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As an extension of weak perturbation theory obtained in a recent analysis of infinite-derivative nonlocal
non-Abelian gauge theories motivated from p-adic string field theory, and postulated as a direction of UV
completion in four-dimensional quantum field theory, here we investigate the confinement conditions and β
function in the strong coupling regime. We extend the confinement criterion, previously obtained by Kugo
and Ojima for the local theory based on the Becchi-Rouet-Stora-Tyutin invariance, to the nonlocal theory
by using a set of exact solutions of the corresponding local theory. We show that the infinite derivatives
which are active in the UV provide finite contributions also in the infrared limit and provide a proof of
confinement, granted by the absence of the Landau pole. We also show that in the limit of the energy scale
of nonlocality M → ∞ we reproduce the local theory results and see how asymptotic freedom is properly
recovered.
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I. INTRODUCTION

In the context of p-adic string field theory, recently,
higher-derivative approaches to a UV completion of quan-
tum field theory (QFT) have become popular. Initially, they
were proposed as possible UV-regularized theories [1–6].
In this context, the infinite higher-derivative approach was
motivated starting from string field theory [7–21], where
attempts were made to address the divergence problem by
generalizing the kinetic energy operators of the Standard
Model (SM) to an infinite series of higher order derivatives
suppressed by the scale of nonlocality (M) at which the
higher order derivatives come into the picture [22,23].
Such a theoretical construction naturally solves the SM

vacuum instability problem as the β functions at the scale of
nonlocality vanish beyondM, without introducing any new
degrees of freedom in the particle spectrum [24]. They have
been explicitly shown to be ghost-free [25], predicting
conformal invariance in the UV, trans-Planckian scale

transmutation and dark matter phenomenology [26,27].
This approach is a novel direction toward UV completion
of four-dimensional QFT, valid and perturbative up to
infinite energy scales without Landau-pole problems
[24,26]. Strong coupling regimes of the theory were studied
in Refs. [28,29], where it was shown that the mass gap
obtained gets diluted in the UV due to nonlocal effects
restoring conformal invariance in the UV.
Gravity theories with such an infinite-derivative

approach have been investigated in Ref. [30]. In the context
of most general quadratic curvature gravitational action
(parity invariant and torsion-free), it was shown that it is
possible to make the gravitational sector free from the Weyl
ghost and from any classical singularities, like black-hole
singularities [30–41] and cosmological singularities
[42–47].
Generally speaking, we employ the renormalization

group equations (RGEs) to understand the relevance of
UV fixed points for quantum field theories [48,49]. For
example, in quantum chromodynamics, the property
known as the asymptotic freedom shows the reliability
of the theory by the use of the standard perturbation theory
[50,51]. Asymptotic freedom is missing in both the U(1)
and the scalar sector of the Standard Model, which is the
so-called triviality problem, limiting the understanding of
the behavior of the theory at very large energies [52]. When
the fixed point corresponds to an interacting theory, we
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speak of asymptotic safety [53]. It would be fine for
theories that are neither asymptotically free nor renorma-
lizable to have such a UV fixed point [54]. This idea was
recently developed for quantum gravity [54–60].
Applications to the Standard Model also showed such a
possibility [61–63]. The authors studied the RGEs of
nonlocal theories in Refs. [24,64] but only in the weak
coupling regime. In this paper, we extend the same
approach to the strong coupling regime by employing a
novel technique which we will describe below.
Besides the RGE approach in QFT, a deeper under-

standing of the confinement of quarks in the Standard
Model (QCD sector) has eluded us for many years, with
some possible mechanism existing in the literature (see [65]
and references therein). Kugo and Ojima proposed
a confinement condition from the Becchi-Rouet-Stora-
Tyutin (BRST) invariance based on charge annihilation
[66,67]. On similar grounds, Nishijima and collaborators
[68–72] derived constraint on the amplitudes of unphysical
states leading to color confinement merely as a conse-
quence of the BRST invariance and asymptotic freedom of
the QCD theory.1 Confinement, in its simplest form, can be
understood as the combined effect of a potential obtained
from the Wilson loop of a Yang-Mills theory without
fermions and the running coupling yielding a linearly
incrementing potential, in agreement with lattice data [90].
In this paper, we will apply the condition derived in

[68–72] (by reducing it to the case of the Kugo-Ojima
criterion [67]), nonlocal non-Abelian gauge theories with-
out fermions, as we begin with the known exact solutions
[28,29,88]. We will prove that nonlocal non-Abelian gauge
theory with no fermions is confining in four dimensions,
besides having a mass gap coming from the derived
correlation functions. This is purely because confinement
arises due to the BRST invariance and the asymptotic
freedom of the theory, as well as the existence of a mass
gap. We show that the infinite-derivative operators defined
in the UV yield finite contributions also in the IR limit and
provide a proof of confinement granted by the absence of
the Landau pole.

The paper is organized as follows: In Sec. II, we
introduce the nonlocal Yang-Mills theory for SU(N),
starting with the well-known setting of the local theory.
In Sec. III, we extend the formalism of BRST invariance of
the local theory to the nonlocal case and the Kugo-Ojima
confinement criterion to the latter. In Sec. IV, we evaluate
explicitly the Kugo-Ojima criterion for the nonlocal case
and, in Sec. V, we derive the beta function for the nonlocal
theory that holds in the infrared limit. Finally, in Sec. VI,
some discussion and conclusions are presented.

II. INFINITE-DERIVATIVE NON-ABELIAN
GAUGE THEORIES: REVIEW

The Lagrangian for the SU(N) pure Yang-Mills theory, in
the local case, takes the form

Lg ¼ −
1

4
FaμνFaμν: ð1Þ

Repeated indices imply summation both for space-time and
group indices. The field strength tensor is given by

Fa
μν ¼ ∂ ½μAa

ν� − gfabcAb
μAc

ν; ð2Þ

with the group structure constants fabc and the dimension-
less gauge coupling g. We extend the theory to the nonlocal
case by following the approach given in Refs. [24,64]. A
common definition involving infinite series of higher
derivatives yielded in the literature [22–24,26,64]

Lf ¼ −
1

4
Fa
μνe−fðD

2ÞFaμν: ð3Þ

Let us take

fðD2Þ ¼ D2

M2
; ð4Þ

where Dab
μ ¼ ∂μδ

ab − igAc
μðTcÞab is the covariant deriva-

tive in the adjoint representation. We have introduced a
mass scale M for the scale of nonlocality. The scale is
assumed to be large since nonlocal effects have not been
experimentally observed so far. This implies that the
variation in momentum scale of the D2 is lower than
M2. For

D2 ¼ ð∂μ − igTaAa
μÞ2

¼ ∂2 − ig∂μðTaAa
μÞ − igTaAa

μ∂μ − g2TaTbAa
μAbμ; ð5Þ

one can apply the Baker-Campbell-Hausdorff formula,

e−
D2

M2 ¼ e−
□

M2e−
1

M2ð−ig∂μðTaAa
μÞ−igTaAa

μ∂μ−g2TaTbAa
μAbμÞ

× e−
1

2M4½□;−ig∂μðTaAa
μÞ−igTaAa

μ∂μ−g2TaTbAa
μAbμ� ×…; ð6Þ

1In supersymmetric models, confinement is proven in certain
conditions as a condensation of monopoles, similar to type II
superconductors [73,74]. For a comparison of different confine-
ment theories and their overlapping regions, see [75]. Besides,
studies by Gribov [76] and Zwanziger [77] suggested confine-
ment in QCD with the gluon propagator running to zero as
momenta go to zero and an enhanced ghost propagator running to
infinity more rapidly than the free case in the same limit of
momenta. Such a scenario does not agree with the mass gap
appearance from studies of the gluon and ghost propagators on
the lattice [78–80] and the spectrum [81,82] in non-Abelian
gauge theories without fermions. These results found a theoretical
basis in Refs. [83–88] in terms of a closed form formula for the
gluon propagator (see Ref. [89] for a review and other results for
the running coupling in the infrared limit besides the gluon and
ghost propagators).
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and then the commutators are all higher orders with respect
to the first two exponentials in the formula. Assuming that
the field amplitudes are always negligibly small with
respect to the nonlocality scale M, we can write

Lf ∼ −
1

4
Fa
μνe−fð□ÞFaμν: ð7Þ

This affects gauge invariance but the effect turns out to be
irrelevant, as the contribution arising from a change in the
gauge potentials will produce higher order terms with
respect to the nonlocality scale. This means that we can
assume Eq. (7) with a negligible effect on our results. Such
an argument is perfectly consistent with the computation
reported in [3], where the nonlocal factors in the propa-
gators are evaluated using □ rather than D2. The conven-
tional Lagrangian is reproduced in the limit ofM → ∞. We
take the metric convention with diagðþ1;−1;−1;−1Þ to
implement our procedure for UV completion upon the
Wick rotation.2

A. Gauge field redefinition

Let us define

Âa
μ ¼ e−

1
2
fð□ÞAa

μ: ð8Þ

The idea with this change of variables is to eliminate the
exponential nonlocal factor from the kinetic term just as
happens for scalar field theory. Indeed, our work will
parallel the one already presented in [28]. With the
redefinition, we will arrive at the Lagrangian

Lf ¼ 1

2
Âa
μð□ημν − ∂μ∂νÞÂa

ν ð9Þ

−
g
4
fabce−fð□Þ½e1

2
fð□Þð∂μÂ

a
ν − ∂νÂ

a
μÞðe1

2
fð□ÞÂbμe

1
2
fð□ÞÂcνÞ�

−
g
4
fabce−fð□Þ½e1

2
fð□ÞÂbμe

1
2
fð□ÞÂcνe

1
2
fð□Þð∂μÂ

a
ν − ∂νÂ

a
μÞ�

−
g2

4
fabcfcdee−fð□Þ½e1

2
fð□ÞÂbμe

1
2
fð□ÞÂcνe

1
2
fð□ÞÂd

μe
1
2
fð□ÞÂe

ν�
þ jaμe

1
2
fð□ÞÂaμ; ð10Þ

where we added an arbitrary source term jaμ that will be
useful in the following. This is similar to the formulation of
the nonlocal scalar field theory. The main difference is the
multiplication of the interaction part by the nonlocal
factor e−fð□Þ.

The non-Abelian ghost and gauge-fixing Lagrangians
are given by

Lghost ¼ −c̄ae−fð□Þð∂μDab
μ Þcb ð11Þ

and

Lg−f ¼ 1

2ξ
Âa
μe−fð□Þ∂μ∂νÂa

ν ; ð12Þ

where ξ is the gauge-fixing parameter. In order to have
consistency with the standard gauge-fixing procedure, we
choose the entire function e−fð□Þ. The standard QFT result
can be obtained in the local limit of M → ∞.
Similar to what we have done for the gauge field, the

ghost field can be redefined as

ca ¼ e−
1
2
fð□Þĉa: ð13Þ

This will yield

Lghost ¼ − ¯̂ca∂μð∂μδ
ab − ige

1
2
fð□ÞÂc

μðTcÞabÞĉb
þ η̄ae

1
2
fð□Þĉa þ e

1
2
fð□Þ ¯̂caη: ð14Þ

Also in this case, we added arbitrary source terms ηa

and η̄a.
Finally, our Lagrangian is given by

L ¼ Lf þ Lg−f þ Lghost: ð15Þ

III. CONFINEMENT AND BRST INVARIANCE

We briefly describe the condition of confinement derived
in [68–72], and then we reduce it to the case of the Kugo–
Ojima criterion [67], for nonlocal non-Abelian gauge
theories without fermions, as we begin with known exact
solutions [28,29,88].

A. Local theory

Here we present the notations and the formalism as used
in [95] for confinement conditions in local non-Abelian
theories.
For the Yang-Mills field we have the following

Lagrangian:

L ¼ Linv þ Lgf þ LFP: ð16Þ

Here, we have described L with Linv for the classical
gauge-invariant part, Lgf for the gauge-fixing terms and
LFP for the Faddeev-Popov (FP) ghost term proper to non-
Abelian gauge theories:

2We will work in the Euclidean space with a certain relation
between Minkowski and Euclidean metrics assuming the con-
clusions given in [91–94], which are done via analytical con-
tinuation. Practically, at least in our computations, it is fine to use
the standard Wick rotation.
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Linv ¼ −
1

4
Fμν · Fμν;

Lgf ¼ ∂μB · Aμ þ 1

2
ξB · B;

LFP ¼ i∂μc̄ ·Dμc; ð17Þ

where ξ denotes the gauge parameter and Dμ is the
covariant derivative given by

Dμψ ¼ ð∂μ − igT · AμÞψ ;
Dμca ¼ ∂μca þ gfabcAb

μcc: ð18Þ

As done in [66], we introduce the BRST transformations
of a generic field χ using the BRST charges QB and Q̄B
given by

δχ ¼ i½QB; χ�∓; δ̄χ ¼ i½Q̄B; χ�∓; ð19Þ

Q2
B ¼ Q̄2

B ¼ QBQ̄B þ Q̄BQB ¼ 0: ð20Þ

We will take the minus (plus) sign in (20) when χ is even
(odd) in the ghost fields c and c̄. These are anticommuting
scalar fields.
The BRST transformations of the gauge field Aμ are

generally defined by replacing the infinitesimal gauge
function by the FP ghost field c or c̄, in their respective
infinitesimal gauge transformations

δAμ ¼ Dμc;

δ̄Aμ ¼ Dμc̄: ð21Þ

By imposing for the auxiliary fields B, c and c̄

δL ¼ δ̄L ¼ 0; ð22Þ

one gets

δB ¼ 0; δc̄ ¼ iB; δca ¼ −
1

2
gfabcðcbccÞ;

δ̄ B̄ ¼ 0; δ̄c ¼ iB̄; δ̄c̄a ¼ −
1

2
gfabcðc̄ac̄cÞ; ð23Þ

with B̄ defined by the following equation:

Ba þ B̄a − igfabcðcbc̄cÞ ¼ 0: ð24Þ

From Noether’s theorem (up to a total divergence) one
gets the conserved current

jμ ¼
X
fΦg

∂L
∂ð∂μΦÞ δΦ

¼ BaðDμcÞa − ∂μBaca þ i
1

2
gfabc∂μc̄acbcc; ð25Þ

with fΦg being the set of all fields present in the
Lagrangian. Therefore, the corresponding charge QB is
given by

QB¼
Z

d3x
�
BaðD0cÞa− _Bacaþ i

1

2
gfabc _̄cacbcc

�
: ð26Þ

Finally, the full Lagrangian will give

δðLgf þ LFPÞ ¼ δ

�
−i∂μc̄ · Aμ −

i
2
ξc̄ · B

�
; ð27Þ

confirming that

δLinv ¼ 0: ð28Þ

From this Lagrangian we immediately obtain the equa-
tions of motion

DμabFb
μν þ jaν ¼ iδδ̄Aa

ν : ð29Þ

On the right-hand side, we see the contributions coming
from the auxiliary fields. These are massless particles at the
tree level. We also note that the B field does not propagate.
The consequences of this is that such fields will not give
any contribution to the physical spectrum of the theory.
Besides, being ∂νðiδδ̄AνÞ ¼ 0, such a current is conserved.
In order to evaluate such a contribution, we have to
compute

hiδδ̄Aa
μðxÞ; Ab

νðyÞi: ð30Þ

Referring to Kuog-Ojima formalism, we note that

δδ̄Aa
μ ¼ −fQB; fQ̄B; Aa

μgg: ð31Þ

Then, because of h0jQB ¼ QBj0i ¼ Q̄Bj0i ¼ h0jQ̄B ¼ 0,
one has

hiδδ̄Aa
μðxÞ; Ab

νðyÞi ¼ hiδ̄Aa
μðxÞ; δAb

νðyÞi
¼ ihDμc̄aðxÞ; DνcbðyÞi: ð32Þ

For this correlator, Kugo and Ojima showed [67] that

Z
ddxeipxhDμc̄aðxÞ;DνcbðyÞi¼δab

�
δμν−

pμpν

p2− iϵ

�
uðp2Þ

−δab
pμpν

p2− iϵ
; ð33Þ

and the no-pole condition yields here

1þ uðp2 ¼ 0Þ ¼ 0; ð34Þ

which is the Kugo-Ojima condition for confinement grant-
ing that no massless pole appears in the spectrum of the
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theory. Indeed, this condition removes the massless term
from Eq. (33).
The function uðp2Þ was computed explicitly for non-

Abelian gauge theories in [95], and the confinement was
proven for such theories; moreover it also yields an exact
beta function for the theory including the strong coupling
regimes. Next, we will extend this computation to the
nonlocal case.

B. Nonlocal theory

The complete BRST-invariant infinite-derivative gauge
theory in the quantized action is of the form [64]

Linv ¼ −
1

4
ðFa

μνe−fðD
2ÞðFaÞμνÞ

þ ξ

2
ðBaÞ2 þ Ba∂μAa

μ þ c̄að−∂μe−
1
2
fð□ÞDac

μ Þcc; ð35Þ

where ξ is the gauge-fixing parameter, B is the auxiliary
field, and c and c̄ are the ghost and antighost fields,
respectively. The BRST transformations for non-Abelian
gauge theories express a residual symmetry of the effective
action which remains after the original gauge invariance
has been broken by the addition of the gauge-fixing and
ghost action terms. Our BRST transformations are modi-
fied in the following way:

δAμ ¼ Dμc;

δ̄Aμ ¼ Dμc̄; ð36Þ

and

δB ¼ 0; δc̄ ¼ ie
1
2
fð□ÞB; δca ¼ −

1

2
gfabcðcbccÞ;

δ̄ B̄ ¼ 0; δ̄c ¼ ie
1
2
fð□ÞB̄; δ̄c̄a ¼ −

1

2
gfabcðc̄bc̄cÞ:

ð37Þ

We show the BRST invariance of Sinv by noting that the
BRST transformation of the gauge field is just a gauge
transformation of Aμ generated by ca or c̄a. Therefore, any
gauge-invariant functionals of Fμν, like the first term in

Eq. (35), gives δð− 1
4
ðFa

μνe−fðD
2ÞðFμνÞaÞÞ ¼ 0. The second

term in Eq. (35) gives δðξ
2
ðBaÞ2Þ ¼ 0 from Eq. (37). For the

third term in Eq. (35), the transformation of Aa
μ cancels the

transformation of c̄ in the last term due to Eqs. (36), leaving
us with

δðDac
μ ccÞ ¼ Dac

μ δcc þ gfabcδAb
μcc; ð38Þ

which is is equal to 0, using the Jacobi identity (see
Ref. [96]). The transformation of cσ is nilpotent,

δð∂μcacbÞ ¼ 0; ð39Þ

while the transformation of Aμ is also nilpotent,

δððDμ
bÞacbÞ ¼ 0: ð40Þ

Hence, the action in Eq. (35) is BRST invariant. Noting the
fact that the only part of the ghost action which varies under
the BRST transformations is that of the antighost (c̄a), the
central idea behind our proof of BRST invariance is that we
have chosen the BRST variation of the antighost (c̄a) [see
Eqs. (37)] to cancel the variation of the gauge-fixing term.
It is not difficult to see that, in the limit of the nonlocal

massM → ∞, the BRST transformations given in Eqs. (36)
and (37) become identical to those of the local case.
Formally, the confinement condition of Eq. (34) remains
untouched, as the effects of the nonlocality, if present, are
kept in the u function.

IV. CONDITION OF CONFINEMENT IN
NONLOCAL THEORY

In this section, we derive the confinement for the
nonlocal theory, following Ref. [95]. See Appendix C
for a brief review of this technique.
From the action (35), we derive the equations of motion,

e−fðD2ÞDμFa
μν þ jaν ¼ iδδ̄Aa

ν : ð41Þ

The rhs can be evaluated as already done for the local case,
and we write down

Z
d4xeipxhDμc̄aðxÞ; Dνcbð0Þi ¼ δab

�
δμν −

pμpν

p2

�
uðp2Þ

− δab
pμpν

p2
efð−p2Þ: ð42Þ

Indeed, this is the most general form for the given
correlation function but, for the massless contribution,
we have also to take into account the contribution of the
nonlocality. The interesting part here is that all the nonlocal
contributions enter into the definition of the function u.
These nonlocalities arise from the two-point functions of
the nonlocal theory but also that fluctuations from UV can
yield a significant contribution to confinement as they are
summed up in the integral where they cannot be neglected.
Then, the confinement condition is again

1þ uðp2 ¼ 0Þ ¼ 0: ð43Þ

To evaluate this equation, we will have for the two-point
function [29]
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G2ðpÞ ¼
e
1
2
fð−p2Þ

p2 þ Δm2e
1
2
fð−p2Þ

1

1 − ΠðpÞ : ð44Þ

In the local limit,M → ∞, Eq. (44) reduces to a Yukawa
form that yields a fair approximation to the exact local
propagator obtained in [88]. In the nonlocal case, one has
the mass gap

Δm2 ¼ μ2ð18Ng2Þ12 4π2

K2ðiÞ
e−π

ð1þ e−πÞ2 e
fð− π2

4K2ðiÞp
2Þ þ δm2:

ð45Þ

This must be completed by the gap equation

δm2 ¼ 2Ng2G2ð0Þ ¼ 2Ng2
Z

d4p
ð2πÞ4G2ðpÞ: ð46Þ

The function ΠðpÞ can be neglected as also the shift δm2 as
a first approximation. Similarly, for the ghost one has

K2ðpÞ ¼ −
1

p2
e
1
2
fð−p2Þ: ð47Þ

The confinement condition can be written as [95]

Z
d4xeipxhDμc̄aðxÞ; Dνcbð0Þi ¼ −δab

pμpν

k2
þ ðN2 − 1Þ2

2N
g2δab

�
δμν −

pμpν

p2

�Z
d4p0

ð2πÞ4 K2ðp − p0ÞG2ðp0Þ: ð48Þ

This will yield for the confinement condition

uð0Þ¼−
ðN2−1Þ2

2N
g2
Z

d4p
ð2πÞ4

1

p2

efð−p2Þ

p2þΔm2e
1
2
fð−p2Þ : ð49Þ

From this integral, we see explicitly how the dependence on
the nonlocality scale does appear. We will get contributions
from the far UV that cannot be neglected as they sum up.
Indeed, the nonlocal scale M imposes a truncation in the
spectrum and this turns out to be equivalent to a compu-
tation into infrared having singular UV behavior that
cannot be neglected and a cutoff dependence pops out,
like for Nambu–Jona-Lasinio models of low-energy QCD
[97]. On the other hand, in local QCD, asymptotic freedom
entails a dimensional transmutation with the appearance of
a mass scale in the theory [50,51]. Indeed, in the local limit,
M → ∞, we are able to recover an approximate beta
function by solving the integral

uLLð0Þ ¼ −
ðN2 − 1Þ2

2N
g2

Z
d4p
ð2πÞ4

1

p2

1

p2 þ Δm2
: ð50Þ

This is a fair approximation to the result presented in [95]
for the local theory. We have here a single Yukawa
propagator while, in the local case, we have an infinite
sum of such propagators.
Considering Eq. (C5) in Appendix C, we emphasize that

this result is just an approximate one but holds when the
nonlocal effects are seen to modify significantly the spec-
trum of the theory. The integral can be computed only when
the entire function is fully specified, where we assume

fð−p2Þ ¼ e−
p2

M2 : ð51Þ

Therefore, using dimensional regularization, the above
integral can be rewritten in the form

uð0Þ ¼ −
ðN2 − 1Þ2
ð2πÞdN g2

2π
d
2

Γðd=2Þ
Md−2

Δm2

�
1

2
Γ
�
d
2
− 1

�

− g

�
Δm2

M2

��
; ð52Þ

where

gðzÞ ¼
Z

∞

0

dxxd−1
e−x

2

x2 þ ze−
x2
2

: ð53Þ

For z ¼ Δm2=M2 ≪ 1, we have the expansion

gðzÞ ¼ 1

2
Γ
�
d
2
− 1

�
− 2

d
2
−332−

d
2Γ
�
d
2
− 2

�
z

þ 22−
d
2Γ
�
d
2
− 3

�
z2 þOðz3Þ: ð54Þ

It is interesting to point out that, using Eq. (45), the
development parameter z will be essentially given by
the ratio μ2=M2, with μ being the characteristic scale fixing
the ground state of the theory and arising from as an
integration constant. This just says to us that the infrared
limit is the reliable one for our computation.
We can introduce the ϵ parameter as d ¼ 4 − ϵ and we

have

uð0Þ¼−
ðN2−1Þ2
ð2πÞ4−ϵNg2

2π2−
ϵ
2

Γð2−ϵ=2ÞM
−ϵz−1

�
2−

ϵ
2
−13

ϵ
3Γ
�
−
ϵ

2

�
z

−2−
ϵ
2Γ
�
−1−

ϵ

2

�
z2þOðz3Þ

�
: ð55Þ

Finally, we expand in ϵ to get
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uð0Þ ¼ −
ðN2 − 1Þ2
8π2N

g2z−1
��

−
1

ϵ
−
γ

2

�
z −

�
2

ϵ
þ γ − 1

�
z2

þOðz3Þ
�
þOðϵÞ: ð56Þ

We observe that the integral has a divergent part given by

u∞ð0Þ ¼
ðN2 − 1Þ2
8π2N

g2
1

ϵ
ð1þ 2zþOðz2ÞÞ ð57Þ

that we reabsorb through a redefinition of the coupling, as
the theory is renormalizable. Then, we write

uð0Þ ¼ ðN2 − 1Þ2
2πN

αs

�
γ

2
− ð1 − γÞzþOðz2Þ

�
þOðϵÞ; ð58Þ

where αs ¼ g2=4π. Thus, the nonlocal Kugo-Ojima con-
finement condition yields the running coupling equation

ðN2 − 1Þ2
2πN2

αs

�
γ

2
− ð1 − γÞΔm

2

M2
þO

��
Δm2

M2

�
2
��

¼ −1;

ð59Þ

where we have redefined αs → Nαs to introduce the
’t Hooft coupling. This is a confinement condition that
depends on αs in a highly nontrivial way. Working on shell,
we have from Eq. (45)

Δm2 ¼ μ2α
1
2
sη0e−η1μ

2α
1
2
s=M2

; ð60Þ

with numerical constants

η0 ¼ ð72πÞ12 4π2

K2ðiÞ
e−π

ð1þ e−πÞ ð61Þ

and

η1 ¼
π2

4K2ðiÞ ð2πÞ
1
2: ð62Þ

The aim of this rewriting of the mass gap is that, in this way,
we are able to explicitly show the dependence of the energy
scale μ and the ’t Hooft coupling αs in the mass gap. This
makes it clear that Eq. (59) is a highly nonlinear algebraic
equation.
We observe that, due to the expansion with respect to

z ¼ Δm2=M2 ≪ 1, our conclusion can be trusted only in
the infrared limit. This is enough for a proof of confine-
ment. In this limit μ2=M2 → 0, we can neglect the con-
tribution coming from the exponential term in the mass gap
and evaluate the corresponding beta function quite easily.

V. NONLOCAL β FUNCTION

We derive the β function using the following steps:
(1) First, we differentiate Eq. (59) with respect to
l ¼ lnðμ2=M2Þ. (2) We extract the factor el from
Eq. (59) and substitute it into the differential equation
obtained in step (1). (3) Finally, we extract dαs=dl from
step (1). Within the limit of our approximations,3 we obtain
for the first step

β0
dαs
dl

�
γ

2
−ð1−γÞel ffiffiffiffiffi

αs
p

η0

�
þβ0αsðlÞ

�
−ð1−γÞel

ffiffiffiffiffiffiffiffiffiffi
αsðlÞ

p
η0

−
1

2
ffiffiffiffiffi
αs

p ð1−γÞelη0
dαs
dl

�
¼0; ð63Þ

with

β0 ¼
ðN2 − 1Þ2
2πN2

: ð64Þ

From the second step, one has

el ¼ −
β0αsðlÞγ þ 2

2β0α
3
2
sðlÞη0ðγ − 1Þ

: ð65Þ

In the given approximations, from the third step, the β
function is found to be a very simple form,

dαs
dl

¼ βðαsÞ ¼ −2
2þ β0γαs
6þ β0γαs

αs: ð66Þ

The coupling runs to infinity in the infrared, signaling
confinement, and runs to zero in the ultraviolet signaling
the asymptotic freedom.
The equation we obtained is amenable to an exact

solution. In order to avoid formula clutter, we show here
the leading order of an asymptotic expansion holding in the
IR limit. One has

αsðlÞ ∼
ðβ20η20Þ−

1
3

ð1 − γÞ23 expð−2l=3Þ: ð67Þ

In the IR limit, l → −∞, and so αsðlÞ → ∞. In the absence
of a Landau ghost, this represents a confining theory.
It is important to notice that, in this way, we have

consistently extended the renormalization group to the
nonlocal field theories. It is necessary to emphasize that
integration from 0 to infinity on the energy scale can take

3Note that the β function we obtained is meaningful only in the
IR limit where our approximations hold. The effect of the
nonlocality appears to move the nontrivial fixed point to infinity,
keeping confinement (no Landau pole). In the UV limit, we
assume that asymptotic freedom holds, at least till the nonlocal
mass scale that is assumed to be at very high energies.
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contributions also from the UV limit, modifying the beta
function. On the other hand, in the UV limit we have
omitted important contributions in the derivation of the β
function, so our results would need further improvement in
this case. Anyway, we see that asymptotic freedom seems
properly recovered but, due to our approximations, is
mimicking the local case.
Finally, we can estimate the confinement scale by

Eq. (67), which is

μ2c ∼
�
α0
αs

�3
2

M2; ð68Þ

where we have set

α0 ¼ ½ð1 − γÞβ0η0�−2
3: ð69Þ

For SU(3), one has α0 ≈ 0.2773.
In Fig. 1, the running coupling is given with an

indication of the starting of confinement limit at
μ2 ¼ M2. After that, the curve is seen to go to infinity
steeply marking a confined regime of the theory, with the
absence of Landau ghost.

VI. CONCLUSIONS AND DISCUSSIONS

We investigated strongly coupled nonlocal gauge theory
in four dimensions in the context of the confinement
aspects of the theory. Concurrently we compared the results
with that of the local theory and discussed the implications
regarding realistic QCD-like scenarios in the infrared

aspects. We presented the β function of the theory and
showed that the gauge condensation in the theory leads to
dynamical generation of scales governed by the confine-
ment scale and the scale of nonlocality. We summarize the
main findings of our paper below:
(1) We derived the confinement conditions in the non-

local gauge theories and showed that infinite-deriva-
tive nonlocal QFT in four dimensions provides
confinement determined by the nonlocal scale M.

(2) We presented the renormalization group equations
for the nonlocal gauge theory in the strongly coupled
regimes and showed that the coupling runs to
infinity in the low-energy limit, without encounter-
ing the problem of Landau ghosts. The theory
restores conformal invariance in the UV with strong
coupling due to dilution of the mass gap arising from
the nonlocal effects.

(3) In the UV limit, our conclusion can be trusted only
until a certain energy scale due to the approximation
made. In any case, the effects in the integral that
define the Kugo-Ojima u function in Eq. (C5) are
summed till the nonlocality scale. This yields finite
contributions also in the IR limit and provides a
proof of confinement, granted by the absence of the
Landau ghost.

Our future studies will involve more detailed under-
standing of confinement and β-function analysis in the
framework of infinite-derivative nonlocal gravity theories4

motivated from string field theory which provides a UV-
complete ghost-free, renormalizable approach to quantum
gravity which is free from cosmological5 and black-hole
singularities [30–47] but on the other hand leads to
quadratic divergence-free, stable vacuum, no-Landau-pole
and confomally invariant QFT valid up to infinite energy
scales [23,24,26–29,64].6
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APPENDIX A: DYSON-SCHWINGER EQUATIONS
AND BENDER-MILTON-SAVAGE TECHNIQUE

In the following, we present the Bender-Milton-Savage
technique [104]. This permits us to obtain the full hierarchy
of Dyson-Schwinger equations in a partial differential
equation (PDE) form.

FIG. 1. Running coupling for nonlocal Yang-Mills theory with
our approximations showing the behavior in the infrared. μ is the
RGE scale andM is the scale of nonlocality. The coupling is seen
to run to infinity smoothly at lower energies. Although one can
see asymptotic freedom beyond the nonlocal scale, our solution is
not applicable for this energy range.

4Whether such nonlocal factors may arise from any first
principle was recently discussed in Ref. [98].

5For inflationary cosmology and predictions in the
cosmic microwave background in nonlocal theories, see
Refs. [93,99–102].

6See Ref. [103] for a recent conference on this topic.

FRASCA, GHOSHAL, and OKADA PHYS. REV. D 104, 096010 (2021)

096010-8



Let us consider the partition function for a scalar field

Z½j� ¼
Z

½Dϕ�eiSðϕÞþi
R

d4xjðxÞϕðxÞ: ðA1Þ

For the 1P function we get

	
δS

δϕðxÞ



¼ jðxÞ; ðA2Þ

where

h…i ¼
R ½Dϕ�…eiSðϕÞþi

R
d4xjðxÞϕðxÞ

R ½Dϕ�eiSðϕÞþi
R

d4xjðxÞϕðxÞ
: ðA3Þ

After that, we can complete the procedure by setting j ¼ 0.
Next step is to derive the above equation for the 1P function
and dependent on j to obtain the equation for the 2P
function. We emphasize that the definition of the nP
function is given by

hϕðx1Þϕðx2Þ…ϕðxnÞi ¼
δn lnðZ½j�Þ

δjðx1Þδjðx2Þ…δjðxnÞ
: ðA4Þ

Therefore,

δGkð…Þ
δjðxÞ ¼ Gkþ1ð…; xÞ: ðA5Þ

This means that, for a ϕ4 theory, one has

S ¼
Z

d4x

�
1

2
ð∂ϕÞ2 − λ

4
ϕ4

�
; ðA6Þ

so that

∂2hϕi þ λhϕ3ðxÞi ¼ jðxÞ: ðA7Þ

The following equation just holds:

Z½j�∂2GðjÞ
1 ðxÞ þ λhϕ3ðxÞi ¼ jðxÞ: ðA8Þ

By the definition of the 1P function one gets

Z½j�GðjÞ
1 ðxÞ ¼ hϕðxÞi: ðA9Þ

Now we derive with respect to jðxÞ to obtain

Z½j�½GðjÞ
1 ðxÞ�2 þ Z½j�GðjÞ

2 ðx; xÞ ¼ hϕ2ðxÞi; ðA10Þ

and after another derivation step it is

Z½j�½GðjÞ
1 ðxÞ�3 þ 3Z½j�GðjÞ

1 ðxÞG2ðx; xÞ þ Z½j�GðjÞ
3 ðx; x; xÞ

¼ hϕ3ðxÞi: ðA11Þ

Inserting it into Eq. (A7) yields

∂2GðjÞ
1 ðxÞ þ λ½GðjÞ

1 ðxÞ�3 þ 3λGðjÞ
2 ð0ÞGðjÞ

1 ðxÞ þ GðjÞ
3 ð0; 0Þ

¼ Z−1½j�jðxÞ: ðA12Þ

We realize that, by the effect of renormalization, a mass
term appeared. We uncover here a term due to mass
renormalization. Therefore, setting j ¼ 0, one puts the first
Dyson-Schwinger equation into the differential form

∂2G1ðxÞ þ λ½G1ðxÞ�3 þ 3λG2ð0ÞG1ðxÞ þG3ð0; 0Þ ¼ 0:

ðA13Þ

By deriving Eq. (A12) again with respect to jðyÞ, we get

∂2GðjÞ
2 ðx;yÞþ3λ½GðjÞ

1 ðxÞ�2GðjÞ
2 ðx;yÞþ3λGðjÞ

3 ðx;x;yÞGðjÞ
1 ðxÞ

þ3λGðjÞ
2 ðx;xÞGðjÞ

2 ðx;yÞþGðjÞ
4 ðx;x;x;yÞ¼Z−1½j�δ4ðx−yÞ

þjðxÞ δ

δjðyÞðZ
−1½j�Þ:

Inserting j ¼ 0, the equation for the 2P function takes the
form

∂2G2ðx; yÞ þ 3λ½G1ðxÞ�2G2ðx; yÞ þ 3λG3ð0; yÞG1ðxÞ
þ 3λG2ð0ÞG2ðx; yÞ þG4ð0; 0; yÞ ¼ δ4ðx − yÞ: ðA14Þ

This procedure can be iterated to any desired order
providing all the hierarchy of Dyson-Schwinger equations
in PDE form.

APPENDIX B: DYSON-SCHWINGER EQUATIONS
FOR 1P AND 2P FUNCTIONS

In this Appendix, we derive the Dyson-Schwinger
equations for the Yang-Mills field for the 1P and 2P
functions.
For the 1P functions, after averaging the equations of

motion, we get

□GðjÞa
1μ þ gfabce−

1
2
fð□Þh∂ν½e1

2
fð□ÞĀb

μe
1
2
fð□ÞAcν�i

þ gfabce−
1
2
fð□Þh½e1

2
fð□ÞAbνe

1
2
fð□Þð∂μAc

ν − ∂νAc
μÞ�i

g2fabcfcdee−
1
2
fð□Þh½e1

2
fð□ÞAbνe

1
2
fð□ÞAd

νe
1
2
fð□ÞAe

μ�i
þ gfabce

1
2
fð□Þhc̄b∂μcci ¼ e

1
2
fð□Þjaμ; ðB1Þ

and for the ghost

−□PðηÞa
1 þ gfabchðe1

2
fð□ÞAc

μÞ∂μcbi ¼ e
1
2
fð□Þηa: ðB2Þ
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For our aims, we introduced the following 1P functions:

GðjÞa
1μ ðxÞ ¼ Z−1hAa

μðxÞi;
PðηÞa
1 ðxÞ ¼¼ Z−1hcaðxÞi: ðB3Þ

The same should hold for c̄a yielding P̄ðηÞa
1 ðxÞ. In order to

evaluate the averages we consider the above definitions
rewritten as

Z½j; η; η̄�e1
2
fð□ÞGðjÞa

1μ ðxÞ ¼ he1
2
fð□ÞAa

μðxÞi;
Z½j; η; η̄�PðηÞa

1 ðxÞ ¼ hcaðxÞi: ðB4Þ

The apexes (j) and (η) are there to remember the
explicit dependence on the currents. Let us derive

one time with respect to jðxÞ on the first equation
to get

Ze
1
2
fð□ÞGðjÞab

2μν ðx; xÞ þ Ze
1
2
fð□ÞGðjÞa

1μ ðxÞe1
2
fð□ÞGðjÞb

1ν ðxÞ
¼ he1

2
fð□ÞAa

μðxÞe1
2
fð□ÞAb

νðxÞi: ðB5Þ

We apply the space-time derivative ∂ν obtaining

Ze
1
2
fð□Þ∂νGðjÞab

2μν ðx; xÞ þ Ze
1
2
fð□Þ∂νGðjÞa

1μ ðxÞe1
2
fð□ÞGðjÞb

1ν ðxÞ
¼ he1

2
fð□Þ∂νAa

μðxÞe1
2
fð□ÞAb

νðxÞi: ðB6Þ

We further derive Eq. (B5) with respect to jcν to get

Ze
1
2
fð□ÞGðjÞab

2μν ðx; xÞe1
2
fð□ÞGðjÞνc

1 ðxÞ þ Ze
1
2
fð□ÞGðjÞabcν

3μν ðx; x; xÞ þ Ze
1
2
fð□ÞGðjÞa

1μ ðxÞe1
2
fð□ÞGðjÞb

1ν ðxÞe1
2
fð□ÞGðjÞνc

1 ðxÞ
þ Ze

1
2
fð□ÞGðjÞacν

2μ ðxÞe1
2
fð□ÞGðjÞb

1ν þ Ze
1
2
fð□ÞGðjÞbcν

2ν ðxÞe1
2
fð□ÞGðjÞa

1μ ðxÞ ¼ he1
2
fð□ÞAa

μðxÞe1
2
fð□ÞAb

νðxÞe1
2
fð□ÞAcνðxÞi; ðB7Þ

and we need to do the same for the ghost field. From
Eq. (B3) we write

Z½j; η; η̄�PðηÞa
1 ðxÞ ¼ hcaðxÞi: ðB8Þ

After deriving with respect to ∂μ and then with respect to η̄,
one has

ZP̄ðηÞb
1 ðxÞe1

2
fð□Þ∂μPðηÞa

1 ðxÞþZ∂μKðηÞab
2 ðx;xÞ¼hc̄b∂μcaðxÞi:

ðB9Þ
We have introduced a new 2P function defined as

KðηÞab
2 ðx; yÞ ¼ 1

Z
δPðηÞa

1 ðxÞ
δηbðyÞ ; ðB10Þ

and the other 2P function

Jðη;jÞab2μ ðx; yÞ ¼ 1

Z
δPðηÞa

1 ðxÞ
δjbμðyÞ : ðB11Þ

So, by deriving Eq. (B8) with respect to jbμðxÞ, the result is

Ze
1
2
fð□ÞGðjÞb

1μ ðxÞ∂μPðηÞa
1 ðxÞ þ Z∂μJðη;jÞab2μ ðx; xÞ

¼ hAb
μðxÞ∂μcaðxÞi: ðB12Þ

Collecting everything, one has

□GðjÞa
1μ þ gfabce−

1
2
fð□Þ∂ν½e1

2
fð□ÞGðjÞbc

2μν ðx; xÞ þ e
1
2
fð□ÞGðjÞb

1μ ðxÞe1
2
fð□ÞGðjÞc

1ν ðxÞ� − gfabce−
1
2
fð□Þ½e1

2
fð□Þ∂νGðjÞbc

2μν ðx; xÞ
þ e

1
2
fð□Þ∂νGðjÞb

1μ ðxÞe1
2
fð□ÞGðjÞc

1ν ðxÞ� − gfabce−
1
2
fð□Þ½e1

2
fð□Þ∂μG

ðjÞbcν
2ν ðx; xÞ þ e

1
2
fð□Þ∂μG

ðjÞb
1ν ðxÞe1

2
fð□ÞGðjÞcν

1 ðxÞ�
þ g2fabcfcdee−

1
2
fð□Þ½e1

2
fð□ÞGðjÞbd

2μν ðx; xÞe1
2
fð□ÞGðjÞνe

1 ðxÞ þ e
1
2
fð□Þ∂νGðjÞbdeν

3μν ðx; x; xÞ
þ e

1
2
fð□ÞGðjÞb

1μ ðxÞe1
2
fð□ÞGðjÞd

1ν ðxÞe1
2
fð□ÞGðjÞνe

1 ðxÞ þ e
1
2
fð□ÞGðjÞbeν

2μ ðx; xÞe1
2
fð□ÞGðjÞd

1ν ðxÞ þ e
1
2
fð□ÞGðjÞdeν

2ν ðx; xÞe1
2
fð□ÞGðjÞb

1μ ðxÞ�
− gfabce

1
2
fð□ÞfP̄ðηÞb

1 ðxÞe1
2
fð□Þ½∂μP

ðηÞc
1 ðxÞ� þ ∂μ½KðηÞbc

2 ðx; xÞ�g ¼ e
1
2
fð□Þjaμ: ðB13Þ

The equation of the local theory given in [88] is easily obtained by setting the nonlocality factor to 1, corresponding to the
local limit M → ∞. For the ghost field, it is

−□PðηÞc
1 − gfabce

1
2
fð□ÞGðjÞa

1μ ðxÞ∂μPðηÞb
1 ðxÞ − gfabc∂μJðη;jÞab2μ ðx; xÞ ¼ e

1
2
fð□Þηc: ðB14Þ

After setting all the currents to zero, the Dyson-Schwinger equations for the 1P functions are obtained in the form given in
the main text.
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From Eq. (B13), we derive it with respect to jλhðyÞ, obtaining

□GðjÞah
2μλ ðx;yÞþgfabce−

1
2
fð□Þ∂ν½e1

2
fð□ÞGðjÞbch

3μνλ ðx;x;yÞþe
1
2
fð□ÞGðjÞbh

2μλ ðx;yÞ×e
1
2
fð□ÞGðjÞc

1ν ðxÞþþe
1
2
fð□ÞGðjÞb

1μ ðxÞe1
2
fð□ÞGðjÞch

2νλ ðxÞ�
−gfabce−

1
2
fð□Þ½e1

2
fð□Þ∂νGðjÞbch

2μνλ ðx;x;yÞþe
1
2
fð□Þ∂νGðjÞbh

2μλ ðx;yÞe1
2
fð□ÞGðjÞc

1ν ðxÞþe
1
2
fð□Þ∂νGðjÞb

1μ ðxÞe1
2
fð□ÞGðjÞch

2νλ ðx;yÞ�
−gfabce−

1
2
fð□Þ½e1

2
fð□Þ∂μG

ðjÞbchν
3νλ ðx;x;yÞþe

1
2
fð□Þ∂μG

ðjÞbh
2νλ ðx;yÞe1

2
fð□ÞGðjÞcν

1 ðxÞþe
1
2
fð□Þ∂μG

ðjÞb
1ν ðxÞe1

2
fð□ÞGðjÞchν

2λ ðx;yÞ�
þg2fabcfcdee−

1
2
fð□Þ½e1

2
fð□ÞGðjÞbdh

3μνλ ðx;x;yÞe1
2
fð□ÞGðjÞνe

1 ðxÞþe
1
2
fð□ÞGðjÞbd

2μν ðx;xÞe1
2
fð□ÞGðjÞνeh

2λ ðx;yÞ
þe

1
2
fð□Þ∂νGðjÞbdehν

4μνλ ðx;x;x;yÞþe
1
2
fð□ÞGðjÞbh

2μλ ðx;yÞe1
2
fð□ÞGðjÞd

1ν ðxÞe1
2
fð□ÞGðjÞνe

1 ðxÞ
þe

1
2
fð□ÞGðjÞb

1μ ðxÞe1
2
fð□ÞGðjÞdh

2νλ ðx;yÞe1
2
fð□ÞGðjÞνe

1 ðxÞþe
1
2
fð□ÞGðjÞb

1μ ðxÞe1
2
fð□ÞGðjÞd

1ν ðxÞe1
2
fð□ÞGðjÞνeh

2λ ðx;yÞ
þe

1
2
fð□ÞGðjÞbehν

3μλ ðx;x;yÞe1
2
fð□ÞGðjÞd

1ν ðxÞþe
1
2
fð□ÞGðjÞbeν

2μ ðx;xÞe1
2
fð□ÞGðjÞdh

2νλ ðx;yÞ
þe

1
2
fð□ÞGðjÞdehν

3νλ ðx;x;yÞe1
2
fð□ÞGðjÞb

1μ ðxÞþe
1
2
fð□ÞGðjÞdeν

2ν ðx;xÞe1
2
fð□ÞGðjÞbh

2μλ ðx;yÞ�−gfabce
1
2
fð□ÞfJ̄ðη;jÞbh2λ ðx;yÞe1

2
fð□Þ½∂μP

ðηÞc
1 ðxÞ�

þ P̄ðηÞb
1 ðxÞe1

2
fð□Þ½∂μJ

ðηÞch
2λ ðx;yÞ�þ∂μ½Wðη;jÞbch

3λ ðx;x;yÞ�g¼e
1
2
fð□Þδahημλδ4ðx−yÞ; ðB15Þ

after the introduction of the 3P function

Wðη;jÞabc
3λ ðx; y; zÞ ¼ Z−1 δK

ðηÞab
2 ðx; yÞ
δjλcðzÞ : ðB16Þ

Similarly, starting from the 1P function for the ghost and
deriving it with respect to ηhðyÞ, we get

−□KðηÞch
2 ðx;yÞ− ige

1
2
fabcfð□ÞLðη;jÞah

2μ ðx;yÞ∂μPðηÞb
1 ðxÞ

− igfabce
1
2
fð□ÞGðjÞa

1μ ðxÞ∂μKðηÞbh
2 ðx;yÞ

− igfabc∂μWðη;jÞabh
3μ ðx;x;yÞ¼e

1
2
fð□Þδchδ4ðx−yÞ: ðB17Þ

We have introduced the 2P function

Lðη;jÞab
2μ ðx; yÞ ¼ δGðjÞa

1 ðxÞ
δηbðyÞ : ðB18Þ

Deriving with respect to jhνðyÞ, one has the equation for J2
in the form

−□JðηÞchν2 ðx; yÞ − igfabce
1
2
fð□ÞGðjÞah

2μν ðx; yÞ∂μPðηÞb
1 ðxÞ

− igfabce
1
2
fð□ÞGðjÞa

1μ ðxÞ∂μJðη;jÞbhν2 ðx; yÞ
− igfabc∂μJðη;jÞabh3μ ðx; x; yÞ ¼ 0; ðB19Þ

with the introduction of the 3P function

Jðη;jÞabc3μ ðx; y; zÞ ¼ δJðη;jÞab2μ ðx; yÞ
δjcμðzÞ : ðB20Þ

We can recover the equations in the main text after setting
all the currents to zero.

APPENDIX C: CONFINEMENT IN LOCAL
YANG-MILLS THEORY

The approach given in the main text is straightforwardly
obtained by the analysis performed in Ref. [95]. The u
function can be obtained by observing that

Z
d4xeipxhDμc̄aðxÞ; Dνcbð0Þi ¼ −δab

pμpν

k2
þ ðN2 − 1Þ2

2N
g2δab

�
δμν −

pμpν

p2

�Z
d4p0

ð2πÞ4 K2ðp − p0ÞG2ðp0Þ: ðC1Þ

For local Yang-Mills theory, the propagators take the
form

K2ðpÞ ¼ −
1

p2 þ iϵ
ðC2Þ

for the ghost field and

G2ðpÞ ¼
π3

4K3ðiÞ
X∞
n¼0

e−ðnþ1
2
Þπ

1þ e−ð2nþ1Þπ ð2nþ 1Þ2 1

p2 −m2
n þ iϵ

ðC3Þ

for the gauge field, with the mass spectrum
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mn ¼ ð2nþ 1Þ π

2KðiÞ
�
Ng2

2

�1
4

μ; ðC4Þ

where KðiÞ is the complete elliptical integral of the first
kind and μ is one of the integration constants of the theory.
This is an approximate solution as we have neglected any
mass shift arising from renormalization. This will yield for
the confinement condition by Kugo-Ojima

uð0Þ ¼ −
ðN2 − 1Þ2

2N
g2

Z
d4p
ð2πÞ4

1

p2 þ iϵ
π3

4K3ð−1Þ

×
X∞
n¼0

e−ðnþ1
2
Þπ

1þ e−ð2nþ1Þπ ð2nþ 1Þ2 1

p2 −m2
n þ iϵ

¼ −1:

ðC5Þ

This integral can be performed using a continuation in the
complex plane, moving to Euclidean. It is divergent and can
be evaluated e.g., by dimensional regularization. This will
yield the beta function in closed form for the theory,
holding both in the UV and IR, as

βYM ¼ −β0
α2s

1 − 1
2
β0αs

; ðC6Þ

with β0 ¼ ðN2 − 1Þ2=8πN. This beta function grants con-
finement in the IR. In the UV we recover the asymptotic
freedom as expected.
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