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We discuss cross-link relations between the π and ρ-meson channels emerging from two different
descriptions of the QCD vacuum: instanton physics and QCD sum rules with nonlocal condensates
(NLCs). We derive in both schemes an intriguing linear relation between the π and the ρk-meson
distribution amplitudes in terms of their conformal coefficients and work out the specific impact of the
scalar NLC in these two channels. Using a simple model with Gaussian decay of the scalar NLC,
we are able to relate it to the moments of the pion nonsinglet parton distribution function measurable in
experiment—a highly nontrivial result. The implications for the pion and the ρk-meson distribution
amplitudes entailed by the obtained cross-link relations are outlined in terms of two generic scenarios.
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I. INTRODUCTION

Recently, Polyakov and Son [1] have employed the
instanton approach in combination with dispersion rela-
tions for the two-pion distribution amplitude (DA) [2] to
obtain model-independent relations for the ratio aðρÞ2 =aðπÞ2 .
Within this approach, the Gegenbauer moments of the ρ-
meson DA can be expressed in terms of the two-pion
distribution amplitudes ð2πDAsÞ. Using the conformal
expansion

φðtw−2Þ
πðρÞ ðx; μ2Þ ¼ ψ0ðxÞ þ

X∞
n¼2;4;…

anðμ2ÞψnðxÞ ð1Þ

with the Gegenbauer basis

ψnðxÞ ¼ 6xx̄Cð3=2Þ
n ðx − x̄Þ; ð2Þ

where φasy
π ¼ ψ0ðxÞ ¼ 6xð1 − xÞ≡ 6xx̄ is the asymptotic

pion DA, it was found that aðρÞ2 and aðπÞ2 are linearly related. It
was argued that this is deeply rooted in chiral dynamics and
the general properties of quantum field theory (QFT), such as
unitarity, crossing, and dispersion relations. Going one step
further, they used the soft pion theorem and the crossing

symmetry [2] to relate the second Gegenbauer coefficient aðρÞ2

of the ρ-meson DA to the third Mellin moment of the pion
valence-quark parton distribution function (PDF) measured
in deep inelastic scattering (DIS). Referring for the full
derivation to Ref. [1], one obtains the following relation:

aðρÞ2 ¼ B21ð0Þ exp ðcð21Þ1 m2
ρÞ

¼
�
aðπÞ2 −

7

6
MðπÞ

3

�
exp ðcð21Þ1 m2

ρÞ: ð3Þ

The main ingredient in the last equation is the measur-
able quantity

MðπÞ
3 ¼

Z
1

0

dxx2½qπðxÞ − q̄πðxÞ�; ð4Þ

while cð21Þ1 is a low-energy subtraction constant in the
dispersion relation for the generalized Gegenbauer
moments BnlðW2Þ used for the 2πDAs in Ref. [2] (see
that reference for details). Fixing this constant by virtue of
the instanton model of the QCD vacuum, one can deter-

mine the ratio aðρÞ2 =aðπÞ2 . To this end, we combine the value

aðπÞ2 ðμ ¼ 2 GeVÞ ¼ 0.078� 0.028; ð5Þ

determined on the lattice with a next-to-leading-order
(NLO) matching to the MS scheme (adding the errors in
quadrature) [3], with the value in the first line below,

MðπÞ
3 ðμ ¼ 2 GeVÞ ¼

�
0.114� 0.020 ½4�
0.110ð7Þð12Þ ½5�; ð6Þ
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obtained at NLO in the phenomenological analysis in
Ref. [4] within the xFitter framework. The second line
shows the result of a recent lattice calculation [5]. One
observes that the lattice estimate is within the error margin
of the first line. This way, one gets [1]

aðρÞ2

aðπÞ2

ðμ ¼ 2 GeVÞ ¼ −ð1.15� 0.86Þð1.0� 0.1Þ: ð7Þ

The above results provide the motivation for the present
investigation with the attempt to derive similar linear
relations between the π and ρ-meson channels within the
QCD sum-rules approach with nonlocal condensates
(NLC-SR for short) used in Ref. [6]. The key ingredients
in NLC-SR are the nonlocal condensates [7–11]. In
particular, the scalar NLC ΦSðx;M2Þ, where M2 is the
Borel parameter, and the scale

λ2q ¼
hq̄D2qi
hq̄qi

����
μ2
0
∼1 GeV2

¼ 0.40� 0.05 GeV2; ð8Þ

which defines the virtuality of vacuum quarks, are crucial
for the determination of the shape of the pion DA employ-
ing NLC-SR [6,12].
This approach was originally used to derive a set of pion

DAs [termed Bakulev-Mikhailov-Stefanis (BMS)] for λ2q ¼
0.40 GeV2 in agreement with the CLEO experimental data
[13] on the pion-photon transition form factor (TFF). It also
provides good agreement with more recent data from Belle
[14] and BABAR ðQ2 ≤ 9 GeV2Þ [15]; see Ref. [16]. The

coefficients aðπÞ2 and aðπÞ4 encapsulate the main theoretical
characteristics of the nonperturbative QCD vacuum.
Later, this scheme was employed in Ref. [17] to construct
another variant of the pion DA with a platykurtic profile.
This DA intrinsically combines two key features: end point
suppression of the pion DA due to the vacuum quark
virtuality λ2q ¼ 0.45 GeV2 and unimodality of the DA at
x ¼ 1=2, as found in the context of Dyson-Schwinger
equations to account for the dynamically generated
mass of the confined quark propagator; see Ref. [18] for
a review. At the scale μ2 ¼ 4 GeV2, one has the coefficients

ðaðπÞ2 ; aðπÞ4 Þμ2pk ¼ ð0.057;−0.013Þ. This scheme [19] also
provided a platykurtic DA for the longitudinally polarized

ρ meson, ðaðρÞ2 ; aðρÞ4 Þμ2pk ¼ ð0.017;−0.021Þ, while previous
attempts to construct the ρ-meson DAwithin this NLC-SR
scheme were reported in Refs. [20,21].
The paper is structured as follows. In Sec. II, we compare

the predictions for the π − ρ-meson coefficients following
from Eq. (3) in Ref. [1]. We then derive an analogous
expression to (3) using the NLC-SR scheme and discuss the
dynamical difference of the impact of the scalar NLC in the
axial and the vector channel. We also work out a linear

relation between functionals depending on φk
ρ and φπ and

extend the result to higher orders of the conformal
expansion. In Sec. III, we establish the linear relation
between the π and ρ-meson DAs in terms of the specific
characteristics of the NLC-SR. The ultimate goal of this
section is to relate the scalar NLC to the third/fifth Mellin
moment of the pion PDF. The implications of the negative

sign of aðρÞ2 for the pion and ρk-meson DAs are addressed in
Sec. IV. Our conclusions are presented in Sec. V. The
expressions for the scalar NLC are provided in
Appendix A, while the correspondence between the
instanton approach and the NLC-SR scheme is shown in
Appendix B.

II. HOW TO RELATE THE ρk AND π
DISTRIBUTION AMPLITUDES IN NLC-SR

It is instructive to compare the predictions for pairs

ðaðπÞ2 ; aðρÞ2 Þμ2 , obtained within various approaches, with the
cross-link relations following from Eq. (3). This is done in
Fig. 1 in terms of the blue diagonal line, which represents
the linear relation between such pairs.
The following results are displayed:

FIG. 1. Comparison of domains of pairs ðaðπÞ2 ; aðρÞ2 Þ obtained in
different approaches at μ2 ¼ 4 GeV2 obeying the linear relation
given by Eq. (3). The blue diagonal line and the dashed lines
around it originate from this relation and from the uncertainties of

MðπÞ
3 in (4). Lattice constraints for aðπÞ2 at NNLO provide the

range [0.077, 0.125]—shown as a red segment with a central big
red point along the horizontal axis. The N3LO regime corre-
sponds to the interval [0.096, 0.135] [3] limited by the red end

points. The range aðρÞ2 ¼ 0.132� 0.027 from Ref. [22] is shown
as a short red segment at the upper end of the vertical axis. The
NLC-SR fiducial regions are shown for the pion by the green
segment [6] and for the ρk-meson by the blue segment along the
vertical axis [20]. The projections of the end points of the green
segment and its center (green dot) are denoted by blue points on

the aðρÞ2 axis. The yellow points mark the locations of the
platykurtic pion and ρ DAs [17,19], respectively. The black

points aðπÞ2 ¼ 0.149 and aðρÞ2 ¼ 0.092 denote the coefficients of
the DSE DAs for π [23] and ρk [24].
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(i) aðπÞ2 values of the set of BMS DAs [6]: green
segment.

(ii) aðρÞ2 range from NLC-SR in Ref. [20]: blue segment
bounded by blue points in good agreement with the

projections of the end points of the green aðπÞ2

segment.

(iii) aðπÞ2 estimates from lattice QCD with next-to-next-
to-leading-order (NNLO) and next-to-next-to-next-
to-leading-order ðN3LOÞ matching to the MS
scheme [3]: red segment and interval between the
smaller red end points, respectively.

(iv) aðρÞ2 from the lattice calculation in Ref. [22]: red
segment at the upper end of the vertical axis.

(v) NLC-SR platykurtic π and ρk DAs [17,19]: yellow
dots on the horizontal and vertical axes, respectively.

(vi) The black dots within the green aðπÞ2 and blue aðρÞ2

intervals show the locations of the pion [23] and
the ρk-meson [24] DAs, respectively, obtained from
a Dyson-Schwinger equations (DSEs) based
approach—see Refs. [23] (pion) and [24] (ρ-meson).

One notices that the aðπÞ2 → aðρÞ2 projection and the

original aðρÞ2 value do not coincide.
A key observation from this figure is the existence of a

boundary for the pion coefficient aðπÞ2 ¼ AðπÞ
2 below which

the corresponding ρk coefficient aðρÞ2 becomes negative.

Using the estimates for the parameters M3; c
ð21Þ
1 given

above, cf. Eq. (6), we find

AðπÞ
2 ≈ 0.1 ð9Þ

in agreement with Eq. (7).
Let us also emphasize the good correspondence in (i) and

(ii) between the segments of aðπÞ2 and aðρÞ2 derived from
NLC-SR. This circumstance makes it tempting to derive a
relation similar to Eq. (3) within the NLC-SR approach for
the pion [6,20] and the ρk meson [19–21]. We start with the
generalized sum rules for the π and ρ-meson channels.
Taking recourse to the sum rules for the pion in the axial
channel and for the ρ-meson in the vector channel [20]
[Eqs. (7) and (8) there], we write

φk
ρðxÞ ¼

�
φπðxÞ þ ΔA1ρ

0 ðx;M2Þ − 2

f2π
ΦSðx;M2Þ

�

× eCðM2Þm2
ρ ð10Þ

with fπ ≈ 0.132 GeV, fρ ≈ 0.21 GeV,

CðM2Þ ¼ 1

M2
þ 1

m2
ρ
ln ðf2π=f2ρÞ: ð11Þ

The term ΔA1ρ
0 is determined by the difference

of the contributions of the higher resonances in the

phenomenological parts of the QCD SR for the axial
and vector channels:

ΔA1ρ
0 ðx;M2Þ ¼

�
fA1

fπ

�
2

e−m
2
A1
=M2

φA1
ðxÞ

−
�
fρ0

fπ

�
2

e
−m2

ρ0=M
2

φρ0 ðxÞ: ð12Þ

Here,M2 is the Borel parameter within a stability window
to be determined later in accordance with the standard
QCD SR practice [25] in such a way as to best reproduce
the DA moments. Strictly speaking, Eq. (10) should be
considered in the weak sense, i.e., for smooth convolutions
on both sides within the stability domain of M2; see, for
instance, Refs. [6,20].
The expression forΦSðx;M2Þ together with some explan-

ations is given in Appendix A (see also Refs. [6,26]), while
the decay constants of the next resonances have the values

fA1
≈ 0.21GeV; fρ0 ≈ 0.175GeV ð13Þ

and have been determined in Refs. [6,20], respectively. The
dependence of the scalar NLCΦSðx;M2Þ on the Borel scale
M2 and the quark virtuality λ2q ¼ 0.4 GeV2 is given graphi-
cally in Fig. 2, making use of the simplest Gaussian model
for the QCD vacuum from Refs. [8,12].
Let us now consider the origin of the difference between

φk
ρ and φπ ensuing from the particular structure of Eq. (10).

The term ΔA1ρ
0 represents a simple phenomenological

contribution that takes into account the difference of the
higher resonances in the vector and axial channels as
expressed by their decay constants; cf. Eq. (12). In contrast,
the appearance of the term 2

f2π
ΦSðx;M2Þ represents an

evident dynamical manifestation of the distinct character

FIG. 2. Scalar condensate ΦSðx;M2Þ as a function of x ∈ ½0; 1�
using the value λ2q ¼ 0.4 GeV2; see Ref. [6]. The lighter shaded
areas correspond toM2 ¼ 0.6 GeV2, and the darker shaded areas
correspond toM2 ¼ 0.9 GeV2. An analogous notation is used for
the thinner (green) and thicker (red) lines.

CROSS-LINK RELATIONS BETWEEN π AND ρ- … PHYS. REV. D 104, 096013 (2021)

096013-3



of interaction of the scalar vacuum condensate in these two
channels. Moreover, it is usually the dominant contribution.
What is the physical reason for the dynamical difference,

encoded in −2ΦS, between φk
ρ and φπ in Eq. (10)?

The pion DA φπ is extracted from the axial-axial
correlator because it originates as the pion projection of

the axial (nonlocal) current, while the φk
ρ DA is extracted

from the vector-vector correlator because it is the ρ-meson
projection of the (nonlocal) vector current.
The scalar NLC is the only vacuum condensate, among

others included in the used approximation, whose contri-
bution is affected by the gamma-matrix structure of the
coefficient function. All other condensate contributions to
the theoretical part of the QCD SR are the same for both
channels, i.e., axial-axial and vector-vector, of these corre-
lators and are accumulated in φπ . As a result, the repeated
commutations of γ5 with an axial vertex change the sign of
the coefficient function of the scalar condensate relative to a
chain of commutations with vector vertices. We will
discuss the implications of these effects for the ρ and π
DAs in Sec. IV.
Mathematically, Eq. (10) generates a linear relation

between any (linear) functionals depending on the DAs

φk
ρ and φπ . This means that if such a relation holds for the ρ-

meson DA this functional can be replaced by the rhs of
Eq. (10), where the π DA and ΦS enter.
For our further considerations, it is useful to make use of

the convolution

φM ⊗ f ¼
Z

1

0

φMðxÞfðxÞdx: ð14Þ

Then, we can employ the Gegenbauer expansion of the
meson DA φM in Eq. (1) to get expressions in terms of the
coefficients an of meson M,

aMn ¼ φM ⊗ ψ̃n ¼
Z

1

0

φMðxÞψ̃nðxÞdx; ð15Þ

where aMn are the coefficients of the “conformal expansion”
over the adjoint harmonics

ψ̃mðxÞ ¼ C3=2
m ð2x − 1Þ=Nm; ψ̃m ⊗ ψn ¼ δnm ð16Þ

and Nm ¼ 3ðmþ 1Þðmþ 2Þ=2ð2mþ 3Þ are normalization
constants.
Convoluting expression (10) with ψ̃mðxÞ, we obtain

aðρÞn ¼sr
�
aðπÞn þ ΔA1ρ

0 ⊗ ψ̃n −
2

f2π
ΦS ⊗ ψ̃n

�
eCðM2Þm2

ρ ; ð17Þ

in which the last term in the square brackets dominates over
the second one. For example, for n ¼ 2, the second
“resonances” term contributes only a few % compared to
the scalar NLC. The notation¼sr means that one should take

the average of the rhs over M2 within the stability window
in the Borel parameter, i.e.,

0.55 GeV2 ¼ M2
− < M2 ≲M2þ ¼ 1.1 GeV2;

in order to obtain a certain numerical value of the lhs.

III. CONNECTION BETWEEN SCALAR
NLC AND PION PDF

In this section, we work out relation (17) for the second
and fourth meson moments in connection with the NLC-SR
and its vacuum parameters. To this end, all scale-dependent
quantities are evolved from μ2 ¼ 4 GeV2 to the typical
scale of QCD SR μ20 ≃ 1 GeV2 using the NLO evolution
procedure described in Ref. [16] (see also Refs. [19,21]).

A. ρk − π relation for the aM2 moment

For n ¼ 2, Eq. (17) looks as the analog of Eq. (3)
expressed in terms of the Borel-mass dependent NLC-SRs.
For this reason, also the elements in the rhs of (17) depend
on the parameterM2. Let us now confront the meaning and
estimates of the different elements of this SR with their
counterparts in Eq. (3). Evaluating the above expression for
n ¼ 0 and supposing that the normalization conditions

aðπÞ0 ¼ aðρÞ0 ¼ 1 hold within a common window of stability
with respect to M2, we find

�
1þ ΔA1ρ

0 ⊗ ψ̃0 −
2

f2π
ΦS ⊗ ψ̃0

�
−1

¼ eCðM2Þm2
ρ ; ð18Þ

where ψ̃0 ¼ 1. This equation can be used to estimate the
“constant” CðM2Þ ¼ C, which has a physical sense similar

to cð21Þ1 in Eq. (3). However, the sum rule (18) for C is
unstable and can only provide the domain of variation of
C ∈ ½0.8 − 0.2�. Nevertheless, this interval has some over-

lap with the estimate for the subtraction constant cð21Þ1 ∈
½0.7 − 0.9� calculated in Ref. [1].
It is useful to rewrite relation (17) by expressing the

factor eCðM2Þm2
ρ through the lhs of (18) to obtain the more

homogenous form

aðρ;srÞn ¼sr
�
aðπÞn −

�
2

f2π
ΦS − ΔA1ρ

0

�
n

�
N ðM2Þ ð19aÞ

N ðM2Þ ¼sr
�
1 −

�
2

f2π
ΦS − ΔA1ρ

0

�
0

�
−1
; ð19bÞ

where ½ΔA1ρ
0 �n ≡ ΔA1ρ

0 ⊗ ψ̃n, ½ΦS�n ≡ΦS ⊗ ψ̃n, and
N ðM2Þ is a normalization factor. It is worth noting that
relation (19a) for n ¼ 2 possesses a sufficient stability with

respect to M2 and finally yields for aðπÞ2 ðμ20Þ ¼ 0.187 [6]
(used as input for the evaluation of the rhs) the result

aðρ;srÞ2 ðμ20Þ ¼ 0.047þ0.035
−0.011 . This estimate agrees with the
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value aðρÞ2 ðμ20Þ ¼ 0.047ð58Þ obtained from the original
NLC-SR in [21] but is more accurate.
We are now in the position to relate the moment

expressions, obtained within the two considered nonper-
turbative approaches to the QCD vacuum, using the scalar
condensate. Evaluating Eq. (19) for n ¼ 2 and averaging
the rhs over M2, we obtain

aðρ;srÞ2 ¼ ½aðπÞ2 − hΦ2i�hN i;

aðρÞ2 ¼
�
aðπÞ2 −

7

6
MðπÞ

3

�
eðc

ð21Þ
1

m2
ρÞ; ð20Þ

where we have shown in the second line Eq. (3) from
Ref. [1] for convenience. Here, we employed the notation

Φn ≡
�
2

f2π
ΦS − ΔA1ρ

0

�
n

N
hN i ; ð21aÞ

where hfi denotes the average over the stability window
of M2:

hfN i ¼
Z

M2
þ

M2
−

fðxÞN ðxÞdx=ðM2þ −M2
−Þ: ð21bÞ

To get the same outcome from expressions (20) and (3),
we have to conclude that

7

6
M3 ≈ hΦ2i: ð22Þ

Evolving the estimate in Eq. (6) to the scale μ20, we obtain
for the lhs of (22) the value 0.171(22) [5], which is shown
as a solid line in Fig. 3 together with its uncertainties

denoted by dashed red lines. The quantityΦ2ðM2Þ together
with its upper boundary is displayed by means of the
shaded (blue) strip that has a strong overlap with the dashed
(red) lines. The mean value of Φ2ðM2Þ varies in the range
hΦ2i ¼ 0.139 ÷ 0.196 so that for (22) we have

Eq: ð22Þ ⇒
�
lhs∶0.171ð22Þ
rhs∶0.139 ÷ 0.196

ð23aÞ

lhs∶0.171ð22Þ ≈ rhs∶0.167ð29Þ; ð23bÞ

where in the rhs of (23b) we employed the mean value of
the interval in (23a). Note that the uncertainties in the
estimate of Φ2 are entailed by the uncertainties of the value
of the quark condensate h ffiffiffiffiffi

αs
p

q̄qi2 and the use of the single
parameter λ2q, cf. Eq. (8), to describe correlations in the
quark NLC; see Appendix A.
These considerations establish the approximate validity

of Eq. (22). This equation represents an intriguing relation-
ship between the measurable quantity M3 (the third
moment of the pion PDF) and the scalar NLC ΦS which
parametrizes the nontrivial vacuum of QCD. Let us recall
here that ΦS significantly dominates in the rhs of (22),
while the lhs of this equation was obtained by appealing to
the general properties of QFT that gave rise to the nontrivial
relation (3) derived in Ref. [1]. It involves no further
assumptions or theoretical modeling.
From this perspective, the condition for the sign of aðρÞ2 in

Eq. (7) turns out to be directly related to the QCD vacuum
characteristics in terms of the mean value of the scalar
condensate,

If aðπÞ2 ðμ20Þ ≥ hΦ2ið¼ 0.167Þ
then aðρÞ2 ðμ20Þ ≥ 0; ð24Þ

and vice versa. The same condition can be obtained directly
from Eq. (3) using the replacement 7

6
M3 → hΦ2i, as

illustrated in Fig. 1 (at the scale μ2 ¼ 4 GeV2).

B. Conformal expansion beyond second order

Let us start with the sum-rule result in Eq. (19a)
evaluated for n ¼ 4:

aðρ;srÞ4 ðμ20Þ ¼ ½aðπÞ4 − hΦ4i�hN i: ð25aÞ

From the above equation, we can extract the value

aðρ;srÞ4 ¼ −0.058þ0.023
−0.020 ;

which corresponds to aðπÞ4 ¼ −0.129 (25a) [6,21] in the rhs,
while the value of hΦ4i turns out to be also negative. This

value of aðρ;srÞ4 agrees well (with an even better accuracy)
with

FIG. 3. The central solid (red) line represents the mean value of
M3 (y axis)

7
6
M3 ¼ 0.171ð22Þ at μ20 (using the more precise lattice

estimate from Ref. [5]), while the dashed (red) lines mark its
uncertainties from Ref. [4]. The thick (blue) line depending on
M2 (x axis) is the rhs of Eq. (22) before averaging, i.e., Φ2ðM2Þ,
whereas the upper thinner (blue) line denotes its upper limit [27]
(see Appendix B).
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aðρÞ4 ¼ −0.057ð118Þ

obtained in the standard NLC-SR analysis in Ref. [21]. The
expressions for the conformal coefficients for any n in both
discussed approaches are given in Appendix B.
In Table I, we present pairs ðaρ2; aρ4Þ computed by using

as input some favored pion DAs: (i) BMS model [6] and
(ii) a new DA determined in Ref. [26] (denoted there by the
symbol ▴). This DA belongs to the BMS family and
complies with the latest lattice result [3] at N3LO.
The dispersive approach elaborated in Ref. [2] gives a

linear relation analogous to (3) also for the higher con-
formal coefficients. Based on the results obtained in
Ref. [2] (see, also, the discussion in Appendix B), one
derives the relation

aðρÞ4 ¼
�
aðπÞ4 −

11

9
MðπÞ

5 − B43

�
exp ðc4m2

ρÞ; ð25bÞ

where the coefficient B43ð0Þ was determined to be
B43ð0Þ ≈ −0.12, while the low-energy subtraction constant
c4 can only be poorly estimated from the instanton model
[2] to have the value c4 ¼ 1 GeV−2. Comparing (25b) with
(25a), and assuming the approximate equality

exp ðc4m2
ρÞ ≃ hN i; ð26aÞ

we claim the validity of the relation

11

9
MðπÞ

5 þ B43ð0Þ ¼ hΦ4i: ð26bÞ

The numerical evaluation of the rhs of Eq. (26b) amounts to
the mean value of hΦ4i ¼ −0.069ð50Þ within the fiducial
window in M2 (at the normalization scale μ20 ≃ 1 GeV2). In

the lhs of this equation, we can use the estimate for MðπÞ
5 ≡

hx4i ¼ 0.027ð2Þ from the Jefferson Lab Angular Momentum
(JAM) PDF in Ref. [5] (at μ2 ¼ 4 GeV2) and the estimate for
B43ð0Þ so that evolving the lhs to μ20 we obtain for Eq. (26b)
the approximate numerical equality (within errors)

lhs∶0.049ð4Þ−0.12¼−0.071ð4Þ≈ rhs∶−0.069ð50Þ ð27Þ

to complete the comparison. The reasonable numerical
agreement of the estimates in (23) and (27) gives support
to the claim that the nonlocal scalar condensate ΦS and the
pion nonsinglet PDF ½qπðxÞ − q̄πðxÞ� are indeed linearly
related to each other. This unexpected result provides the
possibility to unravel the basic characteristics of the non-
perturbative QCD vacuum using measurements in DIS.
Let us now consider the estimate c4 ¼ 1 GeV−2 obtained

from the instanton model [2]. For this value, the proposed
relation exp ðc4m2

ρÞ ≃ hN i in Eq. (26a) cannot be realized.
The rhs of Eq. (26b) becomes instead the weighted sum of

hΦ4i and aðπÞ4 so that

11

9
MðπÞ

5 þ B43ð0Þ ¼hΦ4i
hN i
em

2
ρc4

þ aðπÞ4

�
1 −

hN i
em

2
ρc4

�
: ð28Þ

Substituting aðπÞ4 ≈ −0.129 (see Table I) and hN i=em2
ρc4 ≈

0.54 into the rhs of this equation, we obtain

0.049ð4Þ − 0.12 ¼ −0.071ð4Þ ∼ rhs∶ − 0.096ð�0.027Þ;
ð29Þ

where we have neglected the uncertainty of aðπÞ4 and the
correlation between the estimates of B43 and c4. From the
above considerations, we conclude that Eq. (29) is approx-
imately fulfilled even for this case.

IV. IMPLICATIONS FOR THE
ρk-MESON AND PION DA

Let us now discuss the implications of the cross-link
relations derived in the previous sections for the pion and
ρk-meson DAs.
Polyakov and Son claimed in Ref. [1] that the different

signs of aðρÞ2 < 0 and aðπÞ2 > 0 could be regarded as an
indication that the corresponding DAs may differ signifi-
cantly. The origin of this difference could be ascribed to
their distinctive response to the nonperturbative structure of
the QCD vacuum. To make this difference more explicit,
we display below their nonperturbative content in terms of
NLCs:

ΦρðπÞðx;M2Þ ¼∓ ΦSðx;M2Þ þΦq̄Aqðx;M2Þ
þΦVðx;M2Þ þΦGðx;M2Þ: ð30Þ

These contributions represent the (i) ΦS (scalar four-quark
condensate), (ii) Φq̄Aq (quark-gluon-antiquark condensate),
(iii) ΦV (vector quark condensate), and (iv) ΦG (gluon
condensate), with explicit expressions given in Appendix A
of Ref. [28]. One notices that the four-quark condensate
enters the expression for the ρk-meson DA with the
opposite sign relative to the π DA. As a consequence, it
tends to reduce the relative weight of this condensate with

TABLE I. Estimates of ðaρ2; aρ4Þ at μ20 ≃ 1 GeV2 based on the
results for the mean values of ðaπ2; aπ4Þ within the NLC-SR
[21,26] and independently on Eqs. (20) and (25a).

Meson ðMÞ Source aM2 aM4

ρk NLC-SR [21] 0.047(58) −0.057ð0.118Þ
Here (20), (25) 0.047þ0.035

−0.011 −0.058þ0.023
−0.020

Here, based on ⊛ 0.019þ0.025
−0.009 −0.027

As input for ρk DA:
π NLC-SR [6,21] 0.187 −0.129

Model ⊛ [26] 0.159 −0.098

S. V. MIKHAILOV and N. G. STEFANIS PHYS. REV. D 104, 096013 (2021)

096013-6



the result that the DA moments (or conformal coefficients)
become smaller. This may indeed entail different shapes for
these DAs.
For instance, the ρk DA could have a unimodal shape

close to the asymptotic form describing a more or less equal
distribution of longitudinal momentum between the two
valence quarks, while the nonperturbative effects in the
pion could lead to a much broader unimodal or bimodal
distribution which favors unequally distributed momentum
shares away from x ¼ 1=2; see, e.g., Refs. [6,29].
A negative sign prediction for aðρÞ2 is not completely new.

In fact, in Ref. [19], it was found that in the case of the two
ρk DAs determined with NLC-SR, notably the platykurtic

DA [19] and the DA from Ref. [21], the range of aðρÞ2 can
indeed be negative; see Fig. 4. However, this possibility
was not considered any further. In contrast, the negative

sign of aðρÞ2 in Ref. [1] appears as a strict finding of rather

general principles of QFT and the instanton model, giving

rise to the condition aðπÞ2 ðμ2 ¼ 4 GeV2Þ ¼ 0.078 <

7=6MðπÞ
3 and, thus, deserves particular attention.

Let us discuss these issues in terms of Fig. 4, which
shows the locations of various pion and ρk DAs in the
ða2; a4Þ plane at the scale μ2 ¼ 4 GeV2, and apply Eq. (3)
in conjunction with Fig. 1. Then, only two classes of ρk

DAs are possible depending on the sign of aðρÞ4 . If it is
positive, then the corresponding DAwill belong to the area

above the aðρÞ4 ¼ 0 line and will have a profile close to the
asymptotic DA. If a4 is negative, the DA will be located

below the aðρÞ4 ¼ 0 line and will have an almost asymptotic
profile combined with a mild end point suppression. The
broadest variant of these ρk DAs is a platykurtic, i.e., a
unimodal distribution with suppressed end points [19],
belonging to the embedded dashed rectangle in Fig. 4.
In all considered cases, these DAs will differ substan-

tially from the end-point-suppressed, but bimodal pion DAs
within the BMS rectangle [6] shown in this figure in terms
of solid lines. The difference between a quasiasymptotic ρk
DA and the end-point-enhanced bimodal Chernyak-
Zhitnitsky pion DA [29], obtained with local condensates
with aCZ2 ð2 GeVÞ ¼ 0.42 [19], is even stronger and is

located outside the displayed range of aðπÞ2 . Similar con-
siderations as those obtained from the DSE based approach
apply also to broad unimodal pion DAs; see Ref. [18] for a
recent review. Indeed, from Fig. 4, one sees that the
corresponding pion DA, given by ▴, is a broad unimodal
distribution differing strongly from the asymptotic one. A
similar observation applies also to the pion DA derived in
holographic QCD, shown by △. Hence, this scenario
supports the assumption that the π and the ρk interact
differently with the nonperturbative QCD vacuum giving
rise to very different DAs.
The other possible scenario would allow both meson

DAs to have similar shapes. In fact, the ρk-meson DA can
be obtained from the pion bilocal correlator by the
replacement γμγ5 → γμ [29] so that one may naively think
that this does not cause significant changes. The simplest
possibility would be that their shapes are both close to φasy

π ;
see Fig. 1 in Ref. [19]. But it has been shown by various
authors that in this case the pion-photon transition form
factor will underestimate the data considerably; see, for
instance, Ref. [16] for a recent state-of-the-art analysis
based on light-cone sum rules and further references. This
implies that the pion DA must be broader than the
asymptotic form at experimentally accessible momenta.
The only remaining possibility for these mesons to have

similar profiles with aðρÞ2 < 0 and aðπÞ2 > 0 in combination
with pion-photon TFF predictions that agree with most

experimental data is that both have aðρÞ4 < 0 and aðπÞ4 < 0.
In this case, their corresponding profiles will have to be
platykurtic. As has been shown in Refs. [17,19], and also

0.00 0.200.150.100.05

0.10

-0.05

-0.20

0.05

-0.10

0.00

-0.15

FIG. 4. Snapshot of various π and ρk DAs from different
approaches at the scale μ ¼ 4 GeV2 in the ða2; a4Þ plane. The
large “rectangle” intersecting with the a2 ¼ 0 line denotes
the region of ρk DAs determined with NLC-SR. It encloses
the shaded platykurtic regime, where circle white star is the DA
determined in Ref. [19]. The symbol filled star refers to the
bimodal DAs from NLC-SR in Ref. [21] and filled diamond [20],
respectively. The symbol filled black down-pointing triangle
represents the ρk DA from the lightfront model in Ref. [30],
and ♦ marks the asymptotic DA. Outside this rectangle, one has
the following DAs: Box [31] and diamond [24]. The other large
rectangle farther to the right contains the domain of the BMS pion
DAs [6] obtained with NLC-SR, with bold times denoting the
bimodal BMS pion DA. The pion DA represented by asterisk-
circle was determined in Ref. [26] as the crossing point of the

long middle line of this rectangle with the lattice result aðπÞ2 ¼
0.116þ19

−20 at N3LO with three-loop matching to the MS scheme

[3]. The dashed rectangle, crossing the aðπÞ4 ¼ 0 line, shows the
platykurtic range of pion DAs with bold plus marking the DA
determined in Ref. [17]. The symbols triangle and filled triangle
reproduce, respectively, the DAs obtained within holographic
AdS/QCD [32] and a DSE-based approach [23], while ○ shows
the pion DA from the instanton model in Ref. [33] after NLO
evolution to the scale 4 GeV2. Similarly, filled circle represents
the instanton-based ρk DA from Ref. [34].
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more recently in Ref. [26], the platykurtic pion DA
reproduces the trend of all data supporting asymptotic
scaling at high Q2 from Q2 ≥ 1 GeV2 up to momenta
∼40 GeV2. The most appropriate numerical values of the
conformal coefficients can be extracted by imposing addi-
tional constraints from lattice simulations. It is worth noting

that the latest lattice calculation of aðρÞ2 in Ref. [22] gives the
rather large positive value 0.132ð�0.027Þ that is incom-

patible with the restriction aðρÞ2 < 0. On the other hand,

employing the most recent lattice constraint on aðπÞ2 with
NLO or NNLO accuracy from Ref. [3], one finds from

Fig. 1 that aðρÞ2 ∈ ½−0.01 ÷ −0.09�. These lattice constraints
can provide in combination with the pion-photon TFF data

best-choice parameters aðπÞ2 and aðπÞ4 , from their overlapping

region as shown in Ref. [16]. However, the new aðπÞ2 ¼
0.116þ0.019

−0.020 lattice estimate of Ref. [3] at N3LO with three-
loop matching to the MS scheme favors a pion DA with a
moderate bimodal profile, like⊛ [26], giving support to the
first considered scenario. Further constraints are needed
along the upper diagonal in Fig. 4 in order to resolve the
fine details of the pion DA more reliably.

V. CONCLUSIONS

In this work, we investigated cross-link relations
between the Gegenbauer coefficients of the ρk-meson
and pion DAs. We showed that the linear relation between

aðρÞ2 and aðπÞ2 obtained recently in Ref. [1] on the basis of
rather general assumptions in combination with estimates
from the instanton vacuum can also be obtained using QCD
sum rules with nonlocal condensates. In fact, we were able
to derive an intriguing relation between the third Melin
moment of the pion PDF measured in DIS and the scalar
condensate [see Eq. (22)]. We also extended this cross-link
relation to the next-order Gegenbauer coefficients, estab-
lishing further the connection between these two non-
perturbative descriptions of the QCD vacuum [see
Eq. (26b)]. These findings may contribute to a
better understanding of the intrinsic structure of the
QCD vacuum by measurements of the pion PDF. The
COMPASSþþ=AMBER experiment at CERN may pro-
vide high-precision data for the pion structure function to
extract such information.
Adopting a broader perspective, we discussed the gen-

eral implications for the pion and ρk-meson DAs entailed
by the strict application of Eq. (7) by formulating two
different generic scenarios. With respect to the space

ða2; a4Þ, we found that the imposition of aðρÞ2 < 0 not only
reduces the available range of the ρk-meson coefficients,
but it also contributes important constraints for the proper
selection of the pion DA. We concluded that either these
mesons may have (for whatever reason) very different DAs
or, if these are assumed to be similar (for whatever reason),

then they can only have a platykurtic, i.e., unimodal profile
with suppressed tails [16,17,19,35]. The most recent lattice

result from Ref. [3] for aðπÞ2 seems to support at N3LO
rather the first scenario, while the analogous estimates at
NLO and NNLO conform also with the second option. The
possibility that both DAs are close to the asymptotic
form seems to be excluded because the pion-photon
TFF calculated with φasy

π underestimates the available data
considerably demanding a broader distribution for the
pion DA.
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APPENDIX A: NONLOCAL SCALAR
CONDENSATE

Application of the factorization ansatz on the
four-quark condensate leads to the product of
a pair of scalar condensates MS, where MSðz2Þ ¼R∞
0 exp ð−z2=4αÞfSðαÞdα. The correlation functions
fSðαÞ for each of these scalar condensates determine the
distribution in virtuality α of the quarks in the QCD vacuum
[12,28]. For example, for fSðα;Λ; σÞ ∼ αn−1e−Λ

2=α−ασ2, one
obtains the expected exponential asymptotic behavior for
MSðz2Þ at large z2: MSðz2Þ ∼ exp ð−ΛzÞ.
In the NLC approach, the factorization ansatz may lead

to an overestimation of the four-quark condensate contri-
bution ΦSðx;M2Þ because it evidently neglects the corre-
lation between these pairs. The relevant expression within
this approximation is given by

ΦSðx;M2Þ¼ 18AS

M4

Z Z
∞

00

dα1dα2fSðα1ÞfSðα2Þ

×
xθðΔ1− x̄Þ
Δ2

1Δ2Δ̄2
1

�
x̄Δ2Δ̄1þ ln

�
xΔ1Δ̄2

xΔ1− ðΔ1− x̄ÞΔ2

�

×Δ1ðΔ1− x̄ÞΔ̄2

�
þðx→ x̄Þ; ðA1Þ

referring for further details to Appendix A in
Ref. [28]. The following notations are used: AS ¼
ð8π=81Þh ffiffiffiffiffi

αs
p

q̄ð0Þqð0Þi2 and h ffiffiffiffiffi
αs

p
q̄qi2 ¼ ð1.84þ0.84

−0.24Þ×
10−4 GeV6, Δi ≡ αi=M2, where Δ̄i ≡ 1 − Δi, and
x̄≡ 1 − x. In this work, we used for the NLC estimates
the simplest delta-function ansatz fSðαÞ ¼ δðα − λ2q=2Þ,
proposed in Refs. [8,10,11]; it is sufficient for the accuracy
of the moment QCD SRs. This model leads to a Gaussian
decay of the scalar quark condensate MSðz2Þ with
Δ≡ λ2q=ð2M2Þ:
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ΦSðx;M2Þ ¼ AS

M4

18

Δ̄Δ2
fθðx̄ > Δ > xÞx̄½xþ ðΔ − xÞ lnðx̄Þ�

þ ðx̄ → xÞ þ θð1 > ΔÞθðΔ > x > Δ̄Þ
× ½Δ̄þ ðΔ − 2x̄xÞ lnðΔÞ�g: ðA2Þ

A finite value of Δ, related to the “decay rate” of the
correlation length of the NLC [28], shifts the weight of the
nonperturbative contributions away from the end points.
On the other hand, for λ2q ¼ 0, all nonperturbative con-
tributions are concentrated just at the end points.

APPENDIX B: RELATIONS BETWEEN THE
CONFORMAL COEFFICIENTS aðρÞn AND aðπÞn

We provide here the expressions relating aðρÞn to aðπÞn :
(i) Within the framework of QCD sum rules (label sr)

with nonlocal condensates [6,20]:

aðρ;srÞn ¼ ½aðπÞn − hΦni�hN i: ðB1Þ

(ii) A similar relation can be obtained within the
dispersive approach. Indeed, in Refs. [1,2], the

coefficient aðπÞn of the conformal expansion was
expressed as a sum:

aðπÞn ¼
Xnþ1

l¼1ðoddÞ
Bnlð0Þ: ðB2Þ

Extracting in the sum in the rhs the extreme terms for l ¼ 1
and l ¼ nþ 1, notably,

Bn1ð0Þ ¼ aðρÞn exp ð−cnm2
ρÞ; Bnnþ1ð0Þ ¼ pðnÞMðπÞ

nþ1;

one arrives at the expression

aðρÞn ¼
�
aðπÞn − pðnÞMðπÞ

nþ1 −
Xn
l¼3

Bnlð0Þ
�
ecnm

2
ρ ;

pðnÞ ¼ 3ðnþ 1Þ
Nn

¼ 2ð2nþ 3Þ
3ðnþ 2Þ ðB3Þ

that can be compared with Eq. (B1).
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