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We perform a global analysis of three-body charmless hadronic decays B — VP; — P P,P; in the
perturbative QCD (PQCD) approach, where V denotes an intermediate vector resonance, and P;,i = 1,2, 3
denote final-state pseudoscalar mesons. Fitting the PQCD factorization formulas at leading order in the
strong coupling a, to measured branching ratios and direct CP asymmetries, we determine the Gegenbauer
moments in the two-meson distribution amplitudes (DAs) for the meson pairs P, P, = zn, Kn, KK. The
fitted Gegenbauer moments are then employed to make predictions for those observables, whose data are
excluded in the fit due to larger experimental uncertainties. A general consistency between our predictions
and data is achieved, which hints at the validity of the PQCD formalism for the above three-body B-meson
decays and the universality of the nonperturbative two-meson DAs. The obtained two-meson DAs can be
applied to PQCD studies of other multi-body B-meson decays involving the same meson pairs. We also
attempt to determine the dependence of the Gegenbauer moments on the meson-pair invariant mass, and
demonstrate that this determination is promising, when data become more precise.
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I. INTRODUCTION

Since the perturbative QCD (PQCD) framework for
three-body B-meson decays was proposed in Ref. [1],
there have been extensive applications to various channels
[2-15], and rich phenomenology has been explored. This
formalism is based on the k; factorization theorem for
leading-power regions of a Dalitz plot, where two final-
state mesons are roughly collimated to each other. The
dominant nonperturbative dynamics responsible for the
production of the meson pair, including final-state inter-
actions between the two mesons, is absorbed into two-
meson distribution amplitudes (DAs) [16-22]. It is similar
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to the absorption of collinear divergences associated with a
meson, which participates a high-energy QCD exclusive
process, into its meson DAs. The remaining contributions,
being calculable at the parton level in perturbation theory,
go into hard kernels. The analysis of three-body B-meson
decays is then simplified to that of two-body decays, where
a Feynman diagram for hard kernels at leading order (LO)
of the strong coupling «a, involves a single virtual gluon
exchange. The same idea has recently been extended to
four-body charmless hadronic B-meson decays [23]: they
are assumed to proceed dominantly with two intermediate
resonances, which then strongly decay into two light meson
pairs. Various asymmetries in final-state angular distribu-
tions from the B(,) — (Kz)(Kx) decays were predicted
based on the universality of the two-meson DAs for the
Kr pair.

A two-meson DA, being the time-like version of a
generalized parton distribution function, depends on the
parton momentum fraction x, the meson momentum
fraction ¢, which describes the relative motion between
the two mesons in the pair, and the meson-pair invariant
mass squared w®. For the x dependence, one can decom-
pose a two-meson DA into the eigenfunctions of its
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evolution equation [24-27], i.e., the Gegenbauer polyno-

mials C3/?(2x— 1), based on the conformal symmetry.
This expansion follows that for a hadron DA exactly. As to
the expansion in £, one employs the partial waves for the
produced meson pair, i.e., the Legendre polynomials
P;(2¢ — 1), noticing the relation 2{ — 1 = cos 6, with 6
being the polar angle of a meson in the center-of-mass
frame of the meson pair [28]. The expansion of a two-
meson DA in terms of the two sets of orthogonal poly-
nomials then reads [22]

®(x,¢,0?) :2\/62Tx(1 —X)
oo n+l
XD N Bu(@) G (2x=1)P(2¢-1), (1)
n=0 1=0

where B,,;(®?) are the »-dependent coefficients, N, = 3 is
the number of colors, and / = 0, 1, 2, ... denote the S-wave,
P-wave, D-wave, ... components, respectively.

The time-like form factor By,(w?), which normalizes
each of the partial-wave components, contains both reso-
nant and nonresonant contributions. Some form factors,
such as the time-like pion form factor that receives
contributions from the series of p resonances, have been
constrained stringently by experimental data [29]. The
other coefficients B,;(w?), referred to as the Gegenbauer
moments, are still quite uncertain due to a lack of
systematic nonperturbative studies. Note that these
Gegenbauer moments differ from those in the DA for a
specific resonance which strongly decays into the meson
pair, because, as stated above, a two-meson DA collects
contributions from a series of resonances as well as
nonresonant contributions. Moreover, they are @’ depen-
dent, a feature dramatically distinct from the Gegenbauer
moments for a meson DA. It has been observed [30] that the
Gegenbauer moments of a P-wave dipion DA differ from
those of the p(770) meson DA. Therefore, it is essential to
determine the Gegenbauer moments for two-meson DAs in
order to improve the precision of theoretical predictions for
multibody B-meson decays in factorization frameworks.

We perform a global fit of the Gegenbauer moments
in two-meson DAs to measured branching ratios and
direct CP asymmetries in three-body charmless hadronic
B-meson decays B — VP3 — P{P,P; in the PQCD
approach, where V stands for an intermediate vector
resonance, and P;, i = 1, 2, 3 stand for final-state pseu-
doscalar mesons. As the first attempt at a global determi-
nation of two-meson DAs, we focus on the P-wave
components, and employ the LO PQCD factorization
formulas for decay amplitudes. We establish a
Gegenbauer-moment-independent database, by means of
which each decay amplitude is expressed as a combination
of the relevant Gegenbauer moments in the two-meson
DAs. The Gegenbauer moments in the DAs for the mesons

Py =z, K are input from the global analysis of two-
body B meson decays in Ref. [31]. The leading-twist
(twist-2) and next-to-leading-twist (twist-3) DAs for the
pairs P, P, = nx, Kz, and KK with the intermediate vector
mesons V = p, K*, and ¢, respectively, are then fixed in
the global fit. Because the current data for three-body
B-meson decays are not yet precise enough to determine
the @” dependence of the Gegenbauer moments, we first
treat them as constant parameters defined at the initial scale
1 GeV. One or two Gegenbauer moments for each of the
above two-meson DAs are obtained with satisfactory fit
quality, depending on the abundance of available data. It is
noticed that the results and the precision of the extracted
two-meson DAs depend on the number of the Gegenbauer
moments considered in the fit: when more Gegenbauer
moments are introduced into the Kz DAs, the quality of the
fit is improved at the cost of amplified uncertainties for fit
outcomes.

The determined Gegenbauer moments are then
employed to make predictions for those observables, whose
data are excluded in the fit due to larger experimental
errors. A general consistency between our predictions and
data for various modes is achieved, except those which
suffer significant subleading corrections according to
previous PQCD studies, such as the B’ — 7°(p° —)zx
decay [32,33]. The consistency hints at the validity of the
PQCD formalism for three-body hadronic B-meson decays
and the universality of the nonperturbative two-meson
DAs. The zz, Kz, and KK twist-2 and twist-3 DAs
presented in this work are ready for applications to
PQCD investigations of other multibody B-meson decays
involving the same meson pairs. Our formalism can be
straightforwardly extended to global fits for other two-
meson DAs of various partial waves. It can also be
generalized to include higher-order and/or higher-power
corrections to PQCD factorization formulas [34], when
they are available, so that more accurate two-meson DAs
are attainable in a systematic way.

As a more ambitious attempt, we explore the dependence
of the Gegenbauer moments in the dipion DAs on the pion-
pair invariant mass squared w?. It is unlikely to determine
the exact ® dependence from current data, so we simply
parametrize the Gegenbauer moments up to the first power
in w?, following their series expansion derived in Ref. [22].
The global fit shows that at least the linear term in one
of the twist-3 dipion DAs can be constrained effectively.
This indicates that the determination of the w?-dependent
Gegenbauer moments in two-meson DAs is promising,
when data become more precise in the future.

The rest of the paper is organized as follows. The
kinematic variables for three-body hadronic B-meson
decays are defined in Sec. II, where the dependence on
final-state meson masses is included to describe the phase
space accurately. The parton kinematics and hard kernels
are then refined, such that SU(3)-symmetry-breaking
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effects in the decays can be evaluated more precisely. The
considered two-meson P-wave DAs are parametrized,
whose normalization form factors are assumed to take
the relativistic Breit-Wigner (RBW) model [35] or the
Gounaris-Sakurai (GS) model [36]. We explain how to
perform the global fit, present and discuss the numerical
results, and try to extract the @’ dependence of the
Gegenbauer moments in Sec. III, which is followed by
our conclusion. We collect the PQCD factorization for-
mulas for the decay amplitudes with numerous refined hard
kernels in the Appendix.

II. FRAMEWORK

A. Kinematics

Consider the charmless B-meson decay into three
pseudoscalar mesons via a vector intermediate resonance,

B(ps) = V(p)P3(p3) = Pi(p1)P2(p2)P3(p3), with the
meson momenta pp = p + p3 and p = p; + p,. We work
in the B-meson rest frame and parametrize the relevant
momenta in the light-cone coordinates as

1.00), kg <0x3n\;§k3T>,

(o 2pan)

pP3= \/—(9— 9+,0T) ky = <07x3g+7§’k3T>7 (2)

PB= \/—(1’
_Ms
- \/i(er’f—’OT)?

where mp is the B-meson mass, and kg, k, and k5 are the
valence quark momenta in the B meson, the meson pair,
and the bachelor meson with the parton momentum fraction
(transverse momenta) xp, z, and x3 (kpr kt, and ksp),
respectively. That is, we have chosen the frame such that
the meson pair and the bachelor meson move in the
directions n = (1,0,07) and v = (0, 1,0r), respectively.
Since the parton momentum k (k3) is aligned with the
meson pair (bachelor meson), its small minus (plus)
component has been neglected. We have also dropped
the plus component k};, because it does not appear in the
hard kernels for dominant factorizable contributions. In the
above expressions, the functions f and g, are written as

1
fi—§<1+’1—’”3i\/(1—’7)2—2’”3(14"7)""’%),

so=3(1=ntr 0= -2en +R). @

~ . — 2 2 — 2/ m2 ~
with the ratio r; = sz/mBm and n = o /mB(S), with mp,

being the bachelor meson mass and @w”> = p? being the
invariant mass squared of the meson pair. For a P-wave
meson pair, we introduce the longitudinal polarization
vector

€=—(f+, —f-.0r). (4)

ﬁ

We derive the meson momenta p; and p,,

(G e Gy )
(5702 () B )

(2 —m?
pr=¢(1=-0)a’ +

Mp, _sz)z_m%I +m1202 (5)
4’ 2

from the relation p = p; + p, and the on-shell conditions
pi = mp, i = 1,2, with the mass ratios ry , = mp, p /mp.
The variable ¢ + (r; — r,)/(2n) = p|/p™ bears the mean-
ing of the meson momentum fraction up to corrections from
the final-state meson masses. Alternatively, one can define
the polar angle 0 of the meson P; in the PP, pair rest
frame. The transformation between the B-meson rest frame
and the meson pair rest frame leads to the relation between
the meson momentum fraction { and the polar angle 8,

- rz)z

2w = 1_271+72+(71 .
n n

with the bounds

1 ry+r o= rs)2
Z.:max.min_§|:1j:\/l_2 1’7 2+(1’722) : (7)

We emphasize that the parametrization with the exact
dependence on the final-state meson masses in Eq. (5) is
crucial for establishing Eq. (6), such that the Legendre
polynomials in Eq. (1) correspond to the partial waves of
the meson pair exactly.

The branching ratio for a three-body B-meson decay is
given by [37]

cosf, (6)

tpmp [
dB = / dn\/ (1 =n)* =2r3(1 +n) + 13
/ 2567° J(rre v ’
Cmax
<[ (®)
Cmin

with the B-meson lifetime 7. The direct CP asymmetry
Acp 1s then defined as

_B(B%f)—B(B—»f)
B(B—f)+B(B~f)

©)

The decay amplitude A, according to the factorization
theorem stated in the Introduction, is expressed as

A= @ HQ® Op p, ® Dp., (10)
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FIG. 1.
represents the weak vertex.

e V
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LO diagrams for the three-body decays B — VP; — P, P,P; with the light quarks ¢ = u, d, s, where the symbol black dots

T e

q
()

(c)
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FIG. 2. More LO diagrams for the three-body decays B — VP; — P{P,P;.

where @ (®p,) is the B (bachelor) meson DA, and the
two-meson DA ®p p absorbs the nonperturbative
dynamics in the production of the meson pair P;P,. The
symbol ® denotes the convolution of the above factors in
parton momenta. The LO diagrams for the hard kernel H
are displayed in Figs. 1 and 2, where Figs. 1(a)-1(d)
[Figs. 2(a)-2(d)] are associated with the B — PP,
(B — P3) transition, and Figs. 1(e)-1(h) and 2(e)-2(h)
are associated with the annihilation contributions.

B. Distribution amplitudes

The light-cone hadronic matrix element for a B meson is
parametrized as [38—42]

/d4zeik1~z<0|qﬁ(z)5a(0)IB(PB)>

_%(ZB(I(I)] }ﬁa,
(11)

_ ;NC{(ﬂB+mB)7/5 [¢B<k1>

where g represents a u, d, or s quark. The two wave functions
¢p and ¢, in the above decomposition, related to ¢ and ¢y
defined in the literature [43] via ¢p = (¢ + ¢5)/2 and

¢s = (¢3 — ¢p3)/2, obey the normalization conditions
d*ky

&'k ¥
[t =52 [ St =0

It has been shown that the contribution from ¢ is of next-
to-leading power and numerically suppressed [39,40,44],
compared to the leading-power contribution from ¢p.
Taking the PQCD evaluation of the B — x transition form
factor F g"” in Ref. [44] as an example, we find that the ¢
contribution to F5~7 is about 20% of the ¢ one. The
higher-twist B-meson DAs have been systematically
investigated in the heavy quark effective theory [45],
which are decomposed according to definite twist
and conformal spin assignments up to twist 6. In
principle, all of the next-to-leading-power sources
should be included for a consistent and complete analysis,
which, however, goes beyond the scope of the present

(12)
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formalism. Therefore, we focus only on the leading-power
component

i
b, =
B /2N,
with the impact parameter b being conjugate to the parton
transverse momentum kpr. The B-meson DA ¢p(x, b) is

chosen as the model form widely adopted in the PQCD
approach [38-42,46],

(P + mp)ysgp(x.b), (13)

m2 x?

203

¢p(x.b) = Npx*(1 —x)?exp |- ——( b)?|. (14)
where the constant Ny is related to the B-meson decay
constant fp through the normalization condition
Ja dxpp(x,b =0) = fz/(2y/2N,). The shape parameter
takes the values wy = 0.40 GeV for B*, B” mesons and
wp = 0.48 GeV [31,38,47,48] for a Bg meson with 10%
variation in the numerical study below.

The light-cone matrix elements for a pseudoscalar meson
are decomposed, up to twist 3, into [39,40]

i

®p = m?s (305 (x3) + moapp(x3)
+ mos (hf — 1)pp(x3)]. (15)

with P = 7, K and the chiral scale m3. The pion and kaon
DAs have been determined at the scale 1 GeV in a recent
global analysis [31] based on LO PQCD factorization
formulas, which is at the same level of accuracy as this
work. The results are quoted as

3fx ;
140 = 241 =)L+ a5 25— 1)
+arC*(2x - 1)),
W0 = 21+ a5, 0= 1)
P (x) = 2\/.(1—2x)[1+a2T(10x —10x + 1)),
#(x) = TEx(1 = 9l1 + af Y (2x - 1)
+a5CP(2x - 1) +aKC*(2x - 1)),
Hx) = Ll + a0 e 1)
Hhx) = =010 + o) (16)
where the Gegenbauer polynomials are defined as
cPy=3t. )= %(512 -1),
(1) = %(1 — 1412 42114, (17)

and the Gegenbauer moments in Eq. (16) are summarized
as follows:

af=0.64+0.08, af=-0.41+0.10,
a%,=1.08+0.15, a%, =—0.48+0.33,

—0.3340.08, af¥=0.28+0.10,
ak=-040+007, a5, =024, a5 =035  (18)

Note that the twist-3 DAs ¢% and ¢%, which were not
obtained in Ref. [31], come from sum-rule calcula-
tions [49].

As stated before, we focus on the P-wave components in
Eq. (1) proportional to P,_;(2{ — 1) = 2¢ — 1. The corre-
sponding light-cone matrix element for a longitudinal
meson pair is decomposed, up to twist 3, into [30]

1 !
(DPle(xv gv wZ) = \/27\7’ a)¢¢%]P2(X’ wZ) + 6045;:.]})2 ()C, (1)2)

P V2 — Pl

* w2 -1)

D, (v.07) | (22 = 1),
(19)

where the two-meson DAs for the 7z, KK, and K pairs are
parametrized as

3F(a?)
V2N,
3F(a?)
22N,
3FL(w
2V2N,
3F e(@?)
V2N,
+ad.CY*(2x - 1) +a%,..C3 (2x — 1)),
_ 3Fg,(0?)

0, (x.0?) = x(1 =21 + 3,3 (2x - 1)),

. (x, 0?) = (1 =2x)[1 4 a3,(10x* = 10x + 1)],
P (x, 0?) = >(1 —2x)2[1 + a4, 03 (2x = 1),

0 o(x, ) = x(1=x)[1+ afy.C}*(2x = 1)

(1-2x),

x(1=x)[1 +a3,C*(2x = 1)],

(1 - 2x)%. (20)

0.5, 0 0 :
The Gegenbauer moments Ay, Aige ok akes and ayy will
be determined in a global analysis in the next section. Since
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the current data are not yet precise enough to fix the
Gegenbauer moments in the twist-3 DAs ¢! and @ik,
they have been set to the asymptotic forms.

The elastic rescattering effects in a final-state meson
pair can be absorbed into the time-like form factors
Fl-+(®?), namely, the leading Gegenbauer moment
Byo(@?) in a two-meson DA according to the Watson
theorem [50]. The resonant contribution from a p meson
|

1 +c,BW,(0? m,.T,)

with a broad width is usually parametrized as the GS
model [36] based on the Breit-Wigner (BW) function [51]
in experimental investigations of three-body hadronic
B-meson decays, which interprets observed structures
beyond the p(770) resonance in terms of heavier isovector
vector mesons. Taking the p-w interference and excited-
state contributions into account, we have the form factor
[10,29,30]

Fle(w?) = |GS,(@?.m,.T,)

prip

where m,, , ; (T, ,, ), j = p'(1450),

1+ Co

+ 2¢;GS;(w* m;,T;) | (1+ Zc¢;)™", (21)

]2

p"(1700), and p’"(2254) are the masses (decay widths) of the series of resonances, and

c,,; are the weights associated with the corresponding resonances. The function GS,(s,m,.T’,) is given by

Pt
m2[1 +d
GS,(@?m,.T,) = __mpll v dom, )T /m,) (22)
m’ — o + f(w?,m,,T,) —im,l(0?* m,.T,)’
with the factors
2 2k(m? 2
d(m,) :i 2mﬂ2 ln<m”+ (mp)> m, - m;;mg ’
mk*(m;) 2m, 2rk(my) 7wk’ (my)
r,m2
f(@* m,.T,) kg”mé) {K*(@0?)[h(@?) = h(m)] + (m} — &)k (mp)h' (m3) },
P
@ [Bo(0?)]?
[(@? m,T,)=T,— |-~ ] , (23)
polp P m | B (m2)

where the functions k(w?

pressed as
2) =3 Valh, (),
2k(0?). (Var +2k(w?)
o) = 2H (S ),
4m?
Pule?) = [1 -5 (24)

The function BW,,(@?, m,,, T
the standard BW form [51].

We apply the RBW line shape for contributions from the
intermediate resonances K* and ¢ of narrow widths to the
form factors [7,8,11,35],

») for the w resonance takes

2
me.
Jal o?) = K¢ , 25

knk (@) m%(*’(ﬁ—wz—imK*'(/)FK*’qs(a)z) (25)

with the mass-dependent widths

Mg, l‘,’ (2Lg+1)
T g(@0?) = r,mﬁ( Z) ¢> ('J') . (26)

| Dol

where the masses mg- 4 and the widths I'k- 4, of the K* and
¢ resonances, respectively, take the values in Ref. [37]. The
magnitude of the spatial momentum of the meson P,

R Ma?, m%l , m%gz)
1P| = 2w , (27)

with the Killén function A(a,b,c) = a>+ b*+ *—
2(ab + ac + bc), is measured in the rest frame of the
resonance, and |py| is its value at the resonance mass. The
orbital angular momentum Ly in the two-meson system is
set to Lp =1 for a P-wave state. Due to the limited
knowledge on the form factors F*(w?), we assume the
ratio F(a?)/Fl(w?) ~ (fT/f;) [30], i =p.K* and ¢,
with fT (f;) being the tensor (vector) decay constants of
the intermediate resonances.
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III. NUMERICAL ANALYSIS
A. Global fit

We specify the parameters adopted in the numerical
analysis below, including the masses (in units of GeV) [37]

mp=5.280,
myo =0.498,

mp, =5.367,
m,. =0.140,

my=4.8,  mys=0.494,
mo=0.135, (28)

and the decay constants (in units of GeV) and the B-meson
lifetimes (in units of ps) [10,49]

f5=021, fp =023, f,=0216, f7=0.184,
f¢(1020> 20215, fg]i;(lOZO) :0186,

fx-=0217, fF.=0.185,

tp=1519, 75:=1.638, 75 =1.512. (29)

The Wolfenstein parameters in the Cabibbo-Kobayashi-
Maskawa (CKM) matrix take the values in Ref. [52]: A =
0.836+0.015, 1=0.2245340.00044, p = 0.122:0918,
and ;7 = 0.35570912.

We stress that wp o in the B(,) meson DA, as an overall
parameter, cannot be determined in our global analysis, but
must be treated as an input. This is why we take its value
extracted from the B, meson transition form factors in
lattice QCD and light-cone sum rules, which has also been
verified by the global study of two-body charmless had-
ronic B-meson decays in Ref. [31]. The value of Wg,»
together with the corresponding pion and kaon DAs fixed
in Ref. [31], are then input into the present work on the
three-body B-meson decays for consistency. If the shape
parameter wp  is changed, the pion and kaon DAs need to

s

be refitted accordingly before they can be employed to
constrain the two-meson DAs. Fortunately, the variation of
wp,, causes less than 30% uncertainties for most of the
branching ratios and negligible effects on the direct CP
asymmetries (as seen later), and is thus not expected to
make a significant impact on the determination of the two-
meson DAs. Hence, we focus only on the uncertainties of
the Gegenbauer moments in the two-meson DAs propa-
gated from experimental data here.

Equation (20) suggests that the total amplitudes A for
the B(,) — P(zn, 7K, KK) decays with P =, K can be
expanded in terms of the Gegenbauer moments of the two-
meson DAs. As a result, we decompose the squared
amplitudes

‘-An:n:|2 = MOp + a(Z)lep + (agp)zMZp + aEpM3/J
+ (agp)2M4p + aIZ/)MSp + (at2p)2M6p
+ ag/)aipMﬁ’ + ag/)aépriP + ai/)aépM%?’
| Ak > = Mo + (aYx- )M k- + (@) )*Mog + ad - Mg
+ (a9 )My + aly-Msg- + (a9 )* Mg+
+ a0 a9 Mg + a0 . aS - Mg + a3 aQ- Mo,

|~AKK|2 :MU(/) +a(2)(/)Ml¢—|-(a(2)4))2M2¢ (30)

into the linear combinations of the Gegenbauer moments
ay’’, alg. yx 45 and a3, and their products. We then
compute the coefficients M, which involve only the
Gegenbauer polynomials, to establish the database for
the global fit.

Similar to the proposal in Ref. [31], we determine the
Gegenbauer moments of the two-meson DAs by fitting
the formulas in Eq. (30) with the Gegenbauer-moment-
independent database to the measured branching ratios B
and direct CP asymmetries Acp of the B,y — P(p — )z,
B,y = P(K* —)K=, and B(,) — P(¢ —)KK decays. We
adopt the standard nonlinear least-y? (Isq) method [53], in
which the y? function is defined for n pieces of exper-
imental data v; &= dév; with the errors év; and the corre-
sponding theoretical values v as

i

(v — v 2
)(2—Z< o ) (31)

i=1

The theoretical values v

i are the functions of the fitted
Gegenbauer moments in the two-meson DAs. The Isq fit
attempts to find the smallest y*> by adjusting the fitted
parameters that bring the theoretical values closest to the
data. The data with errors are treated as of the Gaussian
type automatically in the fit packages, and the errors of the
fitted parameters and the theoretical values v come from
experimental uncertainties by error propagation.

To minimize statistical uncertainties, we should include a
maximal amount of data in the fit. On the other hand, those
measurements with significance lower than 3¢ do not
impose stringent constraints, and need not be taken into
account in principle. The data of those modes, which are
affected by subleading contributions manifestly based on
the previous PQCD studies [32,33], are also excluded,
even though they may have higher precision. The B® —
7°(p® —)zx decay, dominated by the color-suppressed tree
amplitude that is expected to receive substantial higher-
order corrections [54], is a typical example.

B. Results

The Gegenbauer moments agp, aiﬂ, and d for the
twist-2 and twist-3zz DAs in Table I are obtained from the
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TABLE I. Fitted Gegenbauer moments for the twist-2 and twist-3 two-meson DAs.
agp agp aéﬂ ag(ﬁ
Fit 0.08 £0.13 -0.23 £0.24 —0.35 £ 0.06 -0.31 £0.19
ay- (Scenario I) a9k~ (Scenario I) ay. (Scenario 1) a9 (Scenario 1I) a- (Scenario 1I)
Fit 0.31+0.16 1.19 £0.10 0.57 £0.20 1.13 £0.32 -0.85£0.16

fit to eight pieces of B — P(p —)zx data marked by “f” in
Tables II and III with y?/d.o.f. = 2.6, whose errors mainly
arise from experimental uncertainties. We point out that the
measured B* — 77 (p° —)zz branching ratio, imposing a
strong constraint on the Gegenbauer moment a;,, is
considered in our fit, but the corresponding B¥ — 77p°
data were excluded in the global analysis of two-body
hadronic B-meson decays [31]. It is seen that our
Gegenbauer moments differ from the corresponding ones
of the p(770) meson DAs derived in QCD sum rules [55] as
mentioned before: the 7z DAs contain the p-o mixing
effect and the contributions from higher p resonances with
finite widths via Eq. (21), so they need not be the same as
the p(770) meson DAs. Our Gegenbauer moments also
differ from af =025, a5, =0.75, and daj, = -0.60
chosen in Ref. [30] for two reasons, at least. First, only
the B — K(p —)zn data were employed to constrain the
7z DAs in Ref. [30], while the additional B - z(p —)zx
data are included in our global analysis. Second, some B —
K(p —)zn data have been updated in this work.

TABLE II. CP averaged branching ratios B and direct CP
asymmetries Acp of the B(,) — K(p —)zz decays in the PQCD
approach. The experimental data for comparison are quoted from
Ref. [37]. Those data marked by f are included in the fit. The
theoretical errors are attributed to the variations of the shape
parameter wp  in the B(;) meson DA and the decay constant fp

s

of the Gegenbauer moments in the two-pion DAs, and of the hard
scale t and the QCD scale Agcp.

Modes Results Data
BT K (p*—=)ar  B(107°) 291108014 37 +£0.57
Acp(%) 535104454119 37 4 107
B' K" (p~—)zx  B(107°) 8481720138 704097
Acp(%) 3300559005, 20411
B)— K (p"—)zx  B(1076) 1641115010161 110
Acp(%) 19413513555
B = KO(pt e BO) 786 IS0 730y
Acp(%) 1IN 3
B' = K(p"—=)an  B(107%) 376500 05 05 34+ 117
Acal®)  1AEGEI! - —4£20
B RP =)er B0 017N
Ace(%) 510155 105 i3

A single Gegenbauer moment a, is introduced into
the KK twist-2 DA, and the twist-3 ones have been
set to their asymptotic forms, since only two pieces of
data from the B - K (¢ —)KK decays in Table IV meet the
required precision. The value of ag(/), determined with
xz/d.o.f. = 0.35, is distinct from, but still consistent with,
that of the ¢ meson DA in QCD sum rules [55] within
theoretical errors. Note that our a9 » deviates from the value
—0.50 £ 0.10 adopted in Ref. [4], where B; meson decays
into charmonia plus a kaon pair were investigated. The
deviation is understandable, because the choice of a(z’(/)
depends on models for the uncertain charmonium DAs, as
relevant data were accommodated.

The Kz DAs are determined in a fit to six pieces of
B(,) — P(K* —)Kr data in Tables Vand VI. We first work
on Scenario I, in which the two Gegenbauer moments a .
and a9 of the twist-2 two-meson DA are fitted with
x*/d.o.f. = 1.5, and observe that ad. is slightly larger
than unity, as shown in Table I. A larger moment is not
favored in view of the convergence of the Gegenbauer

TABLE IIl. Same as Table II but for the B(,) — z(p —)zx
decays.

Modes Results Data
Bt szt (p°=)az B(107°) 59815108 834+ 1.0
Acp(%)  —34.9139153473 0.9+ 1.9
B'>nt(p~—)an B(107°) 5.287208+1564042 230423
Acp(%)  =30.613H 11445 -8+38
B> (p" —>)an  B(107°) 20.207801044130 23,04+ 2.3'F
Acp(%) 93T 136
B (o =)en BU0) 023430000
Acp(%) 2437391588
Bt e B0) 010G
Acp(%)  —T1THL204S
BY (ot s)an B(10°0) 8SOHEIL0N 109+ 147
Ace(%) 20450000 2+11
B >n'(p* »)an  B(107°)  0.08300 0% 0w 2.0£0.5
Acpl®) 0814 2724
B »n(p° =)z B(1076)  0.1410 551904008
Acp(%)  —47.95557 0018

'Sum of two branching ratios, B(B — f) 4+ B(B — f).
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TABLE IV. Same as Table II but for the B(,) = P(¢ —)KK
decays with P =z, K.

Modes Results Data
B >K'(¢p=)KK  B(107°) 84613501050 % 8.870¢
Acp(%) 145051075 24+28
B">K%¢p—)KK  B(107°)  7.82131810-4042:40 73 4 0.77
Acp(%) 0 1414
B{—>K°(¢p—)KK  B(107%) 3-523,'22:)1"(?20:2"2370
Ace (%) 0 a
Bt =zt (¢p—)KK  B(107%) 11504010040 32415
Acp(%) 0 10 £ 50
B'=a(¢p—=)KK  B(107) 5320335008 <15
Acp(%) 0
B)—n'(¢p—=)KK  B(1077) 106203 50 17
Acp(%) 21301153235

expansion. Therefore, one more Gegenbauer moment al . is

added in Scenario II, and a fit with y?/d.o.f. = 1.4 is

attained. The resultant agK* decreases a bit but with

amplified uncertainty, and aQK* is smaller than unity. The

()0 ()0
measured BY—K*(K*F —>)Kz and B> K (K —)K=n

branching ratios cannot give an effective constraint due
to their larger experimental errors, such that the uncer-
tainties of the Gegenbauer moments increase dramatically
in Scenario II. For a similar reason, the obtained
Gegenbauer moments differ from those of the K* meson
DA in QCD sum rules [55], and from af,. = 0.2 and
a3g. = 0.5 chosen in the PQCD study on the B(;) — wKx
decays [56]. We state that the fits based on the currently
available data cannot discriminate the two scenarios
effectively. As experimental precision increases, we will
be able to impose more stringent constraints on those two-
meson DAs.

With the fitted Gegenbauer moments in Table I, we
calculate the CP averaged branching ratios 3 and the direct
CP asymmetries Acp in the LO PQCD formalism, and
present the results in the central columns of Tables II-VI.
The first theoretical uncertainty originates from the shape
parameter wp = 0.40 GeV or wp = 0.48 GeV with 10%
variation, and the decay constant f B The second one is

from the Gegenbauer moments in the two-meson DAs.
The last one is caused by the variations of the hard scale ¢
from 0.75¢ to 1.25¢, which characterizes the effect of
next-to-leading-order QCD corrections, and of the QCD
scale Agcp = 0.25 £0.05 GeV. The errors attributed to
the CKM matrix elements are tiny and can be safely
ignored. Note that the data for the B® — ' (p~ —)zx

TABLE V. Same as Table II but for the B(;) — K(K* —)Kx decays.

Modes Results (scenario I) Results (scenario II) Data

B* - K* (K™ =)Kx B(10°6) 0.55 01 e i 0.561017101010.15 0.59 + 0.08
Acr (%) 46.3133%,5°35° 63813575055 12410

B0 K+ (K" =)Kn B(10-) 02710851045 1001 0251301105001 <04!
Acr(%) 10.8:05 21154 T

B’ —» K™ (K™ —)Kz B(107°) 0.0950: 0010003 0112006 0i0n-0002 <04!
Acr(%) —5.2533 000 338505015200

B} — K' (K"~ —)Kx B(107°) RN Aty F 9.897 18 o0 iie 19 £35H
Acp (%) 42‘1t§f35—+32.é—+65§5 6.1 04

B} —» K~(K*" —)Kx B(107°) 10,2231 275058 T2 S0 e (19£35)1
Acs(%) 3480 24073t

B~ Rk =)k B(10-% 0313 BT 1073 g
Acr(%) —13.6153395¢ —22.75 58 51

B~ K(K* ~)Kn B(10-4 04 SRR 03818 <036"
Acp(%) 0 0 -

B~ KK =K B(10-%) o447 030/37 5180 <09%'
Acp (%) 0 0 -

BY — K°(K* —)Kx B(107) 14.06 3331150058 8.841 /(1o @ +6)!
Acp (%) 0 0 -

B — KK ~)Kn B(10°) 103072001 5 792 G 20£6)'"
Acp(%) 0 0
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TABLE VI. Same as Table II but for the B(,) — #(K* —)Kx decays.

Modes Results (scenario I) Results (scenario II) Data
B — 2 (K —)Kn B(10-) 77 s 8107200 101408
Acp(%) —5.4503703 5% —4.550a —4+9
B (K =K B(10°) nar i oy 75504
PR e e ol o
¢ > @ (K —)Kn B(107°) 12.1313557 5070 75 5.52 e 1 55-0.41 29+1.1
A0 2 0671145 -
B - n(K** —)Kx B(10°9) 471 IS0 1% 562115500 1ss 6.8+ 09"
Acp(%) =36.24 07045 —19.11 7900 =392l
B (K =K B(10°) 29920508 2550 Bl 3206
Acp(%) —11.6H 91049150 —11.8+] 243443 -15+13
R (10 T 012380 B
Acr () 06 504134 1 1

and B® — 7~ (p* —)zz branching ratios in Table III re- One can also assess the uncertainties from the
K

present the sum over these two modes. It is also the case =~ Gegenbauer moments a7 4, Gpry» and a1 0.4) in the pion
for the measured BY — K*(K*~ —)Kz and B" —  and kaon DAs. Taking the B* — 7+ (p° =)z and B? —
n°(K** —)Kz branching ratios, and for the measured k- (K** —)Knr branching ratios in Scenario II as exam-
B’ - 7°(K*® -)Kx and BY - K°(K*® —)Kx branching  ples, we obtain, given the errors in Eq. (18),
ratios in Table V.

|

B(B* — (")) = (5.981005 (a5) 102 (a1) 987 (a3,) 901 (a3y) x 107,

B(B) — K~ (K™ =)Kr) = (7.72113(af) 5§35 (a§) 1.3 (af)) x 107°. (32)

It is seen that the former (latter) is more sensitive to the variation of the moment aj (aé< ) in the twist-2 pion (kaon) DA. We
remark that the total errors, derived by adding the individual ones from the moments in the pion and kaon DAs in quadrature
and associated with the labels a” and a* below, respectively, are minor (less than 5%) compared with other uncertainties
listed in Tables III and V:

B(B* — " (p° —)an) = (598213 (wp. £5) 503 () 113 (a,) 2035 (1. Agep)) x 107,
40

B(BY -» K~ (K*" —»)Kn) = (7-72:1,‘5?3(0’&](3)_8,'40 (aK)ﬂ%(aK*)f;fszg(t: Aqep)) X 1076 (33)

Therefore, the variation of the Gegenbauer moments in the
pion and kaon DAs has little impact on the determination of
the two-meson DAs.

It is found that most of the considered data in Tables II
and IIT are well reproduced, in particular those with higher
precision. Larger deviation from the data is observed in the
BT - 2t (p’ =)ar and BT — 2%pT —)zz branching
ratios. It is ascribed to the involved color-suppressed tree
contributions, which receive sizable next-to-leading-order
corrections. The observables removed from the fit are also
predicted in the LO PQCD formalism, and compared with
the data in Tables II and III. Our prediction for the B® —
7%(p° —)zx branching ratio, which suffers significant
subleading corrections as stated before, is still below the
data, similar to that derived in the framework for two-body

decays. Most of the Acp data for the B, — P(p —)zn
decays with P =z, K are not yet precise enough. We
mention that Acp in the BT — ztp" mode has been
predicted to be large and negative in most QCD approaches
[10,57], including the present analysis on three-body
decays, as shown in Table III. However, its data are as
small as 0.009 +0.019 [37]. Both the theoretical and
experimental errors need to be reduced greatly in order
to tell whether the discrepancy really stands as a puzzle.

Both the B — K(¢ —)KK data considered in the fit are
well reproduced with a single Gegenbauer moment a9 p> A8

indicated in Table IV. Our predictions for the branching
ratios and direct CP asymmetries excluded in the fit,
mainly associated with B; meson decays, can be confronted
by more precise data in the future. All of the available
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TABLE VII. CP averaged branching ratios B(107°) corre-
sponding to the fitted Gegenbauer moments in Eq. (34), com-
pared with the data [37]. For simplicity, only the theoretical errors
from the Gegenbauer moments are presented.

Modes Results Data
BT —» KT(K** =)Kn 0.59 +£0.08 3.7+£0.5°
BY - 7~ (K** =)K=x 7.51+0.34 7.5 £ 047
BT - 2%(K** =)Kn 4.75 £ 0.37 6.8 £0.97
B® - %K -)K=x 291 +£0.40 33+0.6
BY - K*(K* =)Krz +c.c 25.40 £ 1.60 19 £ 57
BY - KO(K*® -)Kr + c.c 24.60 £ 1.50 20 + 67

Acp data for the B — P(¢p —)KK decays with P = r, K
have large errors. The central values of the prediction and the
data for the Bt — n"(¢p —)KK branching ratio are differ-
ent, but still agree with each other within uncertainties.

Generally speaking, Scenario II reproduces the consid-
ered B(;) — P(K* —)Kr data with P = r, K slightly better
than Scenario I does, as seen in Tables V and VI. The B, —
P(K* —)Kn branching ratios differ between the two
scenarios more than the B — P(K* —)Kr branching ratios
do. This feature is understandable, because the former
involve the B; — (K* —)K transition form factors, which
are more sensitive to the variation of the Gegenbauer
moments in the Kz DA. Hence, more precise B; —
P(K* —)Kr data are crucial for fixing the Kz DAs. The
direct CP asymmetries Acp in some B(,) — P(K* —)Kn
modes strongly depend on the chosen scenarios, implying
that more accurate Kz DAs are necessary to unambigu-
ously predict these observables. The central value of the
predicted BY — #*(K*~ —) K branching ratio in Scenario
I, which is already much lower than in Scenario I, remains
above the data. It deserves more thorough theoretical and
experimental investigations. Similarly, most of the A.p
data for the B(;) — P(K* —)Kr decays have substantial
uncertainties so far, so it is not yet possible to make a
meaningful comparison with our results.

A remark is in order. The twist-2 DAs ¢4 and ¢%, in
Egs. (16) and (20), respectively, are expanded up to the
fourth-order Gegenbauer polynomial without the third-order
term, which exists in general. We find that the SU(3)-
breaking effects in the considered decays can be well

TABLE VIIIL

accounted for by the first-order term alone. That is, even
when the third-order term is included in the fit, its value turns
out to be small, and does not modify the fit outcomes much.
Taking the eight B(,) — P(K* —)Kz (P = x, K) decays as
examples, we perform the global fit with ag - being included,
and obtain the Gegenbauer moments of the Kz twist-2 DA,

. = 0374060, . =1.19+0.10,
ady. = —0.04 +0.36, (34)

and the branching ratios in Table VIL. It is seen that the central
value of a! .. increases only a bit with an enlarged uncertainty
and a . stays the same, compared with those from Scenario [
in Table I, and the central value of ag k- 1s tiny. The
corresponding branching ratios in Table VII also change very
little, compared with those in Tables V and VI. The above
observations support that the SU(3)-breaking effects in the
considered modes can be explained by the al. term alone
under the current data precision. Hence, the neglect of the ag K+
term in this work is justified. Besides, it is not practical to
include many parameters in the fit because of the limited
amount of experimental data at present. For a similar reason,
the asymptotic forms of the K twist-3 DAs ¢y’ are adopted
in our analysis. The same argument applies to the expansion
of the kaon DAs in Eq. (16), where the higher moments
responsible for SU(3)-symmetry-breaking effects are also
absent. We will explore the impact of these neglected
Gegenbauer polynomials systematically in the future, when
more experimental data with improved precision are available.

It is noticed that the parametrization of the parton
momenta in Egs. (2) and (3) introduces the dependence
on the light meson mass m5 into the hard kernels and the
Sudakov exponents, as explicitly shown in the Appendix.
Since both of these factors are perturbative pieces in a PQCD
factorization formula, they should be insensitive to a light
scale. Therefore, we test the sensitivity of our numerical
results to this light scale by setting it to zero in the hard
kernels and the Sudakov exponents. The corresponding
branching ratios and direct CP asymmetries for two typical
modes, B¥ — K (p* =)zz and B® - 7z~ (K** —)Kr in
Scenario II, are presented in Table VIII. The neglect of the
kaon mass for the former mode causes about 10% variation
in the branching ratio and the direct CP asymmetry. The
quantities associated with the latter mode are relatively

CP averaged branching ratios and direct CP asymmetries of the BY — K*(p° —)zz decay and the B — 7z~ (K** —)Kx

decay in Scenario II with and without the light meson masses in the hard kernels and the Sudakov exponents. The experimental data are
quoted from Ref. [37]. The sources of the theoretical errors are the same as in Table II.

Modes Results (with light mass) Results (without light mass) Data
BY — K*(p® =)zr B(107°) 2911 ea 0 2.511036107141.34 37405
. Acp(%) 53.5%?%*%%11550 585100444+ 1L 37+ 10
BY = n~ (K" —)K= B(107) 7615161 05178 7.661 1 G0 0eh 06 75+04
Acp(%%) —323] 8RS _3p.7H0et04TY 2744
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TABLE IX. Fitted parameters for the w?-dependent Gegenbauer moments in the twist-2 and twist-3zz DAs.

0 s t
92 a3 3

) (GeV?) ¢5 (GeV?) ¢ (GeV?)

Fit -0.45+0.29 1.12+0.33

-0.43 £0.11

—0.44 £ 0.93 —-1.42+£042 -0.03 £0.32

stable with respect to the neglect of the pion mass, as
expected. The insensitivity to the light scale confirms that
our parametrization for kinematic variables in three-body
B-meson decays is reasonable.

C. w*-dependent Gegenbauer moments

We make a more aggressive attempt in this subsection to
determine the dependence of the Gegenbauer moments in
|

l
0 (x, a)2) — M
nr ZNC
S (x (1)2) — M
e 22N,
¢t (x 0)2) _ 3F#ﬂ(w2)

- 22N,

with the free parameters a(z);f * and ¢9*'. The above para-

metrization follows the power series for the w?-dependent
Gegenbauer moments derived in Ref. [22].

The global fit to the same set of B(;) — P(p —)zx data
with P = =, K leads to the outcomes in Table IX with a

TABLE X. CP averaged branching ratios and direct CP
asymmetries derived from the fitted Gegenbauer moments in
Table IX, and compared with data [37]. For simplicity, only the
theoretical errors from the Gegenbauer moments are presented.

Modes Results Data
Bt — KT (p° =)zx  B(107°)  3.124% 3.7+0.5°
Acp(%) 3795108 37+ 107
BT > K'(pt =)ar  B(107°)  8.667324 73+£1.2°
B > Kt (p~ »)zzr  B(107°)  8.225% 7.0 +0.9°
Acp(%)  18.977% 20+ 11
B’ - K°(p° =)z B(107°)  2.88%3) 34+ 107
Acp(%) 1958 —4+20
Bt >t (p° »)ar  B(107%)  7.69128] 83+ 1.2°
Acp(%)  -17.21)3 0.9+19
BT - ’(p" —»)zx  B(107%) 10147588 109+ 1.47
Acp(%) 5.6013% 211
B >z~ (p* =)zm  B(107°%) 244972291 230+23'7
Acr(%) 3.873 13+6
B >zt (p” =)ax  B(107°) 244977201 2304237
Acp(%) — —16.471)% -8+38

the two-meson DAs on the meson-pair invariant mass. As
stated in the Introduction, it is unlikely to extract the exact
dependence from current data, so we simply expand the
Gegenbauer moments up to the first power in ?, and
examine whether the additional linear terms can be con-
strained effectively in the global fit. Consider the para-
metrizations of the dipion DAs,

x(1=x)[1+ad,(1+ cga)z)Cg/z(Zx -1,
(1=2x)[1 +a5,(1 + cjw?)(10x* = 10x + 1)],

(1= 2x)2[1 + a, (1 + cha?) &3> (2x = 1)) (35)

smaller y*/d.o.f. = 0.51, which are not difficult to under-
stand: varying w? around the p resonance in its width
window, we find that the values of a5 (1 + ¢p*'@?) are in
fact consistent with the corresponding ones in Table 1. The
consistency is particularly obvious for a5 (1 + chw?) with
the tiny coefficient c;,. It is observed from Table IX that the
parameters for the twist-3 DA ¢3,, which gives sizable
contributions to branching ratios, can be constrained
effectively by the current data. It suggests that the deter-
mination of the w’-dependent Gegenbauer moments is
promising, when more precise data are available in the
future. Because our purpose is to demonstrate the potential
to extract the ” dependence of the Gegenbauer moments,
we will not work on the Kz and KK DAs. The effect of
including the w? dependence of the Gegenbauer moments
is similar to that of introducing more parameters. That is,
the fit quality is improved with a lower y?/d.o.f. at the cost
of larger uncertainties for fit results as shown in Table X.
For example, the reproduced branching ratios for the BT —
K*(p" =)ar and Bt — nt(p® — )z decays get closer to
the data, which have relatively higher precision. However,
the uncertainty caused by the variation of the dipion DAs is
amplified compared to the second source of errors in
Table II.

IV. CONCLUSION

In this work we have performed a global fit of the
Gegenbauer moments in two-meson DAs to measured
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branching ratios and direct CP asymmetries in the three-
body hadronic B-meson decays B— VP;— P|P,P5, with
V=p,¢,K* and Py = 7z, K, in the LO PQCD approach.
Two-meson DAs, collecting both nonresonant and multi-
resonance contributions, serve as crucial nonperturbative
ingredients of factorization theorems for the above
decays. The Gegenbauer moments of the pion and kaon
DAs determined in the LO global analysis of two-body
hadronic B-meson decays have been input for theoretical
consistency. To facilitate the numerical study, we have
constructed a Gegenbauer-moment-independent database,
via which a decay amplitude is decomposed into a linear
combination of the relevant Gegenbauer moments in the
two-meson DAs. It was noticed that the fitted
Gegenbauer moments differ from those associated with
an intermediate resonance which decays into the meson
pair, and from those adopted in previous PQCD calcu-
lations. This observation indicates that the Gegenbauer
moments of a two-meson DA cannot be inferred from
sum-rule results for an intermediate resonance, and their
global determination is essential.

We have examined two scenarios for the determination
of the Kz DAs in order to check the convergence of the
Gegenbauer expansion, and the sensitivity of the fitted
observables to our setup. It was found that the Gegenbauer
expansion is improved by increasing the number of
Gegenbauer moments at the cost of large uncertainties
for fit outcomes, and that the branching ratios of B;-meson
decays and direct CP asymmetries in some modes are more
sensitive to the chosen scenarios. Hence, more accurate
Kn DAs are necessary to unambiguously predict these
quantities. We state that our fits have not been able to
discriminate the two scenarios effectively. We have also
explored the potential to fix the dependence of the
Gegenbauer moments on the meson-pair invariant mass,
and confirmed that at least the parameter for the twist-3 DA

s . can be constrained to some extent by the current data.
Therefore, the determination of the dependence on the
meson-pair invariant mass is promising, when data become
more precise.

We mention that the three-body charmless hadronic
B-meson decays included in this work have been studied
in Refs. [6,7,10,11] in a scattered manner. The improve-
ments compared to the earlier studies are as follows:
(1) the partonic kinematic variables have been refined to
take into account finite masses of final-state mesons, such
that the SU(3)-symmetry-breaking effects in the decays
can be evaluated more precisely; (2) the Gegenbauer
moments in the two-meson DAs have been determined
in a global analysis for the first time, which are valuable
for future applications of the PQCD framework to multi-
body B-meson decays; and (3) the dependence of the
Gegenbauer moments on the meson-pair invariant mass
has been probed for the first time. Because of (1), the

numerous hard kernels involved in the various modes
need to be modified, which are presented, together with
the factorization formulas for the decay amplitudes, in the
Appendix. The refined partonic kinematics is general
enough for its extension to multibody B-meson decays
into arbitrary massive final states. For (2), we recall that
different Gegenbauer moments for the Kz DAs were
taken in the previous scattered studies, such as
Refs. [7,11], so our work facilitates a consistent under-
standing of multibody B-meson decays. We have shown
that the preferred central value of, for instance, the
Gegenbauer moment a;. is 0.31, instead of 0.2 in
Ref. [7] or 0.05 in Ref. [11] (but note the large theoretical
uncertainties).

It has been demonstrated that most of the data considered
in the fit are well reproduced, namely, the fit quality is
satisfactory. It implies that the two-meson DAs presented in
this paper are ready for applications to other multibody
hadronic B-meson decays involving the same meson pairs.
With the obtained Gegenbauer moments, we have made
predictions for those observables, whose data were
excluded in the fit because of their substantial experimental
errors or significant subleading contributions to the corre-
sponding factorization formulas. Except for the B! —
7zt (K*~ —)Kr branching ratio, our predictions agree with
the data within uncertainties in the former case. Since our
results were still derived in the LO PQCD approach, the
data in the latter case remain unexplained, and deserve
more through investigations. As pointed out before, the
precision of the extracted two-meson DAs can be improved
systematically, when higher-order and/or higher-power
corrections to three-body hadronic B-meson decays are
taken into account in our formalism. At the same time,
more precise measurements are encouraged, especially
those of CP asymmetries. These efforts will strengthen
the constraint on the Gegenbauer moments and sharpen the
confrontation between theoretical predictions and exper-
imental data.
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APPENDIX: DECAY AMPLITUDES

In this appendix we present the PQCD factorization formulas for the amplitudes of the considered three-body charmless
hadronic B-meson decays. We first decompose various decay amplitudes A in terms of the factorizable emission
(annihilation) contributions F',(,)y and the nonfactorizable emission (annihilation) contributions M,y for the intermediate
vector mesons V = p, K*, ¢ from Fig. 1, and the similar ones F,,p and M, ,)p for the bachelor mesons P = z, K from
Fig. 2. These contributions are further labeled by the superscripts LL, LR, and SP corresponding to the (V — A)(V — A),
(V—=A)(V+A), and (S — P)(S + P) operators, respectively:

(1) By — K(p —=)an

G C C
A(B* = K*+(p =) :;{V;bvm K31+ cz) (FLL 4 FLL) <cl +32) FLE 4 CoMYE + Cy(MEE + ML)

C C
ViV, K?ﬂ C, +?9+ cm) (FLL 4 FLL)

C C
+ <—5+ Co+—L+ C8> (FSP 4+ FSP) + (C5 + Co) (MEE + MEL)

3 3
3C 3C
+(Cs+Co)(MER +MEF) + =" MG+ M
3 C. C
+§<C7+?8+C9+¥)F%]}, (A1

G C
A(B® = K*(p~ =)nr) = 7% {V’;qus K?l + C2> FLL + ClMgpL}

¢ C
— V;khvzs |:(C3 + Cg)Mg‘pL + <?3 + Cy + ?9 + C]()) ngL

C c o) 1/C
+ <?5+C6+?7+C8)F§5+ (Cs + C7)MER + <?3+C4 -3 <?9+C10>>F§/§

C C 1/C C
cegus s Grams(Gra))m (o-S)ul} w

G C
A(B? - K (p" =)nr) = ~F {V’;qud[(—l—l— C2> Fﬁj,lg + CIM%]

V2 3
* LL Gs G LL LR
= ViV |(C3 + Co)M g + 3+ Cy+ 3t Cio | Feg + (Cs + C7)M ¢
C 1/C C 1/C
- (?3+C -3 <?9+C10>>F§,§ + <?5+ Co—5 <?7+ C8>>F§§
C C
v (- )mtk o+ (cs- 5 )mze] . (43)
G C C
AB+ = KO(p* —)an) = 7% {V;hvw [(?1 + C2> FLL + CIM%} - ViV, KQ - 79> MEE
C; 1/Co Cs 1 /¢,
+ (?+C4 3 <?+C10>>F5,)L + <?+C6—5 ?‘FCS Fiy
C C C
- (05 - %)Mﬁf - (72 +Cat 5+ Cm) FEL 4 (C3 + Co)MEE
Cs % SP LR
+ ?+C6+?+C8 Fa/) +(C5 +C7)Ma/) s (A4)
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Gr C, 3C
A(B = K90 —yam) = & {v;b m[(cl n 3)F§,§+C2M§K} —v;ﬁbv”[ S gy

Cy
~5 (S ) )tk + rt - (€0 ottt + it

- (G+e
- (Sra-g(Fra)) e rn - (- ) marg + mspy
3
+3
(er+5

C 3C
+ Cy + ﬂ) FLL + “’Mg,e] } (AS)

3 2

G C, 3C
A(BY - K°(p° =)zx) = TF {V;;,,Vud[(Cl + 3 )Fﬁ;,% + C,M ek] - v;‘bvtd[ 28M§;§

G 5C, 3 Cs
-3 Gt +C10+§<C7+ 3 FLE

+
Cy 3C C;
+ <—C3 + 24 ‘0> MEL — <C5 - —) (MER 4 MLR)

2

C; 1 /C, Co
<?+C4—§ <?+C10))F51L(> - <C3 2>M51%

G +C6—1 <C7+C8>>F§4 } (A6)

(2) By — nlp —=)an
G C C
A = =am) = S Vi (S0 ) i Pttt + (42 ) it

ep ap

+C(MEL + MEE — MLL) + CzMg,f]

3C c Co
~VisVi {TSME,’S + ( THCit Clo> (Fey +Fiy —Fiz)

(o
(o oMtk + )+ (~Cot )t

C C
# (G4 Cor S ) (FEL -+ FIE = FIE) + (Cort Co)MIEE-+ MEE —MEE)

c 5 3 c Co 3C
+(—?*—c4+3cg+clo+2<C7+?8)>F£,% <C3+29+71°>M5#”v (A7)

G (&) C
A(BO—>ﬂ_(p+—>)7m):é{V;bvud |:<C1+ 3 )FLL+ ( 31+C2> FéL,,% +C2M§/€‘+C1Mé$:|

6;4—C5 3—07—9

C C
—V;‘bVldK33+C4+9+C10>F§§+(C4+C]O)MLL (C3+ 3 3

3

Cio C
+Cot— )FLL +(C3+Co) M +(Cs+C)MEF + <C5—77>M§,§

C3+Ci———— | -C5—— (& F Co—= C FSP
<3< 3+ 4 D) 2 5 3+2 7+3 tlﬂ+ 3+ 6 2 3+ 8 ar

C Cy C
+<C6—78>MSP (c +C4——9 2’°>MLL (c6+cg)M§5]}, (A8)
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G C C
A(B = 2+ (o —)am) = OF {V;hvud K—l + c2> FLL 4 <c, 4 —2> FLL 4 C\MEE + CZM%}

V2 3 3

- V;*bV,dK%Jr Cy +% + Cm) FLL 4+ (C3 4+ Co)MEE + <% + Cs +%+ CS)FE;’
+ (Cs + C7)MER + (Cg + Cs)M3E + G <C3 +C, —%—%) - Cs —%
+%<C7+%)>F§,§+ <%+C6—%(%+Cg>>F§5

+ <C3 + Cy —%—%)Mgg + (CS —%)Mg}} + <C6 —%)Mﬁ}j + (Cy + Cio) ML
+ <C3+C;4—C5—C;—C7—?+C9+C31°>F§,£H, (A9)

G C
AB ) = % {v;b V. Kcl n g) FLL 4 czMg,e] SV, [(c6 oMt

Cy Ce Cg Cio\ oL
A== _c, =8 O\ F
+ <C3—|— 3 Cs 3 C; 3 + Cy + 3 ap

c, 1 Cio Co 1 Cs\\ .11
- - — _— — . F
+<C3+3 2<Cg+3) Cs-+5 (G +35) )Fi

C C
# (- G )mast o+ (o= G+ e cromst| (10)

G C c
A(Bs = 7 (o™ =)mm) = 75 { VinV us [(Cl +72> Fii+ CzM%} ~VisVis KQ —%) M

C, 1 Cio Ce 1 Cqg Cyg
+(C3+?—§<C9+T>—C5—?+E C7+? F{;,{J—i— C6_7 Mgll;’

c c C c
+(Cy 4 Cro)Miz + (Co + Co)ME + <C3 +?4—C5 —%—Q —?84— Cﬁ—%)F%] }
(A11)
G c c
Aw = =yam) = Vvl (€ + L) rtt + (S o) orth 4 4 )
3G

+ CaMth -+ C (- et MEp)| = Vv 5 mep

Cs 3 Cs\  5C
+ <—?—C4—§(C7+?> +—5 +Cuo FLL

Cs 1 /G Cy , 3Cy
+<—?—C6+§<?+Cg>>F§,’f+(—C3+7+ 5 MEE

c C
+ (—3 +C+ 2+ Clo) (—FLL + FLL 4 FLL)

3 3

C C C
+ <§ +Co+ 5+ Cg> (=Fap + Fax) + <—C5 + 77> Mf

- (Cy+ Co)(=MEE + MEE + MEE) 4 (Cs + Cy) (~MER 4 MLR +M;~5>} } (Al12)
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G C
A= 00 =)ar) == ViV (€0 2 ) (Pof = Pt P = P -+ Coloat - Mt bt )|

2V2 3
3C C 3 C 5C
~VisVu [78(M§5+M§5>+ (—73—64—5 (c7+?8> +32+ Clo) (FLE + FLE)
Cs 1 /(G Gy  3Cy
+ (—?—C6+§ <?+ C8>>F§}§’+ (—C3 +o | M+ M)
C C 7C; 5C C
+ (—CS+77) (MR +MLE) - (2cﬁ+78> (MSD+MSE) - <T3+T4—2<C5 +?6>
1 Cg 2 (& 1/C
_§<C7 +?8—§(C9—C10)))(F%+F%)— (?5+C6_5<?7+C8>>(F§5+F§£>
C Cy C
- (5= ) ot bz - (cov2ce- S G0 gt maz |}, (A13
0 0,0 Gr * G LL LL LL LL
A(Bs - (,0 —))77,'72’) :27\/5 Vubvus Cl +? (Fap +Fa7z) + CZ(Ma/) +Maﬂ)
C C 1 C C
=V Vis {<2<C3 +?4— Cs —?6) 3 <C7 +?8— Co —Tm))(Fﬁ,JL + FLE)
2C 1o LL LL 2C Cs sp sp Al4d
+ 4+7 (Map +Man)+ 6+7 (Map +Maﬂ) . ( )
(3) B,y = K(K* —)Kn
_ G C C Cy C
A(B* - K*+(K0 =)Kx) = 7%{v;;bvm,[(?w Cz)Fg,L< + CIMQIL(} — ViV K?H Cy —f—%) FLL
C C (& C
H(C= 2 MU+ (Cs ==L )MEE + (2 + Cy+ 22+ Cy | FLE
2 2 3 3
Cs G SP LL LR
H(Sreot TG )FR s oMt + (G remig| b ()
0 Sy Gr .. o\ prr LL
A(B" =~ K" (K _))K”):E VipVua |\ €137 | Fak + oMok
* Cy Gy Cy Ce G G
Vvl (45T S Tk
Cio Cy Cy Cio Cs Cy
G L e e S eC R YL
n (C4+C10)M§,%+(C6+C8)M§4 } (AL6)
0 Sy — Gr * G LL LL
A(B - K (K —))Kﬂ') = 75 V”bvud C1 +? FaK* -+ C2MaK*
C C C (&
— V5V KQ Gt G == G - ?8) FLL 4 (Cy + Cio)MEE.
c, Cy C C¢ C; C
Co+Co)MSE, + (Cy+ 222210 _ ¢, =84 274 “8)\FLL
+ (Cs + Cy) ak+<3+3 > "6 s—3 T3 g ) Fax
C C
+ <C4 - 710>M151L( + (C6 - TS)M%] } (A17)
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A(B? - KT(K*~ =)Kn)

A(B? - K~ (K*" =)Kn) =

ABT — I_(O(K*+ —)Krx) =

A(B° - K°(K** -)Kn)

il

F

G C
{VZ')VMS |:<?1 + C2

V2
—V;‘bV,SK% )Fg,@ + <%+C6+%+Cg
+(C3 + Co)MLg. + (Cs + Cr)ME. + (g (
Cs C; Cg Cs C; G

—Cs =2+ T+ 2 VFLL 4+ (24 co— L -2 F5E.
i

a
+ (Co + Cg)Mgg] }
2

R

c
+ (Cg + Co)MSE. + <73 +Cyt

C
)Ff,@ oML+ (cl N —2) FLL ¢ CZMQIQ}

3
) FSE.

Cy C
c3+c4——9—ﬂ>

C
+Cy+ 5+ Cig

2 2

C C
C3+C4——9—ﬂ>M§,L(*+<

C; Cs
55 Cs — 7) MER + (C6 -

7) MR,
Cio Co Gy

C
C3+4+C9+—C5——C7—)F§,L<+(C4+C10)M§,L<

3 3 3 3

(A18)

G c ¢
F Ci + 72) FLL 4+ CMLL. + (?1 = C2> Fig+C 1M51%]
c C
Cyt 5 +Cot 5"

Cs
—Cs—-—=2-C
5 3 7

C
- )tk + (co+ Comt

Cy

24 Cu )Pk + (G + CoMEE +(Cs + oMt

4 Cy Cip Co C;  GCg\ .1
— - =) = — 24 4 o\
+(3<C3+C4 5 2) Cs—5+5 T |Fuk
C5 C7 Cg SP C9 CIO LL
- -2 \F -2 \M
+(3 + Cg 6 2) Sk TG+ Cy ) > oK

C C
+ (=Gt + (co-3)max] }. (A19)
Gr [ ¢ . Cs Cy Cy
ﬁ{vubvud[<?+c2)Fél%* +C1M1;1L<*} - Vl,,V,dK?jLQ %~ Fx
Cs C; G Cy ¢,
+<7+c6—g—7)Fg;;+<c3_7 mtg+ (c5 - )tk
C C C C
+<?3+C4+?9+C10>F§,@+<?5+C6+?7+C8)F§§*
+(Cot Comtg +(Cs + et | | (A20)
GF % C4 C9 CIO C6 C7 CS ClO
\ﬁ{vtbv,dKC3+?—7—?—CS—?+7+? FLt + Cam>- MEE,
C C Cy C C
G L A R e e L S e I
C C ... G Gy
e ) outg i)+ (S - 2-2) g
Cy C Ce C; C Cy C
<C3+C4—29—210>—C5—36+27+68>F§,L<+<C3+C4—29—2'0>M{;4},

(A21)
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_ G G, Cy C Cs C
A(B°—>K0(K*°—>)Kﬂ)——\/—g{vfbvm[(?’ C4——9—ﬂ)F§,@+<3 C6_F7__>(F .+ FSER)

6 2
Gy 4 Gy Cy G G Cs
_ -2 MLL ~7 FLL,
+ <C3 2) eK* <3 (C3+C4 2 2 C5 3 + 2 6 aK*
Cy C C
# (o= S-S0 Yu + (=T ) atg + i)
Cs C, C C Ce C; C
Co—— ) (MSE. + MSE C _4__9_ﬂ_c _=6 8 ) pLL
(6 2>( +4K>+<‘+3 276 3 72 T )Tk
C
+ (-G (A22)
- Gr [ . G Gy Cy Cs G G
A(B? - K°(K*® —>)Kr) = — ﬂ{vtbvm{(3 +C- - FLL + 3 TC-¢—> (F3E. + F5%.)
Co 4 Cy, C Ce C; C
-2 )M 4 (= _ 9 _Z10) _ 7 8)pLL,
<C3 2) <3<C3+C4 S ) = Cs- 3+2+6 LL
Cy, C o C
<C3+C4—79 210>M§,L(* <c5—7>(M§,’§ + MR + <C6—78>(M§,’}
C, Co C Ce C; C c
sp Ca G0 Cwo_ o Co, C7 C8\ (0 G0
+MaK)+ <C3+ 3 ) 6 CS 3 + 2 + 6)FaK <C 2 >MaK:|}’
(A23)
* F * C4 C9 ClO CG C7 C8
A(B _)KO(KO )Kﬂ) \/—{thvts|:<C3+?_7_——C5—?+7+F é’IL@
C C
+ <c4 210>ML,15 + <C - 2*‘) (MSE. + M5E)
Cs Cy C
#(Sre- L) (- D)tk (e F ) mazg i
Cs 7 Gy 4 9 Cio Cs G Gy
H(Gr0-9- ) (orer§-G) -3 S)ru
+<C3+C4———@>M{;,L( } (A24)

) By — n(K* —-)Krx

C C C C
Aw = (k0 =)km) = L LV v | (S &) rit + comtt| - viv, | (S ey - 2 -0

V2 3 6 2
C C, Co
<C3 ——)MLL + <C5 27>MLR - ( 3+ Cits+ C10> FLL
Cs
<? Ce + L Cg) F52 + (C3 + Co)MEE + (Cs + C7)M§,’§] } (A25)
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G C C C
A(B® = 7~ (K*+ =)Kx) = 7’% {VZ,,VMS K?l + Cz) FLL 4 C,Mﬁ,ﬁ} — V5V, K?* +Cy+ ?9 + Cm) FLL
C Cy C
+(Cs + Co)Meg + (Cs + Co)MEF + <?3+ Cy —f—¥)F%
C ¢, C C C
+(?S—i—Cé—é—?S)Fif;—l-<C3—79>M§£+<C5—77>M§,’f}}, (A26)
0 o 4 e Gr [ . G LL LL
A(BS —> T (K —))Kﬂ,’) = ﬁ Vuqud ?‘F C2 FeK* + ClMeK*
C C C C
ViV Kf +Cy+ ?9 + C10> FLL 4+ (75 +Co+ ?7 + C8>F§§*

C Cy, C
+ (C3 + Co)MEE. + (Cs + C7)MEE. + (?3 +Cy— f - %) FLL,

C C, C C C
+ <75+ Co -é-f)% + <c3 —g)Mg,@ T (cs —{)Mﬁﬁ*} } (A27)

G C c
A(B* = 2(K*+ —)Kx) = 2F {V’;bVw [(Cl + ?2) FLL 4 (?1 + Cz) (FLL 4 FLL)

2
3C, Cpo 3C; c8> 3C0

2

+ C,(MLf JFM%)JFCZM%*} _V;kbvls|:<7+ > 3 ) Mg

FLE +

3C C C C C
#2004 (Grar Sreo)wrrn s (S ra)r

(o + Co)(MEE + MEL) + (Cs + Cy) (MR + Mé!f)] } (A28)

G C
A= =)kn) =SV (€04 F ) ptk v comth | -viw | (P32 + -2

2
3C 3Cy C; Cy Cyp
MLL* —MSP* - =24+, == FLL FLL
+2 el(+2 eK <3+4 6 D) (€ﬂ+ aﬂ)
C c, C C C
~(Fra- -G r- (- D) o+t (cs- T Jooazz i |

(A29)

_ G C
A(B? - 72°(K* =)Krn) = 7F {v;b Vi KCI + {) FLE + CZMﬁfg*]

(& 5C 3C; C C Cc, C
- V:,,V,d[<——3—c4 +—9+C10_—7——8>FI£1%* - <§+Cﬁ—é—78>F§,’;*

3 3 2 2
Cy 3C C 3C
4 (—03 + 2 2‘°>Mg,@ - (cs —%)Mﬁ,’é + 3y,
G Cy Cyo Cs C; Gy
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(3+C4 6 2 Jfak T F tC—g 7 [l
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- (c3 —%)Mﬁ,@ - <C5 —77> Mﬁ,@] } (A30)
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(5) B() — K(¢p —)KK

Gr C, Gr 4
BT - K" KK)=—<V", V — 4+ Cy |FEL O MEE| — ViV —(C C
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1
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+ <C3 - %) MEE + (Cs - %) Mﬁ,?} } (A32)
" <%+C4—%—%>(F5£+F54€)+ (%wﬁ—%—%)wggwgg)
+ (- ) azg i+ (-G o+ maiy + (€= 2wtk
+ (Q —%) Mf,’;] } (A33)

(6) B,y — n(¢p =)KK

G C Cs C; Cy Cy C
A(B* - 1 (¢ —»)KK) = —73{Vj,,v,ch3 +?“+ Cs +76—77—?8—79—%>F5,$
C C
# (- Gtk + (- 5z | (A34)
GF * C4 C5 C7 Cg C9 CIO
V2A(B® — (¢ —=)KK) = _%{thvtd[<_c3 N Cs —?4-7-1—?-5-7—1—? Fit
Cio LL Gy sp
H(—Cat—7 | Meg + ( ~Co+— | Moz | . (A35)
G C
VIA(E) 2 ~)KK) = S Liv | (€0 G ) rtg o+ o]
G 3 Cy 3 C 3 3
_ 7% Vi Vi K—EQ - 78 + Ecg + 71°> FLi+ 5CSMfg +5C10M§£] } (A36)

The explicit PQCD factorization formulas for the functions F' and M appearing in the above decay amplitudes are
given by
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1 0o
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g+ 9 (L2 2D VAIE )R (Y. B by DS, ()
(-9 = 9) = g-xp)pol2) = 2A(F- = xp)g + F 9. )V (2)]

X E, () )} (o B} by D)S,([x = £ }.

LR __ LL
FeV - _FeV’

1 o0
F"g‘l; = 167[CFme%r03A dedZ/(; debBbdb¢B(xB,bB)

X {[((f4 +F-(=1+2f12)/ngo(z) + (2 + fr2)nd,(2) — - frz¢,(2))/ /7]
X E,(ty )hy (o) . By . bg,b)S,(z)
+ [f1x500(2) + 2(f— + [+ — xp)V/nbs(2)|E (1) )h) (a) . B, . bg. b)S,(|xp — f_|) }.

1 o
Mi“li = 3271'Cpm§/\/_6—/\/ﬁ/ dedZdX3 / debBb3db3¢B(xB, b3)¢1?:a(X3)
0 0

X {9- +9:)(f (95 (=1 + x3) + xp) + f-(9- + f12))v/ndho(2) + (=9-(94.(x3 = 2) + xp)

+ f+g+Z)’7¢s (Z) Sl (g_ (g+x3 + xB) + f+g+Z)¢,(Z)]En(tX)hX(0lX,ﬁX, bg, b3)
= [(f=9- = f19:)(9:x3 = xp + fo2)\/ndo(2) + (9-94%3 — 9_xp + f19,:2)ndby(2)
+ fofi(9-(=gsx3 + xp) + f19:2)9,(2)|E, (1) )1y (&, By by, b3) },

1 o0
M = —32”CFm21;”03/\/6/\/’7A dedzdx3/ bpdbgbydbypp(xp, bp)

< {[Vado(2)(f-(9- + f+2)(@p(x3) =

= (1s(2) + f+f-b:i(2))(f2+ 9-)(B5(x3) = Db (x3)) + (nhs(2) = 1 -h,(2)) (xp
+ 91 (x3 = )95 (x3) + db(x))E, (1) R (. B . by. bs)

+ [fv/bo(2)((g2x3 = xp) (5 (x3) — p(x3)) = f-2(@h(x3) + Ph(x3)))

+ (945 = xp) (95 (x3) = D5 (x3)) (0 (2) = fof-i(2))

+ f12(@h(x3) + b(x3)) (s (2) + [ f-i(2)]E, (19 hy (. B Dp. b3) }.

M, = =320Cym V6 i [ dradzdss [ bydbybidba(in. b))
X {[(f9- = f19:)(9- + 94 (1 =x3) = xp + f12)v/ngo(2) + (=9-(94 (=2 + x3) + xp)
+ [19:9nd(2) + f-f 1 (9-(g91x3 + xB) + f19:2):(2)]
X E,(1{)h (al, B!, by, b3)
= [=f+(9- + 9:)(94x3 = xp = f-2)\/npo(2) + (9-91%3 — 9-xp + [ 19:2)
X ¢ (2) = f-f1(9-(xp = 94%3) + f19:2) b (D)|E, ()R (@l . By bp, b3)},
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1 o)
FLL — _87Cpmbf5/ V6 / dzdx, / bdbbdb;,

X {I((f29- + f-9-94 + fr9:(F(z = 1) = g2)) /o (2)pp(x3) + 2ros (f— + [ + 9- + g+ — f12)nds(2)hh(x3)
+2f firos(f- —9-+ 94 +f+(z — 1) (2)p(x3))/ VI Ea(2 )0 (., i, b, b3)S, ()

~[F (- = 910 = Fx)o(@ ) + 2rs VLT (e = )
U+ 90) B0 + BB ()Y (el B b, b)S1F - + s ), (a43)
Fif = -Fif, (a44)

1 ®
Py = 16”CFm‘§fB/\/6/ dzdx3/ bdbbdb,
0 0

X {[2ros(f (91 + f-2) = F-9-)v/ngo(2)dp(x3) = (fog- + g1 (f (1 = 2) +29_))nps (2) b (x3)

Fffe(fog- + F19: (2= 1)) (2) b (x3)) /N Ea (2 )1 (e, B, b, b3)S,(2)
+ [fr03¢00(2) (9423 (hp (x3) = dp(x3)) = 2f —pp(x3)) = 2(f 9= + 94 (f+ + 9-x3)) /1 (2)pp(x3)]
E(17)hy (g, B}, b, b3)Si(|f - + x3g. 1)} (A45)

1 [+
Mla‘é = 3271'Cpm§/\/_6_/\/ﬁ/ d.deZdX3/ debBbdbgbB(xB, bB)
0 0

x {[oug+ oot g = D) Falee +90)(gs (va — 1) + xp)

+ fof (9= + 90)2)Vndo(2)dp(x3) + roan((g- + g4 (1 = x3) = xp + f 12— 4)pp(x3)
—(9-+ 94 (3 = 1) + x5 + £12)p(x3)) 0, (2) + f-f1ro3((f 42 + 9-) (D5 (x3) — Bp(x3))

+ (xp + g1 (3 = 1)) (95 (x3) + ¢5(x3))) i (2)|E, (1 ) g (ai . By b. D)

(o= FO 19 (L=2) +9-(f- = xp + 9:23)) /1o (2) b (x3)

+ (rosngs(2) + ff 103 (2)) (f = + 9425 — x5) (95 (x3) — Pp(x3))

+

(f-frrosd(2) = rosnds(2))f + (2 = 1) (@5 (x3) + b (x3))E, (1)) by (g . By b, b)}, (A40)

1 o
M{;‘IS = —3271'Cpm%/\/6/\/ﬁ/ dedde:;/ debBbdbgbB(xB, bB)
0

{[’”03\/_%( Jf-(U+ 9o+ f12) (D5 (x3) = 95 (x3)) + £ (94 (x3 = 1) = 1 +x5)(d5(x3) + #p(x3)))

+(9-(g1(x3 =2) = 1 +xp) — g (1 + f1.2))ngpp (x3)hs(2)

+ S ilgy + 9-(90x3 + x5 = 1) + £ 19,23 (x3) @ (2)|E, (1 ) g (ail. By by, b)
= [ roav/ndo(2) (9423 = xp) (5 (x3) + Pp(x3)) + f-(2p(x3) + (2 = 2)pp(x3)))
+ (frg:(1=2) + g_(f= + gx3 — xp) )03 (x3) by (2) + fof 1 (9-(f = + 9423 — xp)

+frg.(=1 +Z))¢P(x3)¢t<z>] n th hv :Bh bg.b) ¢, (A47)

096014-23



LI, YAN, HUA, RUI, and LI PHYS. REV. D 104, 096014 (2021)

1 0o
Mg‘}; ES 327[CFm%/\/6/\/ﬁ/ d.deZdX3 / debBbdb¢B(xB, bB)
0 0

x {[(g_(f_(l g, (53 = 2) 4 x5) = £1 (g5 (rs = 2) + x))

+ 190 ((fy = f2)z=1)vngo(2)p(x3) = roan((9- + g4 (1 = x3) —xp + 12— 4)p(x3)
+ (9= + g1 (3= 1) +xp + [12)p(x3))s(2) + f_fr03((9- + g4 (x5 = 1) + x5

+ [ 2)@p(x3) + (9= + g4 (1 = x3) = x5 + f12)p(x3))hi (2)|E, (1) )y (ar . By, b, b)

+ [ (9= + 9)(g4x3 = xp + f_2)/npo(2)pp(x3) + (roans(2) + fof 103 (2))f 4 (2= 1)
X (p(x3) = @p(x3)) + (fof170300:(2) = rosneds(2))(gx3 = xp + f-) (#p(x3) + Pp(x3))]

. En<rx>hx<ax,ﬁx,b3,b>}, (A48)

1 oo
Fél{; == 8”CFm%F(W2>A' d.de.x:;A debBb3db3¢B(.xB, bB)

x {[(f_g_ F g (14 g ))& ros(f - + 2 (295 — 1))

—ro3(fo + [ = 2f194%3) b (x3)|E (e (al . BE bp. b3)S,(x3)
- [_9+(f+9— + f—(xB - 9—))45?(753) + 2”03(f+g+ + f_(xB - 9—))(15;(3%)]

X E, (0 (0l B by, b) S (s — g_|>}, (A49)
Fif = Fif. (A30)
FSE — 0, (AS1)

1 ©
Méfl; = 327TCFm%/\/6/) dedZd)%A debBbdbqu(xB, b3)¢0(Z)

x {[(f_ g+ 9o (F (1= 2) 4 g3 = x5))BA() + Fos(f g3 + f s

+ fofi2)pp 4 ros(=frgixs 4+ fo(xp + f(z = 2)))pp(x3)|E, (tE)RE (af . BE . bp. b)
—[(fog- = fr9:)(frz+ 9323 — xB)¢f‘g(x3) + ro3(fig4x3 + f-(xp — f+Z)¢£(x3)

+ ro3(fig4x3 — f-(xp — f+z)))¢£(x3)]En(tf;)hdp(af,ﬂg, bg, b)} (AS52)
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1 0o
Mﬁ;}lf = 32ﬂCFm%/\/6/\/;]/ dedZdX3 / debBbdb¢B(xB, bB)
0 0

X {[_(f—g— + 94 (f4 + 9-x3 — xp = f12) )03 (x3) s (2) + fof 4+ (f-9- + 92 (9-x3 + x5

+ f(=1+2)))dp(x3)(2) + roadpp (3) (= (= + [ (1 = 2) + gyx3 = xp)nps(2) + f_f { (f- + 9423
+xp + f1(=1+2))9,(2) + rosdp(x3) (=(f- + gix3 + x5 + f1 (=1 + 2))nhs (2)

Fff(fo+ fo(1=2) + gxs = x5) ¢, (2)|E, (D) hE (af . BE, b, b)

+ 9105 (x3) (923 = xp + [ 2 (2) + [ (9-x3 + x5 = [12)h:(2))
+ ro3p(x3) (943 = x5 + fr2)npy(2) + ff1(94x3 + xp = f12)h(2))

+ ro3p(x3) (943 + x5 = fr )y (2) + [ f1(9:x3 — x5 + f12),(2)|E(th) 1y (0l Y b, b)}» (AS53)

1 o0
Mgg = 327TCFm%/\/6/ dXBdZdX3/ debBbdb¢B(XB, bB)d)O(Z)
0 0

x {[(f_g_ F g (A £ (1= 2) + oy — xp)A() + ros (F gy + f s

+ fof+2)dp(x3) + ro3(f1.94%3 — fo(xp + f1(2 = 2))) b (x3)|E, (t2)hE (ol BE, b, b)
—[(f= = f)9:(9-x3 = xp + L 2)pp(x3) + ros(frg:x3 + foxg — f_f12)p(x3)

s (e gaxs + Fo(f 12— ) B ) En(E VR P 5 b, b)}, (A54)

1 o0
FLL = —8aCpmiyfy / dzdxs / bdbbydbs
0 0

X {[(f—g— + 194 (9:3 = 1)) po(2)p(x3) + 2r03(g.x3 — 2) /b (x3) s (2) — 294 ro3 X3/ p(x3) s (2))]

X Ea(tf)h§<a5’ ﬂg’ b’ b3)St(x3)
+ 195 (F4 (9= + f12) = Fg-)o(2)dp(x3) + 2ro3005 (x3) (9= + g4 + f12)V/ndbs(2)

+fofil9- = g4 + £22)h(2)VDIEL (1)) 1] (ag. B] . b. b3) S, (g + Zf+|)}, (AS5)

Fap = —Fip, (A56)

1 [+
Fg; = 167[C,.~m%f3/ dZdX3/ bdbb3db3
0 0

X {[2(9—(Q+x3 — 1) = g )Vndp(x3)bs(2) + ros(f- + [ (g:x3 = 1))o(2)dp(x3) = ros(f- + f+

- f+g+x3)¢0(Z)¢;(x3)}Ea(tf)hf(af,,Bf, bv b3)St(x3)
+ [ (x3) (=29-9115(2) + f1.942(f-f+0:(2) =15 (2)))/ /1 + 2ro3 (= 1.9+ + (9= + £42)) o (2)p (x3)]

< E, ()R (al p. b, b3)S,(Jg_ + zf+|>}, (AST)
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1 S
MI[;;S == 327[CFm%/\/6/\/ﬁ/ d.deZdX3 / debBbdb¢B<xB, bB)
0 0

X {[(fzig_ —fo(9-(V+ fi=gix3) + g (xp + f(z= 1)) + frge(1 = g_x3 + xp

+ f(z = D)Vado(2)dp(x3) + rosdp(xa)(=(=4 + fo + £ (1 = 2) + g1 x5 = xp)nep(2)
+fofo(fo+ gixs + x5 + fo (2= 1))¢,(2) + roapp(x3) (=(f = + 9423 + x5 + (2= 1))neps(2)
F o (fo+ [ (U =2) + gixs = xp) ¢, (2))]E, (1) hy (afl, By, by, b)

(9= +90)(f194 (3 = 1) + f-(9- = x5+ f12))v/1o(2) 5 (x3) + o3 (x3)(—(9- + g4 (1 — x3)
—xp + [ (2) + fof(9- + 94 (x5 = 1) = xp + f12)$(2)) + roscbp (x3) ((—g- + g4 (1 — x3)
+xp = frandy(z) + ff(9- + 9. (1 —x3) —xp + f12)i(2))]

< E,(1)h (', B by, b)}, (AS8)

1 00
Msg = 32”CFm%/\/8/\/ﬁ/ dedZd.X3 / debBbdb¢B(xB, bB)
0 0

x p(x3)(g-(1 + fo+ g1x3)(f-f1i(2) =1¢(2)) + g1 (=1 + x5 + [ (2= 1) (ns(2) + f-f1¢:(2)))
+ro3(f (14 g423) + f-(xp + £z = 1)V/igo(2)p(x3) + ros(=f 1 (1 + g1x3)

+ (=1 +xp + [ (2= 2)))Vido(2)bp(x3)E () hg () By, bp. b)

—9:p(x3) (=(9-(x3 = 2) + x5 = f12)n(2) + f_f1(9-x3 — x5 + f12)¢:(2))

+ro3(fg:(x3 = 1) 4+ fo(9- = x5 + f1.2)) /o (2)pp(x3) + roz(=f 194 (x3 = 1)

+ f(g- = xp + f12)Vndbo(2)pp(x3)E, (1)) k), (e, By, b, D)}, (A59)

1 o0
Mg; == 32ﬂCFm%/\/6/\/ﬁ/ d.deZd.X3 / debBbdb¢B(.xB, bB)
0 0

x {[(f+g+(—1 (gt 90)%) + (01 +x5) + 955 + F1 (9 + 9.)2)Vido(DDFA(xs)

+ ro3dp(x3) (=4 + fo + fo (1= 2) + goxs = xp)ndps(2) + fof (f- + g5 + xp + (=1
+2))¢:(2)) + rosdp (3) (= (f- + gyx3 + x5 + f (2= D)ngy(z) = ff(f-+ f+(1-2)
+9.x3 — x)¢,(2))|E, (15 ) h (0l By by, b)

+ (- = F1)91(9-(x3 = 2) + x5 = f12) V1o (2)p (x3) + roadpp (x3) ((9- + g4 (1 — x3) = x5
+ fange(2) + fof (9= + g1 (x3s = 1) —xp + f12)¢:(2)) + roapp(x3) ((=g- + g4 (1 = x3)

+xp = fr2ndy(2) = ff (9= + 9+ (1 = x3) — x5 + [12).(2))|E, (1}, ) hfy (ol B}, . b, b)}, (A60)

with the color factor Cr = 4/3 and the mass ratio ro3 = mg3/mg, .

The evolution factors E;(t), i = e, a, n in the above factorization formulas are written as

E, (1) = ay(1) exp[=S5(1) = Sy (1) — Sp(1)]; (A61)

where the Sudakov exponents Sp py are given by
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mp 5 t ﬂ —
SB = s(xB\/—E,bB> +§//bgﬁyq(a5(ﬂ))’

Sy = S<%zf+,b> +S<%(1 —Z)f+’b) +2[/tb%7q(as(ﬁ)>7

mp mp 4 d/’_l _
Sp=s—=x30.,b; ) +s|—=(1 —x b +2/ — vy, (0 , A62
p (Dot + (220 —xgetn) +2 [ By ) (A62)
with the quark anomalous dimension y, = —a,/z. The explicit expressions of the functions s(Q, b) can be found in the

Appendix of Ref. [49].
The threshold resummation factor S,(x) takes the form

- 21+2cr(3/2 + C)

S == 050

(1 = 2", (A63)

where ¢ = 0.3 is adopted in our numerical analysis.
The hard functions hly(P), i = a—h, in the factorization formulas are written as

WO @™ B by by) = hy (0P b))y (B by b)), = e.a,
Ko(\/aijbl), a}“m >0
K, (i —a}/(P)b1>, a}/(P) <0
0(by — by)ly (\/W’b) Ky (\/Wbl) + (by < by), N}
O(by = by)Iy <\/ —ﬂ,y(P)b2>K0 (i\/—ﬂ}/(mlﬁ) + (by < by), ﬂlY(P> <0,

with the Bessel function K (ix) = z[—Nq(x) + iJo(x)]/2, and the virtuality a;./“u) (ﬂly(m) of the internal gluon (quark) in the
diagrams:

hz(ﬁ}/(m,bl, b,y) =

a = fizxg, ay = fi(z=1)(f- +g.x3),
w =fe By =(p—f)fs
£ =(9-+ f12)(xp + gy (63 = 1)), Bi = fzlxp = g4x3),
¢ =—(f-+9)(f+(01-2) +g), By =—(f-+g:x3)f+,
y =1+ (- + )+ 9. (= 1), By =fr(z=D(f- —xp +g1x3). (A65)

and

al = g, x3xg, al =g (x3 = 1)(g9- + f12),
B = X394, By = (xg=9-)9:
BE = (f-+g:x3)(x + fi(z= 1)), Bl = g4x3(xp = f12),
pe=x39, -1, pf=—(9-+fi2)gs
g =1+ (f-+ o)+ fi(z=1)). By =gs(x3—1)(g- — x5+ f12). (A66)

The hard scales t}“P), i = a—h, are chosen as the maxima of the virtualities involved in the decays described by Fig. 1
(Fig. 2):
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By = max{mBV ||, mg/|By ], 1/b,1/bp},
17 g = max{mp\/ ||, mg\/|B] 4. 1/b3,1/bp},

t‘e/,f = max{mBM, mB\/ |ﬁ:\?/,f ’ l/b’ 1/b3}’
t;‘;/,h = max{mpg\/ |}, mp/ |ﬂ21/,h|’ 1/b,1/bg}, (A67)

and

oy = max{mg/|al|, mg\/|BL 1, 1/b3,1/bp},
cd = max{mB\/ |l s M/ |ﬂ§d /b, 1/bg},

i, = max{mp\/|ak|, mp\/|BL |, 1/, 1/b3},
b, = max{mp/|ab|, mp\/Ip",|.1/b,1/bg}. (AG8)
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