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Linearized dispersion relations in viscous relativistic hydrodynamics
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We compute the dispersion relations for scalar, vector and tensor modes of a viscous relativistic fluid,
linearized around an equilibrium solution, for a divergence type theory (which, in the linearized theory,
includes Israel-Stewart theory and anisotropic hydrodynamics as particular cases) and contrast them to the
corresponding results derived from kinetic theory under the relaxation time approximation, and from causal
first order theories. We conclude that all approaches give similar dynamics for the scalar and vector modes,
while the particular divergence type theory presented here also contains propagating damped tensor waves,
in agreement with kinetic theory. Nonhydrodynamic tensor modes are also a feature of holographic fluids.
These results support the application of hydrodynamics in problems involving the interaction between

fluids and gravitational waves.
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I. INTRODUCTION

Recent developments in relativistic heavy ion colli-
sions [1] and cosmology [2] have brought attention to the
physics of relativistic viscous fluids [3,4], particularly
since the realization that hydrodynamical models act as
an attractor to more complex physics even on short times
scales [5—11]. However, progress has been impaired
by the fact that, unless the situation for nonrelativistic
fluids described by the Navier-Stokes equations, no
single approach to relativistic viscous fluids has achieved
consensus status in the community. This is not a matter
of “right” vs “wrong” but rather that different approaches
best capture some aspects of the complex physics of
relativistic fluids.

Given this situation, it is important to develop tests where
the predictions of different approaches may be contrasted,
thereby helping to select the most adequate choice for a
given physical problem. One strategy that has been
extensively used in the literature is to apply different
approaches to a problem which could also be solved using
a more fundamental theory. In this sense, the Bjorken and
Gubser models of the expanding fireball in a relativistic
heavy ion collision have been a preferred choice [12—15].
In this case the more fundamental theory is kinetic theory

_*_ guillermoezequielperna@ gmail.com
calzetta@df.uba.ar

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP’.

2470-0010/2021/104(9)/096005(20)

096005-1

under the relaxation time approximation [16—19], or else
holographic fluids in an asymptotic region [20].

Another approach is to consider linearized perturbations
of an equilibrium state, and to identify the propagating
modes and their dispersion relations. Dispersion relations
are known from kinetic theory under the relaxation time
approximation [1,21-24]. They may be found also from
quantum field theories, in the weakly coupled limit trough
a perturbative expansion in the coupling constant [25], or
else in the infinite coupling limit for holographic fluids
[1,20,26-35]. All these approaches give similar though
not identical results. Our goal is to contrast these “first
principles” dispersion relations to the ones obtained from
hydrodynamics.

We shall consider only conformal theories with no
conserved charges. Then the focus of interest of a hydro-
dynamic model is the energy-momentum tensor (EMT)
T#¥, which satisfies the conservation law

™ = 0. (1)

There is also an entropy flux S* that satisfies the “second
law”

S =3, @)

where X > 0 is the entropy production.
For an ideal fluid

T, = it + pAv, 3)

1

where p is the energy density, u* is the velocity, restricted to
the shell u> = —1 (we work with signature (—, +, +, +)
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and natural units 2 =k = c = 1), A¥ = ¢* + u*u* and
p is the pressure. For a conformal fluid 7% must be
traceless, T =0, and so p = p/3. Since there are no
conserved charges and therefore no chemical potentials we
may define the entropy density s and the temperature T
through

or T T

b _s_rtr, @
Then p = oT*, where ¢ is a constant, s = 46T>/3,
St = su and £ = 0.
In equilibrium the EMT of any fluid takes the ideal form
(3) [36]. Thereby in a weakly nonequilibrium state it is
natural to write

™ =Tl +TI*, (5)

where TG” has the ideal form (3) and IT*¥ describes the
viscous effects. For a conformal fluid [T" must be traceless.
The problem is that now the four equations (1) are not
enough to describe the evolution of the ten components of
the symmetric tensor 7+*. This leads to two large families
of theories. In the so-called first order theories (FOTSs),
constitutive relations are provided which restrict [T* to be a
given function of 7, u* and their derivatives, thus keeping
the number of degrees of freedom down to four. The so-
called second order theories (SOTs), on the other hand,
regard [T, or a set of “nonequilibrium tensors” from which
I1"¥ may be computed, as dynamical variables in their own
right, and provide supplementary equations of motion.
Historically the first approaches to relativistic viscous
fluids have been the Eckart and Landau-Lifshitz ones,
which belong to the FOT class [37,38]. They provide
covariant generalizations of the Navier-Stokes equations.
They differ from each other in the definition of the fluid
velocity u*, which in the Eckart approach is defined from
the flux of a conserved charge, while in the Landau-Lifshitz
approach is defined form the energy flux, namely

Ty, = —pu*, (6)

which also defines p. Since the velocity appears in the
constitutive relations for the viscous tensor IT*, the differ-
ence between the Eckart and Landau-Lifshitz theories is
not just a matter of a choice of “frame,” they actually are
different theories [39]. Since in this paper we shall only
consider conformally invariant theories with no conserved
charges, it is natural to restrict ourselves to the Landau-
Lifshitz approach, to be discussed in more detail below.
These first generation FOTs were proven to violate
causality and to have no stable solutions [40-48].
However, it has been claimed that first order theories
may be causal and stable if more general constitutive
relations are considered [14,49-57]. This claim has gained

considerable attention, since first order theories are gen-
erally simpler that second order ones, and in particular
easier to implement numerically [58].

Concerning more general approaches such as Baier-
Romatschke-Son-Starinets-Stephanov [1,20,59] and third
order hydrodynamics [60,61], which consists of writing the
most general form for the energy-momentum tensor con-
taining terms with up to a certain number of derivatives
restricted by conformal invariance, the issue is whether
the viscous energy momentum tensor is restricted to be
proportional to the shear tensor, or else regarded as a
hydrodynamic variable on its own. In the first case we
obtain a theory within the FOT class, while in the second it
becomes a SOT.

The problem with the Eckart and Landau-Lifshitz
approaches may be tracked down to the fact that, when
defining the entropy production, some second order terms
were retained while others were arbitrarily rejected [36]. This
problem may be solved (or at least alleviated) by enlarging
the set of degrees of freedom of the theory, and likewise
introducing new terms in the entropy production. This leads
to SOT approaches, such as Israel-Stewart [62-67], extended
thermodynamics [68—70], Denicol-Niemi-Molnar-Rischke
[71-79], anisotropic hydrodynamics [80-87], and diver-
gence type theories (DTTs) [88-98]. We shall focus on a
particular implementation of the DTT paradigm, which, at
the linearized level, contains the others as particular cases.

To the best of our knowledge, both FOTs and SOTs have
been tested in Bjorken and Gubser backgrounds, where
they successfully reproduce the results from kinetic theory
under the relaxation time approximation [14,15,99].

In this paper we will consider a conformal fluid in an
equilibrium state in Minkowski space-time, and compute
the response of the EMT to a perturbation in the metric,
assuming the dynamics is described by a DTT to be
presented below. We shall compare the result with the
same quantity as derived from a FOT, and from kinetic
theory under the relaxation time approximation. We shall
comment briefly on the corresponding result for quantum
fields [1,20,25-35]. In other words, we shall compute the
propagator

5T [x]

GmPolx, x'] = 89po¥']
po

(7)

Guw=Mw

The poles of the propagator as we approach the infrared
limit indicate the propagating modes in the hydrodynamic
limit and their dispersion relations.

The rest of the paper is organized as follows. In the next
section we summarize the well-known dispersion relations
from kinetic theory [21-24] (Sec. II). Then in the following
section we compute the EMT response in a divergence type
theory (Sec. III). We present some brief conclusions in the
final section.
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For completeness we also present the relevant dispersion
relations for ideal and Landau-Lifshitz fluids and causal
FOTs [14] in Appendix A.

II. DISPERSION RELATIONS FROM
KINETIC THEORY

In this section we shall derive the dispersion relations
from kinetic theory. We observe that the kinetic theory
EMT propagators are computed in closed form in
Refs. [21-24]. They display a complex analytic structure
dominated by branch cuts. However, in the asymptotic
regime where hydrodynamics is expected to hold, this
analytic structure may be mimicked by a suitable distri-
bution of poles. Our interest lies in finding these equivalent
poles in the k> — 0 limit, both the hydrodynamic ones and
the longest living nonhydrodynamic modes.

We consider an equilibrium state in Minkowski space-
time, whereby the metric g, = 7, = diag(=1,1,1,1), the
velocity U* and the temperature 7 are constant. The
EMT T} takes the ideal form Eq. (3). Without a loss of
generality we may assume U* = (1,0,0,0). We consider a
fluctuation in the metric #,, — g,, = 1, + h,,, and the
corresponding change in the EMT T =T} + 5T
Linearizing with respect to 4, we may read the propagator
Eq. (7) from the relationship

ST ] = / X' G, 3 [, (8)

Four of these relationships are trivial, since they corres-
pond to coordinate changes. If x* — x* = x* + &, then
hﬂu = _fﬂ,u - gu,ﬂ’ and 6T = S{IPTSD + a;’Tsﬂ‘ SO’ usmg
A =y + UFU" we get

. . 1
B+ B4 S (005 + 872 | = -2 [ G ) ©
with & = U"&,, so
Hrpo ! 1 Hp vyTA 1 vA vp HrTA 1 HA !
G'o" [x, X'] =5Po|n U'u +§A0 +n?| UFU +§A0 0,6(x —x'). (10)
Since the background is homogeneous, we expect the propagators to be translation invariant. Then we may Fourier
transform
3
Grro — /dwd kei[k-(x—x’)_a;(t—z’)]G;u/,/m'[k’60}7 (11)
(2z)*
whereby
. . i i ) L ) |
0GPk, w] = ik;G"PI [k, w] — 370 [71/‘/’ (U w— gAOJkJ) + <U"w - gA’éjkj)] . (12)

This means that G¥*? is trivially obtained from G**/¥, and
so there is no loss of generality in computing the propa-
gators under the gauge condition £,y = 0.

On general grounds we expect the propagators will obey
the reciprocity condition [100,101]

G"Px, x| = GPM X', x], (13)

whereby we also do not need to compute explicitly the
propagators of the form G%?°. So the only nontrivial
problem is to compute the variation of 7% upon a metric
fluctuation h;;. However, to complete this task we need
some information on the fundamental degrees of freedom
of the theory and their dynamics.

In kinetic theory [3,15,102], the fundamental description
is provided by the distribution function f(x*, p,), where

[
p*, for a conformal theory, is restricted to the future light
cone p> =0, p® > 0. f obeys the Boltzmann equation

pﬂf;y = Icol[f]’ (14)
where the phase space covariant derivative is

O o, O

f;u_w uppuaipp' (15)
Covariant derivatives are taken with the first order con-

nection

1
Flzfi = Eﬂﬂp [hup,ﬂ + h/lp.b - huﬂ,/}]' (16)

Observe that I'Y, = h!,/2 as expected, and I%, UvU* = 0.
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For simplicity, we shall only consider the Maxwell-
Jiittner case where the equilibrium distribution has the form
feq = €"Pr, p* = u*/T as above. The collision integral /.y
vanishes in equilibrium. It also has to satisfy the constraint

/mwmm—a (17)

with the phase space covariant measure
And'p, 2 0
br =7 5(=p*)0(p"), (18)

27)* /=g

which enforces conservation Eq. (1) for the EMT

T™[f] = / Dpp'p“f. (19)

and the H theorem

H = / DpIn[flllf] <0 (20)

for any solution of the Boltzmann equation (14). Validity of
the H theorem (20) enforces the second law (2) with the
entropy flux

s1f] = / Dpp*f{l —Inf] 21)

and entropy production X = —H.

To a given f we may associate an EMT [Eq. (19)] and
thereby a velocity #* and an energy density p=oT*
through the Landau-Lifshitz prescription (6). We then
adopt the relaxation time approximation [16—19]

1
leo = ;u”pu[f _feq]’ (22)

where f, is the Maxwell-Jiittner distribution with the same
T and u* as f. The constant 7z is the so-called relaxa-
tion time.

In equilibrium 7 = Ty, u* = U* = (1,0,0,0), ¢** = n**
and f = fo = feqo = e~7"/To. We consider a metric fluc-
tuation g, = n,, + h,, with hg, = 0. Subsequently we
have T = Ty(1 +8) and u* = U* + v* with v° = 0. We
parametrize

0
£ =fo 1+&§—0+vk§—z+(p, (23)

where 9 and ¢# are the perturbations to the Landau-Lifshitz
temperature and velocity, namely

d3
[ b U ) s = a1+ 49U+ 1)

(24)
which is equivalent to
&p
/(27)3,P”(ﬂf0 =0. (25)
Then also
P’ Pk
feq:f0|:1+19T—0+U T—O:| (26)

To perform the scalar-vector-tensor decomposition we
write

Vi = ikiUS + Vyi, (27)

with k;vy; =0, and

1
hij = [kik; = K26;)hs + |:kikj - §5ijk2] s
+ lkth/ + lkthl + hTijv (28)

with k]hV] = k]th] = hT/] =0. 19, Vg, hS and h/S corre-
spond to scalar degrees of freedom, vy and hy are vector

degrees of freedom, and hjfk are the tensor degrees of
freedom. The Boltzmann equation (14) becomes

=P8+ M) + 25 (pvl + M) + P + Pl
Ty Ty
1 . . -p
+2—T0hjkpjpk = (29)
Fourier transforming the space-time dependence, we get

P [=E kDO + pyv) = 5 huh
TO Z— klﬁl

= ., (30)

where

1
zz%[aH-if"]. (31)
On the other hand, if we multiply Eq. (58) by f, and
integrate over all momenta, the terms containing ¢ cancel
because of Eq. (25), and we get the continuity equation

1 .
46Tg{—16019—§k2115+§60k2h5} :O (32)

We still must enforce the constraints in Eq. (25), which
become
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w ~ w ~ w .
|:—%J+kljl:|19+ |:_Ejk+k[]lk:|vk—ﬁhjkjjky
w . A w . - [0 :
|:—ZJ]+k[J'll:|19+ |:_ZJ]k+lijlk:| ’Uk:ﬁhlk.]jkl,
(33)

where

Jhiody — dp p?ph .t 34)
(27)° Z—/A‘lf’l ‘ ' (

They are evaluated in Appendix B. After finding 9, v*
and ¢, we may proceed to compute the EMT

1
" = pT§(1 + 49) [U”U” A UM U

+ 11, (35)

where

dp
= / 2ayp P )

or else

vk = Ti { [— %Jfk + 1%,11“] 9+ {—%Jﬂ"" + /%,Jfklm] .
0
w .
——h J]klm . 37
2% Im } ( )

Observe that the trace of TI/¥ vanishes because the Jki-#
tensors obey J;k"”k" = Jkikn,

It is clear that the scalar, vector and tensor sectors
decouple, and it is best to consider each one in turn. We
expect to recover the Landau-Lifshitz hydrodynamic
modes from divergences in § and v/, while there will be
poles in ¢ associated to nonhydrodynamic modes absent
from Landau-Lifshitz theory.

A. Hydrodynamic poles

1. The scalar sector

In the scalar sector we have
1
hi; = [k,»kj - kzéij]hs + [k,»kj - géijkz} I, (38)

and v* = ivgk*. From the results of Appendix B we get

w w 2 .
—z]‘i‘)(] 19+ _;){]4‘513 lk’l)S

wk 3 1
:? |:(—§J+)(3>hg+ <—5J+)(3>hg~:|»

) 2 2w 2 )
EAREYE I+ 33 T 545 ikvg

wk 5
_?[(2)(5—5)(1)]154' (2)(5—5)(1)%]' (39)

We expect to find the hydrodynamic poles when the
determinant of this system vanishes. We consider the
7 — 0 limit, where |z| > 1. The condition for a vanishing
determinant, to next to lowest order in z7', is

k2
LSk, (40)
V3 15

which reproduces the result for Landau-Lifshitz fluids
[Eq. (A11)], identifying v = /5.

o~ +t

2. The vector sector

In the vector sector
hij == lkth] + ikthi7 (41)

with Ay;k" = 0. Then 9 = 0 and v’ = v/, is also transverse.
We find

w (1 1 1 1 P o 2 ‘
—2 330 | Fon—sas|vv = 5\~ 5xs hy.
(42)

There is a pole when the term in brackets in the left-hand
side vanishes. For large z [cf. Eq. (31)] we find the pole at

1 —ik’c
L 43
@ 5(1-wr)’ (43)

which corresponds to the hydrodynamic pole we find
in Landau-Lifshitz fluids, again identifying v = 7/5
[cf. Eq. (A10)].

In the tensor sector h;; = hy;; is both traceless and
divergenceless, 9 = v' =0, and there are no hydrody-
namic poles.

B. Nonhydrodynamic poles

To study the nonhydrodynamic modes, we shall consider
/% in the limit where k — 0, while @ goes to a finite value
and |z| > 1. Once again, it is best to consider scalar, vector
and tensor modes separately.
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1. Scalar modes

In the limit we are considering, the scalar viscous EMT reads

| fag—
S Ok

Since IT§; = 0 we may write

A 1 )
{Jfk& + Jikmk, (ikv) +3 k {(hs + W) JHm k., — (hs + gh’s> JJ"”"(S,,,,} } (44)

1

L] =

3 —w 3 1 3 1
H 2H{S~kk}kk, = T k {){319 —+ )(S(Ikvs) + = k2 |:(//l5 =+ ]’l/ ) <_§J =+ 2)(3 —+ 12)(6) - <h5 +—]’lg~>}{3:| } (46)

5

It may be seen that to this order there are no new poles
proportional to /g, so we shall set 7y = 0. Then we only need
the leading order form of ikvg and 9. In the scalar case
Eq. (32) and the two equations (33) are not independent, we
choose to work with the former and the first of the latter. Then

2k?
kvg = ——N 47
IKVg 15 S’ ( )
while J is of higher order in k. From Eq. (46) we now find
oTiwk 4 91
Og=—-———_—(1+ H. 48
s z 15 ( 3572 > (48)

We see that the leading order terms in the inverse propagator
go like 1 — (9/35z2). This behavior may be reproduced by a
nonhydrodynamic pole at z> = 9/35, or else

-i /9
= — 4 {/—k. 49
©=7 35 (49)

2. Vector modes

As with the scalar modes, we begin with the leading
order relation

—ik
vk~ 5 ht,. (50)

The vector viscous EMT reduces to

; —4iow 8

I = 1
Vo157 { T35 3572
Therefore the leading terms in the inverse propagator are

o 1 —(8/35)z72, “as if” there were a nonhydrodynamic
pole at

}(k/h"‘, + kR, (51)

o——ta Sk (52)

3

3. Tensor modes

The response of the EMT to a tensor metric fluctuation is

I = —— y6hy. 53
Tok% (53)
For large z we get
; —4iwt 11
= T4h’k 14+=-= . (54
T 151 —iwr) [+7 2t } (54)

Therefore the inverse propagator will be proportional to
1 — 1/7z%, which is the behavior caused by a pole at [21]

o=-1 5 (55)

We see from kinetic theory that a relativistic fluid may
support damped tensor waves, which are totally absent in
first order theories.

C. Poles or cuts?

The analytic structure of the kinetic theory propagators is
determined by the presence of a cut in the complex
frequency plane. This is due to the fact that the propagators
depend on the function L[z] defined in Eq. (B2), which has
a cut from z = —1 to z = 1 or else, with z as in Eq. (31),
from w = —i/7 — kto —i/7 + k [22]. However, the analytic
structure of the propagators in the & — 0 limit may be
reproduced by suitably locating poles in the complex
@ plane. Though the poles themselves are not in the
asymptotic region, they give the right analytic structure there.

Coincidentally, the analytic structure of EMT correlators
in A¢* theory is determined by cuts, rather than poles [25].

However, in the strong coupling limit things seem to be
different. We can verify this explicitly in theories with a
holographic dual [1,20,26-35]. Then the thermal EMT
correlators may be found by solving the classical Einstein
equations in a dual, five dimensional space-time. A thermal
state corresponds to an anti—de Sitter space-time containing
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a black hole in its center. The physical fluid lives on the
boundary of the anti—de Sitter space-time, and the Hawking
temperature of the hole is the temperature of the fluid.
Perturbations of the fluid correspond to perturbations of the
black hole metric, with no naked singularities and incoming
boundary conditions at the horizon.

For each k, the frequencies of free oscillations of the
fluid correspond to the horizon fluctuations, and they
come in a discrete, infinite series, depending on the
t’Hooft coupling ¢°N,, where g and N, are the coupling
and number of colors of the underlying gauge theory [103].
These free frequencies appear as poles in the EMT
propagators. For the scalar (“sound”) and vector (“shear”)
sectors, there is sequence of hydrodynamic poles, namely
@ — 0 when k — 0 and also nonhydrodynamic poles. In
the infinite coupling limit, the hydrodynamic poles are well
reproduced by a FOT with v = 4x/T,. Corrections to this
value at finite coupling are discussed in [104]. In the tensor
(in this context frequently called “scalar”) sector, there are
no hydrodynamic poles, but again an infinite, discrete
sequence of nonhydrodynamic ones.

The presence of infinitely many modes cannot be
reproduced by hydrodynamics, either first or second order.
However, the imaginary part of the poles increases rather
sharply along the sequence, and so only a few long lived
modes are actually relevant to describe the approach to
equilibrium. These are the modes that either causal FOTs or
second order theories aim to reproduce.

D. Beyond the relaxation time approximation

While the relaxation time approximation we have
used so far is frequently a preferred choice in view of
its simplicity, it is also known [105] that it departs in
significant ways from more realistic kinetic equations such
as Boltzmann’s and Landau’s. It is therefore relevant to ask
how far results derived under this approximation may be
generalized to more complete setups, if at all.

To this end we adopt the viewpoint presented in [106].
We parametrize

f=rfo(l+4¢) (56)
and
Lalf] = =(P") foF(4)- (57)
The Boltzmann equation (14) becomes
1 . .
b+ Do+ 2Top hjkP]Pk = -F[q]. (58)

— ke (p*| p*(p*)]

3
Z (w5
v=0

(P*le) = > kil | o) (¢sldh)

We assume the collision term is ultralocal in position space.
Then it commutes with Fourier transformation, and we get

[0 — ki pMp + 0 hjkl? pk=—iFlgl. (59)

2Typ

It is convenient to introduce an inner product in the space of
functions of momentum

wig) = / Dypy' . (60)

where
Dyp = Dpp°fy. (61)

We assume the linearized operator F is symmetric under
this inner product. Momentum conservation takes the form

{P"|F|) = 0. (62)
Since |¢) can be any vector, it must be
Flp*) =0. (63)

We assume these are the only null eigenvectors of the
collision operator, and that there is a set of non-null
eigenvectors

Fld) = valdz). (64)

where v, is real and positive, and (¢,|¢p;) = 5,,. We then
have

Z P (P |9) +Z|¢u (#:l).

Flb) = me (pale), (65)
2
where (no sum over yu)
a, = (p"p")"! (66)

Contracting Eq. (59) with the |p*) or the |¢,) we get two
sets of equations. On one hand

jok
Y
2T Jk pO
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and on the other
=3 kil )+ S0+ 80150 ke el ) = = < > (68)
v=0 o
where
1 2175 -1
o = 3% = 27 [T3I[5]]
. - p/pt
1) = 11t = (125 <o,
. . J pk T313] .
(P19H0) = (1] p7) = <p°|%> Tl e (69)
p (Y3
We then get

() =L gy + s

3Tyag
K k
) = 3, )+ <” P |¢g><¢a|¢>
. U)h ik
<¢l|¢> o _2T0((U j‘ il/l)

(41 25) + g { oo ) 100+ Swlpia o). (0

Since we are only interested in the hydrodynamic limit, we may solve these equations in powers of k’/. To zeroth order
0 2 3 5]
(Pl) ) = kehg =2
(Pl) =

0 _ _ wh ik pjpk>
<¢ﬂ|¢> 0 = 2T0[(l) j'_ l.I/l] <¢i| po s

’

(71)
where (p°|¢) receives no first order corrections. Else
@ = LS, Tl p'p why, p'p
i = & {wens B Sk 0 ) e (0 250
ky wh
1) — ~ Im p p
BB = = s S ) g (0 25, 1)
To second order we get
k
(Pl)® =L (o)
_k
(p/]) "Z<” b |¢6><¢g|¢>
e DO S S0 8100 ) 73)
(0 + ivy) ; p° eivte
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Finally, the spatial components of the perturbed EMT

3 . J
ri-ry = (P8))

1. TAT[5] K2
= U KPhg— 2= (14—
3 { 5 62 ( 3,

+§j< |m>{—2T

whlm < |p p >
[@ + iv)) 4 pP

ki prp'\ 1 T{T[5]
S 2N Rh =0
+(a)+iul){z a0<¢ﬁ p° >w{ 571872

[

2) kkklz<p p! |

b )3

w5

(x)hpq pP p?
o+ ) <¢"' » >}

l,,m
_ka<pp’é) ¢0>

—mem{

We observe that there must be eigenvectors for which
(p'p?/p°)|;) #0, since |(p'p// p°)) is not a linear super-
position of the null eigenvectors |p#) and the |¢,) are
complete in the complement of the |p#). In coordinates
where k' is in the z direction, this is true in particular for
|p*p”/p°), which couples to the tensor part of h; i PP/
p°), which couples to the vector part, and |(p** + p*2 —
2p*)/p®), which couples to the scalar part. So there must
be a nontrivial propagator for tensor modes just as there is
for vector and scalar ones. Also, if the collision term does
not break the isotropy of space, we expect the eigenvectors
to carry a representation of the rotation group, and for this
reason at least, the eigenvectors that couple to these kets (and
therefore cannot be rotation invariant) will be degenerate.

Once we have the representation (74) at our disposal, it is
a simple matter to match it to the asympotic behavior
resulting from a suitable distribution of poles and cuts in the
complex frequency plane. For example, in the first term of
Eq. (74), we find

O*g)_f%ﬁ

signaling the presence of the usual sound pole. Then it is
easy to see that eigenvalues in the discrete spectrum will
give rise to poles, while eigenvalues in the continuous
spectrum will be associated to cuts. This derives from the
fact that an expression such as

(75)

/ L (76)
v [@ + iv]

is discontinuous when we go from w = —iv+e€ to
w = —iv—e¢, for all v > v such that p[v] # 0.

The relaxation time approximation is the extreme case
where the full spectrum is collapsed to just two points,
0 and 1/7z. The sums over the non-null eigenvalues are
performed by using

2T
o () )

SO W) o) =

o

(W'|w) Za W'[p)(p"lw). (77)

and we easily recover the results above. In the opposite
limit, the theories with an energy dependent relaxation time
discussed in [22] (see also [105-108]) have purely con-
tinuous spectrum ranging from vy = 0 to oo, and therefore
lead to an analytic structure dominated by cuts.

Realistic kinetic equations such as Boltzmann’s
[109-111] and Landau’s [112,113] have both isolated
and continuous eigenvalues, strongly dependent upon the
details of the interparticle interactions. The so-called hard
potentials have a continuous spectrum ranging from a finite
value vy > 0 to oo [114]; they may have further isolated
eigenvalues between the ever-present 0 and v, [115,116],
and besides, since most modes in the continuum decay
much faster than v, it may be possible, for all practical
purposes, to appr0x1mate the continuum by a single
eigenvalue. Contrariwise, “soft” interactions lead to a
continuous spectrum starting from v, = 0 [114]. We should
note that both Boltzmann’s and Landau’s equations have a
fifth null eigenvector associated with particle number
conservation, which is not a feature of conformal theories
(in gauge theories there are particle number changing
processes such as gluon splitting, in A¢* theory particle
number conservation is broken at order A* [117]). More
general collision terms are discussed in [3].

We therefore conclude that the analytic structure found
under the relaxation time approximation is not an artifact of
the approximation, although it is not universal either, and
its validity must be judged on a case by case basis.

III. DISPERSION RELATIONS IN DIVERGENCE
TYPE THEORIES

In this section we shall compute the dispersion relations
as derived from SOTs within a DTT scheme.
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Let us motivate this particular SOT by deriving it from
kinetic theory [15]. To this end we assume a parametrized
distribution function

[ = Foyaro ¥ ps 1.8 . (78)

We obtain equations of motion for the parameters
pH.CH ... by taking suitable averages of the Boltzmann
equation [74,75]

/Dppﬂpyfhydro;p = /Dppﬂlcol[fhydro] =0,

/DpRa[X, p]pyfhydro;y = /DpRaIcol[fhydro]"" (79)

This scheme enforces energy-momentum conservation
[Eq. (1)]. However, because fhyqr 18 not a solution of
the Boltzmann equation (14), the H theorem (20) does not
apply to it, and the Second Law may not be enforced. This
is avoided if we make the specific parametrization

Frydro = PPt L Ralxp] . (80)

that is, the same functions R, which appear in f}qr, are
averaged against the Boltzmann equation to obtain the
equations of motion for the parameters {* [15]. The
resulting system of equations take the form of conservation
laws for the currents

Al{i - /DPRa[% p]pﬂfhydrov (81)

and so this theory falls within the class of DTTs.

The particular implementation of this scheme we are
interested in postulates two nonequilibrium tensors ¢, and
&, besides the usual variables 7" and u¥. The parametrized
distribution function reads

n pHp¥
Frodso = eﬂyp oy e
ydro

PHprpP

(—uyp*)? , (82)

where p* =u*/T, u*=-1. {,, and ¢,, are totally
symmetric, traceless and transverse, meaning that

Sﬁ é’aﬂ — é‘m/’
singrs = g, (3

with the projectors

1 2
o =5 {A’éAz +AGAG - gM”Ad},

oAt

1

Soie = g 1AGATAT + AGALAT + AJACAT

+ AYAVAL + AFAYAG + AYAYAY
2

- g [AW(AI;AM' + AQ)AO‘T + A!T)A/la)

+ A*(AYA,, + AYA, + AYA,,)
+ AP (A/éAA‘: + Al/{Ao'r + A’;Aia)]}v (84)

where as usual A* = g* + utu”.

We should note that most work on DTTs to date does not
include the third order tensor &,,,,. Often the only variables
considered are a chemical potential (for nonconformal
theories), the four vector f, and a traceless tensor ¢,
[118]. This adds up to 14 degrees of freedom, and is thus
analog to Grad’s “14 moments” approximation. In these
usual theories the tensor mode in nonpropagating, while, as
we shall show below, including the &, tensor provides it
with a finite propagation speed, which further agrees with
the one derived from kinetic theory (55).

Including the tensor &,,,, will not just produce this only
change in the theory, we should expect there will be
incremental changes in the scalar and vector sectors as
well. However it is fair to say that they do not change the
physical picture in those sectors as they do for the tensor
modes. Likewise, including higher order tensors will only
have incremental effects on 7.

The equations of motion for the variables p#, {# and &
are obtained from the weighted averages of the covariant
Boltzmann equation (14)

/Dppﬂ [prfhydro;f - Icol] = 0’

I
/ DPS%W [p fhydro;f - Icol] =0,

apy P'PP”
/ DpS#{//])/ 7,{)2 [p fhydro;r -

(—M@p Icol] =0. (85)

Integrating by parts, we write these equations as conserva-
tion laws

T =0,
SIALP — Aoy, — ] =0,
SuB[AL?T = 24m0Ay , — 0] = 0, (86)

where
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Here
™ = /Dppﬂpyfhydrov
pﬂl ”.p.un
Atitn — | pp L ,
/ P (—Lt,lpﬂ)"_z fhydro O = /Dppﬂfhydm' (90)
p”l ”‘pﬂn
poosn = [ Dp Lol (87)
Ui

So far the discussion has been general. We now linearize

If I, satisfies the H theorem, then this dynamics yields ~ around an equilibrium solution. We adopt the relaxation
positive entropy production, with the entropy flux time app.r(?anatlon collision 1ntegral (22). _ )
In equilibrium {* = &7 = (), since we are interested in

linear deviations from equilibrium only, we can write
St = Dpp”fhydro[l —In fhydro]’

=P — ﬁuT/w - gupAﬂDp - gpr'Aﬂypav (88) v

p'p n pip'p’
(_”/IPA) e (—”/117/1)2 ’

fhydro = el |1+ C}lu (91)

and entropy production

= —C,I"" =&yl (89)  thenalso feq = €7 and the equations of motion reduce to

HY HVPO _
To, + T Cpey =0,

. 1
S% {T/llfpp + Tllwpg (Cpo + ;gﬂv) + Tgypahgmlr;p - Tgvpgup;a] =0,

Q vpolt | & 1
Sm[/j/};Tg pok |:§o'ﬂf + ;é:o'h + C/l(r;f:| = 07 (92)
where
Hi Hn
i — [ p pf.p . 93
/ p (_ulpl)afcq ( )

These tensors are evaluated in Appendix C. In general, the projectors mean that we have to symmetrize and subtract all
longitudinal and tracefull terms. We also write 7' = T¢(1 +9) and u* = U* + v*, with U*v, = 0. We then get

o1/ 1.
S+ (v +-0) =o,
+ 3 (v‘l + 5 ,)
) 2 .
v; + 19_]' +§T0Cj,k =0,
1 . 1 3
Eﬂjk‘f'To gjk+;€jk +7T0§jk1,1=0,
1 2 . 1
3 Cije t Cij+ Cini — 5 (6i;Ckis + Sl + Ox;Cuy) | + Eijie + ;§ijk =0, (94)
where 6;; is the shear tensor

ij = Ui.j + Uj.,i - —61']'1){(]( + hij - gauhi (95)

3
Fourier transforming and using the velocity decomposition (27) and the metric decomposition (28) we get

1 1
ij = -2 |:klk] — 5511k2:| Vg + i(kiij -+ ijVi) —iw |: |:klkj — §5llk2:| (hS + h{g) -+ lkthj + lk]hvl + hTij . (96)
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To decompose Eq. (94) in scalar, vector and tensor
modes, we define

1

Ly = s [k,-k, -3

k25u} +i(Cyik; +Cviki) + Crijs

. 1
Sijk = i85 [kikjkk - gkz(ki‘sjk + ko + kk5ij):|

1 1
+&y; |:kjkk - k2§5jk:| + &y, [kikk - k2§5iki|

1 .
+ &k |:kjki - k255ji:| + i(&rijki + Erink; + Erujki)
+ &rrijis (97)

where kiCy; = kilrij =0, ki&yi = ki&rij = kiSrriji = 0,
and tensors are totally symmetric and traceless. The
scalar-vector-tensor decomposition of the shear tensor is
given in Eq. (96).

A. The scalar sector

In the scalar sector we get

. 1 i
iwd +§k22)5 = ga)kzhs,
. 4
8—lwvs+—k2T0CS:O,
15
YR, 9 1 ,
Us+l a)—l—; T0€5+gk Togszila)(hS—FhS),
i

The dispersion relation is

(7=5€) (o)
—k{%w(m—i—%) +%<w2—%k2>} =0. (99)

When k%, 7 —» 0 we have two branches of solutions,
hydrodynamic modes with

2
— —itk?,

V3 15

which correspond to the Landau-Lifshitz modes with the
identification v = 7/5 (see Appendix A), and nonhydrody-
namic modes with

o+ (100)

(101)

just as derived from kinetic theory, Eq. (49).

B. The vector sector

In the vector sector we get

2.
Cl)'l)vj _glszOCVj = 0,

1. i 12 1,
5 lUVj + <CU + T) TOCVj + glszoévj = —5 la)hvj,
2, i
§l§Vj_ a)‘i‘; fvj =0. (102)
The dispersion relation is
iz 1 i 8
Z) g2 -) ——Fkw=0. 103
a)(a)+r> 5 (a)—kl_) 3K @ (103)

Therefore when k* — 0, either w — 0 or @ — —iz~!. In the
first case we find an hydrodynamic mode with

1

wz—girkz, (104)

while the others are two nonhydrodynamic modes with

_j ]
a)z—l:I: —k.

1
T 35 (105)

Once again, the hydrodynamic modes agree with Landau-
Lifshitz theory if v =1/5 (see Appendix A), and also
reproduces the nonhydrodynamic mode from Kkinetic
theory (52).

C. The tensor sector

In the tensor sector we get

i 3, —i
(CU + ;) Crje — 7 ik*Epj = T_Othjk’

1. i
glCTjk + ((!) +;)§T}k =0. (106)

We therefore find two nontrivial hydrodynamic modes with

_; 1
a)z—lj: —k.

Ry (107)

These modes have no analog in Landau-Lifshitz fluids, but
match quantitatively the nonhydrodinamic tensor modes
from kinetic theory (55).

If we had considered a truncated theory with &;; =0,
then there would be a tensor nonhydrodynamic mode, but
with a k-independent dispersion relation w = —i/z, it is
thus not propagating. They are present already in the Israel-
Stewart theory [119,120]. Their cosmological conse-
quences are discussed in [121,122].
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Erriji 18 decoupled and obeys the equation

i
<CU + > Srrijk = 0,
T

SO we may assume it vanishes throughout.

(108)

IV. FINAL REMARKS

In this paper we have computed the dispersion relations
for a DTT containing two nonequilibrium tensors ¢, and
&, besides the usual variables T and v, and compared the
result to known results in the literature involving FOTs [14]
and also “first principles” calculations from kinetic theory
[21-24] and quantum field theory [1,20,25-35].

The “first principles” calculations display both hydro-
dynamic and nonhydrodynamic modes in all three sectors,
scalar vector and tensor. Both FOTs and DTTs describe
well the hydrodynamic modes and the longest living
nonhydrodynamic modes in the scalar and vector sectors.
DTTs also describe the longest living tensor mode, which is
not recovered in FOTs. A truncated DTT with only the ¢,
tensor yields a nonpropagating tensor mode, in agreement
with Israel-Stewart theory [119,120].

We have been unable to find a clear cut statement about
the speed of propagation of tensor modes in the third order
formalism [59,61,123,124], since usually only the “sound”
and “shear” channels (which correspond to scalar and
vector modes in this paper) are discussed in detail. The
relevant third order equation as derived in [60,125] includes
second order derivatives of the viscous EMT.

DTTs also perform well in the similar problem of the
dispersion relations for a viscous charged fluid [126,127],
where they reproduce the Weibel instability [128,129]. The
cosmological consequences of this fact are discussed
in [130].

We believe these results validate the choice of DTTs to
describe fluids in problems where the interaction with
gravitational waves is a matter of relevance [131]. These
problems include generation and amplification of gravita-
tional waves in the very early Universe [121,122,132] and
during cosmological phase transitions [133], and gravita-
tional wave emission from rotating neutron stars [134],
among others. Where gravitational interactions are not a
concern, the relative advantages of FOTs and SOTs must be
considered carefully to find the most suitable model for
each application.
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APPENDIX A: DISPERSION RELATIONS FOR
IDEAL AND LANDAU-LIFSHITZ FLUIDS,
AND IN CAUSAL FOTS

1. Ideal fluids

To obtain the dispersion relations for an ideal fluid we
must consider the conservation laws (1) for the EMT (3).
For a conformal fluid, p = ¢T* and p = p/3. For con-
creteness we assume the value of the constant ¢ which is
compatible with Maxwell-Jiittner statistics for a single
degree of freedom, namely ¢ = 3/7% The conservation
laws are

T 1
| Z—
T =+ 3 ut, =0,

T
i A= 0, (A1)

X =u'X - We linearize these equations by writing
T=Ty(1+9), w=U"+v, U'=(1,0,0,0), and
v? = 0. Taking the Fourier transform we get

. L. . i .
—1a)19+§ {zkjv/ _Ewh’] =0,

—iwvl + ik;8 = 0. (A2)

We now decompose the velocity as in Eq. (27) and the
metric as in Eq. (28). No tensor degrees of freedom are
included. We thereby get on one hand

/ 1
—0d +§k2v5 = —S ks,

9 —iwvg =0, (A3)

and on the other

wvl, = 0. (A4)

We see that scalar, vector and tensor modes decouple. For
the scalar modes we find the dispersion relation

1
W~ 3K =0, (AS)

so the scalar propagator has poles at @ = +k/+/3, repre-
senting longitudinal sound waves. No vector or tensor
modes are excited in the fluid.

2. Landau-Lifshitz fluids

If we consider a Landau-Lifshitz fluid instead of an ideal
one, the difference is that the EMT becomes

4 1
T = goT4 [u” u’ + Zg””] — 1o, (A6)
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where 7 is the fluid viscosity and ¢** is the shear tensor

2
otV = AIMAW) M@;p + up;/l - gAlpuffa . (A7)
The linearized conservation equations are now
.1 .
Jo_
1.9 + § U;j = 0,
W+ 9;—vel =0, (A8)

where v = 3n/46T4 = n/s¢T, is the kinematic viscosity.
With the shear tensor (95) and its Fourier transform (96) we
get

' |
—0d + %k%s = —Sokhs,

4i 1
9 — i[a) + éukz} vs =5 ik*vw(hg + hy),  (A9)

and
(A10)

: 3 ,
@ + ivk*|v], = —Zukzwh(,.

We see that the longitudinal sound waves now become
damped, with a dispersion relation

k2
o~ +——Zivk?, All
while the pole for transverse waves has been shifted from
@ =0 to @ = —ivk®. There are still no tensor modes in
the fluid.

3. Causal FOTs

As a representative causal FOT we shall consider the
EMT [14]

3 4 1
TW = [e + 4—)2 (u/’vpe + gevﬂu/’>] <u”u” + gA’“‘) — not”

€

A
e [4u'ew’V ,u” + ut AN e + 4uteu’ NV ,ut + u? Ay VPe]

(A12)

Only when in equilibrium, € = p is the energy density. The new transport coeffcients y and A are the hallmark of the causal
FOT approach. They define timescales of the order of the relaxation time on which the hydrodynamic variable € relaxes to
the Landau-Lifshitz energy density, and in this sense they act as causal regulators. See [14] for further discussion.

To linearize the conservation equations (1) we write € = ¢ + d¢, and expand u* = U* + o and ¢*¥ =y + ¥ as
before. We further decompose v’ as in Eq. (27) and h;; as in Eq. (28). We thus get the Fourier-transformed equations

3 4 4 1
0=—iw [56 + 4—1 <—iw5€ - geok%s)] - [§€0 - Aiw] kKog — Eeoiwhs,

€0

(A13)

4 . 1 2 N1
0=—iw [g €0 — ﬂiw} (ikivs + o)) + €0 <—i§k2k’h’s - kzh’v> + g icokKhs

3y

3 4€0

1 ) ) . . |
+ 27 [E (K2 (ik'vg + vi)) + iki(Kvg) — iok? ik h) — gik’(—kzvs + ia)thS)} :

1. 4 1 |2 . )
+ = ikt |:6€ 4+ —— (— jwoe — 3€0k27)5>:| — §€0 |:3 lkzklhgv + k2htv:|

(Al14)

We already see that the tensor sector has trivial dynamics. We analyze the scalar and vector sectors in turn.

a. Scalar sector

The scalar part of Eq. (A14) reads

6

3 460

4 4 1 1 3 4
0=—-iw |:§ €y — lla):| Vg — §€0k2h{9 + _eokzhs + = |:5€ + _Z (— o€ — §€0k21)s>:|

2 1 1
+ 2nk? [g vg — Eia)h’s + giwhs] .

(A15)
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Elliminating vy we find

3

5 - io(F4)]

% |:1 _Gokz

€0 3iw [—0’A —

1 1
=
iwSeo— LI (y - 417)]} 6[1—iwX] °

+k2 [i_‘ (/1+)()]{3 0k2( h/

—w?A —

iw l—la)f’{
€

In the limit k> — 0 Eq. (A16) simplifies to

oe 1 1 l’lS
e _ _ iy Al7
€0 [l—zwjf][a)z—%k%l—a)} 6 (A17)

where
(A18)
We therefore get a hydrodynamic pole with

= k2 Al19
and a nonhydrodynamic pole with

460
w=—1—.

5 (A20)

b. Vector sector
From the vector part of Eq. (A14) we get

i 2 —€Ok2 hi
vy, = .
Y73 —nk* + la)€0 +w?)

When k> — 0 we get a hydrodynamic mode

(A21)

3
w=—"il

A22
4 € ( )

and a nonhydrodynamic mode
(A23)

We see that the causal FOT formalism recovers the
hydrodynamic scalar and vector modes, and also non-
hydrodynamic modes in these sectors, with no dynamics at
all in the tensor sector.

1 l’ls) - l’[lCl)kz(% hS - h&)} (A16)

lw‘%eo + 1K (x — 4n)

APPENDIX B: EVALUATION OF INTEGRALS

The integrals (34) may be evaluated explicitly by going
to polar coordinates with IA<, pl=cosf =x

1 )
J = 2/ dpp*er/To =20T3L[z], (B1)
dx 0 12—
where
W2 +1 —
Lzl = =2 B2
I = P = ( 2n +1 2”“ (B2)

The radial integral is always the same, while the x integral
changes. We have

A

Jk :)(lkkv (BS)
1 d
X1 :26T(5)/ o ,
12 —X
4 1 31
:20T(5)[ZL[Z]—2]:§0T8{?+§Z—4+...] (B4)
To evaluate J7*, we write
. ~in ) ~on 1 .
JIK = o[l kE = 67%] + ys [k K — gafk]. (B5)
Then
1 1 11
_ J_ 5
1 dxx?
)(3236T(5)/ i ,
13— X

1

:65T3BZ2L[Z} }—%TS[ +§l3+ } (B7)

A totally symmetric third order tensor may be written as

Jk = ak ]k + (ko™ + k84 + Kro'7).  (BS)
A traceless tensor must have a 4+ 5b = 0, while a totally
divergenceless tensor must have a + 3b = 0. So we may

also write
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. PP 1. P P 1, . A AL
T =y, |k R - S &+ kot k’%sw)} + 15 [klkfkk -5 (Ko + 5 + ko). (B9)
Now J;j =J! so
3 1 31
1 ==5n = =207} L—2+§Z—4+ } (B10)
and then
1 dxx3
X5 = SGTS/ i
—-1Z—X
2 151
= 50T} {Z3L[Z]—212—§} = 20T} {?4—7?—1—...} (B11)

Finally we compute J/*. Start from

ALA A

Jijkl — aklk]kk]’%l
+ b(k'K 4 4 k'K Y 4 kK $* 4 K kA6 + Kk S + KEE5Y)

+ ¢ (8U5H 4 &kl + sil§K). (B12)
We then have
JIE = (a + D)k + (b + 5¢)81 = Ji. (B13)
Then
a+7b =y, +xs,
1
b+5C:—)(2—§)(3, (B14)
SO

T = o [BK KKK — (KK + K R8Y + K o™ + KR 6" + WK 6™ + Kk o' )]
1 Nomag A PUUNS PN P PP ApAT
+ 32 [LOK KR — (K6 4 K8 + K6 + K5 + K 8™ + Kk

+ 2666 4 5%81 4 515k — 5k k6K + K IFSY + KIS + K RFST + R S* + JFkSU) + 35K IR (B15)

and
4 1 dxx*
21> +§)(3+8)(6:26T(5)/
13— X
5| 4 ;3 2
= 20T} |z L]z] — 2z —3% (B16)
therefore
1 1 5 4 1 11
=—oT|=(2-1>2L[7|l -2 +Zz| =—06T2|-+=-=+...]. B17
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APPENDIX C: THE T%'** TENSORS

In this appendix we evaluate the %' *" tensors from Eq. (93). The integrals against f,, may be computed on symmetry,

tracelessness and dimensional grounds

1
Ty = oT}§ [uﬂ v A””] :

1
T’f”" = UT‘S [u”u”up + g(A”U“p + )} ’

1 1
TV = 46Ty | W' u’ v’ u° +§(A’“’u/’u" +...) —I—B(A””A”" + )} ,

1 1
T = oT} [uﬂu”uf’u” + g(A’”’u/’u” +..)+ E(A”DNM + )} ;

1 1
Tg"”m’h = 40Ty | W' u’ v u’ u'u® + 3 (A™wuCutu® + ...) + G (A APT U YT + )

1
— (AAPAT L)
105 )
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