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Ahypothetical pseudoscalar particle axion,which is an immediate result of thePeccei-Quinn solution to the
strong CP problem, may couple to gluons and lead to an oscillating electric dipole moment (EDM) of
fundamental particles. This paper proposes a novel method of probing the axion-induced oscillating EDM in
storage rings, using a radio frequency (rf) Wien filter. TheWien filter at the frequency of the sidebands of the
axion and g − 2 frequency, faxion � fg−2, generates a spin resonance in the presence of an oscillating EDM, as
confirmed both by an analytical estimation of the spin equations and independently by simulation. A brief
systematic study also shows that this method is unlikely to be limited by Wien filter misalignment issues.
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I. INTRODUCTION

The Peccei-Quinn solution to the strong CP problem
requires the existence of a pseudoscalar Goldstone boson
called an axion [1]. The axion is a stronglymotivated particle
beyond the StandardModel and is also a plausible candidate
for cold dark matter [2–4]. While most axion search experi-
ments seek to observe the axion-photon interaction using the
resonant cavity method, it has been suggested that axion-
gluon coupling in the strong interactions may result in an
electric dipole moment (EDM) from a hadron oscillating at
the axion frequency [5,6]. A nonzero EDM of a hadron
would require CP-violation in strong interactions, so there
have been many efforts to measure the EDM of neutrons [7–
9] and plans tomeasure the EDMof protons and/or deuterons
using a storage ring method [10–13]. Extending the exper-
imental approach to the axion-induced oscillating EDM, a
new axionlike dark matter search experiment was proposed
using the storage ringmethod in thepresence of anoscillating
EDM [14–16]. Another recent study also proposed that the
storage ring EDM method can be exploited to probe dark
matter and dark energy [17].

The present paper also proposes using the storage ring
method to search for axions, but with a different scheme.
We introduce an rf Wien filter (WF) and resonate the spin
by applying the rf at the sidebands of the axion frequency
and the g − 2 frequency. The application of the WF to
measure the EDM was studied in Ref. [18], but its target
was a conventional static EDM, while the present study
seeks to observe an oscillating EDM induced by an axion
field. Also, by applying the WF at a frequency other than
just g − 2 frequency, the experiment can be freed from the
severe systematics arising from beam and spin dynamics
and WF misalignment issues.

II. SPIN DYNAMICS IN STORAGE RINGS

The spin of a particle in a storage ring precesses as

dS
dt

¼ ωs × S; ð1Þ

where the angular spin frequency ωs is given by the
Thomas-BMT equation [19,20]:
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where β ¼ v=c is the particle velocity vector. Here G≡
ðg − 2Þ=2 is a magnetic anomaly and η is a unitless EDM
that plays the same role as the g-factor in the magnetic
dipole moment. The magnetic dipole moment μ and the
electric dipole moment d can be written in forms:

μ ¼ g
q
2m

S; d ¼ η
q

2mc
S;

where q, m and S are the charge, mass, and spin of the
particle, respectively.
We work in an accelerator coordinate system ðx; y; sÞ,

where x is an in-plane radial distance from the design orbit,
y is an out-of-plane vertical distance from the center, and s
is along the arc length of the storage ring. The spin angular
frequency has only transverse components ðx; yÞ under a
homogeneous and uniform vertical dipole magnetic field
and/or radial electric field in the storage ring. Furthermore,
we employ a paraxial accelerator approximation β · B ¼
β · E ¼ 0 only for the analytical estimations, but those
terms are kept in the numerical simulations and the results
were consistent. Accordingly, the radial and vertical com-
ponents of the spin angular frequency are given by

ωsx ¼ −
q
2m

ηðtÞ
�
Ex

c
− βBy

�
;

ωsy ¼ −
q
m

��
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γ þ 1

�
βEx

c

�
: ð2Þ

Here we used the time-varying EDM for a hadron as a result
of axion-gluon coupling:

ηðtÞ ¼ ηdc þ ηac cosðωaxiontþ ϕaxionÞ: ð3Þ

For the analytical calculations of beam and spin dynamics
for nonreference particles with nonzero EDM in storage
rings, see Refs. [21–23].

III. SPIN RESONANCE WITH RF WIEN FILTER

The rf Wien filter (WF) is a perfect candidate to drive the
spin resonance without affecting the beam betatron oscil-
lations, since it exerts no Lorentz force on particles with a
specific momentum. The EDM term ηðtÞ only contributes
to the radial component of the spin angular frequency, so
we set the electromagnetic field of the WF as follows.

EWF ¼ EWF
0 cosðωWFtþ ϕWFÞêx;

BWF ¼
EWF
0

βc
cosðωWFtþ ϕWFÞêy ð4Þ

An artificial spin resonance driven by a WF in the presence
of a static nonzero EDM has been well studied [18,24–26].
We extend this idea to the oscillating component of the
EDM. It is intuitive to expect that the vertical spin

component will accumulate in one direction when the
oscillation frequency of the EDM, ωaxion, is the same as
the WF frequency. Actually, it turns out that it is resonant
with the sidebands of the axion and g − 2 frequency:
ωWF ¼ ωg−2 � ωaxion. It is also true that its sidebands with
a cyclotron frequency, for instance ωc − ðωg−2 � ωaxionÞ,
are also resonance frequencies, because the WF is normally
located in a specific position in the azimuth and the
coherent spin motion with respect to the WF will include
aliased Fourier components. However, in this paper we will
assume the WF is continuously located in the azimuth to
simplify the spin equation and solve it analytically.
To see the resonance condition ωWF ¼ ωg−2 � ωaxion

explicitly, let us solve the spin equations for a reference
particle that travels the storage ring in the reference orbit.
Let E0 and B0 be the magnitudes of a constant radial
electric field and a vertical magnetic field, respectively,
needed to store the particle in the storage ring. Substituting
the spin components in Eq. (1) with Eq. (2) and using the
electromagnetic field E ¼ E0êx þ EWF and B ¼ B0êy þ
BWF from Eq. (4) yields

_Sx ¼ −ðωg−2 þ ΩWFðtÞÞSs;
_Sy ¼ −ωηðtÞSs;
_Ss ¼ ωηðtÞSy þ ðωg−2 þ ΩWFðtÞÞSx; ð5Þ

where

ωg−2 ¼
q
m

�
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�
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1

γ2 − 1

�
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c

�

is the g − 2 frequency, and

ΩWFðtÞ ¼
q
m
Gþ 1

γ2
EWF
0

βc
cosðωWFtþ ϕWFÞ

≡ aWF cosðωWFtþ ϕWFÞ

is the spin angular frequency component driven by the WF
fields. Here aWF is a scaled WF field strength in units of the
angular frequency. Finally, ωη is the EDM-related term,
namely

ωηðtÞ ¼ −
q
2m

�
E0

c
− βB0

�
ηðtÞ≡ −

dðtÞ
S

E�;

where E� ≡ E0 − vB0 is the effective electric field, which is
proportional to the EDM signal. With a highly relativistic
beam v ≈ c, a vertical magnetic field of 1 T provides an
effective electric field of roughly 300 MV=m by itself.
Given the reasonable assumptions jωηj ≪ jaWFj and

jωηj ≪ jωg−2j, we adopt the strategy used in Sec. II of
Ref. [18]. First we write down the exact solution for the
radial and longitudinal spin components without the EDM,
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then plug those solutions into Eq. (5) to obtain the
approximate time derivative of the vertical spin component.
Without the EDM term, the radial and longitudinal spin
components are given in forms:

Sx ¼ − sin

�
ωg−2tþ

aWF

ωWF
ðsinðωWFtþ ϕWFÞ − sinϕWFÞ

�
;

Ss ¼ cos

�
ωg−2tþ

aWF

ωWF
ðsinðωWFtþ ϕWFÞ − sinϕWFÞ

�
;

where the initial polarization is assumed to be longitudinal
ðSsð0Þ ¼ 1Þ. Then plugging this Ss into Eq. (5) yields

_Sy ≈
dðtÞ
S

E� cos
�
ωg−2tþ

aWF

ωWF
sinðωWFtÞ

�

by setting ϕWF ¼ 0 for a moment. This equation immedi-
ately shows the working principle of the frozen-spin
method to measure the static EDM. When the WF is
absent (aWF ¼ 0) and the spin is frozen (ωg−2 ¼ 0) then it
leads to _Sy ∝ ηdc, therefore, the vertical spin component

accumulates with a slope proportional to the dc EDM. The
argument is similar when the WF is present. We will use
this equation separately for the dc and ac EDM terms to
reveal the resonance conditions more explicitly. Recalling
the EDM ηðtÞ in Eq. (3), it follows that

ð _SyÞdc ≈
ddc
S

E� cos
�
ωg−2tþ

aWF

ωWF
sinðωWFtÞ

�
ð6Þ

for the dc EDM term. One can see the resonance condition
is ωWF ¼ ωg−2, as studied in Ref. [18]. To see it more
manifestly, take ωg−2t in the cosine bracket as a sawtooth
wave with a period 2π=ωg−2. The remaining term of the
argument is a sine function with a period 2π=ωWF. If the
periods of the two terms are not identical, then the phase
argument uniformly sweeps from 0 to 2π, which leads to
h _Syi ¼ 0 on average. The resonance happens when the two
periods are identical, thus ωWF ¼ ωg−2.
Similarly, the ac EDM term reads

ð _SyÞac ≈
dac
S

E� cosðωaxiontÞ cos
�
ωg−2tþ

aWF

ωWF
sinðωWFtÞ

�
ð7Þ

¼ dac
2S

E�
�
cos

�
ðωaxion − ωg−2Þt −

aWF

ωWF
sinðωWFtÞ

�
þ cos

�
ðωaxion þ ωg−2Þtþ

aWF

ωWF
sinðωWFtÞ

��
: ð8Þ

Again we set ϕaxion ¼ 0 for clarity. Restoring the WF
phase and the axion phase in the above equations are
straightforward, but of no importance at this moment.
Using the same argument we made for the dc EDM term,
we can clearly see that there are two resonance condi-
tions: ωWF ¼ ωg−2 � ωaxion. When the WF is absent, the
resonance happens when ωg−2 ¼ ωaxion which is used
in Ref. [14].
We point out that in the presence of the WF, the average

slope of the vertical spin component h _Syi in the resonance
condition is multiplied by the following factor:

CWF ≡
�
cos

�
ωtþ a

ω
sinðωtÞ

��
; ð9Þ

where we dropped the subscript WF in the right hand
side for a moment. Interestingly, it shows that CWF ¼
−J1ða=ωÞ where J1 is the Bessel function of the first
kind. See the Appendix A for the derivation. The maxi-
mum absolute value of CWF is therefore roughly 0.59
when a=ω ≈ 1.84. Eventually, we have the following
expression for the vertical spin slope (EDM signal) on
resonance.

TABLE I. Various methods seeking to probe either the stationary (dc) or oscillating (ac) EDM in storage rings. All
methods exploit the vertical spin resonance for a specific resonance condition. s is the spin quantum number.
“srEDM” stands for the storage ring EDM experiments.

Method srEDM srEDMþWF srAxionEDM srAxionEDMþWF

Measurement target ddc ddc dac dac
Resonance condition ωg−2 ¼ 0 ωg−2 ¼ ωWF ωg−2 ¼ ωaxion ωg−2 ¼ jωaxion � ωWFj
Spin vertical slope (ωd) ddc

sℏ E
� ddc

sℏ E
�CWF

dac
2sℏE

� dac
2sℏE

�CWF

References [12] [18] [14,16] This work
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ωd ¼ −
dac
2S

E�J1

�
aWF

ωWF

�

An overview of the various methods used to measure
EDM in storage rings, including this work, is provided in
Table I.

IV. SPIN TRACKING SIMULATION

In this section a spin tracking simulation for the reference
particle was performed as a proof-of-principle. A deuteron,
whose magnetic anomaly is Gd ¼ −0.143, was simulated
in a purely magnetic ring with a radius of 30 m. The
reference momentum was given to be 1 GeV=c. The
corresponding g − 2 frequency is around 121 kHz. Also,
the axion frequency was arbitrarily assumed to be 180 kHz,
which corresponds to an axion mass of 0.7 neV=c2. The
initial setup parameters are summarized in Table II.
First, the simulation was conducted without applying the

WF. Figure 1 shows the vertical spin component (Sy) of the
reference particle in the presence of the EDM, with blue
when there is only the dc component of the EDM (with
ηdc ¼ 10−6) and orange for the ac component only
(ηac ¼ 10−6). Figure 2 shows their Fourier spectra. One
can immediately see ηdc is responsible for the g − 2
frequency and ηac is for its sidebands with the axion
frequency: faxion � fg−2. The peak at the higher frequency
sideband, faxion þ fg−2 ≈ 300 kHz, clearly looks much
smaller than the other sideband, faxion − fg−2 ≈ 60 kHz.
The reason is quite straightforward. As implied in Eq. (7),
without the WF (aWF ¼ 0), one gets the time derivative of
the vertical spin component asymptotically proportional to
cosðωaxiontÞ cosðωg−2tÞ. Integrating this expression, one
obtains two sidebands whose amplitudes are divided by
each frequency. In this case, the ratio between the higher
and lower sidebands is roughly 5, which is the magnitude
ratio of peaks for the two sidebands in Fig. 2.
Next, we want to observe the vertical spin resonance in

the presence of the WF operating at one of the sidebands of
the axion and g − 2 frequency. The WF was assumed to
occupy all parts of the storage ring continuously, and its

electric field strength was set to 1 MV=m. As Fig. 3
represents, the spin vertical component accumulates in
one direction when the WF is applied at either one of the
two sidebands. The directions of the accumulation of the
spin vertical component for two cases are opposite; they
depend on the sign of ωaxion � ωg−2 and ωWF. And the
slope depends on the sideband frequency like the previous
argument as well: h _Syi ∝ 1=ωWF.
So far we have used a deuteron for the simulation. It is

worth trying a proton as well, which has a magnetic
anomaly Gp ¼ 1.793. Its mass is around 938 MeV=c2,

TABLE II. The initial parameters for the spin tracking simu-
lation with the rf Wien filter.

Parameter Type or Value

Particle Deuteron
Magnetic anomaly (G) −0.143
Ring radius 30 m
Magnetic field strength 0.111 T
Reference momentum 1 GeV/c
Reference velocity (β) 0.47
Reference Lorentz factor (γ) 1.133
g − 2 frequency 121 kHz
Axion frequency 180 kHz

FIG. 1. Vertical spin component versus time, with only the dc
EDM of ηdc ¼ 10−6 (blue), and only the ac EDM of ηac ¼ 10−6

(orange).

FIG. 2. Fourier spectra of the vertical spin component, with
only the dc EDM of ηdc ¼ 10−6 (blue) and only the ac EDM of
ηac ¼ 10−6 (orange). In the simulation the blue peak is located at
fg−2 ≈ 120 kHz and the orange peaks are located at fg−2 � faxion
where faxion ¼ 180 kHz.
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almost half that of the deuteron. Assuming the same
reference momentum p ¼ 1 GeV=c and a WF electric
field strength of 1 MV=m, the corresponding g − 2 fre-
quency for the proton becomes 3 MHz, which is 25 times
larger than that of the deuteron. As a result, the vertical spin
component growth rate for the proton is around an order of
magnitude smaller than that of the deuteron, as shown
in Fig. 4.
We also have briefly tested the WF taking only a fraction

of the storage ring azimuth, instead of continuously located

along the ring. Figure 5 shows the vertical spin component
on resonance with different WF azimuthal occupancy,
which is consistent with the natural expectation; the slope
scales the same with the WF occupancy.

V. SYSTEMATIC ERROR STUDIES

A. Wien filter misalignment

In Eqs. (6) and (8), we found that the dc component of
the EDM is sensitive to the g − 2 frequency of WF, and the
ac component is sensitive to the sidebands of the g − 2 and
axion frequency, respectively. It turns out that the former
case is vulnerable to a systematic error from WF misalign-
ment [18]. When the rf electric and magnetic fields point in
a slightly tilted direction, as illustrated in Fig. 6, the

FIG. 4. Vertical spin component versus time for a proton with a
momentum 1 GeV=c, when an rf Wien filter of 1 MV=m electric
field strength was applied at the higher sideband faxion þ fg−2
(blue) and lower sideband faxion − fg−2 (orange). The Wien filter
is continuously located on the storage ring in the simulation.

FIG. 5. Vertical spin component versus time for different Wien
filter azimuthal occupancy: continuously located along the
storage ring (blue), taking only 10% of the ring azimuth (orange)
and 1% (green).

FIG. 6. The electromagnetic field from the rf Wien filter,
tilted by an angle θ. Ideally, the electric field of the Wien filter
designed for this storage ring should only have a radial compo-
nent (êx) and the magnetic field should only have a vertical
component (êy). But this small angle θ might be there because of
the misalignment.

FIG. 3. Vertical spin component versus time, when an rf Wien
filter of 1 MV=m electric field strength was applied at the higher
sideband faxion þ fg−2 (blue) and lower sideband faxion − fg−2
(orange). The Wien filter is continuously located on the storage
ring in the simulation.
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resulting radial component of the rf magnetic field can
drive the resonance of the vertical spin component, mim-
icking the EDM signal. Specifically, the radial component
of the spin angular frequency induced by WF misalignment
reads

ωWF
sx ¼ −

q
m

��
Gþ 1

γ

�
BWF
x þ

�
Gþ 1

γ þ 1

�
βEWF

y

c

�
¼ θmaWF cosðωWFtþ ϕWFÞ;

where θm is the tilted angle of the WF. This leads to the
slope of the vertical spin component coming from the WF
misalignment systematic effect,

ð _SyÞSyst ¼ −θmaWF cosðωWFtþ ϕWFÞSs:

In the resonance condition ωWF ¼ ωg−2, it leads to a
systematic vertical spin slope proportional to

CSyst ≡
�
cosðωtÞ cos

�
ωtþ a

ω
sinðωtÞ

��
ð10Þ

having additional cosðωtÞ compared to Eq. (9). It is also
shown that CSyst can be represented by the Bessel function
of the first kind: CSyst ¼ 1

2
fJ0ðaωÞ þ J2ðaωÞg. The derivation

is provided in Appendix A. Therefore, we have a system-
atic vertical spin slope, as follows.

hð _SyÞSysti ¼ −
1

2
θma

�
J0

�
a
ω

�
þ J2

�
a
ω

��
: ð11Þ

Equation (11) was confirmed by the spin tracking simu-
lation, as shown in Fig. 7. The basic setup was the same as
in Table II, except there was a WF misalignment angle of
1 μrad for this case. Both the dc and ac EDM were set to 0
to make sure the effect was purely from the systematics.
The slopes obtained from the spin tracking simulation were
in an excellent agreement with the analytical calculation.
Typically, this systematic effect can be frustrating if we
cannot control the WF misalignment angle to really small
tolerances, on the order of nanoradians, but the present
method is largely free from it.
This systematic effect can be avoided if the WF

frequency is not close to the g − 2 frequency, at
ωaxion � ωg−2, as confirmed in Fig. 8. The WF with the
lower sideband frequency was applied in the presence of
just the ac EDM. Each color represents the degree of the
misalignment, from 0 to 100 μrad. No matter what the tilted
angle θ, the vertical spin component grows with the same
average slope. The large fluctuations on the growth for the
case of 100 μrad, for example, are not a problem since the
average slope is what matters for detecting the vertical spin
resonance.
When the misalignment angle for the electric field is

different from that of the magnetic field generated by the
WF, the particles experience the Lorentz force, and this can
be immediately corrected through precise beam position
monitoring.

B. Intrinsic resonances and field errors

There are also intrinsic systematic error sources in
particle accelerators, namely the betatron tune and spin

FIG. 7. The vertical spin slope driven by the WF misalignment,
obtained from the spin tracking simulation (blue circles) and by
the analytical expression in Eq. (10) (red curve). Both the dc and
ac EDM were set to 0 for the spin tracking. The misalignment
angle θm is 1 μrad.

FIG. 8. The vertical spin component versus time, when there is
only the ac EDM component (ηac ¼ 10−6) and the rf Wien filter
frequency is the lower sideband faxion − fg−2. The Wien filter is
assumed to be perfectly aligned (blue), misaligned by 1 μrad
(orange), 10 μrad (green) and 100 μrad (red). The tilted direction
is the same in all cases, following Fig. 6.

ON KIM and YANNIS K. SEMERTZIDIS PHYS. REV. D 104, 096006 (2021)

096006-6



resonances. A general condition of the spin resonance is
given as [27,28]

Nspinνspin þ Nxνx þ Nyνy þ Nsyncνsync ¼ N;

where νspin; νx; νy; νsync are the spin, horizontal, vertical and
synchrotron tunes, respectively, and the coefficients and N
are integers. Although not all set of the tunes satisfying the
above condition lead to the resonance strong enough to
depolarize the beam, it is recommended to avoid the
resonances as best as one can, especially for the low-order
ones with relatively small jNj s. This in general can be done
by adjusting the focusing field index and carefully setting
the spin precession frequency.
The field errors are closely related to the intrinsic

resonances as well, since the beam experiences them
periodically. The field error can be represented using the
multipole and Fourier expansion,

Bxðx; y; sÞ ¼
X

k¼1;N¼1

bk;Nℑ

�
xþ iy
ra

�
k−1

cos

�
N

s
R
þ ϕN

�
;

Byðx; y; sÞ ¼
X

k¼1;N¼1

bk;Nℜ

�
xþ iy
ra

�
k−1

cos

�
N

s
R
þ ϕN

�
;

which describes the normal 2k-pole, N-th azimuthal har-
monic magnetic field, where ra is the beam storage accep-
tance radius and R is the storage ring radius. One can swap
the real and imaginary parts and put additional negative sign
to By to obtain the skewed multipole components.
We studied the effect of the field errors by implementing

the above field components with randomly generated bk;N up
to octupole (k ¼ 4), 8th azimuthal harmonics (N ¼ 8),
where ra is chosen to be 10 cm. Although the relative
strength bk;N=B0 typically decreases as the order gets higher,
we set the same scales for allk andNs to avoid complications.
The result is shown in Fig. 9, where the blue curve is the
nominal Sy on resonancewithout the field error as reference.
The other curves represent the maximum value of the
random-generated relative field strength bk;N=B0, which
are 1 parts-per-million (ppm) for the orange and 5 ppm
for the green, respectively. The two curves with the field
errors are actually plotting the fluctuations, filling between
the maximum and minimum values of Sy in 10 independent
series of simulation done for each of them. It is clearly shown
that the spin motion is fairly stable with the field errors of
order of 1 ppm, but shows larger fluctuations with 5 ppm.
These fluctuations are averaged out with long storage times.

In general, if the proposed experiment encounters a
systematic spin resonance due to many potential sources
such as intrinsic tune resonance or Berry’s phase, one can
figure out whether it is a systematic noise or a real signal by
readjusting the g − 2 frequency and the Wien filter fre-
quency targeting the same axion frequency.

VI. ESTIMATION OF STATISTICAL SENSITIVITY

The statistical sensitivity of the oscillating EDM has
been derived in a rigorous manner in Appendix B.

σd ¼
4.67sℏ

P0AE�CWF
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κNcycTexpτp

p ;

where P0 is the initial beam polarization, A is the analyzing
power, E� is the equivalent electric field in the storage ring,
CWF is the coefficient determined by the WF performance,
κ is the polarimeter efficiency, Ncyc is the number of stored
particles in one cycle (single measurement), Texp is the total
experimental period and τp is the spin coherence time.
Plugging in the typical experimental numbers in the ideal
situation, one obtains

σd ¼ 9.3 × 10−31½e · cm�
�

s
1=2

��
0.8
P0

��
0.6
A

��
100 MV=m

E�

��
0.59
CWF

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1.1%
κ

��
1011

Ncyc

��
1 yr
Texp

��
103 s
τp

�s
ð12Þ

FIG. 9. The fluctuations of the vertical spin component versus
time in presence of the random field errors. The blue curve is the
reference plot without the field errors. The magnetic field errors
up to the octupole (k ¼ 4), 8th azimuthal harmonics (N ¼ 8)
were implemented, where the relative strength bk;N=B0 are
chosen to be 1 (orange) and 5 (green) parts-per-million (ppm),
respectively. 10 independent series of simulation were conducted
for each category, and the fluctuation between the maximum and
the minimum values of the vertical spin component at each time
bin is plotted.
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for the case of the proton. This calculation is done assuming
we can obtain a large CWF for all targeting frequencies in
the axion parameter space. For the realistic case, CWF is
more restrictive depending on the WF performance. For
instance, aWF should be proportional to the azimuthal
fraction the WF occupies in the storage ring. But we do
not cover the technical difficulties and details to achieve the
maximum CWF in this paper.
In a search for axionlike dark matter, we can exclude the

axion-gluon coupling parameter space with a sensitivity
proportional to σd. The QCD axion has the relationship [29]

mQCD
a ≈ 5.7 μeV

�
1012 GeV

ðfa=CGÞQCD
�

ð13Þ

where CG is a model-dependent dimensionless coeffi-
cient of the axion-gluon coupling Lagrangian and fa is
the symmetry breakdown scale. Exploiting this relation,
the sensitivity to ðCG=faÞ that we can exclude from the
parameter space if the EDM is not discovered with the
uncertainty σd, is given as

�
CG

fa

�
exc:

¼
�
CG

fa

�
QCD σd

jdQCDn j ð14Þ

where dQCDn ≈ 9 × 10−35 cosðmatÞ [e· cm] holds for the
QCD axion [6].
The projected sensitivity on CG=fa is shown in Fig. 10,

indicated by the colored dashed lines. These were obtained

from Eq. (14) using Eq. (12) for the given values within,
except the spin coherence time. The minimum axion
frequency that one can scan is determined by a single
measurement time, as long as it is free from systematic
effects. Therefore, a higher spin coherence time not only
improves the sensitivity at a given frequency but also
widens the scanning area. The optimum single measure-
ment time to minimize the statistical uncertainty of the
repeated measurement is shown to be τp=2, as derived in
Appendix B. There are kinks, after which the projected
sensitivity starts to decrease fast. This is because the single
measurement time T has to be smaller than τp=2 after this
point, as the axion phase decoheres faster than τp=2.
Explicitly, T is given by

T ¼ min

	
Qaxion

faxion
;
τp
2



;

whereQaxion is the axion quality factor, which was assumed
to be 106 [30,31].
On the other hand, the parameter space for the new

coupling between the axionlike particles (ALPs) and the
nucleon, gd, can be scanned. This coupling, which is
directly responsible for the oscillating nucleon EDM,
appears in the Lagrangian[6]

L ∋ −
i
2
gdaN̄σμνγ5NFμν;

FIG. 10. The projected sensitivity to the axion-gluon coupling
strength in the axion parameter space for axionlike dark matter.
The colored dashed lines indicate the present study, depending on
the spin coherence time τp: 103 s (red), 104 s (green) and 105 s
(blue). It assumes the given values in Eq. (12) for the proton. The
integrated measurement time at each frequency is one year. The
filled regions that were already excluded by the neutron EDM
(nEDM) experiment [32] and the big bang nucleosynthesis [33]
are shown as references, as well as the QCD axion band
in Eq. (13).

FIG. 11. The projected sensitivity to the ALP-nucleon EDM
coupling strength (gd) in the ALP parameter space for axionlike
dark matter. The colored dashed lines indicate the present study,
depending on the spin coherence time τp: 103 s (red), 104 s
(green) and 105 s (blue). It assumes the given values in Eq. (12)
for the proton. The integrated measurement time at each
frequency is one year. The filled regions that were excluded
by excess cooling in SN1987A (light blue) and the static EDM
measurement (orange) are adapted from Ref. [6], with proper
extension to the range in the present parameter space.
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where a is the ALP field interacting with the nucleon N.
Assuming the ALP makes up all of the local dark matter
with a density ρDM ≈ 0.3 GeV=cm3, the nucleon EDM is
given by [6]

dn ≈ ð1.4 × 10−25 e · cmÞ
�
eV
ma

��
gd

GeV−2

�
cosðmatÞ:

Figure 11 shows the projected sensitivity to the EDM
coupling gd. The constraints from the excess cooling in
SN198A and the static EDM measurement are provided
in Ref. [6], where we have set the lower bound of the
constraint from the static EDM to 1=130 Hz as the experi-
mental time for a single shot was tshot ¼ 130 seconds [34].
Recently, there was a study offering new predictions of

the ALPs coupling, called ALPs cogenesis [35]. Its
projected region in the parameter space was above the
QCD axion band, strengthening the motivation for scan-
ning the axion parameter space above the QCD axion band.

VII. CONCLUSION

Employing an rf Wien filter in the storage ring EDM
method provides a powerful method for probing an
oscillating EDM. We revealed that vertical spin resonance
happens when the Wien filter is operating at the frequency
of the sidebands of the axion and the g − 2 frequency,
faxion � fg−2. The approximated analytic solution for the
spin resonance agreed well with the simulation results.
Scanning the axion frequency would be straightforward,
easily performed by tuning the Wien filter frequency. This
method avoids the large systematic effect that arises when
the Wien filter frequency is close to the g − 2 frequency, as
confirmed by both analytical calculations and spin tracking
simulations. Even though when the Wien filter frequency is
close to the g − 2 frequency to search for low-mass axion
(faxion < 1 Hz), the systematic effect from Wien filter
misalignment is well understood and can be corrected
precisely.
A systematic effect from random field errors was also

studied, which did not show a critical influence on the
vertical spin component at least up to 5 ppm. Nonetheless,
further intensive numerical studies are necessary under
more realistic lattice and beam conditions to understand the
details of all systematic effects before conducting an
experiment.
This particular idea of introducing an rf Wien filter to

look for the axion-induced oscillating EDM might be of
interest for frozen-spin proton and deuteron EDM experi-
ments in storage rings, because it allows physics probing
data to be taken simultaneously from the static dc EDM and
the oscillating ac EDM. This method can be applied to
existing storage rings, e.g., the muon g − 2 experiment at
Fermilab [36], by storing polarized proton or deu-
teron beams.
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APPENDIX A: DERIVATION OF CWF AND CSyst

The Bessel function of the first kind has the following
integral representation [37]:

JnðxÞ ¼
1

2π

Z
2π

0

cosðnθ − x sin θÞdθ; n ¼ 0; 1; 2 � � � :

Substituting θ ¼ ωt and T ¼ 2π=ω, one obtains

JnðxÞ ¼
1

T

Z
T

0

cosðnωt − x sinðωtÞÞdt:

Using the relation Jnð−xÞ ¼ J−nðxÞ ¼ ð−1ÞnJnðxÞ, we get
to CWF in Eq. (9):

CWF ¼ −J1
�
a
ω

�
:

CSyst. which is given in Eq. (10) becomes

CSyst ¼
1

T

Z
T

0

cosðωtÞ cosðωtþ x sinðωtÞÞdt

¼ 1

2T

Z
T

0

cosð2ωtþ x sinðωtÞÞdt

þ 1

2T

Z
T

0

cosðx sinðωtÞÞdt

¼ 1

2

�
J0

�
a
ω

�
þ J2

�
a
ω

��
;

which completes our derivation.

APPENDIX B: DERIVATION OF THE
STATISTICAL SENSITIVITY

A polarimeter measures the number of hit events
recorded in the left, right, upper, and lower sections, and
the quantity of interest has either left-right asymmetry or
upper-lower asymmetry, depending on the spin direction.
For the vertical spin accumulation, we seek a signal from
the left-right asymmetry, which is defined as

ϵðtÞ ¼ LðtÞ − RðtÞ
LðtÞ þ RðtÞ ¼ PðtÞAθðtÞ;

where LðtÞ and RðtÞ are the counts in the left and right part
of the polarimeter, respectively, PðtÞ ¼ P0e−t=τp is the spin
polarization with a spin coherence time (SCT, τp), A is the
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analyzing power and θðtÞ ¼ ωdt is the vertical spin
component. We want to determine the EDM signal ωd
with the smallest statistical uncertainty. The statistical
uncertainty is determined by the χ2-minimizing fit normally
to the regularly distributed statistics. But we study the case
when the events are intentionally weighted, which can be
beneficial in terms of the statistical uncertainty.
The χ2 for the model function αt fitting the polarimeter

left-right asymmetry (just asymmetry hereafter) is given
by

χ2 ¼
X
i

�
P0Aωdtie−ti=τp − αti

σϵðtiÞ
�

2

; σ2ϵðtiÞ ¼
1 − ϵ2ðtiÞ
NðtiÞ

;

where NðtiÞ ¼ LðtiÞ þ RðtiÞ. The corresponding uncer-
tainty on the fit parameter α becomes

σ2α¼
�
1

2

∂2χ2

∂α2
�−1

¼
�X

i

t2i NðtiÞ
1−ϵðtiÞ2

�−1
≈
�X

i
t2i NðtiÞ

�
−1
;

ðB1Þ

where the last approximation holds because ϵ ≪ 1. We
have the total number of counts Ntot ¼

P
i NðtiÞ ≈R

NðtÞ=bdt where b is the bin width for each channel of
the histogram. Let us denote wðtÞ to be a measurement
weighting function. If we take the polarimeter data stably
and uniformly, then we have wðtÞ ¼ b=T where T is the
measurement time. From Eq. (B1), one obtains

σ2α ≈
�Z

T

0

t2
Ntot

T

�
−1

¼ 3

T2Ntot
:

To convert σα to σωd
, one needs to obtain the optimum fit

parameter α by solving ∂αχ
2 ¼ 0, and the resulting α is

α ¼ 3P0Aωd
2τ3p − τp½ðT þ τpÞ2 þ τ2p�e−T=τp

T3
:

Hence, it follows that

σωd
¼ 1

P0A
ffiffiffiffiffiffiffiffiffiffi
3Ntot

p T2

2τ3p − τp½ðT þ τpÞ2 þ τ2p�e−T=τp
: ðB2Þ

Numerically, the optimum measurement time T that min-
imizes σωd

is T ≈ 1.45τp, but it is only 5% different when
T ¼ τp and obviously it is not so economical to have a 44%
longer measurement to decrease the statistical uncertainty
by 5%. In general, it is reasonable to minimize the
statistical uncertainty of a repeated measurement rather
than a single measurement. Let Texp be the total exper-
imental period, then we convert Ntot into

Ntot → Ncyc
Texp

T
;

where Ncyc is the number of stored particles for a single
measurement (one cycle). Then the optimum T which
minimizes σωd

becomes T ≈ 0.69τp. Defining a figure of
merit as the inverse of σωd

, its dependence on the single
measurement time T is given in Fig. 12(a). Substituting
T ≈ 0.69τp into Eq. (B2), we obtain

(a) “linear fit” method. (b) “take-all” method.

FIG. 12. Figure of merit for the statistical sensitivity, the inverse of the statistical uncertainty of ωd, as a function of the single
measurement time T divided by the spin coherence time τp. Two methods are shown; “linear fit” determines the statistical uncertainty
from χ2-minimization fit with a linear fit model, and “take-all” defines the slope by taking all data at a specific time T. The figure of
merit is different for (blue) single measurement and (red) repeated measurement in a given experimental period.
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σωd
≈

3.47
P0A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NcycTexpτp

p : ðB3Þ

This statistical uncertainty can be reduced by up to
nearly 30% by weighting the later statistics more than the
earlier ones. As an extreme limit, one can imagine taking all
particles at a given time T, and finding the slope from
ϵðTÞ=T instead of fitting:

ϵðTÞ
T

¼ P0Aωde−T=τp :

Then σωd
is now given by σϵ,

σωd
¼ σϵ

P0ATe−T=τp
≈

1

P0ATe−T=τp
ffiffiffiffiffiffiffiffi
Ntot

p : ðB4Þ

This is minimized when T ¼ τp. Then considering the
repeated measurement in the total experimental tim Texp,
Eq. (B4) becomes

σωd
¼ 1

P0Ae−T=τp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NcycTexpT

p ;

which now is minimized when T ¼ τp=2, yielding

σωd
≈

2.33

P0A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NcycTexpτp

p : ðB5Þ

The figure of merit for this take-all method is shown in
Fig. 12(b). Comparing Eqs. (B3) and (B5), the sensitivity of
the take-all method is smaller than that of the linear fit
method by a factor of 3.47=2.33 ≈ 1.5. Practically, the

intensity of the stored beam is limited by intrabeam-
scattering, which depends on the intensity of the stored
beam. Therefore, a large intensity beam can be injected and
used (extracted on the polarimeter target) very quickly
to determine the vertical spin component of the beam at
early times with high accuracy. The rest of the beam can
be taken out at the end of the storage time to again
determine with high accuracy. That would be, statistically,
the most sensitive method for determining the vertical spin
precession rate. However, for high sensitivity, a small part
of the beam would also need to be used to make sure
the longitudinal spin component is kept along with the
momentum.
The optimum sensitivities of the EDM signal, σωd

, for
different configurations and methods are summarized in
Table III, with the optimum single measurement time. In
this paper, we use the best sensitivity obtained by the take-
all method with repeated measurement shown in Eq. (B5)
to estimate the statistical sensitivity in Sec. VI. To convert
σωd

to the sensitivity of the EDM directly, we recall the
relation between the vertical spin slope and the EDM, as in
the last column of Table I:

ωd ¼
dac
2sℏ

E�CWF:

Accordingly, we arrive to the final sensitivity expression for
the ac EDM (σd):

σd ¼
4.67sℏ

P0AE�CWF
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κNcycTexpτp

p ;

where κ is the detector efficiency so that the number of
polarimeter events is proportional to κ.
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