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The search for supersymmetric particles is one of the major goals of the Large Hadron Collider (LHC).
Supersymmetric top (stop) searches play a very important role in this respect, but the unprecedented
collision rate to be attained at the next high luminosity phase of the LHC poses new challenges for the
separation between any new signal and the standard model background. The massive parallelism provided
by quantum computing techniques may yield an efficient solution for this problem. In this paper we show a
novel application of the zoomed quantum annealing machine learning approach to classify the stop signal
versus the background, and implement it in a quantum annealer machine. We show that this approach
together with the preprocessing of the data with principal component analysis may yield better results than
conventional multivariate approaches.
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I. INTRODUCTION

After attaining its nominal energy, the Large Hadron
Collider (LHC) will reach an unprecedented collision rate
during its high luminosity phase, opening the stage to
discoveries beyond the standard model (SM) of particle
physics. One of the most challenging tasks in searches
taking place at the LHC is the capacity to categorize events
of new phenomena (signal) and those of SM processes
(background) which mimic the signal. Machine learning
(ML) tools are among the most powerful means for
separating signal from background events, having been
key to the discovery of, e.g., the Higgs boson [1,2]. More
recently, quantum annealing for machine learning (QAML)
[3] and its zooming variant (QAML-Z) [4] represent the
first examples of a quantum approach to a classification
problem in high energy physics (HEP).
In this paper, we study the application of the QAML-Z

algorithm to the selection of supersymmetric top quark
(stop) versus SM events. It is important to test this
algorithm on a new classification problem where both

the abundance of signal versus background events, and
their overlap in the experimental observables are different
from [4], therefore allowing us to have a better assessment
of its classification capability. A result on the stop search
based on the data accumulated by the LHC in 2016
(35.9 fb−1) has been published [5]. It is based on a classical
ML tool which will serve as a reference for gauging the
performance of the new classifiers. The variables discrimi-
nating between the stop signal and the SM background,
which are used to train the QAML-Z algorithm, are based
on the same ones as in the classical ML tool [5]. We present
results of the QAML-Z algorithm for different schemes of
zoomed quantum annealing, and various sets of variables
used in the annealer. Also, we introduce a preprocessing of
the data through a principal component analysis [6] (PCA)
before feeding it to the annealer.

II. SEARCH FOR SUPERSYMMETRIC
TOP QUARK

One of the main objectives of the physics program at the
LHC are searches for supersymmetry (SUSY) [7–12], one of
the most promising extensions of the SM. SUSY predicts*bargassa@cern.ch
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superpartners of SM particles (sparticles) having the same
gauge interactions, and whose spin differs by one-half unit
with respect to their SM partners. The search for SUSY has
special interest in view of the recent discovery of a Higgs
boson [1,2] as it naturally solves the problem of quadratically
divergent loop corrections to the Higgs boson mass. In this
study we describe the classification aspect of a search for the
pair production of the lightest supersymmetric partner of the
top quark t̃1 at the LHC machine at

ffiffiffi
s

p ¼ 13 TeV, where
each stop decays in four objects, see Fig. 1. The lightest
neutralino χ̃01 is considered to be stable as the lightest
supersymmetric particle. The final states considered contain
jets, missing transverse energy (Emiss

T ), and a lepton which
can be either a muon or an electron.
The sensitivity of this type of search is dominated by the

capacity to distinguish the stop signal from background
events, whose production dominates the signal by several
orders of magnitude, and whose observables overlap with

the ones of the stop signal. In this search, the main back-
ground processes are the tt̄ andW þ jets productions. In the
search based on a classical ML tool [5], a preselection is first
applied to decrease the overwhelming background stemming
from the SM. In a second stage, boosted decision trees
(BDTs) [13,14] are used to classify events as signal and
background. To find which variables are the most discrimi-
nating and should be fed as input to the BDT, different sets of
variables are tested as input to a BDTwhose output is used to
maximize a figure of merit (FOM) [15]:

FOM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

�
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�
−
B2

σ2B
ln
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1þ σ2B · S

B · ðBþ σ2BÞ
��s

; ð1Þ

where S and B respectively stand for the expected signal
and background yields for an integrated luminosity of
35.9 fb−1 at the LHC. The term σB ¼ ðf · BÞ represents the
expected systematic uncertainty on the background with f
being the relative uncertainty of the background yield,
taken to be f ¼ 20% as in [5]. The set of variables which
maximizes the FOM is chosen as the final set of input
variables to the BDT. This metric captures the full in-
formation of the statistical and systematic uncertainties of a
given selection, as it is important to account for the actual
conditions of a search. The approach based on the maxi-
mization of this FOM has been very effective to find the
smallest and most efficient set of discriminating variables in
several searches [5,16]. A description of the BDT param-
eters as well as its development with a FOM maximization
procedure as used in [5] are provided in Appendix A. The
list of variables is presented in Table I and their distribution
for signal and background is provided in Fig. 2. To render
the results of the classification based on the QAML-Z

algorithm as comparable as possible to the one of [5], we
use the same preselection of events before training (see
Appendix A). Furthermore, since the FOM as defined in
Eq. (1) represents a complete and single-number measure
of the power of a selection, we evaluate the performance of
the QAML-Z algorithm by a maximization of the FOM
versus a cut on its output. Finally, for the comparison of
performances to reflect only the difference of a quantum
based versus a classical tool, we train the QAML-Z
algorithm with different sets made of the same discrimi-
nating variables as in the BDT based search [5] (see
Table I).

III. QUANTUM ANNEALING AND ZOOMING

From the distribution of each variable i in signal and
background events, we construct a weak classifier χi as in [3]
which retains the discriminant character of each variable
while adapting it to an annealing process. We then construct

FIG. 1. Stop pair production at the LHC with four-body decays.

TABLE I. List of discriminating variables used as input to a
BDT in [5].

Variable Description

pTðlÞ pT of the lepton l
ηðlÞ Pseudorapidity of the lepton l
QðlÞ Charge of the lepton l
Emiss
T Missing transverse energy

MT Transverse invariant mass of the (Emiss
T , pTðlÞ)

system
NðjetsÞ Multiplicity of selected jets
pTðj1Þ pT of the leading jet
HT

P
i pTðjetðiÞÞ

Disc(b) Maximum b-quark tagging discriminant of the jets
NðbÞ Number of b-tagged jets
pTðbÞ pT of the jet with the highest b-discriminant
ΔRðl; bÞ Distance between the lepton and the jet with the

highest b-discriminant
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an Ising problem as follows. For each training event
τ ∈ ½1; S�, we consider the vector xτ of the values of each
variable of index i we use, and a binary tag yτ labeling
the event τ as either signal (þ1) or background (−1). The
value of the ith weak classifier for the event τ is given by the

sign of the corresponding weak classifier χi: ciðxτÞ ¼
sgnðχiðxτÞÞ=N ¼ �1=N, where N is the number of weak
classifiers. In the QAML algorithm, the optimization of the
signal-background classification problem is expressed in
terms of the search for the set of spins si minimizing the
Ising Hamiltonian:

HIsing ¼
XN

i¼1

hisi þ
XN

i¼1

XN

j>i

Jijsisj

¼
XN

i¼1

�
λ − Ci þ

1

2

XN

j>i

Cij

�
si þ

1

4

XN

i¼1

XN

j>i

Cijsisj

ð2Þ

where hi is the local field on spin si, and Jij is the coupling
between spins si and sj. The factor λ is a regularization
constant, and the terms Ci and Cij are defined as function of
weak classifier values and event tags as:

Ci ¼
XS

τ¼1

ciðxτÞyτ; Cij ¼
XS

τ¼1

ciðxτÞcjðxτÞ: ð3Þ

A strong classifier R is then built as a linear combination of
all weak classifiers and the spins, merging for each event the
discriminating power provided by all ci’s and the spins si
obtained from the quantum annealing process. The mini-
mization of the classification error is performed by the
minimization of the Euclidean distance between the binary
tag of each event and its classification R as obtained by the
annealing:

ky − Rk2 ¼
XS

τ¼1

jyτ −
XN

i¼1

siciðxτÞj2: ð4Þ

In the QAML-Z approach, the quantum annealing is
operated iteratively while a substitution is made to the
spin si:

si → μiðtÞ þ si · σðtÞ ¼ μiðtþ 1Þ; ð5Þ

where:
(i) μiðtÞ is the mean value of qubit i at time t. We have:

∀ i μið0Þ ¼ 0.
(ii) σðtÞ is the search width at each annealing iteration t.

We have: σðtÞ ¼ bt, where b ¼ 1
2
and t ∈ ½0; T − 1�.

This iterative procedure effectively shifts and narrows the
region of search in the space of spins. It updates the vector
μi which is collected at the final iteration to form the
strong classifier:

RðxτÞ ¼
XN

i¼1

μiðT − 1ÞciðxτÞ; ð6Þ
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FIG. 2. Distribution of the discriminating variables for the stop
signal with Δm ¼ 30, W þ jets and tt̄, used as input to a BDT in
[5]. Starting from top-left to bottom-right: pTðlÞ, ηðlÞ, QðlÞ,
Emiss
T , MT, NðjetsÞ, pTðj1Þ, HT, DiscðbÞ, NðbÞ, pTðbÞ, ΔRðl; bÞ.

Distributions are normalized to the same area and shown at pre-
selection.
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where the use of the weak classifiers is not limited to the
binary choice f0; 1g, but is extended to the continuous
interval ½−1; 1� via the use of the vector μi. The classi-
fication capacity of the QAML-Z algorithm is further
enhanced by an augmentation scheme applied on the weak
classifiers. For each hi, several new classifiers cil are
created:

cilðxτÞ ¼
sgnðhiðxτÞ þ δlÞ

N
; ð7Þ

where l ∈ Z is the offset: −A ≤ l ≤ A, and δ is the step
size. While the value ci of the old classifier has only a
binary outcome for each hi, the new classifiers cil have
similar but (2Aþ 1) different outcomes depending on the
very distribution of hi. We therefore have a better
discrimination because a more continuous, thus more
precise representation of the spectrum of hi with cil than
with ci. Applying the substitution of Eq. (5) in Eq. (4),
omitting spin independent and quadratic self-spin inter-
action terms, and defining new indices I as filg and J as
fjl0g, we obtain the Hamiltonian (see Appendix B):

HðtÞ ¼
XNð2Aþ1Þ

I¼1

�
−CI þ

XNð2Aþ1Þ

J¼1

μJðtÞCIJ

�
σðtÞsI

þ 1

2

XNð2Aþ1Þ

I¼1

XNð2Aþ1Þ

J≠I
CIJσ

2ðtÞsIsJ; ð8Þ

with:

CI ¼
XS

τ¼1

cilðxτÞyτ; CIJ ¼
XS

τ¼1

cilðxτÞcjl0 ðxτÞ: ð9Þ

The terms CI and CIJ are the input to the classification
problem. The HamiltonianHðtÞ is iteratively optimized for t,
with the vector μI updated similarly to Eq. (5). The
information about the iterative quantum annealing, corre-
sponding parameters, and control results are provided in
Appendix C, where we ensure that the Ising model energy
decreases and stabilizes for the chosen parameters. The
output of the optimization procedure is a strong classifier
built as in Eq. (6), and whose distribution is used to
discriminate signal from background.

IV. CLASSIFICATION OF STOP WITH THE
QAML-Z ALGORITHM

As in [5], only the main background processes W þ jets
and tt̄ are used for training the QAML-Z algorithm. To
realistically represent the SM in the training, a background
sample is formed where events of these two processes are
present proportionally to their production rate at the LHC.
We divide this sample in two equal parts, one being used by
the QAML-Z algorithm and one to assess the performance of

the strong classifier through the maximization of the FOM:
NðSampleÞ ¼ NðQAÞ þ NðAssessÞ. The QA sample is
further divided in two equal parts, one to train the annealer
and another one to test for over-training in the annealer:
NðQAÞ ¼ NðTrainÞ þ NðTestÞ. It should be noted that only
the Train sample is involved in the annealing process.
Having shown [5] that the kinematic properties of all signal
points ðmðt̃1Þ; mðχ̃01ÞÞ are quasi identical along the line
Δm ¼ mðt̃1Þ −mðχ̃01Þ, we use all signal events with Δm ¼
30 except the signal point (550, 520) as QA sample, while
entirely using this latter signal as Assess sample. This
organization of samples allows the usage of a maximal
number of both signal and background events for assessing
the performance of the classification as well as testing the
annealing process.
The data is run on the 2000Q quantum annealer of

D-Wave Systems Inc. [17], where the time to solution is
OðμsÞ, i.e., the time of the annealing (see Appendix C). This
computer is based on the Chimera graph which has 2048
qubits and 5600 couplers. To embed the Ising Hamiltonian in
the annealer, qubits of the graph are ferromagnetically
coupled into a chain to represent a single spin of the
Hamiltonian HðtÞ. While the Hamiltonian in Eq. (8) is fully
connected, the Chimera graph is not, thus limiting the
hardware implementation of the classification problem.
The number of Jij couplers is given by: NðJijÞ ¼ Nv ·
ðNv − 1Þ=2 with Nv ¼ Nvar · ð2Aþ 1Þ, where Nvar is the
number of variables used to train the QAML-Z algorithm,
and A is a parameter of the augmentation scheme [see
Eq. (7)]. Given the number of variables and the augmenta-
tion schemes used, the limit of 5600 couplers can be
exceeded by NðJijÞ; typically, for Nv ¼ 12 and for an
augmentation with A ¼ 5, the needed number of couplers is
8646. We therefore prune the elements of the Jij matrix,
retaining the largest (1 − C) elements, where C is a cutoff
percentage. Different cutoff values are expected to optimize
the performance for different sets of variables and different
augmentations schemes (A, δ). As a further option to reduce
the size of the Ising model to be encoded on the annealer,
we use the polynomial-time variable fixing scheme of the
D-Wave API. This scheme is a classical procedure to fix the
value of a portion of the input variables to values that have a
high probability of being optimal. An illustration of the
effect of the cutoff C, the use of variable fixing, and the
augmentation scheme is given in Appendix C.
In order to compare the performance of a quantum

annealing with a classical ML counterpart, we explore
various settings of the QAML-Z algorithm, namely
different augmentation schemes, cutoffs, and variable
fixing options, reporting only the performance of the best
setting for each tested set of variables (see Sec. V).
Despite averaging out the random errors on the annealing
and mitigating the possible effects of over-fitting due to
zooming (see Sect. III), the outcome of the annealing (the
vector μI) can vary due to the probabilistic nature of these
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schemes and to the variations of the machine itself (e.g.,
low-frequency flux noise of the qubits), leading to an
uncertainty on the performance. In order to estimate this
uncertainty, we run the annealing ten times with the same
input variables, in the very same setting, and on the same
sample of events, and we consider the standard deviation
of the corresponding maximal FOMs as uncertainty of the
performance for a given set of variables and setting. In
Fig. 3 we report the performance of the QAML-Z
algorithm with the variables of Table I as input and with
a given augmentation scheme and cutoff as a function of
the number of events used in the training. The perfor-
mance of the annealer increases with N(Train), witness-
ing a clear rise for rather small number of events and a
more moderate increase for larger numbers of events,
confirming the results of [3] with another signal.
Henceforth, we will present all results for NðTrainÞ ¼
NðTestÞ ¼ 50 × 103 where signal and background events
respectively represent 40% and 60% of these two sam-
ples. We therefore benefit from a large sample size to
train the QAML-Z algorithm, while observing a quasi
identical evolution of the Hamiltonian energy for the
Train and Test samples (see Fig. 5 in Appendix C). The
Assess sample contains approximately 200 × 103 back-
ground, and 7 × 103 signal events. In Fig. 4 we present
the distribution of the strong classifier for signal, and the
two main background processes. As can be observed,
there is no over-training of the QAML-Z algorithm
because the response of the strong classifier is sta-
tistically very similar for events which are used to train
the annealer and those not exposed to the training. Also
shown in Fig. 4 is the evolution of the FOM in the Assess
sample as function of the cut applied on the output of the
strong classifier. Henceforth, all the reported values of

maximal FOM are checked to correspond to a cut where
there are enough events in both signal and background
samples.

V. APPROACHES AND RESULTS

We define the main sets of tested variables in Table II.
For each set and the different approaches to test it, we
perform an extensive study of the performance of the
QAML-Z algorithm for different augmentation schemes,
cutoffs, and the use (or not) of variable fixing, as illustrated
for the sets A and B respectively in Figs. 6 and 7 of
Appendix C. For each set and approach, we report the

FIG. 3. Evolution of the FOM as a function of the number
events used for training. The QAML-Z algorithm uses the
variables of Table I transformed in weak classifiers, with an
augmentation scheme of ðδ; AÞ ¼ ð0.025; 3Þ, and with a cutoff
C ¼ 85%, without using a variable-fixing procedure.

FIG. 4. The output of the strong classifier for the signal (top-
left), W þ jets (top-right) and tt̄ background (bottom-left) in
the train (orange) and test (blue) events within the QA sample.
The evolution of the FOM as a function of the cut applied on the
strong classifier’s output is illustrated in the plot in the bottom-
right. The QAML-Z algorithm uses the variables of Table I
transformed in weak classifiers, with an augmentation scheme of
ðδ; AÞ ¼ ð0.025; 3Þ, and with a cutoff C ¼ 85%, without using a
variable-fixing procedure. The number of events used for training
is NðTrainÞ ¼ 50 × 103.

TABLE II. Definition of different variable sets as a function of
the used variables.

Variable set
name List of variables

Use of weak
classifiers

α=β Table I No/Yes
A Table I and: Yes

pTðlÞ=Emiss
T , pTðlÞ=pTðj1Þ,

ðDiscðbÞ − 1ÞpTðbÞ,
jðEmiss

T − 280ÞðMT − 80Þj,
jðEmiss

T − 280ÞðHT − 400Þj
B Variables of set A and: Yes

ΔRðl; bÞ − ðMT=40Þ, HT
2=NðjetsÞ,

pT þ 3.5ηðlÞ2, pT=HT
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optimal setting and the corresponding performance in
Table III.
The set α contains the variables defined in Table I where

the discriminating variables are not transformed into weak
classifiers, being only normalized to the ½−1;þ1� interval.
The set β consists of the same variables where these are
transformed into weak classifiers. As can be seen in
Table III, the performance of the set β is expectedly higher
than for the set α, where the weak classifiers are scaled as a
function of the initial distribution of the discriminating
variables to better reflect the separation between signal and
background. The transformation into weak classifiers is
performed for all subsequent tests.
We explore in a second step the effect of additional

discriminating variables built from the same initial set of
Table I. The methodology followed to built these new
variables in explained in Appendix D, where the discrimi-
nating power of each variable is appraised via its maximal
FOM. Two new sets of variables are constructed based on
these new variables, as reported in Table II: the set A
including the variables of the Table I and new variables
with the highest FOMs, and the set B including those of
set A and additional variables with the lower FOMs
(see Table IV). As can be observed in Table III, the addition
of variables with higher maximal FOMs in the set A
increases the performance of the QAML-Z algorithm, while
the further addition of variables with lower FOM in the
set B does not significantly improve the quality of the
classification.
The results of the search [5] are based on the use of BDT

where the discriminating variables are diagonalized before
being fed to the training [13,14]. This step better prepares the
data for classification because the original discriminating
variables do not necessarily constitute the optimal basis in
which signal and background are optimally separated. In
order to render our approach as comparable as possible to the
one followed with a BDT [5], we pass our data through the
procedure of PCA [6] before feeding it to the QAML-Z

algorithm. It must be noted that the use of PCA is only one
method for diagonalizing the data, other methods also being
applicable to this end. The application of PCA on the data
before the quantum annealing further improves the results
for the set of variables A, and to a lesser extent for B, as can
be seen in Table III. We note a larger uncertainty of the
QAML-Z algorithm where the data is prepared with the
PCA, this for the same sets of variables. In the PCA basis,
the weak classifiers are more decorrelated from each other,
rendering the corresponding weights μI more independent
from one another. When a μI fluctuates (e.g., because of the
state of the machine), the strong classifier R [see Eq. (6)] is
sensitive to the variations of a larger number of μI ’s, hence a
larger variation of its outcome. It is noticeable that the
QAML-Z algorithm, once put on a footing as similar as
possible to the BDT based approach [5], can reach an
equivalent, possibly better performance. It is interesting to
observe that the best result is achieved without using the
variable fixing scheme, where the annealing is put at full use.

VI. SUMMARY

We studied the capability of the quantum annealing,
where the zoomed and augmented QAML-Z approach is
applied to a new classification problem, namely the
discrimination of stop versus SM background events.
The classification is based on well motivated variables
whose discriminating power has been tested with a FOM
maximization procedure. The use of this latter metric
constitutes a novel and reliable assessment of the perfor-
mance of a selection as it includes its full statistical and
systematic uncertainties. We systematically tested each set
of variables used by the QAML-Z algorithm for different
augmentation schemes and percentages of pruning on the
couplers of the annealer as to find the optimal setting. The
performance of different settings is assessed for large
training samples which are observed to yield the best
performances, and are also more adapted to the needs of
experimental particle physics where very large data sam-
ples are used. We observe an improvement of the classi-
fication performance when adding variables with a high
FOM. To put the annealing approach and the classical BDT
approach on the same footing, we pass the data through a
PCA procedure before feeding it to the quantum annealer.
For the first time in HEP, we show that for large training
samples the QAML-Z approach running on the Chimera
graph reaches a performance which is at least comparable
to the best-known classical ML tool. With more recent
graphs there is the prospect that the larger number of
connected qubits will yield a better correspondence
between the Ising Hamiltonian and the system of qubits
of the annealer. The larger number of available couplers
in the machine will allow a more complete use of the
information contained in the couplers of the Hamiltonian; it
will render each chain more stable, thus less prone to be

TABLE III. Best performance obtained for different sets of
variables as defined in Table II, and for different approaches
applied on some sets. The corresponding use (or not) of variable
fixing, cutoff and augmentation scheme are reported. All results
are provided for NðTrainÞ ¼ 50000. For comparison, the perfor-
mance of the BDT of [5] is also reported, where “NA” stands for
nonapplicable.

Variable set
Fixing
variable C [%] (δ; A) FOM

α False 85 (2.50 × 10−2; 3) 0.48� 0.03
β False 85 (2.50 × 10−2; 3) 0.73� 0.03
A True 95 (0.90 × 10−2; 5) 0.88� 0.04
B True 85 (0.70 × 10−2; 3) 0.91� 0.05
PCA(A) False 95 (1.45 × 10−2; 3) 1.57� 0.24
PCA(B) True 95 (0.70 × 10−2; 5) 1.09� 0.17
BDT NA NA NA 1.44� 0.06
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broken, where the discriminating information of the clas-
sification will be more effectively used.
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APPENDIX A: SAMPLES AND SIGNAL
SELECTION

The data used for training and testing the QAML-Z
algorithm are events simulating proton-proton collisions
of the LHC at

ffiffiffi
s

p ¼ 13 TeV. The generation of the signal
and background processes is performed with the
MADGRAPH52.3.3 [18] generator. All samples are then
passed to PYTHIA8.212 [19,20] for hadronization and
showering. The detector response is simulated with the
DELPHES3 [21] framework.
The first step in the search is the preselection, which is

common to the search [5] and to the present study. We
require Emiss

T > 280 GeV to select preferentially signal, as
the production of two χ̃01 escaping detection increases the
missing transverse energy in the detector. The leading jet
of each event is required to fulfill pT > 110 GeV and
jηj < 2.4. A cut of HT > 200 GeV is imposed. This cut
diminishes the contribution of the W þ jets background
where jets are softer than for signal. At least one identified
muon (electron) with pT > 3.5 (5) GeVand jηj < 2.4 (2.5)
must be present. Events with additional leptons with pT >
20 GeV are rejected, diminishing the contribution of the tt̄
background with two leptons. Background from SM dijet
and multijet production are suppressed by requiring the
azimuthal angle between the momentum vectors of the
two leading jets to be smaller than 2.5 rad for all events
with a second hard jet of pT > 60 GeV.
The second step in the selection of the signal is the

usage of an approach more advanced than linear cuts. We
describe here the parameters of the BDT as used in [5],
and the procedure to include different discriminating
variables as its inputs. We define NT and MD respectively
as the number of trees in the BDT and its maximal depth.
The maximal node size MN is the percentage of the
number of signal or background events at which the
splitting of data stops in the tree, and acts as a stopping

condition of the training. These parameters are optimized
by maximizing the FOM of different BDTs trained with
various parameters. The setting yielding the best perfor-
mance while avoiding an over-training is ðNT;MD;MNÞ¼
ð400;3;2.5%Þ. Finally, the space of input variables is
diagonalized before being fed to the training. As for the
procedure to include discriminating variables as inputs to
the BDT, we start from a reduced set ξ which comprises
the basic variables of the search. A new variable v is
incorporated into the set of input variables only if it
significantly increases the FOM. Namely, we train a BDT
with the set ξ and another with ξ ⊕ v, and calculate the
FOM of Eq. (1) as a function of the cut applied on the
BDT’s output. If the maximal FOM reached with the latter
set is higher than the one with the former, the variable v is
incorporated as a new input variable; if the performance of
the set ξ ⊕ v is compatible with the one of ξ, it is not. This
procedure is repeated until there is no new variable at
disposal.
In order to make the comparison with the results of

quantum annealing as valid as possible, a BDT is re-trained
with the DELPHES simulation. The performance, for the
same signal, is compatible between this new simulation and
the full simulation of the CMS detector.

APPENDIX B: DERIVATION OF THE
HAMILTONIAN

In this section, we derive the expression of the
Hamiltonian to be iteratively minimized, first for the
zooming and then for the augmentation step. If we expand
the Euclidean distance of Eq. (4) to be minimized, we
obtain:

XS

τ¼1

�
kyτk2 þ

�XN

i¼1

siciðxτÞ
�2

− 2yτ

�XN

i¼1

siciðxτÞ
��

:

ðB1Þ

Omitting the first term which is constant, and inserting the
zooming substitution of Eq. (5) in Eq. (B1), we obtain the
expression (B2). Fully developing this latter while neglect-
ing constant, spin independent, and quadratic self-spin
interaction terms, we get the expression (B3).

XS

τ¼1

��XN

i¼1

ðσðtÞsi þ μiðtÞÞciðxτÞ
�

2

− 2yτ

�XN

i¼1

ðσðtÞsi þ μiðtÞÞciðxτÞ
��

: ðB2Þ

QUANTUM ALGORITHM FOR THE CLASSIFICATION OF … PHYS. REV. D 104, 096004 (2021)

096004-7



XS

τ¼1

�
−2yτ

XN

i¼1

σðtÞciðxτÞsi

þ 2
XN

i¼1

�XN

j¼1

μjðtÞcjðxτÞ
�
σðtÞciðxτÞsi

þ 2
XN

i¼1

XN

j>i

ðσ2ðtÞciðxτÞcjðxτÞÞsisj
�
: ðB3Þ

Recalling the definition of the terms Ci and Cij in Eq. (3),
and dividing the expression (B3) by two, we obtain the
expression of the Hamiltonian with the zooming approach:

HðtÞ ¼
XN

i¼1

�
−Ci þ

XN

j¼1

μjðtÞCij

�
σðtÞsi

þ
XN

i¼1

XN

j>i

Cijσ
2ðtÞsisj: ðB4Þ

Now we augment each classifier i with (2Aþ 1) clas-
sifiers:

∀ i; ∃ l=ci → cil; ðB5Þ

where l ∈ Z is the offset: −A ≤ l ≤ A, as defined in Eq. (7).
Inserting the augmentation substitution (B5) in Eq. (B4)
and omitting constant terms, we obtain:

HðtÞ

¼
XþA

l¼−A

XN

i¼1

�
−
XS

τ¼1

cilyτþ
XþA

l0¼−A

XN

j¼1

μjl0 ðtÞ
XS

τ¼1

cilcjl0
�
σðtÞsil

þ1

2

XþA

l¼−A

XN

i¼1

X

fj;l0g≠fi;lg

XS

τ¼1

cilcjl0σ2ðtÞsilsjl0 : ðB6Þ

Using the equivalence:

∀X;
XN

i¼1

XA

l¼−A
Xil ≡

XNð2Aþ1Þ

I¼1

XI; ðB7Þ

and defining the new indices I and J as filg and fjl0g
respectively, we obtain the expression of the final
Hamiltonian which includes the zooming and augmenta-
tion approaches:

HðtÞ ¼
XNð2Aþ1Þ

I¼1

�
−CI þ

XNð2Aþ1Þ

J¼1

μJðtÞCIJ

�
σðtÞsI

þ 1

2

XNð2Aþ1Þ

I¼1

XNð2Aþ1Þ

J≠I
CIJσ

2ðtÞsIsJ; ðB8Þ

with:

CI ¼
XS

τ¼1

cilðxτÞyτ; CIJ ¼
XS

τ¼1

cilðxτÞcjl0 ðxτÞ: ðB9Þ

It has to be noted that the Hamiltonians of both (B4) and
(B8) are fully connected.

APPENDIX C: QUANTUM ANNEALING:
PARAMETERS AND CONTROL RESULTS

During the iterative optimization of the Hamiltonian, and
to average out random errors on the local fields and
couplings, each annealing is run and averaged over ng
gauges [22] and ne maximal number of excited states,
where ng and ne can be made to monotonically decrease
with each iteration. To mitigate the impact of overfitting
due to the zooming, we follow a two-step randomization
procedure in each iteration: if the energy of the qubit i
worsens, a sign flip si → −si is applied with a monoton-
ically decreasing probability pfðtÞ, followed by a randomly
uniform spin flip for all qubits with probability:
qfðtÞ < pfðtÞ∀ t; the values of the two probabilities per
iteration are kept the same as in [4]. Building on the results
of [3,4], we set the number of iterations to 8, while setting
the annealing time to 20 μs. During this iterative optimi-
zation, the annealing is run for ng gauges at each iteration to
reduce random errors on the local fields hi and couplers Jij.
For each gauge, the annealing result is sampled 200 times,
and the set of spins leading to the lowest energy is
collected. The selection of the excited states is based on

FIG. 5. Evolution of the Ising Hamiltonian energy as a function
of the iteration for N(Train) varying from 100 (top-left) to 50 000
(bottom-right), these in the train (blue) and test (orange) samples.
The QAML-Z algorithm uses the variables of Table I transformed
in weak classifiers, with an augmentation scheme of ðδ; AÞ ¼
ð0.025; 3Þ and a cutoff of 85%, without using a variable-fixing
procedure.
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a distance d to the state of lowest energy and a maximal
number ne of excited states as in [4], where the value of ng,
ne and d varies with the iteration. This means that after the
iteration t we have a set of ngðtÞ different μI’s, out of which
at most neðtÞ are kept for the next iteration, corresponding
to the best energies. At iteration tþ 1, we have at most
neðtÞ · ngðtþ 1Þ annealings, thus states, out of which at
most neðtþ 1Þ are kept. This represents a lot of computing
time. For the problem optimized in this paper, and for a
given set of variables, we compared results obtained with
ng ¼ f50; 10; 1;…; 1g and ne ¼ f16; 4; 1;…; 1g as in [4]
on one hand, with results obtained with ng ¼
f50; 10;…; 10g and ne ¼ f1;…; 1g on the other. We
observed that the obtained energies were quasi-identical
for a large number of training events, showing that picking
the state of best energy out of ng > 1 is sufficient to
mitigate the uncertainties of the annealing process, while
saving computing time. We therefore retain the latter
options for ng and ne. Finally, the chain strength r is

defined as the ratio of the coupling within each chain over
the largest coupling in Hamiltonian. If r is very large, the
chains will be too strong to allow a multiqubit flipping
which is necessary to explore the space of spins. If on the
contrary r is very small, the chains will be broken by the
tension induced by the problem or by thermal excitation.
The chain strength can be set to decay monotonically with
each iteration as to allowHðtÞ to drive the system dynamics
while preventing the chains of qubits from breaking [23].
The value of r at each iteration is the same as in [4]. In the
case where the chain is broken, the measure of the qubit
chains is performed through a majority vote, possibly
leading to the collection of non-optimal sets of solution
spins, thus to a possible loss of discriminating information.
In Fig. 5 we present the evolution of the Ising

Hamiltonian energy as a function of the optimization
iteration for different numbers of events used to train the
QAML-Z algorithm. One can observe that the energy

FIG. 6. Evolution of the FOM as a function of the cutoff C and
for variable-fixing set to true (full circle) and false (full triangle).
The QAML-Z algorithm uses the variable set A of Table II. The
top plot presents results for an augmentation scheme of ðδ; AÞ ¼
ð0.018; 3Þ in black, (0.015, 3) in green, and (0.009, 3) in red. The
bottom plot shows results for ðδ; AÞ ¼ ð0.011; 5Þ in black, (0.009,
5) in green, and (0.006, 5) in red.

FIG. 7. Evolution of the FOM as a function of the cutoff C and
for variable-fixing set to true (full circle) and false (full triangle).
The QAML-Z algorithm uses the variable set B of Table II. The
top plot presents results for an augmentation scheme of ðδ; AÞ ¼
ð0.015; 3Þ in black, (0.011, 3) in red, (0.007, 3) in green, and
(0.003, 3) in blue. The bottom plot shows results for ðδ; AÞ ¼
ð0.009; 5Þ in black, (0.007, 5) in red, (0.005, 5) in green, and
(0.004, 5) in blue.
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decreases with the iteration, and that the difference of
energy between events used to train and test the annealer
decreases for higher N(Train). In Figs. 6 and 7 we report
the performance of the QAML-Z algorithm for variable
sets A and B as defined in Table II, and for different
augmentation schemes, cutoffs C and variable-fixing
options. Lower values of C than those illustrated in these
figures are not reported because no embedding was found
given the number of variables and tested augmentation
scheme. It is interesting to note that the lowest bound for
C is higher for the set B where the number of variables is
higher, and for a higher augmentation range (variable A)
which leads to a larger number of cil [see Eq. (7)], thus
coupling terms CIJ [see Eq. (9)]. Depending on the set of
variables and the augmentation scheme, different values
of C are optimal. The performance is generally higher
when the variable-fixing procedure is used. For a given set
of variables, small or big values of the offset δ [see Eq. (7)]
might lead to a disadvantageous augmentation of the weak
classifiers, leading to non-optimal performance. This is
illustrated for the performances of the set B in Fig. 7
where the FOM raises then drops for decreasing values of
δ, this for almost all values of cutoff.

APPENDIX D: ADVANCED VARIABLES

We construct new variables by performing operations
between the discriminating variables of Table I, where each
new variable is built from two variables of this list. A two-
dimensional distribution for each pair of initial variables

allows to gauge the separation between signal and various
background processes. Several analytic functions of the
two variables are considered, and the one allowing to reach
the highest FOM is retained per pair of variables. Seventeen
new variables are constructed with this method, out of
which nine are considered, see Table IV. Based on the
discriminating power of each new variable, we consider
two groups of variables, one made of the five new variables
with the highest FOMs, and a second with the four
subsequent ones.
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TABLE IV. New discriminating variables constructed via
operations on the ones of Table I. For each new variable, the
maximal value of the FOM is reported, where the corresponding
uncertainty is negligible. Variables of Table I and those with
higher FOMs (upper part) form the set A, while variables of the
set A and those with lower FOMs (lower part) form the set B.

Variables FOM

pTðlÞ=Emiss
T 0.35

pTðlÞ=pTðj1Þ 0.22
ðDiscðbÞ − 1ÞpTðbÞ 0.20
jðEmiss

T − 280ÞðMT − 80Þj 0.20
jðEmiss

T − 280ÞðHT − 400Þj 0.18

ΔRðl; bÞ − ðMT=40Þ 0.12
HT

2=NðjetsÞ 0.09
pT þ 3.5ηðlÞ2 0.08
pT=HT 0.03
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