ is not an
eigenstate for the system. On the other hand, due to the
completeness of the eigenfunctions in Eq. (11), we can
expand ψ anisoðrÞ as the following:

ψ ½k�
anisoðrÞ ¼

X
nlm

C½k�
nlm

RnlðrÞ
r

Ylmðθ;ϕÞ; ð13Þ

where k is used to label the level of the excitations.

Accordingly, the eigenenergy associated with ψ ½k�
anisoðrÞ is

denoted as E½k�.
With the effective screening mass proposed in Eq. (3),

the anisotropic potential as given in Eq. (4) can be
expanded around an isotropic configuration m̃Dðλ; ξ; θÞ ¼
Ml0m0 ðλ; ξÞ with the leading-order contribution denoted by

Vð0Þ
l0m0 ðrÞ≡ Vðr;Ml0m0 Þ. The expansion can be formally

expressed as the following Taylor series:

VðrÞ≡ Vð0Þ
l0m0 ðrÞ þ ΔVl0m0 ðrÞ ¼ Vð0Þ

l0m0 ðrÞ þ
X∞
s¼1

VðsÞ
l0m0 ðrÞ;

ð14Þ

where the radial and angular dependences in the anisotropic
terms can be separated as

VðsÞ
l0m0 ðrÞ ¼ GðsÞ

l0m0 ðλ; ξ; rÞ · F s
l0m0 ðλ; ξ; θÞ; ð15Þ

with

GðsÞ
l0m0 ðλ; ξ; rÞ≡Ms

l0m0

s!
∂sVðrÞ
∂m̃s

D

����
m̃D¼Ml0m0

and

F l0m0 ðξ; θÞ≡ m̃Dðλ; ξ; θÞ
Ml0m0 ðλ; ξÞ − 1: ð16Þ

If the Taylor series converges quickly, higher-order terms

VðsÞ
l0m0 ðrÞ for s ≥ 1 act as a small perturbation to the isotropic

potential Vð0Þ
l0m0 ðrÞ. As a result, the eigenenergy Enl deter-

mined by Eq. (12) with VðrÞ ¼ Vð0Þ
l0m0 ðrÞ could be an ideal

approximation to the eigenenergy E½k� of the bound state in
an anisotropic medium. However, there exists an ambiguity
due to fact that both the reduced radial wave functionRnlðrÞ
and the eigenenergy Enl are not unique because the above
isotropic potential constructed with the effective screening
mass has an ðl0; m0Þ dependence. For example, with different
values of l0 and m0, a set of ground states ψ iso

000ðrÞ can be
obtained based on Eqs. (11) and (12). A question naturally
arising is which values of l0 and m0 lead to an eigenenergy
E00 that is closest to E½0�. This question can be answered by
looking at the energy correction ΔE which in the first
approximation in the perturbation theory reads

ΔE≡X∞
s¼1

ΔEs ¼
X∞
s¼1

hY00ðθ;ϕÞjF s
l0m0 ðξ; θÞjY00ðθ;ϕÞi

· hR00ðrÞjGðsÞ
l0m0 ðλ; ξ; rÞjR00ðrÞi: ð17Þ

Naively, one can expect that the main contribution to the
energy correction comes from the first termΔE1. Therefore,
when choosing ðl0; m0Þ ¼ ð0; 0Þ, this term vanishes by
definition and the perturbative correction to the eigenenergy
E00 becomes negligible. The above conjecture indicates that

the isotropic potential Vð0Þ
00 ðrÞ constructed with the effective

screening mass M00 is the right one that should be used in
Eq. (12). The resulting ground state described by the wave
functionψ iso

000ðrÞ is themost similar state in the sense that the
associated eigenenergy E00 is the best approximation to the
lowest energy E½0� in an anisotropic medium. Furthermore,
using the most similar state is actually consistent with the
explanation for the polarization of states with nonzero
angular momentum appearing in an anisotropic plasma
which has already been discussed in Sec. II. This conclusion
can be generalized to excited states. Solving the stationary

SE with an isotropic potential Vð0Þ
l0m0 ðrÞ, among the eigen-

states as formally given by Eq. (11), we are interested in a set
of the states with the quantum numbers ðl; mÞ ¼ ðl0; m0Þ.
The eigenenergyE½k� can bewell approximated byEnl0 of the
so-called most similar state ψ iso

nl0m0 ðrÞ.
In Table III, we list the eigenenergies as well as the

perturbative corrections evaluated with different Ml0m0 for
the bottomonium states (including ϒ, χb0, and χb�1)
at ξ ¼ 1 and λ ¼ 1.1Tc. Comparing with the exact values,
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E½0� ¼ 115.358, E½1� ¼ 506.318, and E½2� ¼ 507.878 MeV
which are obtained by solving the three-dimensional SE
with the anisotropic HQ potential in Eq. (4), we find that
the energies E00 or E01 associated with the most similar
state are closest to exact results as expected. The above
discussion shows that one-dimensional SE should be
sufficient to provide the desired information on the bound
states in an anisotropic QCD medium at a quantitative
level; namely, the solution with an isotropic potential

Vð0Þ
l0m0 ðrÞ is indeed a very good approximation to that of

an anisotropic medium characterized by a screening mass
m̃Dðλ; ξ; θÞ. In addition, finding excited states in a numeri-
cal approach is also a challenging task especially when the
anisotropic situation is taken into account. On the other
hand, when solving the Schrödinger equation with the

ðl0; m0Þ-dependent potential Vð0Þ
l0m0 ðrÞ, the obtained “ground

state” ψ0l0m0 ðrÞ for ðl0; m0Þ ≠ ð0; 0Þ actually corresponds an
excited state in the anisotropic medium. For example, the
first two excited states of bottomonia denoted as χb0 and
χb�1

are identified with the ground states determined by

Vð0Þ
10 ðrÞ and Vð0Þ

1�1ðrÞ, respectively. Therefore, finding the
excited states can be also simplified in our approach based
on the effective screening mass.
Furthermore, the Taylor series given in Eq. (14) is very

different from the expansion of the anisotropic potential
VðrÞ around ξ ¼ 0. Although the leading contributions are
both independent of the angles, the energy splitting of
states with angular quantum number l ≠ 0 already shows

up at leading order due to them dependence of the effective
screening mass when Eq. (14) is considered. On the other
hand, in order to see such a splitting of energy in the latter
approach, one has to take into account the anisotropic
higher-order corrections. Of course, the main disadvantage
of the expansion around ξ ¼ 0 is the limitation for
application at large anisotropies.

IV. DISCUSSION ON THE SUPPRESSION
OF THE TAYLOR SERIES

The most similar state ψ iso
nl0m0 ðrÞ is an eigenstate deter-

mined by Eqs. (11) and (12) where an isotropic heavy-
quark potential Vðr;Ml0m0 Þ should be taken into account.
As shown in Table III, the perturbative corrections to the
eigenenergy are so small that ψ iso

nl0m0 ðrÞ could be an ideal

approximation to the corresponding eigenstate ψ ½k�
anisoðrÞ in

an anisotropic plasma. Therefore, the one-dimensional SE
with the effective screening mass can be used to study
quarkonia in an anisotropic medium. For any given
quantum numbers n, l, and m, the eigenenergy corrections
can be written as

ΔE≡X∞
s¼2

ΔEs ¼
X∞
s¼2

hYlmðθ;ϕÞjF s
lmðξ; θÞjYlmðθ;ϕÞi

· hRnlðrÞjGðsÞ
lm ðλ; ξ; rÞjRnlðrÞi: ð18Þ

Notice that, different from Eq. (17), the sum in the above
equation starts from s ¼ 2 because only the most similar
state will be considered in the following. In order to
understand the reason why the contribution from
Eq. (18) is negligible, we formally divided ΔE into the
following two parts:

ΔE≡X∞
s¼2

ΔEs ¼
X∞
s¼2

ΔEag
s · ΔEra

s ; ð19Þ

where

ΔEag
s ¼ hYlmðθ;ϕÞjF s

lmðξ; θÞjYlmðθ;ϕÞi; ð20Þ

and

ΔEra
s ¼ hRnlðrÞjGðsÞ

lm ðλ; ξ; rÞjRnlðrÞi: ð21Þ

A. The angular part of the perturbative
corrections to the eigenenergies

We first look at the angular part. Since the spherical
harmonics are universal, Eq. (20) can be determined once
the exact form of the anisotropic Debye mass is known.
This means ΔEag

s is independent of the specific potential
model used in the Schrödinger equation. Starting with the
case where ξ is small, we have

TABLE III. The eigenenergies and their perturbative correc-
tions evaluated with different effective screening masses for the
bottomonium states ϒ, χb�1, and χb0. The results are obtained at
ξ ¼ 1, λ ¼ 1.1Tc and given in the unit of MeV.

ϒ E00 ΔE1 ΔE2 ΔE3 ΔE4

M00 115.31 0 0.013 1.5 × 10−4 9.2 × 10−6

M10 114.06 1.25 0.026 −1.2 × 10−3 3.1 × 10−5

M11 115.96 −0.64 0.015 6.7 × 10−4 1.9 × 10−5

M20 114.53 0.78 0.018 −5.6 × 10−4 1.5 × 10−5

M22 116.25 −0.93 0.018 9.5 × 10−4 2.7 × 10−5

χb�1 E01 ΔE1 ΔE2 ΔE3 ΔE4

M11 506.39 0 −0.005 −1.4 × 10−4 −5.7 × 10−6

M00 506.94 −0.54 −0.007 1.4 × 10−4 −5.4 × 10−6

M10 507.97 −1.48 −0.023 1.3 × 10−3 −4.1 × 10−5

M20 507.59 −1.14 −0.015 7.3 × 10−4 −2.0 × 10−5

M22 506.13 0.26 −0.005 −2.5 × 10−4 −8.7 × 10−6

χb0 E01 ΔE1 ΔE2 ΔE3 ΔE4

M10 507.97 0 −0.006 9.6 × 10−5 −4.9 × 10−6

M00 506.94 1.07 −0.012 −6.6 × 10−4 −1.9 × 10−5

M11 506.39 1.67 −0.020 −1.5 × 10−3 −5.2 × 10−5

M20 507.59 0.38 −0.007 −1.1 × 10−4 −5.2 × 10−6

M22 506.13 1.97 −0.024 −2.0 × 10−3 −7.8 × 10−5
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ΔEag
s ðξ ≪ 1Þ ¼

�
ξ

8

�
s
hYlmðθ;ϕÞjðx2 þ 1 − kðl; mÞÞs

× jYlmðθ;ϕÞi; ð22Þ
where x≡ cos θ. One can expect that, with increasing s, the
(absolute) values of ΔEag

s ðξ ≪ 1Þ get decreased simply due
to the factor ðξ=8Þs. In fact, we can further show that there is
an extra suppression from the ðl; mÞ-dependent term in the
above equation which is denoted as

I ðsÞ
lm ≡ hYlmðθ;ϕÞjðx2 þ 1 − kðl; mÞÞsjYlmðθ;ϕÞi

¼
Xs
n¼0

Cn
s ð1 − kðl; mÞÞs−nX ð2nÞ: ð23Þ

Here, Cn
s is the binomial coefficient and X ðnÞ is defined as

X ðnÞ ¼ hYlmjxnjYlmi. Using the iterative formula for the
spherical harmonics

xYlm ¼ al;mYlþ1;m þ al−1;mYl−1;m with

alm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 1Þ2 −m2

ð2lþ 1Þð2lþ 3Þ

s
; ð24Þ

it is straightforward to obtain an analytical expression for
X ðnÞ, although this is rather tedious for large n. Explicitly,
for s ¼ 2, we arrive at

I ð2Þ
lm ¼ X ð4Þ þ 2ð1 − kðl; mÞÞX ð2Þ þ ð1 − kðl; mÞÞ2; ð25Þ

with

X ð2Þ ¼ a2lm þ a2l−1;m and

X ð4Þ ¼ a2lmða2lþ1;m þ a2lm þ a2l−1;mÞ
þ a2l−1;mða2lm þ a2l−1;m þ a2l−2;mÞ: ð26Þ

In fact, one can prove that Eq. (25) approaches zero
when l → ∞ and m ¼ �l and its maximum value
68=441 can be obtained when l ¼ 2 and m ¼ 0. Therefore,

I ð2Þ
lm ≤ 68=441 ≈ 0.154.
For large s, the ðl; mÞ dependence in I ðsÞ

lm turns out to be
very complicated. Instead, we will consider the following
ratio for n ¼ 1; 2; 3;…:

jI ð2nþ1Þ
lm j
I ð2nÞ
lm

<
hYlmðθ;ϕÞjðx2 þ 1 − kðl; mÞÞ2njx2 þ 1 − kðl; mÞjjYlmðθ;ϕÞi

hYlmðθ;ϕÞjðx2 þ 1 − kðl; mÞÞ2njYlmðθ;ϕÞi
< δlm: ð27Þ

Here, δlm is defined as the maximum value of jx2 þ 1 −
kðl; mÞj for a given ðl; mÞ when x2 changes from 0 to 1.
Since 1 ≤ kðl; mÞ ≤ 8=5, δlm cannot be larger than 1. In
fact, the largest δlm is given by δ∞;�l ¼ 1. In addition,

I ð2nþ2Þ
lm =I ð2nÞ

lm < δ2lm can be also shown similarly.
Based on the above discussion, we conclude that the

magnitude of I ðsÞ
lm is small and gets suppressed when s is

large. In particular, the maximum value of I ð2Þ
lm is given by

0.154. For s > 2, although the exact values of the
maximum are not computed here, it is possible to estimate

an upper limit which is given by jI ðsÞ
lm j < I ð2Þ

lm δ
s−2
lm ðl; mÞ.

Given the quantum numbers l and m, explicitly we
have

jI ðs>2Þ
lm j <

8>>>>><
>>>>>:

4
45
ð2
3
Þs−2 for l ¼ 0; m ¼ 0;

12
175

ð3
5
Þs−2 for l ¼ 1; m ¼ 0;

8
175

ð4
5
Þs−2 for l ¼ 1; m ¼ �1;

68
441

ð11
21
Þs−2 for l ¼ 2; m ¼ 0:

ð28Þ

We should mention that, for even s, I ðsÞ
lm is monoto-

nically decreasing with increasing s, however, the same
conclusion cannot be drawn for s ¼ 2; 3; 4;…. Instead,

only I ð2nÞ
lm > jI ð2nþ1Þ

lm j for n ¼ 1; 2; 3;… can be justified.
Furthermore, the iterative formula in Eq. (24) turns to be
very useful to analytically study the angular part of the
perturbative energy correction even for the case of arbitrary
anisotropies as long as the anisotropic Debye mass can be
parametrized as a polynomial function of x, namely
m̃Dðλ; ξ; θÞ ¼

P
n
i¼0 ciðλ; ξÞxi. However, m̃Dðλ; ξ; θÞ as

given in Eq. (6) does not satisfy this condition.
For arbitrary ξ, we start with the simplest case where

s ¼ 2

ΔEag
2 ðξÞ ¼

hYlmðθ;ϕÞjm̃2
Dðλ; ξ; θÞjYlmðθ;ϕÞi

M2
lmðλ; ξÞ

− 1

¼ hYlmðθ;ϕÞjðx2 þ fðξÞÞ−1=2jYlmðθ;ϕÞi
ðhYlmðθ;ϕÞjðx2 þ fðξÞÞ−1=4jYlmðθ;ϕÞiÞ2

− 1:

ð29Þ
In the above equation fðξÞ ¼ f2ðξÞ=f1ðξÞ and the explicit
expression of fðξÞ is rather complicated which we do not
list here. However, the key point is that fðξÞ is positive
for ξ > 0 and it is not a monotonic function of ξ. The
minimum can be numerically determined as fminðξÞ≈
fð2.958Þ ≈ 0.694. In Fig. 1, we plot fðξÞ as a function
of ξ.
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It is not easy to get a general expression of ΔEag
2 ðξÞ for

any given l and m. On the other hand, in order to see
the nontrivial ξ dependence ofΔEag

2 ðξÞ, we fix l andm. The
simplest case is to consider ðl; mÞ ¼ ð0; 0Þ where the
numerator in Eq. (29) can be carried out analytically and
the result takes the following form:

ΔEag
2 ðξÞ ¼

ffiffiffiffiffiffiffiffiffi
fðξÞp

ln
� ffiffiffiffiffiffiffiffiffiffiffi

1þfðξÞ
p

þ1ffiffiffiffiffiffi
fðξÞ

p
	

ðR 1
0 ð1þ x2=fðξÞÞ−1=4dxÞ2 − 1;

with l ¼ 0; m ¼ 0; ð30Þ
where the integral in the denominator corresponds to a
hypergeometric function. Numerically, it can be shown that
the above result decreases with increasing values of fðξÞ,
therefore, the maximum of ΔEag

2 ðξÞ with ðl; mÞ ¼ ð0; 0Þ
appears when ξ ≈ 2.958, see Fig. 2 (the left panel).
Changing the values of l and m, we have checked that
the maximum of ΔEag

2 ðξÞ is always at ξ ≈ 2.958 and the
maximum values of ΔEag

2 ðξÞ at a given ðl; mÞ are list in
Table IV. Our numerical results also suggest that, as a
function of l and m, ΔEag

2 ð2.958Þ becomes largest when

ðl; mÞ ¼ ð2; 0Þ which coincides with the finding in the
small ξ limit.
For s > 2, we are not going to evaluate ΔEag

s ðξÞ with
various quantum numbers ðl; mÞ, instead, we try to estimate
the corresponding upper limit which should be sufficient to
demonstrate the suppression of ΔEag

s ðξÞ when s is large. It
is clear that the function

F lmðξ; xÞ ¼
ðx2 þ fðξÞÞ−1=4

hYlmðθ;ϕÞjðx2 þ fðξÞÞ−1=4jYlmðθ;ϕÞi
− 1

ð31Þ
is monotonically decreasing with x2 when x changes
from 0 to 1, therefore, the maximum of F 2

lmðξ; xÞ locates
at either x ¼ 0 or x ¼ 1 which can be denoted as
maxðF 2

lmðξ; x ¼ 0Þ;F 2
lmðξ; x ¼ 1ÞÞ. Therefore, the ratio

of ΔEag
2nþ2ðξÞ=ΔEag

2nðξÞ for n ¼ 1; 2; 3;…, satisfies

ΔEag
2nþ2ðξÞ

ΔEag
2nðξÞ

¼ hYlmðθ;ϕÞjF 2nþ2
lm ðξ; θÞjYlmðθ;ϕÞi

hYlmðθ;ϕÞjF 2n
lmðξ; θÞjYlmðθ;ϕÞi

< maxðF 2
lmðξ; x ¼ 0Þ;F 2

lmðξ; x ¼ 1ÞÞ: ð32Þ
Then, the question amounts to estimating an upper limit for
F 2

lmðξ; x ¼ 0Þ and F 2
lmðξ; x ¼ 1Þ for arbitrary anisotropies

and the quantum numbers. Notice that fðξÞ > 0 and
fminðξÞ ≈ 0.694, we have

FIG. 1. The ξ dependence of fðξÞ.

FIG. 2. Left: the ξ dependence of ΔEag
2 ðξÞ at l ¼ 0 and m ¼ 0. Right: the ξ dependence of F 2

lmðξ; x ¼ 0Þ and F 2
lmðξ; x ¼ 1Þ at l ¼ 0

and m ¼ 0.

TABLE IV. The maximum values of ΔEag
2 ðξÞ at different

l and m.

l

m 0 1 2 3 10

0 0.00476 0.00307 0.00823 0.00600 0.00621
1 … 0.00281 0.00279 0.00605 0.00614
2 … … 0.00186 0.00230 0.00591
3 … … … 0.00132 0.00553
10 … … … … 0.00032
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F 2
lmðξ; x ¼ 0Þ ¼

�
1

hYlmðθ;ϕÞjðf−1ðξÞx2 þ 1Þ−1=4jYlmðθ;ϕÞi
− 1

�
2

<

�
1

ð1=fðξÞ þ 1Þ−1=4 − 1

�
2

≤
�

1

ð1=fminðξÞ þ 1Þ−1=4 − 1

�
2

≈ 0.0625: ð33Þ

The estimated upper limit is valid independent of the values of ðl; mÞ. The analysis on F 2
lmðξ; x ¼ 1Þ can be carried out in a

similar approach and we can show

F 2
lmðξ; x ¼ 1Þ ¼

�
1

hYlmðθ;ϕÞjð x2
1þfðξÞ þ fðξÞ

1þfðξÞÞ−1=4jYlmðθ;ϕÞi
− 1

�
2

<
�

1

ðfðξÞ=ðfðξÞ þ 1ÞÞ−1=4 − 1

�
2

≤
�

1

ðfminðξÞ=ðfminðξÞ þ 1ÞÞ−1=4 − 1

�
2

≈ 0.0400: ð34Þ

On the other hand, once l and m are specified, F 2
lmðξ; x ¼

0Þ and F 2
lmðξ; x ¼ 1Þ can be evaluated numerically and one

can further reduce this limit. As shown in Fig. 2 (the right
panel), with ðl; mÞ ¼ ð0; 0Þ, the maxima of F 2

lmðξ; x ¼ 0Þ
and F 2

lmðξ; x ¼ 1Þ which appear at ξ ¼ 2.958 are found to
be 0.0080 and 0.0165, respectively. More results are given
in Table V.
At this point, the estimation that maxðF 2

lmðξ; x ¼ 0Þ;
F 2

lmðξ; x ¼ 1ÞÞ < 0.0625 is justified. In addition, the
square root of this upper limit corresponds to that of the
ratio jΔEag

2nþ1ðξÞj=ΔEag
2nðξÞ, namely; the following relations

are always true regardless of the specific values of ξ as well
as the quantum numbers l and m,

ΔEag
2nþ2ðξÞ < 0.0625ΔEag

2nðξÞ; and

jΔEag
2nþ1ðξÞj < 0.250ΔEag

2nðξÞ: ð35Þ

It is similar to what we found for the small ξ case that
the above result does not guarantee the relation that
jΔEag

2nþ3ðξÞj< jΔEag
2nþ1ðξÞj or jΔEag

2nþ2ðξÞj < jΔEag
2nþ1ðξÞj.

This is because the absolute values of ΔEag
2nþ1ðξÞ could be

very close to zero even for small n. One example we found
is that, with ðl; mÞ ¼ ð2; 1Þ,ΔEag

4 ðξÞ > jΔEag
3 ðξÞjwhen ξ is

around 1.
For practical applications, we are probably more

interested in quarkonium states with not very large azimu-
thal quantum number. Based on the results given in
Tables IV and V, we can show the following:

jΔEag
s≥2ðξÞj <

8>>>>><
>>>>>:

0.00476ð0.128Þs−2 for l ¼ 0; m ¼ 0;

0.00307ð0.160Þs−2 for l ¼ 1; m ¼ 0;

0.00281ð0.154Þs−2 for l ¼ 1; m ¼ �1;

0.00823ð0.129Þs−2 for l ¼ 2; m ¼ 0;

ð36Þ
which clearly indicates that the absolute values of ΔEag

s ðξÞ
are very small and decrease quickly with increasing s.

B. The radial part of the perturbative
corrections to the eigenenergies

The discussions above of the angular part of the pertur-
bative corrections depend only on the parametrization of the
anisotropic Debye mass m̃D. On the other hand, one has to
specify an explicit formof the heavy-quark potential in order
to study the corresponding radial part ΔEra

s as defined in
Eq. (21). In addition, unlike the spherical harmonics
Ylmðθ;ϕÞ, the radial wave function RnlðrÞ can, in general,
only be obtained numerically by solving Eq. (12).
To proceed further, we consider Eq. (4) as the heavy-

quark potential model. The explicit form of GðsÞ
lm defined in

Eq. (16) can be written as

GðsÞ
lm ¼ αMlmð−1Þs−1

r̂ − ðs − 1Þ
s!

r̂s−1e−r̂

þ 2σ

Mlm
ð−1Þs−1

�Xs

n¼0

r̂n

n!
þ r̂sþ1

2s!
− er̂

�
e−r̂: ð37Þ

TABLE V. The maximum values of F 2
lmðξ; x ¼ 0Þ and F 2

lmðξ; x ¼ 1Þ at different l and m.

ðl; mÞ (0,0) (1,0) ð1;�1Þ (2,0) ð2;�1Þ ð2;�2Þ
F 2

lmðξ ¼ 2.958; x ¼ 0Þ 0.0080 0.0257 0.0033 0.0167 0.0144 0.0018
F 2

lmðξ ¼ 2.958; x ¼ 1Þ 0.0165 0.0051 0.0238 0.0093 0.0108 0.0275
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To obtain the above equation, we have used the following
derivatives:

ds

dxs
ðxe−rxÞ ¼ sð−rÞs−1e−rx þ xð−rÞse−rx and

ds

dxs
ðe−rx=xÞ ¼

Xs

n¼0

ð−1Þs s!
n!

rn

xsþ1−n e
−rx: ð38Þ

In Fig. 3, we show GðsÞ
lm as a function of r̂≡ rMlm

for s ¼ 2, 3, 4, 5. The plot on the left corresponds to
the effective screening mass Mlm ¼ 1500 MeV and we
focus on a region of the dimensionless variable up to
r̂ ¼ 3.75. Therefore, the size of the quarkonium states
are assumed to be smaller than 0.5 fm, which roughly
speaking is the upper limit of the root-mean-square
radii of quarkonia above the critical temperature.
The right plot shows the results at Mlm ¼ 500 MeV.
Correspondingly, we consider a relatively narrow region
of r̂.
For the most similar state, due to the vanishing angular

part in the perturbative correction, ΔE1 ¼ 0 which is

independent of the values of Gð1Þ
lm . On the other hand, the

plots in Fig. 3 suggest that the magnitude of Gð2Þ
lm does not

exceed ∼70 MeV within the given region of r̂ that is
relevant to quarkonium studies.3 Therefore, ΔE2 is esti-
mated to be less than 0.6 MeV given that ΔEag

2 ≤ 0.00823,

see Table IV. In the same region of r̂, the magnitude of GðsÞ
lm

gets smaller as s is increasing; naively, we do not expect
any enhancement from the radial part to ΔEs when s
is large.
As a very rough estimation, the above discussion

presumes that RnlðrÞ is simply a Dirac delta and becomes
nonvanishing only if r equals the root-mean-square radius

of the bound state. To do it in a relatively rigorous way, we
consider a normalized function

jψðrÞi ¼ 2

�
1

a0

�
3=2

e−r=a0 : ð39Þ

This is actually the radial part of the wave function for
ground state when the potential is Coulombic. However, the
Bohr radius a0 should be understood as the most probable
radius of a quarkonium state. For the Coulomb term, one
obtains

ΔEra;C
s ¼αMlmð−1Þs−1hRnlðrÞj

r̂−ðs−1Þ
s!

r̂s−1e−r̂jRnlðrÞi

≈αMlmð−1Þs−1
Z

∞

0

4r2

a30
e−2r=a0

r̂−ðs−1Þ
s!

r̂s−1e−r̂dr

¼4αMlmðsþ1Þð2−2sþ3â0Þ
ð−â0Þs−1
ð2þ â0Þsþ3

; ð40Þ

with â0 ≡Mlma0. Here, we have used the following
integral:

Z
∞

0

e−axxndx ¼ n!
anþ1

; ð41Þ

where a > 0 and n is a positive integer. Similarly, the
contribution from the string term is given by

ΔEra;S
s ¼2σa0½2ðsþ3Þðsþ2Þð1−sÞþ2â0ðsþ3Þðsþ4Þ

þ2â20ðsþ4Þþ â30�
ð−â0Þs

ð2þ â0Þsþ4
: ð42Þ

Notice that, after integrating over r with the help of
Eq. (41), the summation over n appearing in Eq. (37)
can be carried out by using the identity

FIG. 3. GðsÞ
lm as a function of the dimensionless variable r̂≡ rMlm for s ¼ 2, 3, 4, 5. Left: the effective screening mass

Mlm ¼ 1500 MeV. Right: the effective screening mass Mlm ¼ 500 MeV.

3The magnitude of GðsÞ
lm increases if a wider region of r̂ is

considered. It eventually approaches to 2σ=Mlm when r̂ → ∞.
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Xs
n¼0

ðnþ1Þðnþ2Þ
ð1þxÞnþ3

¼ 2

x3
−
ðsþ3Þðsþ2Þx2þ2ðsþ3Þxþ2

ðxþ1Þsþ3x3
:

ð43Þ

Both ΔEra;C
s and ΔEra;S

s have nontrivial dependences on
the most probable radius a0 as well as the effective
screening mass Mlm. In order to estimate an upper bound
for the radial part of the perturbative corrections
jΔEra

s j≡ jΔEra;C
s þ ΔEra;S

s j, the value ranges of a0 and
Mlm have to be specified. When the screening effect
becomes strong enough, even the smallest quarkonium
state ϒ cannot survive. Therefore, it is reasonable to
assume Mlm ≤ 1500 MeV which, based on the potential
model adopted here, corresponds to a temperature less than
3Tc in the limit ξ ¼ 0. On the other hand, the most probable
radius a0 equals

ffiffiffiffiffiffiffiffi
hr2i

p
=

ffiffiffi
3

p
; as a result, a0 ¼ 0.3 fm is

equivalent to a root-mean-square radius
ffiffiffiffiffiffiffiffi
hr2i

p
≈ 0.5 fm

which has been considered as the largest size of quarkonia
that could be bound in the deconfining phase.
As demonstrated in the left plot of Fig. 4, the

magnitude of ΔEra
2 is always smaller than ∼40 MeV

when we vary the radius at a given Mlm. Numerically,
we find that the maximum of jΔEra

2 j appears as both
variables equal the largest values that they may take,
namely, a0 ¼ 0.3 fm and Mlm ¼ 1500 MeV. As com-
pared with our previous analysis, the upper bound of
ΔE2 now is reduced to ∼0.3 MeV. Although small
enough in magnitude, we would like to take it as an
overestimation. In fact, for any specific quarkonium
state, in order to get ΔEra

2 at any fixed Mlm, the corres-
ponding root-mean-square radius or a0 has to be
determined by (numerically) solving the Schrödinger
equation with an isotropic HQ potential Vðr;MlmÞ.
According to the obtained values of the most probable
radius a0, one can locate a point on each curve in Fig. 4
which we refer to as the “physical point.” Taking the ϒ

state as an example, the physical point which corre-
sponds to the physical a0 of the quarkonium state in
consideration is denoted by a filled circle in Fig. 4.
In addition, under the constraint conditions that a0 ≤

0.3 fm and Mlm ≤ 1500 MeV, the maximum of jΔEra
s j

can be determined for any given s. In general, the maxi-
mum appears when both a0 and Mlm take their largest
possible values. However, there are also exceptions such
as jΔEra

5 jmax ¼ jΔEra
5 ða0 ≈ 0.124 fm;Mlm ¼ 1500 MeVÞj,

see the right plot of Fig. 4. The corresponding results as
presented in Fig. 5 suggest that, as compared to jΔEra

2 jmax,
higher-order terms ΔEra

s>2 rapidly decrease in magnitude
and become negligibly small even at moderate s. In fact,
both Eqs. (40) and (42) vanish when s is infinitely large.
Notice that the sequential suppression of jΔEra

s j cannot be
guaranteed because the contribution from ΔEra

2 can be zero
as long as certain values are assigned to a0 and Mlm, see
Fig. 4. On the other hand, due to the strong suppression
on jΔEra

s jmax as well as the angular part jΔEag
s j, the

FIG. 4. The radial part of the perturbative corrections ΔEra
2 (left) and ΔEra

5 (right) as a function of the most probable radius a0 at fixed
Mlm. The physical point of ϒ is denoted by a filled circle.

FIG. 5. The maximum of jΔEra
s j at different values of s

obtained under the constraint conditions Mlm ≤ 1500 MeV
and a0 ≤ 0.3 fm.
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perturbative corrections ΔE as defined in Eq. (18) can be
neglected within an error of about ∼0.3 MeV.
According to Table III, although the differences among

the eigenenergies of bottomonium obtained with various
effective screening mass are not significant, the necessity of
using the most similar state could be understood more
clearly when we look at the energy splitting of quarkonium
states with nonzero angular momentum which is a unique
feature arising in an anisotropic medium. Without choosing
the most similar state, the contribution from perturbative
correction could be on the order of ∼1 MeV which is larger
than the upper bound ∼0.3 MeV estimated for the most
similar state and actually comparable to the splitting
between the states with different polarizations. For exam-
ple, solving the exact three-dimensional SE, we find that
the eigenenergy of χb0 differs from that of χb�1 by an
amount ∼1 MeV. Therefore, the most similar state, which
is expected to provide the most accurate results, is essential
to reducing the three-dimensional problem effectively to an
isotropic one-dimensional problem. Excellent agreement
can be seen in Tables VII–IX when comparing the
corresponding eigenenergies with the exact solutions.

C. The heavy-quark potential at large distances

For quarkonium studies, the binding energies of the
bound states are of particular interest. Therefore, the
behavior of the heavy-quark potential at large distances
is essentially important since the binding energy, by
definition, equals the eigenenergy minus V∞ðλ; ξÞ. In an
anisotropic plasma, V∞ðλ; ξÞ is given by the following
expectation values:

V∞ðλ; ξÞ ¼ hψ ½k�
anisoðrÞjVðr → ∞; m̃Dðλ; ξ; θÞÞjψ ½k�

anisoðrÞi;
ð44Þ

where in principle the wave function ψ ½k�
anisoðrÞ has to be

determined by solving the three-dimensional SE. On the
other hand, expanding Vðr → ∞; m̃Dðλ; ξ; θÞÞ around the
effective screening mass, we find that the leading term

Vð0Þ
∞ ðλ; ξÞ which is independent of the azimuthal angle θ

turns to be an ideal approximation of V∞ðλ; ξÞ when the
most similar state is considered.
Using Eq. (4) as the heavy-quark potential model,

V∞ðλ; ξÞ can be expressed as the following Taylor series:

V∞ðλ; ξÞ ≈ hψnlmðrÞjVðr → ∞; m̃Dðλ; ξ; θÞÞjψnlmðrÞi

¼ 2σ

Mlmðλ; ξÞ
�
1þ

X∞
s¼2

ð−1ÞshYlmðθ;ϕÞjF s
lmðξ; θÞjYlmðθ;ϕÞi

�
: ð45Þ

In the first line of the above equation, we have used the most similar state denoted as ψnlmðrÞ to approximate the

corresponding wave function ψ ½k�
anisoðrÞ in an anisotropic plasma. As a result, the s ¼ 1 term in the above sum is absent. The

higher-order corrections with s ≥ 2 are suppressed as compared to the leading contribution Vð0Þ
∞ ðλ; ξÞ ¼ 2σ=Mlmðλ; ξÞ by a

small factor of ΔEag
s . In fact, we can further show the following result according to Eq. (36):

ΔV∞ðλ; ξÞ
Vð0Þ
∞ ðλ; ξÞ

<
X∞
s¼2

jΔEag
s ðξÞj <

8>>><
>>>:

0.0055 for l ¼ 0; m ¼ 0;

0.0037 for l ¼ 1; m ¼ 0;

0.0033 for l ¼ 1; m ¼ �1;

0.0094 for l ¼ 2; m ¼ 0;

ð46Þ

where ΔV∞ðλ; ξÞ≡ V∞ðλ; ξÞ − Vð0Þ
∞ ðλ; ξÞ.

Because the heavy-quark potential at finite temperature
is deeper than the vacuum potential, one can expect that

V∞ðλ; ξÞ and Vð0Þ
∞ ðλ; ξÞ are smaller than V∞ðλ ¼ 0Þ.

Roughly speaking, V∞ðλ ¼ 0Þ corresponds to the
value of the vacuum potential at the string breaking
distance which, in general, is approximately 1 GeV.
Therefore, one can estimate that the higher-order correction
ΔV∞ðλ; ξÞ < 10 MeV.
In addition, the necessity of using the most similar state

could be further justified when we expand Vðr→∞;
m̃Dðλ;θ;ξÞÞ around the effective screening massMl0m0 ðλ;ξÞ
with different quantum numbers l0 andm0. The leading term

Vð0Þ
∞ ðλ; ξÞ ¼ 2σ=Ml0m0 ðλ; ξÞ while the corrections can be

denoted as

VðsÞ
∞ ðλ; ξÞ ¼ 2σ

Ml0m0 ðλ; ξÞ ð−1Þ
s

× hYlmðθ;ϕÞjF s
l0m0 ðξ; θÞjYlmðθ;ϕÞi: ð47Þ

Taking ðl; mÞ ¼ ð0; 0Þ as an example, the Taylor series of
V∞ðλ; ξÞ has been computed and the results are shown in
Table VI. The most similar state corresponds to using the

effective screening mass M00ðλ; ξÞ. In this case, Vð0Þ
∞ ðλ; ξÞ

turns out to be a good approximation to V∞ðλ; ξÞ which is
896.20 MeV from the exact 3D evaluation. On the other
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hand, with other effective screening mass determined with

ðl0m0Þ ≠ ð0; 0Þ, the nonvanishing Vð1Þ
∞ ðλ; ξÞmay give rise to

a considerable correction on the binding energy, especially
for excited states. More importantly, based on the estima-
tion in Ref. [10], the splitting of the binding energy of χb
with different angular momentum is on the order of
50 MeV which is obviously comparable with the contri-

bution from Vð1Þ
∞ ðλ; ξÞ. As a result, when keeping only the

leading term in Eq. (45), one has to make use of the most
similar state in order to get a quantitatively reliable result.

V. SOME APPLICATIONS

Perturbatively, the Debye mass mD at leading order is
proportional to the temperature λ or T in an isotropic
(equilibrium) medium. On the other hand, studies on
quarkonium states become most relevant in a temperature
region not from far above Tc where nonperturbative
physics plays an important role. As argued in Ref. [29],
lattice simulations suggest that the nonperturbative Debye
mass can be approximated as a constant factor A times the
perturbative mD, therefore, as used in our numerical
evaluations, mD is also proportional to λ at relatively lower
temperatures, roughly speaking, from Tc to ∼3Tc, which is
known as the semi-QGP [30–33]. With the effective
screening mass Mlmðλ; ξÞ given in Eq. (3), it is possible
to define an effective temperature λ̃ in an anisotropic
medium by which the effective screening mass can be
formally expressed as Mlmðλ; ξÞ ¼ Agλ̃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Nf=6

p
. The

effective temperature λ̃ is determined by requiring that the
effective screening mass Mlmðλ; ξÞ or the binding energy
of a bound state in an anisotropic medium is equal to that in
an isotropic medium determined at temperature λ̃.
Apparently, λ̃ depends not only on the anisotropy ξ but
also on the quantum numbers l and m. According to
Eqs. (6) and (3), we can show that

λ̃

λ
¼

Z
1

−1
d cos θ

Z
2π

0

dϕYlmðθ;ϕÞ

× ½f1ðξÞ cos2 θ þ f2ðξÞ�−1
4Y�

lmðθ;ϕÞ: ð48Þ

The ratio λ̃=λ as a function of ξ at some fixed ðl; mÞ is
shown in Fig. 6. As we can see, a linear decrease with the
increasing anisotropies appears in the small ξ region. This
is actually in accordance with Eq. (8) by which the above
ratio reduces to 1 − kðl; mÞξ=8 for ξ ≪ 1.
The perturbative Debye mass at nonzero quark chemical

potential μ is given by

mD ¼ gλ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Nf

�
1

6
þ 2μ̃2

�s
ð49Þ

with μ̃≡ μ=ð2πλÞ, which suggests an enhanced screening
in the high-temperature limit where the potential takes a
Debye-screened form. Therefore, the chemical potential
affects the binding of the bound states in an opposite way as
compared to the momentum-space anisotropies. In the
semi-QGP region, assuming the potential model is formally
unchanged when introducing a chemical potential and the
corresponding μmodifications can be entirely encoded into
the Debye mass in exactly the same way as the perturbative
case, Eq. (49), then the effective screening mass at nonzero
chemical potential reads

Mlmðλ;ξ;μÞ¼Mlmðλ;ξ;μ¼0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2Nfμ̃

2=ð1þNf=6Þ
q

:

ð50Þ

As a result, one can consider the competition between
the two different effects on the binding of a bound
state, namely, the anisotropies which lead to a tightly
bound quarkonium state and the chemical potential
which decreases the binding. In particular, a complete
cancellation between the two effects happens
when Mlmðλ; ξ; μÞ ¼ Mlmðλ; 0; 0Þ ¼ Agλ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Nf=6

p
. In

Fig. 7, the curve on the μ̃ − ξ plane indicates such a
complete cancellation which, in the small ξ limit, corre-
sponds to μ̃=

ffiffiffi
ξ

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðl; mÞðNf þ 6Þ=ð48NfÞ

p
.

TABLE VI. The values of Vð0Þ
∞ ðλ; ξÞ and their perturbative

corrections for the ground-state bottomonium evaluated with
different effective screening masses. The results are obtained at
ξ ¼ 1, σ ¼ 0.223 GeV2, and λ ¼ 1.1Tc with Tc ¼ 192 MeV. All
results are given in the units of MeV.

Vð0Þ
∞ Vð1Þ

∞ Vð2Þ
∞ Vð3Þ

∞

M00 894.24 0 1.86 0.0338
M10 932.06 −39.41 3.77 −0.297
M11 876.46 17.43 2.09 0.142
M20 917.43 −23.79 2.62 −0.135
M21 909.67 −15.69 2.23 −0.070

FIG. 6. The ratio λ̃=λ as a function of ξ at some fixed ðl; mÞ.
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Finally, as mentioned in the Introduction, one of the
primary motivations for this study was to assess whether it
is possible to have an effectively isotropic model potential
that reproduces the binding energies of different quarko-
nium states in a momentum-anisotropic QGP. Our findings
can be used to include the effect of momentum anisotropies
on in-medium bound state evolution solving the real-time
Schrödinger equation in a complex screened potential, see,
e.g., [34,35]. However, to do this properly one must prove
that the same logic used herein for the real part of the
potential can be applied to the imaginary part of the heavy-
quark potential. Our preliminary results [36] indicate that
the same method can be applied to achieve a numerically
reliable isotropic model of the imaginary part of the
potential as well. Once this step is complete it will be
possible to assess momentum-space anisotropy effects on
heavy-quarkonium using isotropic (effectively 1D)
simulations.

VI. CONCLUSIONS AND OUTLOOK

In this paper, we introduced a prescription for an
isotropic effective Debye mass that depends on the
quantum numbers l and m of heavy-quarkonium state.
This mass is obtained by integrating the angle-dependent
Debye mass, which emerges when ξ ≠ 0, with spherical
harmonic basis functions (3). Tables VII–IX in the
Appendix demonstrate that, when using an isotropic
potential with (3) as the effective Debye mass, we can

reproduce the energy and binding energies obtained by
direct numerical solution of the 3D Schrödinger equation
for the same underlying anisotropic potential. Our results
demonstrate that, for both small and large anisotropy
parameters, one can reproduce the energy to within
fractions of an MeV and the binding energy to within a
few MeV. As these tables also demonstrate, with this
method we are even able to resolve the splitting of the
different p-wave states in an anisotropic potential model.
After introducing this method, we discussed why one

expects this to be a good approximation even when there is
a high degree of momentum anisotropy. We demonstrated
that higher-order corrections are under control and that the
resulting series converge very quickly, which explains why
this prescription does so well in numerically reproducing
the full 3D results. Following this, we mentioned some
applications of the method introduced herein which include
using real-time solution of the Schödinger equation with a
complex in-medium potential. To complete this task, we are
now investigating if similar techniques can be applied to the
imaginary part of the heavy-quark potential. Preliminary
results in this direction are quite promising [36].
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APPENDIX: TABLES

In Tables VII–IX in this Appendix, by numerically
solving the 3D Schrödinger equation with a HQ potential
given in Eq. (4), we list the exact results of the eigene-
nergies (E) and binding energies (EB) for several low-lying
heavy-quarkonium bound states, includingϒ, χb0, and χb�1

as well as J=Ψ. We consider various temperatures relevant
for quarkonium studies with small (ξ ¼ 1), moderate
(ξ ¼ 10), and large (ξ ¼ 100) anisotropies. Comparing
with the results obtained based on the one-dimensional
potential model with effective screening masses, the
corresponding discrepancies as denoted by δE and δEB
are also listed for directly testing our method. For the 3D
code, we used a previously developed code called
quantumFDTD [10,11,24,37–39].

FIG. 7. The relation between μ̃ and ξ. At a given temperature λ,
the screening in an anisotropic medium with ξ and μ satisfying
this relation is identical to that in an isotropic medium with μ ¼ 0.
In this plot, we choose Nf ¼ 2.
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TABLE VII. The exact results of the eigenenergies (E) and
binding energies (EB) for different quarkonium states at various
temperatures with ξ ¼ 1. Comparing with the results obtained
based on the one-dimensional potential model with effective
screening masses, the corresponding discrepancies as denoted by
δE and δEB are also listed. All the results are given in the unit of
MeV.

ϒ E δE EB δEB

Tc 112.568 0.038 −873.247 2.112
1.1Tc 115.358 0.044 −780.843 1.917
1.2Tc 118.237 0.039 −703.285 1.763
1.4Tc 124.182 0.040 −579.985 1.509
1.6Tc 130.257 0.035 −485.890 1.322
1.8Tc 136.341 0.038 −411.345 1.167
2.0Tc 142.328 0.036 −350.585 1.044

χb0 E δE EB δEB

Tc 509.811 0.088 −516.631 1.270
1.1Tc 507.878 0.091 −425.186 1.100
1.2Tc 505.564 0.078 −349.671 0.930
1.4Tc 499.672 0.042 −233.215 0.600
1.6Tc 491.906 0.066 −149.142 0.195
1.8Tc 481.706 0.020 −87.804 0.099
2.0Tc 468.857 0.042 −43.204 0.611

χb�1 E δE EB δEB

Tc 508.635 0.082 −456.430 1.039
1.1Tc 506.318 0.072 −370.959 0.887
1.2Tc 503.547 0.050 −300.562 0.736
1.4Tc 496.510 0.031 −192.593 0.423
1.6Tc 487.003 0.007 −115.759 0.188
1.8Tc 474.756 0.044 −60.749 0.154
2.0Tc 458.935 0.023 −22.513 0.629

J=Ψ E δE EB δEB

Tc 464.659 0.013 −520.724 1.732
1.1Tc 460.629 0.015 −435.095 1.498
1.2Tc 456.190 0.021 −364.807 1.298
1.4Tc 446.067 0.035 −257.468 0.953
1.6Tc 434.287 0.028 −181.103 0.627
1.8Tc 420.917 0.038 −125.865 0.264
2.0Tc 405.852 0.005 −85.939 0.037

TABLE VIII. The exact results of the eigenenergies (E) and
binding energies (EB) for different quarkonium states at various
temperatures with ξ ¼ 10. Comparing with the results obtained
based on the one-dimensional potential model with effective
screening masses, the corresponding discrepancies as denoted by
δE and δEB are also listed. All the results are given in the unit of
MeV.

ϒ E δE EB δEB

Tc 103.145 0.038 −1494.920 4.404
1.1Tc 104.494 0.044 −1348.302 4.004
1.2Tc 105.917 0.040 −1225.821 3.678
1.4Tc 108.964 0.043 −1032.540 3.159
1.6Tc 112.232 0.046 −886.595 2.767
1.8Tc 115.675 0.040 −772.181 2.470
2.0Tc 119.250 0.045 −679.827 2.221

χb0 E δE EB δEB

Tc 514.280 0.098 −1159.014 2.886
1.1Tc 513.840 0.095 −1007.302 2.595
1.2Tc 513.309 0.100 −881.035 2.355
1.4Tc 511.942 0.101 −683.133 1.957
1.6Tc 510.115 0.097 −535.489 1.635
1.8Tc 507.770 0.092 −421.557 1.360
2.0Tc 504.847 0.085 −331.432 1.111

χb�1 E δE EB δEB

Tc 513.972 0.100 −1046.152 2.448
1.1Tc 513.427 0.096 −904.835 2.198
1.2Tc 512.771 0.096 −787.268 1.988
1.4Tc 511.083 0.090 −603.165 1.640
1.6Tc 508.833 0.090 −466.053 1.365
1.8Tc 505.949 0.074 −360.526 1.118
2.0Tc 502.364 0.051 −277.363 0.890

J=Ψ E δE EB δEB

Tc 476.428 0.007 −1121.278 4.076
1.1Tc 474.908 0.005 −977.498 3.652
1.2Tc 473.245 0.003 −858.073 3.301
1.4Tc 469.481 0.013 −671.539 2.730
1.6Tc 465.120 0.017 −533.157 2.280
1.8Tc 460.146 0.032 −427.088 1.920
2.0Tc 454.546 0.040 −343.832 1.606
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