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We compute the dispersion relations for scalar, vector and tensor modes of a viscous relativistic fluid,
linearized around an equilibrium solution, for a divergence type theory (which, in the linearized theory,
includes Israel-Stewart theory and anisotropic hydrodynamics as particular cases) and contrast them to the
corresponding results derived from kinetic theory under the relaxation time approximation, and from causal
first order theories. We conclude that all approaches give similar dynamics for the scalar and vector modes,
while the particular divergence type theory presented here also contains propagating damped tensor waves,
in agreement with kinetic theory. Nonhydrodynamic tensor modes are also a feature of holographic fluids.
These results support the application of hydrodynamics in problems involving the interaction between
fluids and gravitational waves.
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I. INTRODUCTION

Recent developments in relativistic heavy ion colli-
sions [1] and cosmology [2] have brought attention to the
physics of relativistic viscous fluids [3,4], particularly
since the realization that hydrodynamical models act as
an attractor to more complex physics even on short times
scales [5–11]. However, progress has been impaired
by the fact that, unless the situation for nonrelativistic
fluids described by the Navier-Stokes equations, no
single approach to relativistic viscous fluids has achieved
consensus status in the community. This is not a matter
of “right” vs “wrong” but rather that different approaches
best capture some aspects of the complex physics of
relativistic fluids.
Given this situation, it is important to develop tests where

the predictions of different approaches may be contrasted,
thereby helping to select the most adequate choice for a
given physical problem. One strategy that has been
extensively used in the literature is to apply different
approaches to a problem which could also be solved using
a more fundamental theory. In this sense, the Bjorken and
Gubser models of the expanding fireball in a relativistic
heavy ion collision have been a preferred choice [12–15].
In this case the more fundamental theory is kinetic theory

under the relaxation time approximation [16–19], or else
holographic fluids in an asymptotic region [20].
Another approach is to consider linearized perturbations

of an equilibrium state, and to identify the propagating
modes and their dispersion relations. Dispersion relations
are known from kinetic theory under the relaxation time
approximation [1,21–24]. They may be found also from
quantum field theories, in the weakly coupled limit trough
a perturbative expansion in the coupling constant [25], or
else in the infinite coupling limit for holographic fluids
[1,20,26–35]. All these approaches give similar though
not identical results. Our goal is to contrast these “first
principles” dispersion relations to the ones obtained from
hydrodynamics.
We shall consider only conformal theories with no

conserved charges. Then the focus of interest of a hydro-
dynamic model is the energy-momentum tensor (EMT)
Tμν, which satisfies the conservation law

Tμν
;ν ¼ 0: ð1Þ

There is also an entropy flux Sμ that satisfies the “second
law”

Sμ;μ ¼ Σ; ð2Þ

where Σ ≥ 0 is the entropy production.
For an ideal fluid

Tμν
ideal ¼ ρuμuν þ pΔμν; ð3Þ

where ρ is the energy density, uμ is the velocity, restricted to
the shell u2 ¼ −1 (we work with signature ð−;þ;þ;þÞ
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and natural units ℏ ¼ kB ¼ c ¼ 1), Δμν ¼ gμν þ uμuν and
p is the pressure. For a conformal fluid Tμν must be
traceless, Tμ

μ ¼ 0, and so p ¼ ρ=3. Since there are no
conserved charges and therefore no chemical potentials we
may define the entropy density s and the temperature T
through

∂p
∂T ¼ s ¼ pþ ρ

T
: ð4Þ

Then ρ ¼ σT4, where σ is a constant, s ¼ 4σT3=3,
Sμ ¼ suμ and Σ ¼ 0.
In equilibrium the EMT of any fluid takes the ideal form

(3) [36]. Thereby in a weakly nonequilibrium state it is
natural to write

Tμν ¼ Tμν
0 þ Πμν; ð5Þ

where Tμν
0 has the ideal form (3) and Πμν describes the

viscous effects. For a conformal fluidΠμν must be traceless.
The problem is that now the four equations (1) are not

enough to describe the evolution of the ten components of
the symmetric tensor Tμν. This leads to two large families
of theories. In the so-called first order theories (FOTs),
constitutive relations are provided which restrictΠμν to be a
given function of T, uμ and their derivatives, thus keeping
the number of degrees of freedom down to four. The so-
called second order theories (SOTs), on the other hand,
regardΠμν, or a set of “nonequilibrium tensors” from which
Πμν may be computed, as dynamical variables in their own
right, and provide supplementary equations of motion.
Historically the first approaches to relativistic viscous

fluids have been the Eckart and Landau-Lifshitz ones,
which belong to the FOT class [37,38]. They provide
covariant generalizations of the Navier-Stokes equations.
They differ from each other in the definition of the fluid
velocity uμ, which in the Eckart approach is defined from
the flux of a conserved charge, while in the Landau-Lifshitz
approach is defined form the energy flux, namely

Tμνuν ¼ −ρuμ; ð6Þ

which also defines ρ. Since the velocity appears in the
constitutive relations for the viscous tensor Πμν, the differ-
ence between the Eckart and Landau-Lifshitz theories is
not just a matter of a choice of “frame,” they actually are
different theories [39]. Since in this paper we shall only
consider conformally invariant theories with no conserved
charges, it is natural to restrict ourselves to the Landau-
Lifshitz approach, to be discussed in more detail below.
These first generation FOTs were proven to violate

causality and to have no stable solutions [40–48].
However, it has been claimed that first order theories
may be causal and stable if more general constitutive
relations are considered [14,49–57]. This claim has gained

considerable attention, since first order theories are gen-
erally simpler that second order ones, and in particular
easier to implement numerically [58].
Concerning more general approaches such as Baier-

Romatschke-Son-Starinets-Stephanov [1,20,59] and third
order hydrodynamics [60,61], which consists of writing the
most general form for the energy-momentum tensor con-
taining terms with up to a certain number of derivatives
restricted by conformal invariance, the issue is whether
the viscous energy momentum tensor is restricted to be
proportional to the shear tensor, or else regarded as a
hydrodynamic variable on its own. In the first case we
obtain a theory within the FOT class, while in the second it
becomes a SOT.
The problem with the Eckart and Landau-Lifshitz

approaches may be tracked down to the fact that, when
defining the entropy production, some second order terms
were retainedwhile otherswere arbitrarily rejected [36]. This
problem may be solved (or at least alleviated) by enlarging
the set of degrees of freedom of the theory, and likewise
introducing new terms in the entropy production. This leads
to SOTapproaches, such as Israel-Stewart [62–67], extended
thermodynamics [68–70], Denicol-Niemi-Molnár-Rischke
[71–79], anisotropic hydrodynamics [80–87], and diver-
gence type theories (DTTs) [88–98]. We shall focus on a
particular implementation of the DTT paradigm, which, at
the linearized level, contains the others as particular cases.
To the best of our knowledge, both FOTs and SOTs have

been tested in Bjorken and Gubser backgrounds, where
they successfully reproduce the results from kinetic theory
under the relaxation time approximation [14,15,99].
In this paper we will consider a conformal fluid in an

equilibrium state in Minkowski space-time, and compute
the response of the EMT to a perturbation in the metric,
assuming the dynamics is described by a DTT to be
presented below. We shall compare the result with the
same quantity as derived from a FOT, and from kinetic
theory under the relaxation time approximation. We shall
comment briefly on the corresponding result for quantum
fields [1,20,25–35]. In other words, we shall compute the
propagator

Gμνρσ½x; x0� ¼ δTμν½x�
δgρσ½x0�

����
gμν¼ημν

: ð7Þ

The poles of the propagator as we approach the infrared
limit indicate the propagating modes in the hydrodynamic
limit and their dispersion relations.
The rest of the paper is organized as follows. In the next

section we summarize the well-known dispersion relations
from kinetic theory [21–24] (Sec. II). Then in the following
section we compute the EMT response in a divergence type
theory (Sec. III). We present some brief conclusions in the
final section.
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For completeness we also present the relevant dispersion
relations for ideal and Landau-Lifshitz fluids and causal
FOTs [14] in Appendix A.

II. DISPERSION RELATIONS FROM
KINETIC THEORY

In this section we shall derive the dispersion relations
from kinetic theory. We observe that the kinetic theory
EMT propagators are computed in closed form in
Refs. [21–24]. They display a complex analytic structure
dominated by branch cuts. However, in the asymptotic
regime where hydrodynamics is expected to hold, this
analytic structure may be mimicked by a suitable distri-
bution of poles. Our interest lies in finding these equivalent
poles in the k2 → 0 limit, both the hydrodynamic ones and
the longest living nonhydrodynamic modes.

We consider an equilibrium state in Minkowski space-
time, whereby the metric gμν ¼ ημν ¼ diagð−1; 1; 1; 1Þ, the
velocity Uμ and the temperature T0 are constant. The
EMT Tμν

0 takes the ideal form Eq. (3). Without a loss of
generality we may assume Uμ ¼ ð1; 0; 0; 0Þ. We consider a
fluctuation in the metric ημν → gμν ¼ ημν þ hμν, and the
corresponding change in the EMT Tμν ¼ Tμν

0 þ δTμν.
Linearizing with respect to hμν we may read the propagator
Eq. (7) from the relationship

δTμν½x� ¼
Z

d4x0Gμνρσ½x; x0�hρσ½x0�: ð8Þ

Four of these relationships are trivial, since they corres-
pond to coordinate changes. If xμ → x0μ ¼ xμ þ ξμ, then
hμν ¼ −ξμ;ν − ξν;μ, and δTμν ¼ ξμ;ρT

ρν
0 þ ξν;ρT

ρμ
0 . So, using

Δμν
0 ¼ ημν þ UμUν we get

ρ0

�
_ξμUν þ _ξνUμ þ 1

3
ðΔμρ

0 ξν;ρ þ Δνρ
0 ξμ;ρÞ

�
¼ −2

Z
d4x0Gμνρσ

;σ ½x; x0�ξρ½x0�; ð9Þ

with _ξμ ¼ Uνξμ;ν, so

Gμνρσ
;σ ½x; x0� ¼ 1

2
ρ0

�
ημρ

�
UνUλ þ 1

3
Δνλ

0

�
þ ηνρ

�
UμUλ þ 1

3
Δμλ

0

��
∂λδðx − x0Þ: ð10Þ

Since the background is homogeneous, we expect the propagators to be translation invariant. Then we may Fourier
transform

Gμνρσ ¼
Z

dωd3k
ð2πÞ4 ei½k·ðx−x0Þ−ωðt−t0Þ�Gμν;ρσ½k;ω�; ð11Þ

whereby

iωGμνρ0½k;ω� ¼ ikjGμνρj½k;ω� − i
2
ρ0

�
ημρ

�
Uνω −

1

3
Δνj

0 kj

�
þ ηνρ

�
Uμω −

1

3
Δμj

0 kj

��
: ð12Þ

This means that Gμνρ0 is trivially obtained from Gμν;jk, and
so there is no loss of generality in computing the propa-
gators under the gauge condition hμ0 ¼ 0.
On general grounds we expect the propagators will obey

the reciprocity condition [100,101]

Gμνρσ½x; x0� ¼ Gρσμν½x0; x�; ð13Þ

whereby we also do not need to compute explicitly the
propagators of the form G0νρσ . So the only nontrivial
problem is to compute the variation of Tij upon a metric
fluctuation hij. However, to complete this task we need
some information on the fundamental degrees of freedom
of the theory and their dynamics.
In kinetic theory [3,15,102], the fundamental description

is provided by the distribution function fðxμ; pμÞ, where

pμ, for a conformal theory, is restricted to the future light
cone p2 ¼ 0, p0 ≥ 0. f obeys the Boltzmann equation

pμf;μ ¼ Icol½f�; ð14Þ

where the phase space covariant derivative is

f;μ ¼
∂f
∂xμ þ Γν

μρpν
∂f
∂pρ

: ð15Þ

Covariant derivatives are taken with the first order con-
nection

Γμ
νλ ¼

1

2
ημρ½hνρ;λ þ hλρ;ν − hνλ;ρ�: ð16Þ

Observe that Γν
νλ ¼ hii;λ=2 as expected, and Γμ

νλU
νUλ ¼ 0.
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For simplicity, we shall only consider the Maxwell-
Jüttner case where the equilibrium distribution has the form
feq ¼ eβ

μpμ , βμ ¼ uμ=T as above. The collision integral Icol
vanishes in equilibrium. It also has to satisfy the constraint

Z
DppμIcol½f� ¼ 0; ð17Þ

with the phase space covariant measure

Dp ¼ 4πd4pμ

ð2πÞ4 ffiffiffiffiffiffi−gp δð−p2Þθðp0Þ; ð18Þ

which enforces conservation Eq. (1) for the EMT

Tμν½f� ¼
Z

Dppμpνf; ð19Þ

and the H theorem

H ¼
Z

Dp ln½f�Icol½f� ≤ 0 ð20Þ

for any solution of the Boltzmann equation (14). Validity of
the H theorem (20) enforces the second law (2) with the
entropy flux

Sμ½f� ¼
Z

Dppμf½1 − ln f� ð21Þ

and entropy production Σ ¼ −H.
To a given f we may associate an EMT [Eq. (19)] and

thereby a velocity uμ and an energy density ρ≡ σT4

through the Landau-Lifshitz prescription (6). We then
adopt the relaxation time approximation [16–19]

Icol ¼
1

τ
uμpμ½f − feq�; ð22Þ

where feq is the Maxwell-Jüttner distribution with the same
T and uμ as f. The constant τ is the so-called relaxa-
tion time.
In equilibrium T ¼ T0, uμ ¼ Uμ ¼ ð1; 0; 0; 0Þ, gμν ¼ ημν

and f ¼ f0 ¼ feq;0 ¼ e−p
0=T0 . We consider a metric fluc-

tuation gμν ¼ ημν þ hμν with h0ν ¼ 0. Subsequently we
have T ¼ T0ð1þ ϑÞ and uμ ¼ Uμ þ vμ with v0 ¼ 0. We
parametrize

f ¼ f0

�
1þ ϑ

p0

T0

þ vk
pk

T0

þ φ

�
; ð23Þ

where ϑ and vμ are the perturbations to the Landau-Lifshitz
temperature and velocity, namely

Z
d3p

ð2πÞ3p ðUν þ vνÞpνpμf ¼ −σT4
0½ð1þ 4ϑÞUμ þ vμ�;

ð24Þ

which is equivalent to

Z
d3p
ð2πÞ3 p

μφf0 ¼ 0: ð25Þ

Then also

feq ¼ f0

�
1þ ϑ

p0

T0

þ vk
pk

T0

�
: ð26Þ

To perform the scalar-vector-tensor decomposition we
write

vi ¼ ikivS þ vVi; ð27Þ

with kjvVj ¼ 0, and

hij ¼ ½kikj − k2δij�hS þ
�
kikj −

1

3
δijk2

�
h0S

þ ikihVj þ ikjhVi þ hTij; ð28Þ

with kjhVj ¼ kjhTij ¼ hTjj ¼ 0. ϑ, vS, hS and h0S corre-
spond to scalar degrees of freedom, vV and hV are vector
degrees of freedom, and hjkT are the tensor degrees of
freedom. The Boltzmann equation (14) becomes

p
T0

ðpϑ;t þ pkϑ;kÞ þ
pj

T0

ðpvj;t þ pkvj;kÞ þ pφ;t þ pkφ;k

þ 1

2T0

_hjkpjpk ¼ −p
τ

φ: ð29Þ

Fourier transforming the space-time dependence, we get

φ ¼ p
T0

½− ω
k þ k̂lp̂l�ðϑþ p̂jvjÞ − ω

2k hjkp̂
jp̂k

z − k̂lp̂l
; ð30Þ

where

z ¼ 1

k
½ωþ iτ−1�: ð31Þ

On the other hand, if we multiply Eq. (58) by f0 and
integrate over all momenta, the terms containing φ cancel
because of Eq. (25), and we get the continuity equation

4σT4
0

�
−iωϑ −

1

3
k2vS þ

i
3
ωk2hS

	
¼ 0: ð32Þ

We still must enforce the constraints in Eq. (25), which
become
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�
−
ω

k
J þ k̂lJl

�
ϑþ

�
−
ω

k
Jk þ k̂lJlk

�
vk ¼

ω

2k
hjkJjk;

�
−
ω

k
Jj þ k̂lJjl

�
ϑþ

�
−
ω

k
Jjk þ k̂lJjlk

�
vk ¼

ω

2k
hlkJjkl;

ð33Þ

where

Jk1…kn ¼
Z

d3p
ð2πÞ3

p2p̂k1…p̂kn

z − k̂lp̂l
e−p=T0 : ð34Þ

They are evaluated in Appendix B. After finding ϑ, vk

and φ, we may proceed to compute the EMT

Tμν ¼ ρT4
0ð1þ 4ϑÞ

�
UμUν þ 1

3
Δμν þ Uμvν þ Uνvμ

�

þ Πμν; ð35Þ

where

Πμν ¼
Z

d3p
ð2πÞ3ppνpμφf; ð36Þ

or else

Πjk ¼ 1

T0

��
−
ω

k
Jjk þ k̂lJjkl

�
ϑþ

�
−
ω

k
Jjkm þ k̂lJjklm

�
vm

−
ω

2k
hlmJjklm

	
: ð37Þ

Observe that the trace of Πjk vanishes because the Jk1…kn

tensors obey Jjk1…kn
j ¼ Jk1…kn.

It is clear that the scalar, vector and tensor sectors
decouple, and it is best to consider each one in turn. We
expect to recover the Landau-Lifshitz hydrodynamic
modes from divergences in ϑ and vj, while there will be
poles in φ associated to nonhydrodynamic modes absent
from Landau-Lifshitz theory.

A. Hydrodynamic poles

1. The scalar sector

In the scalar sector we have

hij ¼ ½kikj − k2δij�hS þ
�
kikj −

1

3
δijk2

�
h0S; ð38Þ

and vk ¼ ivSkk. From the results of Appendix B we get

�
−
ω

k
J þ χ1

�
ϑþ

�
−
ω

k
χ1 þ

2

3
χ3

�
ikvS

¼ ωk
3

��
−
3

2
J þ χ3

�
hS þ

�
−
1

2
J þ χ3

�
h0S

�
;

�
−
ω

k
χ1 þ

2

3
χ3

�
ϑþ

�
−
2

3

ω

k
χ3 þ

2

5
χ5

�
ikvS

¼ ωk
5

�
ð2χ5 − 5χ1ÞhS þ

�
2χ5 −

5

3
χ1

�
h0S

�
: ð39Þ

We expect to find the hydrodynamic poles when the
determinant of this system vanishes. We consider the
τ → 0 limit, where jzj ≫ 1. The condition for a vanishing
determinant, to next to lowest order in z−1, is

ω ≈� kffiffiffi
3

p −
2

15
iτk2; ð40Þ

which reproduces the result for Landau-Lifshitz fluids
[Eq. (A11)], identifying ν ¼ τ=5.

2. The vector sector

In the vector sector

hij ¼ ikihVj þ ikjhVi; ð41Þ

with hViki ¼ 0. Then ϑ ¼ 0 and vi ¼ viV is also transverse.
We find

�
−
ω

k

�
1

2
J −

1

3
χ3

�
þ 1

2
χ1 −

1

5
χ5

�
vkV ¼ iω

2

�
χ1 −

2

5
χ5

�
hkV:

ð42Þ

There is a pole when the term in brackets in the left-hand
side vanishes. For large z [cf. Eq. (31)] we find the pole at

ω ≈
1

5

−ik2τ
ð1 − ωτÞ ; ð43Þ

which corresponds to the hydrodynamic pole we find
in Landau-Lifshitz fluids, again identifying ν ¼ τ=5
[cf. Eq. (A10)].
In the tensor sector hij ¼ hTij is both traceless and

divergenceless, ϑ ¼ vi ¼ 0, and there are no hydrody-
namic poles.

B. Nonhydrodynamic poles

To study the nonhydrodynamic modes, we shall consider
Πjk in the limit where k → 0, while ω goes to a finite value
and jzj ≫ 1. Once again, it is best to consider scalar, vector
and tensor modes separately.
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1. Scalar modes

In the limit we are considering, the scalar viscous EMT reads

Πjk
S ¼ −ω

T0k

�
Jjkϑþ Jjkmk̂mðikvSÞ þ

1

2
k2
�
ðhS þ h0SÞJjklmk̂lk̂m −

�
hS þ

1

3
h0S

�
Jjklmδlm

�	
: ð44Þ

Since Πj
Sj ¼ 0 we may write

Πjk
S ¼ ΠS

�
k̂jk̂k −

1

3
δjk

�
; ð45Þ

ΠS ¼
3

2
Πjk

S k̂jk̂k;¼
−ω
T0k

�
χ3ϑþ 3

5
χ5ðikvSÞ þ

1

2
k2
�
ðhS þ h0SÞ

�
−
3

2
J þ 2χ3 þ 12χ6

�
−
�
hS þ

1

3
h0S

�
χ3

�	
: ð46Þ

It may be seen that to this order there are no new poles
proportional tohS, sowe shall sethS ¼ 0. Thenwe only need
the leading order form of ikvS and ϑ. In the scalar case
Eq. (32) and the two equations (33) are not independent, we
choose toworkwith the former and the first of the latter. Then

ikvS ¼ −
2k2

15z
h0S; ð47Þ

while ϑ is of higher order in k. From Eq. (46) we now find

ΠS ¼ −
σT4

0ωk
z

4

15

�
1þ 9

35

1

z2

�
h0S: ð48Þ

We see that the leading order terms in the inverse propagator
go like 1 − ð9=35z2Þ. This behavior may be reproduced by a
nonhydrodynamic pole at z2 ¼ 9=35, or else

ω ¼ −i
τ
�

ffiffiffiffiffi
9

35

r
k: ð49Þ

2. Vector modes

As with the scalar modes, we begin with the leading
order relation

vkV ≈
−ik
5z

hkV: ð50Þ

The vector viscous EMT reduces to

Πjk
V ¼ −4iω

15zT0

�
1þ 8

35

1

z2

	
ðk̂jhkV þ k̂khjVÞ: ð51Þ

Therefore the leading terms in the inverse propagator are
∝ 1 − ð8=35Þz−2, “as if” there were a nonhydrodynamic
pole at

ω ¼ −
i
τ
�

ffiffiffiffiffi
8

35

r
k: ð52Þ

3. Tensor modes

The response of the EMT to a tensor metric fluctuation is

Πjk
T ¼ −ω

T0k
χ6h

jk
T : ð53Þ

For large z we get

Πjk
T ¼ −4iωτ

15ð1 − iωτÞ σT
4
0h

jk
T

�
1þ 1

7

1

z2
þ…

�
: ð54Þ

Therefore the inverse propagator will be proportional to
1 − 1=7z2, which is the behavior caused by a pole at [21]

ω ¼ −
i
τ
� kffiffiffi

7
p : ð55Þ

We see from kinetic theory that a relativistic fluid may
support damped tensor waves, which are totally absent in
first order theories.

C. Poles or cuts?

The analytic structure of the kinetic theory propagators is
determined by the presence of a cut in the complex
frequency plane. This is due to the fact that the propagators
depend on the function L½z� defined in Eq. (B2), which has
a cut from z ¼ −1 to z ¼ 1 or else, with z as in Eq. (31),
from ω ¼ −i=τ − k to −i=τ þ k [22]. However, the analytic
structure of the propagators in the k → 0 limit may be
reproduced by suitably locating poles in the complex
ω plane. Though the poles themselves are not in the
asymptotic region, they give the right analytic structure there.
Coincidentally, the analytic structure of EMT correlators

in λϕ4 theory is determined by cuts, rather than poles [25].
However, in the strong coupling limit things seem to be

different. We can verify this explicitly in theories with a
holographic dual [1,20,26–35]. Then the thermal EMT
correlators may be found by solving the classical Einstein
equations in a dual, five dimensional space-time. A thermal
state corresponds to an anti–de Sitter space-time containing
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a black hole in its center. The physical fluid lives on the
boundary of the anti–de Sitter space-time, and the Hawking
temperature of the hole is the temperature of the fluid.
Perturbations of the fluid correspond to perturbations of the
black hole metric, with no naked singularities and incoming
boundary conditions at the horizon.
For each k, the frequencies of free oscillations of the

fluid correspond to the horizon fluctuations, and they
come in a discrete, infinite series, depending on the
t’Hooft coupling g2Nc, where g and Nc are the coupling
and number of colors of the underlying gauge theory [103].
These free frequencies appear as poles in the EMT
propagators. For the scalar (“sound”) and vector (“shear”)
sectors, there is sequence of hydrodynamic poles, namely
ω → 0 when k → 0 and also nonhydrodynamic poles. In
the infinite coupling limit, the hydrodynamic poles are well
reproduced by a FOT with ν ¼ 4π=T0. Corrections to this
value at finite coupling are discussed in [104]. In the tensor
(in this context frequently called “scalar”) sector, there are
no hydrodynamic poles, but again an infinite, discrete
sequence of nonhydrodynamic ones.
The presence of infinitely many modes cannot be

reproduced by hydrodynamics, either first or second order.
However, the imaginary part of the poles increases rather
sharply along the sequence, and so only a few long lived
modes are actually relevant to describe the approach to
equilibrium. These are the modes that either causal FOTs or
second order theories aim to reproduce.

D. Beyond the relaxation time approximation

While the relaxation time approximation we have
used so far is frequently a preferred choice in view of
its simplicity, it is also known [105] that it departs in
significant ways from more realistic kinetic equations such
as Boltzmann’s and Landau’s. It is therefore relevant to ask
how far results derived under this approximation may be
generalized to more complete setups, if at all.
To this end we adopt the viewpoint presented in [106].

We parametrize

f ¼ f0ð1þ ϕÞ ð56Þ

and

Icol½f� ¼ −ðp0Þf0F ½ϕ�: ð57Þ

The Boltzmann equation (14) becomes

ϕ;t þ p̂kϕ;k þ
1

2T0p0
_hjkpjpk ¼ −F ½ϕ�: ð58Þ

We assume the collision term is ultralocal in position space.
Then it commutes with Fourier transformation, and we get

½ω − kkp̂k�ϕþ ω

2T0p0
hjkpjpk ¼ −iF ½ϕ�: ð59Þ

It is convenient to introduce an inner product in the space of
functions of momentum

hψ jϕi ¼
Z

Dβpψ�ϕ; ð60Þ

where

Dβp ¼ Dpp0f0: ð61Þ

We assume the linearized operator F is symmetric under
this inner product. Momentum conservation takes the form

hpμjF jϕi ¼ 0: ð62Þ

Since jϕi can be any vector, it must be

F jpμi ¼ 0: ð63Þ

We assume these are the only null eigenvectors of the
collision operator, and that there is a set of non-null
eigenvectors

F jϕλi ¼ νλjϕλi; ð64Þ

where νλ is real and positive, and hϕσjϕλi ¼ δσλ. We then
have

jϕi ¼
X3
μ¼0

αμjpμihpμjϕi þ
X
λ

jϕλihϕλjϕi;

F jϕi ¼
X
λ

νλjϕλihϕλjϕi; ð65Þ

where (no sum over μ)

αμ ¼ hpμjpμi−1: ð66Þ

Contracting Eq. (59) with the jpμi or the jϕλi we get two
sets of equations. On one hand

X3
ν¼0

½ωδμν − kkανhpμjp̂kjpνi�hpνjϕi −
X
σ

kkhpμjp̂kjϕσihϕσjϕi ¼ −
ω

2T0

hjk



pμjp

jpk

p0

�
ð67Þ
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and on the other

−
X3
ν¼0

kkανhϕλjp̂kjpνihpνjϕi þ
X
σ

½ðωþ iνσÞδλσ − kkhϕλjp̂kjϕσi�hϕσjϕi ¼ −
ω

2T0

hjk



ϕλj

pjpk

p0

�
; ð68Þ

where

α0 ¼
1

3
αi ¼ 2π2½T5

0Γ½5��−1;

hp0jp̂kjp0i ¼ hpjjp̂kjpli ¼


pljp

jpk

p0

�
¼ 0;

hpjjp̂kjp0i ¼ hp0jp̂kjpji ¼


p0jp

jpk

p0

�
¼ T5

0Γ½5�
6π2

δjk: ð69Þ

We then get

hp0jϕi ¼ kk
ω
hpkjϕi þ k2hS

3T0α0
;

hpijϕi ¼ ki

3ω
hp0jϕi þ

X
σ

kk
ω



pipk

p0
jϕσ

�
hϕσjϕi;

hϕλjϕi ¼ −
ωhjk

2T0ðωþ iνλÞ


ϕλj

pjpk

p0

�
þ kk
ðωþ iνλÞ

�X
l

3α0



ϕλj

pkpl

p0

�
hpljϕi þ

X
σ

hϕλjp̂kjϕσihϕσjϕi
	
: ð70Þ

Since we are only interested in the hydrodynamic limit, we may solve these equations in powers of kj. To zeroth order

hp0jϕið0Þ ¼ k2hS
T4
0Γ½5�
6π2

;

hpjjϕið0Þ ¼ 0;

hϕλjϕið0Þ ¼ −
ωhjk

2T0½ωþ iνλ�


ϕλj

pjpk

p0

�
; ð71Þ

where hp0jϕi receives no first order corrections. Else

hpjjϕið1Þ ¼ 1

ω

�
kjk2hS

T4
0Γ½5�
18π2

−
X
σ

kk



pjpk

p0
jϕσ

�
ωhlm

2T0½ωþ iνσ�


ϕσj

plpm

p0

�	
;

hϕλjϕið1Þ ¼ −
kk

ðωþ iνλÞ
X
σ

hϕλjp̂kjϕσi
ωhlm

2T0½ωþ iνσ�


ϕσj

plpm

p0

�
: ð72Þ

To second order we get

hp0jϕið2Þ ¼ kk
ω
hpkjϕið1Þ;

hpjjϕið2Þ ¼ kk
ω

X
σ



pjpk

p0
jϕσ

�
hϕσjϕið1Þ;

hϕλjϕið2Þ ¼
kk

ðωþ iνλÞ
�X

l

αl



ϕλj

pkpl

p0

�
hpljϕið1Þ þ

X
σ

hϕλjp̂kjϕσihϕσjϕið1Þ
	
: ð73Þ
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Finally, the spatial components of the perturbed EMT

Tij − Tij
0 ¼



pipj

p0
jϕ
�
;

¼ 1

3
δij

�
k2hS

T4
0Γ½5�
6π2

�
1þ k2

3ω2

�
−
kkkl
ω2

X
σ



pkpl

p0
jϕσ

�
ωhlm

2T0½ωþ iνσ�


ϕσj

plpm

p0

�	

þ
X
λ



pipj

p0
jϕλ

��
−

ωhlm
2T0½ωþ iνλ�



ϕλj

plpm

p0

�

þ kk
ðωþ iνλÞ

�X
l

3α0



ϕλj

pkpl

p0

�
1

ω

�
klk2hS

T4
0Γ½5�
18π2

−
X
σ

km



plpm

p0
jϕσ

�
ωhpq

2T0½ωþ iνσ�


ϕσj

pppq

p0

�	

−
X
σ

hϕλjp̂kjϕσi
�

kl
ðωþ iνσÞ

X
σ0
hϕσjp̂ljϕσ0 i

ωhpq
2T0½ωþ iνσ0 �



ϕσ0 j

pppq

p0

�			
: ð74Þ

We observe that there must be eigenvectors for which
hðpipj=p0Þjϕλi≠ 0, since jðpipj=p0Þi is not a linear super-
position of the null eigenvectors jpμi and the jϕλi are
complete in the complement of the jpμi. In coordinates
where ki is in the z direction, this is true in particular for
jpxpy=p0i, which couples to the tensor part of hij, jpxpz=
p0i, which couples to the vector part, and jðpx2 þ py2 −
2pz2Þ=p0i, which couples to the scalar part. So there must
be a nontrivial propagator for tensor modes just as there is
for vector and scalar ones. Also, if the collision term does
not break the isotropy of space, we expect the eigenvectors
to carry a representation of the rotation group, and for this
reason at least, the eigenvectors that couple to these kets (and
therefore cannot be rotation invariant) will be degenerate.
Once we have the representation (74) at our disposal, it is

a simple matter to match it to the asympotic behavior
resulting from a suitable distribution of poles and cuts in the
complex frequency plane. For example, in the first term of
Eq. (74), we find

�
1þ k2

3ω2

�
≈

ω2

ω2 − ðk2=3Þ ð75Þ

signaling the presence of the usual sound pole. Then it is
easy to see that eigenvalues in the discrete spectrum will
give rise to poles, while eigenvalues in the continuous
spectrum will be associated to cuts. This derives from the
fact that an expression such as

Z
∞

ν0

dν
ρ½ν�

½ωþ iν� ð76Þ

is discontinuous when we go from ω ¼ −iνþ ϵ to
ω ¼ −iν − ϵ, for all ν > ν0 such that ρ½ν� ≠ 0.
The relaxation time approximation is the extreme case

where the full spectrum is collapsed to just two points,
0 and 1=τ. The sums over the non-null eigenvalues are
performed by using

X
σ

hψ 0jϕσihϕσjψi ¼ hψ 0jψi −
X3
ν¼0

ανhψ 0jpνihpνjψi; ð77Þ

and we easily recover the results above. In the opposite
limit, the theories with an energy dependent relaxation time
discussed in [22] (see also [105–108]) have purely con-
tinuous spectrum ranging from ν0 ¼ 0 to ∞, and therefore
lead to an analytic structure dominated by cuts.
Realistic kinetic equations such as Boltzmann’s

[109–111] and Landau’s [112,113] have both isolated
and continuous eigenvalues, strongly dependent upon the
details of the interparticle interactions. The so-called hard
potentials have a continuous spectrum ranging from a finite
value ν0 > 0 to ∞ [114]; they may have further isolated
eigenvalues between the ever-present 0 and ν0 [115,116],
and besides, since most modes in the continuum decay
much faster than ν−10 , it may be possible, for all practical
purposes, to approximate the continuum by a single
eigenvalue. Contrariwise, “soft” interactions lead to a
continuous spectrum starting from ν0 ¼ 0 [114]. We should
note that both Boltzmann’s and Landau’s equations have a
fifth null eigenvector associated with particle number
conservation, which is not a feature of conformal theories
(in gauge theories there are particle number changing
processes such as gluon splitting, in λϕ4 theory particle
number conservation is broken at order λ4 [117]). More
general collision terms are discussed in [3].
We therefore conclude that the analytic structure found

under the relaxation time approximation is not an artifact of
the approximation, although it is not universal either, and
its validity must be judged on a case by case basis.

III. DISPERSION RELATIONS IN DIVERGENCE
TYPE THEORIES

In this section we shall compute the dispersion relations
as derived from SOTs within a DTT scheme.
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Let us motivate this particular SOT by deriving it from
kinetic theory [15]. To this end we assume a parametrized
distribution function

f ¼ fhydro½xμ; pμ; β
μ; ζμν;…�: ð78Þ

We obtain equations of motion for the parameters
βμ; ζμν;… by taking suitable averages of the Boltzmann
equation [74,75]

Z
Dppμpνfhydro;ν ¼

Z
DppμIcol½fhydro� ¼ 0;

Z
DpRα½x; p�pνfhydro;ν ¼

Z
DpRαIcol½fhydro�…: ð79Þ

This scheme enforces energy-momentum conservation
[Eq. (1)]. However, because fhydro is not a solution of
the Boltzmann equation (14), the H theorem (20) does not
apply to it, and the Second Law may not be enforced. This
is avoided if we make the specific parametrization

fhydro ¼ eβ
μpμþ

P
α
ζαRα½x;p�; ð80Þ

that is, the same functions Rα which appear in fhydro are
averaged against the Boltzmann equation to obtain the
equations of motion for the parameters ζα [15]. The
resulting system of equations take the form of conservation
laws for the currents

Aμ
α ¼

Z
DpRα½x; p�pμfhydro; ð81Þ

and so this theory falls within the class of DTTs.
The particular implementation of this scheme we are

interested in postulates two nonequilibrium tensors ζμν and
ξμνρ besides the usual variables T and uμ. The parametrized
distribution function reads

fhydro ¼ e
βμpμþζμν

pμpν

ð−uλpλÞ
þξμνρ

pμpνpρ

ð−uλpλÞ2 ; ð82Þ

where βμ ¼ uμ=T, u2 ¼ −1. ζμν and ξμνρ are totally
symmetric, traceless and transverse, meaning that

Sμνσλζ
σλ ¼ ζμν;

Sμνρσλτ ξ
σλτ ¼ ξμνρ; ð83Þ

with the projectors

Sμνσλ ¼
1

2

�
Δμ

σΔν
λ þ Δμ

λΔν
σ −

2

3
ΔμνΔσλ

	
;

Sμνρσλτ ¼
1

6
fΔμ

σΔν
λΔ

ρ
τ þ Δμ

σΔν
τΔ

ρ
λ þ Δμ

λΔν
σΔ

ρ
τ

þ Δμ
λΔν

τΔ
ρ
σ þ Δμ

τΔν
λΔ

ρ
σ þ Δμ

τΔν
σΔ

ρ
λ

−
2

5
½ΔμνðΔρ

σΔλτ þ Δρ
λΔστ þ Δρ

τΔλσÞ
þ ΔμρðΔν

σΔλτ þ Δν
λΔστ þ Δν

τΔλσÞ
þ ΔνρðΔμ

σΔλτ þ Δμ
λΔστ þ Δμ

τΔλσÞ�g; ð84Þ

where as usual Δμν ¼ gμν þ uμuν.
We should note that most work on DTTs to date does not

include the third order tensor ξμνρ. Often the only variables
considered are a chemical potential (for nonconformal
theories), the four vector βμ and a traceless tensor ζμν
[118]. This adds up to 14 degrees of freedom, and is thus
analog to Grad’s “14 moments” approximation. In these
usual theories the tensor mode in nonpropagating, while, as
we shall show below, including the ξμνρ tensor provides it
with a finite propagation speed, which further agrees with
the one derived from kinetic theory (55).
Including the tensor ξμνρ will not just produce this only

change in the theory, we should expect there will be
incremental changes in the scalar and vector sectors as
well. However it is fair to say that they do not change the
physical picture in those sectors as they do for the tensor
modes. Likewise, including higher order tensors will only
have incremental effects on Tμν.
The equations of motion for the variables βμ, ζμν and ξμνρ

are obtained from the weighted averages of the covariant
Boltzmann equation (14)

Z
Dppμ½pτfhydro;τ − Icol� ¼ 0;

Z
DpSαβμν

pμpν

ð−uλpλÞ ½p
τfhydro;τ − Icol� ¼ 0;

Z
DpSαβγμνρ

pμpνpρ

ð−uλpλÞ2 ½p
τfhydro;τ − Icol� ¼ 0: ð85Þ

Integrating by parts, we write these equations as conserva-
tion laws

Tμν
;ν ¼ 0;

Sαβμν ½Aμνρ
;ρ − Aμνρσuρ;σ − Iμν� ¼ 0;

Sαβγμνρ½Aμνρσ
;σ − 2Aμνρσλuσ;λ − Iμνρ� ¼ 0; ð86Þ

where

GUILLERMO PERNA and ESTEBAN CALZETTA PHYS. REV. D 104, 096005 (2021)

096005-10



Tμν ¼
Z

Dppμpνfhydro;

Aμ1…μn ¼
Z

Dp
pμ1…pμn

ð−uλpλÞn−2 fhydro;

Iμ1…μn ¼
Z

Dp
pμ1…pμn

ð−uλpλÞn−1 Icol: ð87Þ

If Icol satisfies the H theorem, then this dynamics yields
positive entropy production, with the entropy flux

Sμ ¼
Z

Dppμfhydro½1 − ln fhydro�;

¼ Φμ − βνTμν − ζνρAμνρ − ξνρσAμνρσ; ð88Þ

and entropy production

Σ ¼ −ζνρIνρ − ξνρσIνρσ: ð89Þ

Here

Φμ ¼
Z

Dppμfhydro: ð90Þ

So far the discussion has been general. We now linearize
around an equilibrium solution. We adopt the relaxation
time approximation collision integral (22).
In equilibrium ζμν ¼ ξμνρ ¼ 0, since we are interested in

linear deviations from equilibrium only, we can write

fhydro ¼ eβμp
ν

�
1þ ζμν

pμpν

ð−uλpλÞ þ ξμνρ
pμpνpρ

ð−uλpλÞ2
�
; ð91Þ

then also feq ¼ eβμp
ν
and the equations of motion reduce to

Tμν
0;ν þ Tμνρσ

1 ζρσ;ν ¼ 0;

Sαβμν

�
Tμνρ
1;ρ þ Tμνρσ

1

�
_ζρσ þ

1

τ
ζρσ

�
þ Tμνρσλτ

3 ξσλτ;ρ − Tμνρσ
2 uρ;σ

�
¼ 0;

SαβγμνρT
μνρσλτ
3

�
_ξσλτ þ

1

τ
ξσλτ þ ζλσ;τ

�
¼ 0; ð92Þ

where

Tμ1…μn
α ¼

Z
Dp

pμ1…pμn

ð−uλpλÞα feq: ð93Þ

These tensors are evaluated in Appendix C. In general, the projectors mean that we have to symmetrize and subtract all
longitudinal and tracefull terms. We also write T ¼ T0ð1þ ϑÞ and uμ ¼ Uμ þ vμ, with Uμvμ ¼ 0. We then get

_ϑþ 1

3

�
vi;i þ

1

2
_hii

�
¼ 0;

_vj þ ϑ;j þ
2

5
T0ζ

k
j;k ¼ 0;

1

2
σjk þ T0

�
_ζjk þ

1

τ
ζjk

�
þ 3

7
T0ξjkl;l ¼ 0;

1

3

�
ζij;k þ ζik;j þ ζjk;i −

2

5
ðδijζkl;l þ δikζjl;l þ δkjζil;lÞ

�
þ _ξijk þ

1

τ
ξijk ¼ 0; ð94Þ

where σij is the shear tensor

σjk ¼ vi;j þ vj;i −
2

3
δijvk;k þ _hij −

1

3
δij _h

k
k: ð95Þ

Fourier transforming and using the velocity decomposition (27) and the metric decomposition (28) we get

σjk ¼ −2
�
kikj −

1

3
δijk2

�
vS þ iðkivVj þ kjvViÞ − iω

��
kikj −

1

3
δijk2

�
ðhS þ h0SÞ þ ikihVj þ ikjhVi þ hTij

�
: ð96Þ
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To decompose Eq. (94) in scalar, vector and tensor
modes, we define

ζij ¼ ζS

�
kikj −

1

3
k2δij

�
þ iðζVikj þ ζVjkiÞ þ ζTij;

ξijk ¼ iξS

�
kikjkk −

1

5
k2ðkiδjk þ kjδik þ kkδijÞ

�

þ ξVi

�
kjkk − k2

1

5
δjk

�
þ ξVj

�
kikk − k2

1

5
δik

�

þ ξVk

�
kjki − k2

1

5
δji

�
þ iðξTijkk þ ξTikkj þ ξTkjkiÞ

þ ξTTijk; ð97Þ

where kiζVi ¼ kiζTij ¼ 0, kiξVi ¼ kiξTij ¼ kiξTTijk ¼ 0,
and tensors are totally symmetric and traceless. The
scalar-vector-tensor decomposition of the shear tensor is
given in Eq. (96).

A. The scalar sector

In the scalar sector we get

iωϑþ 1

3
k2vS ¼

i
3
ωk2hS;

ϑ − iωvS þ
4

15
k2T0ζS ¼ 0;

vS þ i

�
ωþ i

τ

�
T0ζS þ

9

35
k2T0ξS ¼

1

2
iωðhS þ h0SÞ;

ζS − i

�
ωþ i

τ

�
ξS ¼ 0: ð98Þ

The dispersion relation is

�
ω2 −

1

3
k2
��

ωþ i
τ

�
2

− k2
�
4

15
ω

�
ωþ i

τ

�
þ 9

35

�
ω2 −

1

3
k2
��

¼ 0: ð99Þ

When k2, τ → 0 we have two branches of solutions,
hydrodynamic modes with

ω ≈� kffiffiffi
3

p −
2

15
iτk2; ð100Þ

which correspond to the Landau-Lifshitz modes with the
identification ν ¼ τ=5 (see Appendix A), and nonhydrody-
namic modes with

ω ≈
−i
τ
�

ffiffiffiffiffi
9

35

r
k; ð101Þ

just as derived from kinetic theory, Eq. (49).

B. The vector sector

In the vector sector we get

ωvVj −
2

5
ik2T0ζVj ¼ 0;

1

2
ivVj þ

�
ωþ i

τ

�
T0ζVj þ

12

35
ik2T0ξVj ¼ −

1

2
iωhVj;

2

3
iζVj −

�
ωþ i

τ

�
ξVj ¼ 0: ð102Þ

The dispersion relation is

ω

�
ωþ i

τ

�
2

−
1

5
k2
�
ωþ i

τ

�
−

8

35
k2ω ¼ 0: ð103Þ

Therefore when k2 → 0, either ω → 0 or ω → −iτ−1. In the
first case we find an hydrodynamic mode with

ω ≈ −
1

5
iτk2; ð104Þ

while the others are two nonhydrodynamic modes with

ω ≈
−i
τ
�

ffiffiffiffiffi
8

35

r
k: ð105Þ

Once again, the hydrodynamic modes agree with Landau-
Lifshitz theory if ν ¼ τ=5 (see Appendix A), and also
reproduces the nonhydrodynamic mode from kinetic
theory (52).

C. The tensor sector

In the tensor sector we get

�
ωþ i

τ

�
ζTjk −

3

7
ik2ξTjk ¼

−i
T0

ωhTjk;

1

3
iζTjk þ

�
ωþ i

τ

�
ξTjk ¼ 0: ð106Þ

We therefore find two nontrivial hydrodynamic modes with

ω ≈
−i
τ
�

ffiffiffi
1

7

r
k: ð107Þ

These modes have no analog in Landau-Lifshitz fluids, but
match quantitatively the nonhydrodinamic tensor modes
from kinetic theory (55).
If we had considered a truncated theory with ξijk ¼ 0,

then there would be a tensor nonhydrodynamic mode, but
with a k-independent dispersion relation ω ¼ −i=τ, it is
thus not propagating. They are present already in the Israel-
Stewart theory [119,120]. Their cosmological conse-
quences are discussed in [121,122].
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ξTTijk is decoupled and obeys the equation

�
ωþ i

τ

�
ξTTijk ¼ 0; ð108Þ

so we may assume it vanishes throughout.

IV. FINAL REMARKS

In this paper we have computed the dispersion relations
for a DTT containing two nonequilibrium tensors ζμν and
ξμνρ besides the usual variables T and uμ, and compared the
result to known results in the literature involving FOTs [14]
and also “first principles” calculations from kinetic theory
[21–24] and quantum field theory [1,20,25–35].
The “first principles” calculations display both hydro-

dynamic and nonhydrodynamic modes in all three sectors,
scalar vector and tensor. Both FOTs and DTTs describe
well the hydrodynamic modes and the longest living
nonhydrodynamic modes in the scalar and vector sectors.
DTTs also describe the longest living tensor mode, which is
not recovered in FOTs. A truncated DTT with only the ζμν
tensor yields a nonpropagating tensor mode, in agreement
with Israel-Stewart theory [119,120].
We have been unable to find a clear cut statement about

the speed of propagation of tensor modes in the third order
formalism [59,61,123,124], since usually only the “sound”
and “shear” channels (which correspond to scalar and
vector modes in this paper) are discussed in detail. The
relevant third order equation as derived in [60,125] includes
second order derivatives of the viscous EMT.
DTTs also perform well in the similar problem of the

dispersion relations for a viscous charged fluid [126,127],
where they reproduce the Weibel instability [128,129]. The
cosmological consequences of this fact are discussed
in [130].
We believe these results validate the choice of DTTs to

describe fluids in problems where the interaction with
gravitational waves is a matter of relevance [131]. These
problems include generation and amplification of gravita-
tional waves in the very early Universe [121,122,132] and
during cosmological phase transitions [133], and gravita-
tional wave emission from rotating neutron stars [134],
among others. Where gravitational interactions are not a
concern, the relative advantages of FOTs and SOTs must be
considered carefully to find the most suitable model for
each application.
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APPENDIX A: DISPERSION RELATIONS FOR
IDEAL AND LANDAU-LIFSHITZ FLUIDS,

AND IN CAUSAL FOTS

1. Ideal fluids

To obtain the dispersion relations for an ideal fluid we
must consider the conservation laws (1) for the EMT (3).
For a conformal fluid, ρ ¼ σT4 and p ¼ ρ=3. For con-
creteness we assume the value of the constant σ which is
compatible with Maxwell-Jüttner statistics for a single
degree of freedom, namely σ ¼ 3=π2. The conservation
laws are

_T
T
þ 1

3
uν;ν ¼ 0;

_uμ þ Δμν T;ν

T
¼ 0; ðA1Þ

_X ¼ uμX;μ. We linearize these equations by writing
T ¼ T0ð1þ ϑÞ, uμ ¼ Uμ þ vμ, Uμ ¼ ð1; 0; 0; 0Þ, and
v0 ¼ 0. Taking the Fourier transform we get

−iωϑþ 1

3

�
ikjvj −

i
2
ωhii

�
¼ 0;

−iωvj þ ikjϑ ¼ 0: ðA2Þ

We now decompose the velocity as in Eq. (27) and the
metric as in Eq. (28). No tensor degrees of freedom are
included. We thereby get on one hand

−ωϑþ i
3
k2vS ¼ −

1

3
ωk2hS;

ϑ − iωvS ¼ 0; ðA3Þ

and on the other

ωvjV ¼ 0: ðA4Þ

We see that scalar, vector and tensor modes decouple. For
the scalar modes we find the dispersion relation

ω2 −
1

3
k2 ¼ 0; ðA5Þ

so the scalar propagator has poles at ω ¼ �k=
ffiffiffi
3

p
, repre-

senting longitudinal sound waves. No vector or tensor
modes are excited in the fluid.

2. Landau-Lifshitz fluids

If we consider a Landau-Lifshitz fluid instead of an ideal
one, the difference is that the EMT becomes

Tμν ¼ 4

3
σT4

�
uμuν þ 1

4
gμν

�
− ησμν; ðA6Þ
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where η is the fluid viscosity and σμν is the shear tensor

σμν ¼ ΔμλΔνρ

�
uλ;ρ þ uρ;λ −

2

3
Δλρuσ;σ

�
: ðA7Þ

The linearized conservation equations are now

_ϑþ 1

3
vj;j ¼ 0;

_vj þ ϑ;j − νσjk;k ¼ 0; ðA8Þ

where ν ¼ 3η=4σT4
0 ¼ η=s0T0 is the kinematic viscosity.

With the shear tensor (95) and its Fourier transform (96) we
get

−ωϑþ i
3
k2vS ¼ −

1

3
ωk2hS;

ϑ − i

�
ωþ 4i

3
νk2

�
vS ¼

1

2
ik2νωðhS þ h0SÞ; ðA9Þ

and

½ωþ iνk2�vjV ¼ −
3

4
νk2ωhjV: ðA10Þ

We see that the longitudinal sound waves now become
damped, with a dispersion relation

ω ≈� kffiffiffi
3

p −
2

3
iνk2; ðA11Þ

while the pole for transverse waves has been shifted from
ω ¼ 0 to ω ¼ −iνk2. There are still no tensor modes in
the fluid.

3. Causal FOTs

As a representative causal FOT we shall consider the
EMT [14]

Tμν ¼
�
ϵþ 3χ

4ϵ

�
uρ∇ρϵþ

4

3
ϵ∇ρuρ

���
uμuν þ 1

3
Δμν

�
− ησμν

þ λ

4ϵ
½4uμϵuρ∇ρuν þ uμΔν

ρ∇ρϵþ 4uνϵuρ∇ρuμ þ uνΔμ
ρ∇ρϵ� ðA12Þ

Only when in equilibrium, ϵ ¼ ρ is the energy density. The new transport coeffcients χ and λ are the hallmark of the causal
FOT approach. They define timescales of the order of the relaxation time on which the hydrodynamic variable ϵ relaxes to
the Landau-Lifshitz energy density, and in this sense they act as causal regulators. See [14] for further discussion.
To linearize the conservation equations (1) we write ϵ ¼ ϵ0 þ δϵ, and expand uμ ¼ Uμ þ vμ and gμν ¼ ημν þ hμν as

before. We further decompose vi as in Eq. (27) and hij as in Eq. (28). We thus get the Fourier-transformed equations

0 ¼ −iω
�
δϵþ 3χ

4ϵ0

�
−iωδϵ −

4

3
ϵ0k2vS

��
−
�
4

3
ϵ0 − λiω

�
k2vS −

1

6
ϵ0iωhS; ðA13Þ

0 ¼ −iω
�
4

3
ϵ0 − λiω

�
ðikivS þ viVÞ þ

1

3
ϵ0

�
−i

2

3
k2kih0S − k2hiV

�
þ 1

6
iϵ0kik2hS

þ 1

3
iki

�
δϵþ 3χ

4ϵ0

�
−iωδϵ −

4

3
ϵ0k2vS

��
−
1

3
ϵ0

�
2

3
ik2kih0S þ k2hiV

�

þ 2η

�
1

2
ðk2ðikivS þ viVÞ þ ikiðk2vSÞ − iωk2ikih0SÞ −

1

3
ikið−k2vS þ iωk2hSÞ

�
: ðA14Þ

We already see that the tensor sector has trivial dynamics. We analyze the scalar and vector sectors in turn.

a. Scalar sector

The scalar part of Eq. (A14) reads

0 ¼ −iω
�
4

3
ϵ0 − λiω

�
vS −

4

9
ϵ0k2h0S þ

1

6
ϵ0k2hS þ

1

3

�
δϵþ 3χ

4ϵ0

�
−iωδϵ −

4

3
ϵ0k2vS

��

þ 2ηk2
�
2

3
vS −

1

2
iωh0S þ

1

3
iωhS

�
: ðA15Þ
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Elliminating vS we find

δϵ

ϵ0

�
1 −

ϵ0k2

3iω

½4
3
− iωðλþχ

ϵ0
Þ�

½−ω2λ − iω 4
3
ϵ0 − 1

3
k2ðχ − 4ηÞ�

�
¼ −

1

6

1

½1 − iω 3χ
4ϵ0
� hS

þ k2

iω

½4
3
− iωðλþχ

ϵ0
Þ�

1 − iω 3χ
4ϵ0

�2
3
ϵ0k2ð23 h0S − 1

4
hSÞ − ηiωk2ð2

3
hS − h0SÞ

−ω2λ − iω 4
3
ϵ0 þ 1

3
k2ðχ − 4ηÞ

	
: ðA16Þ

In the limit k2 → 0 Eq. (A16) simplifies to

δϵ

ϵ0
¼ −

1

½1 − iω 3χ
4ϵ0
�

1

½ω2 − 1
3
k2ð1 − αÞ�

hS
6
; ðA17Þ

where

α ¼ 3

4
iω

χ

ϵ0

�
1 −

3

4
iω

λ

ϵ0

�
−1
: ðA18Þ

We therefore get a hydrodynamic pole with

ω ¼ � kffiffiffi
3

p −
i
8

χ

ϵ0
k2; ðA19Þ

and a nonhydrodynamic pole with

ω ¼ −i
4ϵ0
3χ

: ðA20Þ

b. Vector sector

From the vector part of Eq. (A14) we get

viV ¼ 2

3

�
−ϵ0k2

−ηk2 þ 4
3
iωϵ0 þ λω2

�
hiV: ðA21Þ

When k2 → 0 we get a hydrodynamic mode

ω ¼ −
3

4
i
η

ϵ0
k2 ðA22Þ

and a nonhydrodynamic mode

ω ¼ −
4

3
i
ϵ0
λ
þ 3

4
i
η

ϵ0
k2: ðA23Þ

We see that the causal FOT formalism recovers the
hydrodynamic scalar and vector modes, and also non-
hydrodynamic modes in these sectors, with no dynamics at
all in the tensor sector.

APPENDIX B: EVALUATION OF INTEGRALS

The integrals (34) may be evaluated explicitly by going
to polar coordinates with k̂lp̂l ¼ cos θ ¼ x

J ¼ 1

4π2

Z
∞

0

dpp4e−p=T0

Z
1

−1

dx
z − x

¼ 2σT5
0L½z�; ðB1Þ

where

L½z� ¼ ln
zþ 1

z − 1
¼ 2

X∞
n¼0

1

ð2nþ 1Þ
1

z2nþ1
: ðB2Þ

The radial integral is always the same, while the x integral
changes. We have

Jk ¼ χ1k̂
k; ðB3Þ

χ1 ¼ 2σT5
0

Z
1

−1

dxx
z − x

;

¼ 2σT5
0½zL½z� − 2� ¼ 4

3
σT5

0

�
1

z2
þ 3

5

1

z4
þ…

�
: ðB4Þ

To evaluate Jjk, we write

Jjk ¼ χ2½k̂jk̂k − δjk� þ χ3½k̂jk̂k −
1

3
δjk�: ðB5Þ

Then

χ2 ¼ −
1

2
Jjj ¼ −

1

2
J ¼ −2σT5

0

�
1

z
þ 1

3

1

z3
þ…

�
; ðB6Þ

χ3 ¼ 3σT5
0

Z
1

−1

dxx2

z − x
;

¼ 6σT5
0

�
1

2
z2L½z� − z

�
¼ 2σT5

0

�
1

z
þ 3

5

1

z3
þ…

�
: ðB7Þ

A totally symmetric third order tensor may be written as

Jijk ¼ ak̂ik̂jk̂k þ bðk̂iδjk þ k̂jδki þ k̂kδijÞ: ðB8Þ

A traceless tensor must have aþ 5b ¼ 0, while a totally
divergenceless tensor must have aþ 3b ¼ 0. So we may
also write
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Jijk ¼ χ4

�
k̂ik̂jk̂k −

1

3
ðk̂iδjk þ k̂jδki þ k̂kδijÞ

�
þ χ5

�
k̂ik̂jk̂k −

1

5
ðk̂iδjk þ k̂jδki þ k̂kδijÞ

�
: ðB9Þ

Now Jijj ¼ Ji, so

χ4 ¼ −
3

2
χ1 ¼ −2σT5

0

�
1

z2
þ 3

5

1

z4
þ…

�
ðB10Þ

and then

χ5 ¼ 5σT5
0

Z
1

−1

dxx3

z − x
;

¼ 5σT5
0

�
z3L½z� − 2z2 −

2

3

�
¼ 2σT5

0

�
1

z2
þ 5

7

1

z4
þ…

�
: ðB11Þ

Finally we compute Jijkl. Start from

Jijkl ¼ ak̂ik̂jk̂kk̂l

þ bðk̂ik̂jδkl þ k̂ik̂kδlj þ k̂ik̂lδjk þ k̂jk̂kδil þ k̂jk̂lδik þ k̂kk̂lδijÞ
þ cðδijδkl þ δikδlj þ δilδjkÞ: ðB12Þ

We then have

Jijkk ¼ ðaþ 7bÞk̂ik̂j þ ðbþ 5cÞδij ¼ Jij: ðB13Þ

Then

aþ 7b ¼ χ2 þ χ3;

bþ 5c ¼ −χ2 −
1

3
χ3; ðB14Þ

so

Jijkl ¼ χ2½8k̂ik̂jk̂kk̂l − ðk̂ik̂jδkl þ k̂ik̂kδlj þ k̂ik̂lδjk þ k̂jk̂kδil þ k̂jk̂lδik þ k̂kk̂lδijÞ�

þ 1

3
χ3½10k̂ik̂jk̂kk̂l − ðk̂ik̂jδkl þ k̂ik̂kδlj þ k̂ik̂lδjk þ k̂jk̂kδil þ k̂jk̂lδik þ k̂kk̂lδijÞ�

þ χ6½δijδkl þ δikδlj þ δilδjk − 5ðk̂ik̂jδkl þ k̂ik̂kδlj þ k̂ik̂lδjk þ k̂jk̂kδil þ k̂jk̂lδik þ k̂kk̂lδijÞ þ 35k̂ik̂jk̂kk̂l� ðB15Þ

and

2χ2 þ
4

3
χ3 þ 8χ6 ¼ 2σT5

0

Z
1

−1

dxx4

z − x

¼ 2σT5
0

�
z4L½z� − 2z3 −

2

3
z

�
; ðB16Þ

therefore

χ6 ¼
1

2
σT5

0

�
1

2
ðz2 − 1Þ2L½z� − z3 þ 5

3
z

�
¼ 4

15
σT5

0

�
1

z
þ 1

7

1

z3
þ…

�
: ðB17Þ

GUILLERMO PERNA and ESTEBAN CALZETTA PHYS. REV. D 104, 096005 (2021)

096005-16



APPENDIX C: THE Tμ1…μn
α TENSORS

In this appendix we evaluate the Tμ1…μn
α tensors from Eq. (93). The integrals against feq may be computed on symmetry,

tracelessness and dimensional grounds

Tμν
0 ¼ σT4

0

�
uμuν þ 1

3
Δμν

�
;

Tμνρ
1 ¼ σT4

0

�
uμuνuρ þ 1

3
ðΔμνuρ þ…Þ

�
;

Tμνρσ
1 ¼ 4σT5

0

�
uμuνuρuσ þ 1

3
ðΔμνuρuσ þ…Þ þ 1

15
ðΔμνΔρσ þ…Þ

�
;

Tμνρσ
2 ¼ σT4

0

�
uμuνuρuσ þ 1

3
ðΔμνuρuσ þ…Þ þ 1

15
ðΔμνΔρσ þ…Þ

�
;

Tμνρσλτ
3 ¼ 4σT5

0

�
uμuνuρuσuλuτ þ 1

3
ðΔμνuρuσuλuτ þ…Þ þ 1

15
ðΔμνΔρσuλuτ þ…Þ

þ 1

105
ðΔμνΔρσΔλτ þ…Þ

�
: ðC1Þ
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