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The Standard Model (SM) predicts that ΔACP, the difference between the direct CP asymmetries for the
modes Bþ → π0Kþ and B0 → π−Kþ that are related by a weak isospin, should be close to zero. There has
been a recent claim by the LHCb Collaboration that the measured value of ΔACP shows an uncomfortable
tension with the SM prediction, almost at the 8σ level. Motivated by this claim, we critically reexamine the
data on all the B → πK modes, including the CP asymmetries and CP-averaged branching fractions. From
a combined Bayesian analysis with the topological amplitudes and their phases as the free parameters, we
find that the best-fit region has a large overlap with the parameter space favored in the SM, albeit with some
enhancement for the electroweak penguin and the color-suppressed tree amplitudes; consistent with the
findings of earlier studies. We find that in this SM-like region, ΔACP is more than 5σ away from zero and
the tension with the global average, as well as the LHCb result, is within 2σ. Thus, we conclude that there is
not yet enough motivation to go beyond the SM.
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I. INTRODUCTION

The neutral and charged B-mesons decaying to a πK pair,
namely, Bþ → π0Kþ, πþK0, and B0 → π−Kþ, π0K0 (plus
the CP-conjugate channels), continue to show some tension
when the four branching ratios (BR), four direct CP
asymmetries and the mixing-induced CP asymmetry in
B0 → π0K0 are compared with the Standard Model (SM)
predictions. This is, in essence, the “B → πK puzzle” [1–4];
the experimental data from the BABAR [5–9], Belle [10,11],
LHCb [12–14], and very recently, Belle-II [15–17]
Collaborations have continued to provide support for the
puzzle. Recently, the LHCb Collaboration have updated the
data on the difference of the direct CP asymmetries [18]
between the modes Bþ → π0Kþ and B0 → π−Kþ, defined
as ΔACP

ΔALHCb
CP ðπKÞ ¼ 0.108� 0.017 ð1Þ

that is nonzero with a significance of more than six standard
deviations, while the global average

ΔAglobal
CP ðπKÞ ¼ 0.115� 0.014 ð2Þ

lies a remarkable eight standard deviations away from zero,
which happens to be the SM prediction [19] for ΔACP. The
null prediction of the SM is based on the relative importance
of certain flavor-flow topologies [19] as well as on the
assumption that the difference in strong phase between the
tree and electroweak penguin amplitudes is identically zero.
The goal of this paper is to check the robustness of these
claims.
A good way of writing these topological amplitudes is

shown in Ref. [20–22], which we follow. We first enlist all
the relevant amplitudes [21], including the possible weak
and strong phases. The details can be found in Sec. II A. We
implicitly assume that the weak phase comes solely from
the Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix
elements, while the strong phases can be arbitrary. The
latter come mostly from long-distance rescattering effects
[23–27], so one may theoretically expect some relationship
among the strong phases [28–34] associated with various
amplitudes (up to a certain level of precision), but we try to
avoid such theoretical prejudices as much as possible. The
analysis treats all the amplitudes and relevant strong phases
as free parameters, while the CKM elements and weak
phases are incorporated as multinormal priors. The num-
bers on any specific observable coming from different
experiments are treated as independent inputs in the
absence of any correlation, i.e., we do not take the average
values for the observables. This, naturally, enhances the
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number of data points. For the justification of this
approach, and for the methodology of the analysis, we
refer the reader to Sec. III.
What we find is not completely unexpected in view of

the previous analyses [35–46], but sheds some interesting
light on the so-called puzzle. The salient features, discussed
in more detail in Sec. IV, are as follows:

(i) We performed a Bayesian analysis with uniform
priors on the topological amplitudes and phases
supplied over a wide range. We have also checked
that this region contains the χ2-minimum of the
frequentist analysis.

(ii) With a naive estimate of the relative importance of
the amplitudes [20,21,47], there is no acceptable fit
to the data. This estimate is mostly based on the
CKM factors present in each amplitude; the small-
ness is controlled by λ, the sine of the Cabibbo angle
(∼0.22). Another important parameter that comes
into play is the ratio of the Wilson coefficients (WC)
of the electroweak penguin and tree operators. There
is no reason why the low-energy QCD corrections,
including the effects coming from the running of the
WCs of the relevant operators, should still respect
these estimates. Thus, based on this part of the
analysis, one must not say that the SM is ruled out.

(iii) One might like to relax the bounds on the color-
suppressed tree amplitudes to cover possible non-
perturbative QCD effects [28,29,33,48–54] as well
as the electroweak penguin amplitudes.
This, in effect, should cover the entire SM-allowed

region, but some of the amplitudes may be enhanced
compared to the naive fit. As such enhancements are
not ruled out even within the framework of the SM,
this is what we call the ‘SM-like’ region, more details
of which are given later. However, one may also
invoke new physics (NP) to explain this [55–60]. In
this SM-like parameter space with possibilities of NP
playing a role [37–44,61] lies the best-fit region, with
ΔACP more than 5σ away from zero, and with a
tension of less than 2σ with the global average. This
leads to our main conclusion; the data is still not at
variancewith the SM, and the discrepancy inΔACP is
not something to claim the existence of NP. However,
presence of NP cannot be ruled out either.

(iv) Finally, we entertain the possibility of NP in
B → πK, which might affect the amplitudes, as well
as the WCs. We perform a free fit, relaxing the SM
limit on the amplitudes. In the SM, the ratio of the
electroweak penguin amplitude to the tree amplitude
is approximately the same, for both color-allowed
and color-suppressed channels. In the free fit, these
two ratios may also possibly differ. We find that
there appears another best-fit region, but definitely
beyond the SM-allowed parameter space.

One might ask whether there is any way to differentiate
between these two best-fit regions and know for sure which
is the actual one. We show that there are two possible ways.
The SM-like prediction for ΔACP is about 2σ away from
the global average; if the data becomes more precise and
the tension increases, it might point to the presence of NP.
Alternatively, a suitably defined combination of the branch-
ing ratios and CP asymmetries of these four channels may
also have the potential to do the job.
The paper, thus, is arranged as follows. In Sec. II A, we

display the relevant expressions, and lay out the relevant
parameter spaces. Section III is about the analysis, while we
show our results in Sec. IV. Section V summarizes and
concludes the paper.

II. THEORY INPUTS

A. Topological amplitudes and phases

The four B → πK decay amplitudes can be parametrized
in at least two different ways. The first one is by three
isospin amplitudes [19,62–64] A1=2, A3=2, and B1=2, where
A and B respectively stand for ΔI ¼ 1 and ΔI ¼ 0
amplitudes, and the subscript denotes the isospin of the
πK combination. In this notation, the amplitudes are written
as [64]

AðBþ → πþK0Þ ¼ B1=2 þ A1=2 þ A3=2;

AðBþ → π0KþÞ ¼ −
1ffiffiffi
2

p ðB1=2 þ A1=2Þ þ
ffiffiffi
2

p
A3=2;

AðB0 → π−KþÞ ¼ −B1=2 þ A1=2 þ A3=2;

AðB0 → π0K0Þ ¼ 1ffiffiffi
2

p ðB1=2 − A1=2Þ þ
ffiffiffi
2

p
A3=2: ð3Þ

The QCD penguin diagram contributes only to the isospin
amplitude B1=2 and hence it is the largest among the three.
Each such amplitude is actually made of two parts, with
two independent CKM factors. Thus, one has six indepen-
dent amplitudes and therefore five independent strong
phase differences.
The hierarchy among the amplitudes is even more evident

if we consider the topological amplitudes [65–69]. There are
four distinct topological classes, namely, “color-allowed
tree” T, “color-suppressed tree” C, “annihilation” A, and
“penguin”. These topologies are shown in Fig. 1, taken from
[20,21]. The penguin topology is further subdivided into
strong penguin P, color-allowed electroweak penguin
(EWP) PEW, and color-suppressed EWP PC

EW. Each ampli-
tude carries its own strong phase, but only the phase
differences are relevant, as an overall phase does not have
any effect on the observables.
The decay amplitudes for B0 → π−Kþ, Bþ → πþK0,

B0 → π0K0, and Bþ → π0Kþ, from now on denoted by
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A−þ, Aþ0, A00, A0þ respectively, may be expressed in
terms of the topological amplitudes [20,21,70,71] as

A−þ¼−λuðPucþTÞ−λt

�
Ptcþ

2

3
PC
EW

�
;

Aþ0¼λuðPucþAÞþλt

�
Ptc−

1

3
PC
EW

�
;

ffiffiffi
2

p
A00¼λuðPuc−CÞþλt

�
Ptc−PEW−

1

3
PC
EW

�
;

ffiffiffi
2

p
A0þ¼−λuðPucþTþCþAÞ−λt

�
PtcþPEWþ2

3
PC
EW

�
;

ð4Þ

where we have factored out the CKM elements λq ¼
V�
qbVqs from the amplitudes. We note that the penguin

amplitude P receives contributions from all the three up-
type quarks in the loop

P ¼ λuPu þ λcPc þ λtPt; ð5Þ

and the unitarity of the CKM matrix

λu þ λc þ λt ¼ 0; ð6Þ

leads to

P ¼ λuðPu − PcÞ þ λtðPt − PcÞ≡ λuPuc þ λtPtc: ð7Þ

We expect a hierarchy among these amplitudes, which,
magnitude wise, looks like

jλtPtcj > jλuTj > jλuCj > jλuAj; jλuPucj; ð8Þ

where every subsequent step is suppressed compared to the
previous one by a factor of the order of λ ≈ sin θC ¼ 0.22,
θC being the Cabibbo angle. The suppression is a combined
effect of the magnitudes of the respective CKM elements
and the extra loop suppression of the penguin amplitudes.
For example, λu=λt ∼ λ2, but Ptc is loop suppressed
compared to T, again by an order of λ [22]. It also turns
out that jC=Tj ∼ λ [33]. However, even within the SM,
jC=Tj ∼ 0.5 is definitely possible [52], which we will use in
our analysis. One may note that this ratio of the order of
unity [32,34] is also not ruled out. The annihilation

amplitude A is suppressed by a factor of fB=mB ∼ 0.05 ∼
λ2 when compared to T. The long-distance rescattering
effects should modify these predictions, but if the color-
transparency argument holds for B → πK, we do not expect
a drastic reordering. Thus, anything widely off from Eq. (8)
signals the presence of NP. On the other hand, one must
remain open to the possibility that the hierarchy may not be
all that sacrosanct; an enhancement by Oð1=λÞ ∼ 5 for
some cases even within the framework of SM may not be
discarded offhand.
A relation between the tree and the EWP amplitudes may

be obtained with the help of SUð3Þ-flavor symmetry of the
dimension-six weak Hamiltonian mediating the jΔSj ¼ 1
decay [72,73],

HðΔS ¼ 1Þ ¼ GFffiffiffi
2

p
�
λuðC1ðb̄uÞV−AðūsÞV−A

þ C2ðb̄sÞV−AðūuÞV−AÞ − λt
X10
i¼3

CiQi

�
; ð9Þ

whereQ1−2 are the tree,Q3−6 are the QCD penguin andQ9,
Q10 are the two non-negligible EWP operators in the SM.
The PEW and PC

EW amplitudes are therefore given in terms
of T and C respectively [67,68,73],

PEW � PC
EW ¼ −

3

2

C9 � C10

C1 � C2

ðT � CÞ: ð10Þ

After plugging in the numerical values of the WCs C1, C2,
C9, and C10 to the leading-log order at mb scale [72], one
gets

PEW ∼ κT; PC
EW ∼ κC; ð11Þ

to a good approximation, where

κ¼−
3

2

C9þC10

C1þC2

≃−
3

2

C9−C10

C1−C2

≃0.0135�0.0012: ð12Þ

One may note that in the SM, both PEW=T and PC
EW=C are

approximately the same. This need not be true in the
presence of NP, or even some yet to be accounted for SM
dynamics. As the κ-suppression compensates the λt=λu
enhancement, one may infer that jλtPEWj ∼ jλuTj and
jλtPC

EWj ∼ jλuCj. Thus, these two amplitudes may have a

FIG. 1. Topological amplitudes for B → πK decays, taken from Ref. [20].
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non-negligible contribution to branching fractions and CP
asymmetries for B → πK decays.
It is worth mentioning here that any NP contributing to

PEW simultaneously affects C as well, as their respective
contributions enter the decay amplitudes in Eq. (4) exclu-
sively in a particular combination [56]. This attribute is not
limited to the above mentioned combination of diagram-
matic amplitudes, but is an artifact of redundancy in the
definition of them. This is known as reparametrization
invariance, and prevents a clean extraction of NP affecting
a particular amplitude from the available experimental
observations.

B. CP asymmetries

The decay rate asymmetry for any B → πK process is
defined as

ΔðπKÞ ¼ ΓðbÞ − Γðb̄Þ; ð13Þ

where ΓðbÞ and Γðb̄Þ are the decay rates of the
CP-conjugate mesons containing a b-quark (i.e., B− or

B0) or a b̄ quark (i.e., Bþ or B0) respectively. In terms of
the topological amplitudes, the four B → πK decay rate
asymmetries [71] are given by

Δðπ−KþÞ ¼ −4Imðλ�uλtÞIm
�
ðT þ PucÞ�

�
Ptc þ

2

3
PC
EW

��
;

2Δðπ0KþÞ ¼ −4Imðλ�uλtÞIm
�
ðT þ Cþ Aþ PucÞ�

�
Ptc þ PEW þ 2

3
PC
EW

��
;

2Δðπ0K0Þ ¼ −4Imðλ�uλtÞIm
�
ðPuc − CÞ�

�
Ptc − PEW −

1

3
PC
EW

��
;

ΔðπþK0Þ ¼ −4Imðλ�uλtÞIm
�
ðAþ PucÞ�

�
Ptc −

1

3
PC
EW

��
: ð14Þ

The direct CP asymmetry ACPðπKÞ is subsequently defined as

ACPðπKÞ ¼ ΔðπKÞ
ΓðbÞ þ Γðb̄Þ ; ð15Þ

For B0 and B0 decaying to the CP-eigenstate fCP, one may also measure the mixing-induced CP violation, parametrized
by SCP and defined as

ACPðtÞ ¼
ΓðB0ðtÞ → fÞ − ΓðB0ðtÞ → f̄Þ
ΓðB0ðtÞ → fÞ þ ΓðB0ðtÞ → f̄Þ

¼ ACPðfÞ cosðδmtÞ þ SCPðfÞ sinðδmtÞ ð16Þ

where δm ¼ mH −mL is the mass difference between the
heavier and lighter B-meson mass eigenstates. By ignoring
diagrams of Oðλ2Þ and beyond, the B → πK amplitudes
reduce to

A−þ ¼ −λuT − λtPtc;

Aþ0 ¼ λtPtc;ffiffiffi
2

p
A00 ¼ λtðPtc − PEWÞ;ffiffiffi

2
p

A0þ ¼ −λuT − λtðPtc þ PEWÞ: ð17Þ

Direct CP asymmetries in B0 → π−Kþ and Bþ → π0Kþ
arise because of the T—Ptc interference leading to a

nonzero relative strong phase, as well as a weak phase
difference between the two topological amplitudes. In
contrast, PEW and T carry the same strong phase as they
are related by a real number as shown in Eq. (12).
Therefore, PEW—T interference for Bþ → π0Kþ does
not contribute to ACP. Thus, one expects a simplified
relation [19],

ACPðB0 → π−KþÞ ¼ ACPðBþ → π0KþÞ: ð18Þ

Any deviation, numerically expressed by the quantity ΔCP,

ΔACP ¼ ACPðBþ → π0KþÞ − ACPðB0 → π−KþÞ; ð19Þ
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thus, would necessarily mean that amplitudes like C may
not be neglected, but it would be very premature to claim
this as a telltale signature of NP. A more robustCP sum rule
relation [71] connecting all the four B → πK CP asym-
metries, namely,

ACPðπ−KþÞþACPðπþK0Þ Bðπ
þK0Þτ0

Bðπ−KþÞτþ
¼ACPðπ0KþÞ2Bðπ

0KþÞτ0
Bðπ−KþÞτþ

þACPðπ0K0Þ2Bðπ
0K0Þ

Bðπ−KþÞ ;

ð20Þ

holds up to a few percent where BðπKÞ are the BRs and τþ
and τ0 are the lifetimes of Bþ and B0 mesons respectively.
While deriving Eq. (20), it was assumed that the annihi-
lation amplitude A is suppressed relative to color-allowed
tree amplitude T and the relative strong phase difference
between the T and C amplitudes is small. The algebraic
relation, Eq. (11), between tree and EWP amplitudes was
also used. A deviation from the sum rule in Eq. (20) is
quantified by an observable Δ4,

Δ4 ¼ ACPðπ−KþÞ þ ACPðπþK0Þ Bðπ
þK0Þτ0

Bðπ−KþÞτþ
− ACPðπ0KþÞ 2Bðπ

0KþÞτ0
Bðπ−KþÞτþ

− ACPðπ0K0Þ 2Bðπ
0K0Þ

Bðπ−KþÞ ;

ð21Þ

so that Δ4 ≠ 0 may be considered as a strong hint for NP.
It has been shown in Ref. [56] that NP contributions in
B → πK decays can be absorbed by reparametrizing the
SM amplitudes, so that NP effects may be hidden.
However, observables like ΔACP and Δ4 are not invariant
under such reparametrization.

III. METHODOLOGY

The goal of the numerical analysis would be to find out
the posterior distribution (parameter space) of the various
amplitudes and their corresponding relative phases,
allowed by the data. The available data consist of four
BRs for the B → πK modes, four direct CP asymmetries
(ACP), and the mixing-induced CP asymmetry SCP mea-
sured for the B → π0K0 decay. Instead of using the
averages quoted in [74], we utilize all the available data

TABLE I. Experimental inputs used in this work. The first uncertainty is statistical and the second one is
systematic.

Modes Experiment BR ½10−6� Experiment ACP SCP

B0 → π−Kþ BABAR [5] 19.1(6)(6) BABAR [9] −0.107ð16Þð6
4
Þ

Belle [11] 20.00(34)(60) Belle [11] −0.069ð14Þð7Þ
CLEO [75] 18.0ð23

21
Þð12

9
Þ CDF [76] −0.083ð13Þð4Þ

LHCb [13] −0.084ð4Þð3Þ
LHCb [14] −0.0824ð33Þð33Þ

Belle-II [15] 18.0(9)(9) Belle-II [15] −0.16ð5Þð1Þ
Bþ → π0Kþ BABAR [7] 13.6(6)(7) BABAR [7] 0.030(39)(10)

Belle [11] 12.62(31)(56) Belle [11] 0.043(24)(2)

CLEO [75] 12.9ð24
22
Þð12

11
Þ LHCb [18] 0.025(15)(6)

Belle-II [16] 11.9ð10
11
Þð11

16
Þ Belle-II [16] −0.09ð9Þð3Þ

Bþ → πþK0 BABAR [6] 23.9(11)(10) BABAR [6] −0.029ð39Þð10Þ
Belle [11] 23.97(53)(71) Belle [11] −0.011ð21Þð6Þ
CLEO [75] 18.8ð37

33
Þð21

18
Þ LHCb [12] −0.022ð25Þð10Þ

Belle-II [15] 21.4ð23
22
Þð16Þ Belle-II [15] −0.01ð8Þð5Þ

B0 → π0K0 BABAR [9] 10.1(6)(4) BABAR [8,77] −0.13ð13Þð3Þ 0.55(20)(3) [8,77]

Belle [10] 8.7(5)(6) Belle [10,77] 0.14(13)(6) 0.67(31)(8) [10,77]

Belle [11] 9.68(46)(50)

CLEO [75] 12.8ð40
33
Þð17

14
Þ

Belle-II [17] 8.5ð17
16
Þð12Þ Belle-II [17] −0.40ð46

44
Þð4Þ
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that are used to calculate those averages for the fits and
show them in Table I. Very recent results from Belle-II [15–
17] are also included in this analysis. Without neglecting
any contribution from diagrams up to Oðλ3Þ, we have ten
free parameters: the 5 magnitudes Ptc, jTj; jCj; jAj; jPucj,
four relative phases δT; δC; δA; δPuc

, and the parameter κ,
which we have chosen, at times, to vary as a free parameter
instead of fixing it to the SM expectation. We have defined
the relative phases with respect to the Ptc diagram whose
absolute phase is set to zero in this convention [39].
Let us explain the rationale for using all the data points

for an observable, and not their quoted average. First, the
quoted averages do not include all the latest results from
LHCb and Belle-II. Secondly, a correct averaging should
implement all statistical and systematic correlations
between the data points, which we do not have at our
disposal. Thus, we are forced to perform our own averag-
ing, which involves the creation of a negative log-
likelihood using all data points. This is precisely what
we do in our analysis, with the observables replaced by
their parametric theoretical expressions.

In the next section we talk about our fits. Among the six
fits performed in this paper, only twoOrder-3 fits have nine
and ten free parameters. For the rest, the number of free
parameters is six or seven; an analysis with only the
averages would have been perfectly possible for all of
them, and even a frequentist fit would have been mean-
ingful. Though a numerical minimization of a cost function
(negative log-likelihood or χ2) can always be done with an
arbitrary number of parameters and a best fit can be
obtained, interpretation of that result (when the number
of free parameters is more than the number of data points)
from a frequentist point of view is dicey, as effective
degrees of freedom become unphysical. From a Bayesian
point of view, however, this just means that the posteriors
are unconstrained. We will show that this is exactly what
we find for our Order-3 fits, whose posteriors have more
than optimal variance.
Though we mainly follow a Bayesian framework for the

purpose of the present analysis, we also simultaneously
follow the frequentist interpretations of our results, when-
ever possible. This means that in addition to the obtained

TABLE II. Central tendency (Median) and uncertainties (1σ ≡ 68.27% credible intervals around the central
estimates) for fits with one distinct high-probability region. Notably, uncertainty propagation using these parameters
uses the whole sample from the posterior, not these point estimates. Parameters in the lower part of the table are used
as priors in the fits. The topological amplitudes are defined by factoring outGF=

ffiffiffi
2

p
and therefore the amplitudes are

given in units of ðGeVÞ3.
Real κ Complex κ

SM (κ Prior) κ Free

Parameters Priors Order-2 Order-3 Order-2 Order-3 Order-2

κ 0.014(6) 0.0210ð44
43
Þ 0.0210ð44

43
Þ 0.028ð41

14
Þ 0.029ð47

14
Þ 0.048ð80

28
Þ

Ptc … −0.1524ð62
65
Þ −0.1524ð61

66
Þ −0.1551ð66

69
Þ −0.1548ð72

70
Þ −0.1534ð78

74
Þ

jTj … 0.486ð11
22
Þ 0.486ð11

22
Þ 0.49ð28

15
Þ 0.49ð29

16
Þ 0.68ð22

24
Þ

jCj … 0.23ð11
18
Þ 0.23ð12

18
Þ 0.454ð150

83
Þ 0.471ð166

94
Þ 0.58ð22

16
Þ

δκ … … … … … 0.70ð71
50
Þ

jAj … … 0.0051ð34
35
Þ … 0.047ð35

32
Þ …

jPucj … … 0.0050(34) … 0.049ð35
33
Þ …

δT … 3.724ð59
49
Þ 3.724ð59

51
Þ 3.75ð37

24
Þ 3.71ð37

23
Þ 3.48ð29

40
Þ

δC … 1.37ð23
22
Þ 1.36ð23

22
Þ 1.03ð26

34
Þ 1.02ð26

37
Þ 0.74ð540

33
Þ

δA … … 2.7ð28
18
Þ … 3.7ð17

26
Þ …

δPuc
… … 3.3ð20

23
Þ … 3.9ð16

24
Þ …

jVusj 0.2245(8) 0.22455ð80
81
Þ 0.22456(80) 0.2245(8) 0.22449(80) 0.22451(80)

jVubj 0.0038(2) 0.00407(23) 0.00407(23) 0.00382(24) 0.00381(24) 0.00383(24)

jV tbj 1.01(3) 1.016(30) 1.015(30) 1.011(30) 1.011(30) 1.011(30)

jV tsj 0.039(1) 0.0389(11) 0.0389(11) 0.0387(11) 0.0387(11) 0.0387(11)

γ 1.26(7)(8) 1.247(91) 1.246ð92
91
Þ 1.24(11) 1.24(11) 1.24(11)

β 0.39(1)(1) 0.385(17) 0.385(17) 0.386(17) 0.386(17) 0.386(17)
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parameter posteriors and the corresponding estimates of
central tendency and dispersion, we also keep track of the
maximum likelihood estimates (MLEs), corresponding fit-
probabilities (in terms of p-values) and one-dimensional
confidence levels (CLs). In the Appendix, we attach a
glossary for the Bayesian terms used here.
Apart from the free parameters, the magnitude of the

CKM elements jVubj, jVusj, jVtbj, jVtsj, and the CKM
angles β and γ, come into the analysis as uncertain
theoretical inputs coinciding with latest Heavy Flavour
Averaging Group averages [78]. They are incorporated as
multinormal priors, details of which are provided in the
lower part of the second column of Table II. The effect of
the uncertainties of meson masses and the B-meson life-
times are very small compared to the other sources of
uncertainties and are thus neglected in the present analysis.
(a) Details of Frequentist fit-procedure: Finding the MLE

of the parameters boils down to minimizing the
quantity χ2 ≡ −2 lnðLÞ with respect to the parameters,
where L is the likelihood for the experimental ob-
servations. For Gaussian data, it simplifies to the
actual form of a χ2 function. Except particular SCP
and ACP measurements in BABAR and Belle which are
correlated [77], the experimental inputs are indepen-
dent and we incorporate that correlation in our
analysis. Whenever applicable, we take average of
the asymmetric uncertainties. One may note that the
frequentist fits make sense only for the Order-2 fits
described in the next section.

(b) Details of the Bayesian analysis: CKM parameters
come into the analysis as theoretical inputs and as
mentioned above, we use their measured values as
multinormal priors. For all other parameters, uniform
priors are supplied in a wide range. Using the log-
likelihood (lnL) and the priors, we sample the
unnormalized log-posterior by running a Markov
Chain Monte Carlo (MCMC) process. We follow
the Metropolis-Hastings algorithm [79] with a multi-
normal proposal distribution for the MCMC runs.
Convergence of the first quartile is ensured using
single-chain diagnostics like Raftery-Lewis [80] and
thinned samples are used to reduce the autocorrelation
of the chain.

Our results on the allowed parameter spaces are shown,
for clarity, as two-dimensional Bayesian fits. The fits have
been organized on two factors; the relationship of the EWP
amplitudes to T and C amplitudes, and the number of
parameters considered for the fit.
(a) The relationship shown in Eq. (11) holds to a very good

extent in the SM, leading to a single κ parameter. It may
not actually be so when NP is present, e.g., there can be
two such parameters, PEW ∼ κ1T and PC

EW ∼ κ2C. This
case, and the case with κ as a complex parameter, have
been considered in detail. Such options are, of course,
not SM-like.

(b) Among the ten free parameters, two amplitudes, namely,
jAj and jPucj, are expected to be small (∼λ3), and hence
the exact values of their phases, δA and δPuc

respectively,
are expected to be irrelevant. For all the cases of κ
discussed earlier, we have performed two sets of fits; one
with all the nine parameters (plus κ), which we call
Order-3 fits, and one excluding the four parameters
mentioned above, which we call Order-2 fits.

The rationale for all these fits and the final results follow
in Sec. IV. By letting the parameters vary over a large
range (not necessarily consistent with SM), we ensure to
get the correct global picture of the potentially compli-
cated multidimensional probability landscape of the
parameters.

IV. RESULTS

We will show our results for six different fits, as follows:
(i) Order-2, with a single real κ as a free parameter;
(ii) Same as (i) but at Order-3;
(iii) Order-2, with a single real κ as a given normal prior

(0.014� 0.006), and with the extra constraint
jCj ≤ jTj=2;

(iv) Same as (iii) but at Order-3;
(v) Order-2, with a single complex κ ¼ jκj expðiδκÞ as a

free parameter;
(vi) Order-2, with two real κ-type free parameters, κ1

and κ2.
Let us first summarize the main points of this section:
(1) The Order-2 fit with a single real κ as a given prior

produces a perfectly acceptable fit in the SM-like
region. When κ is treated as a free parameter, the
best-fit region is found to have a large overlap with
the SM-like parameter space.

(2) The Order-3 fits do not improve over the Order-2
fits. In other words, Order-2 seems to be the optimal
choice at the present experimental precision.

(3) The predictions for ΔACP and Δ4 are mutually
consistent for all the fits.

(4) The fit with two real κ parameters shows some
interesting features while keeping the above con-
clusions more or less intact, but this definitely falls
under NP.

We will now quantify these qualitative remarks.

A. Order-2 fits

Let us start with fit (i), i.e., the Order-2 fit with three
independent amplitudes, two phases, and κ. Just to cross-
check with the frequentist approach, we find that the high-
probability region of the parameter posterior distribution of
the Bayesian analysis also contains the frequentist best-fit
corresponding to a very high p-value.
The point estimates of the central tendency and

dispersion of the parameters [medians with 1σ credible
intervals (CI) around them] are listed in the fifth column
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of Table II [Real κ (Free) Order-2]. The 2D marginal-
posteriors of the parameters are shown in Figs. 2(b)–2(f) as
reddish constant probability contours with increasing
probability content (from lighter to darker), and as their
bluish versions in Figs. 3 and 4.
A rather naive Order-2 SM fit was performed first,

setting the free parameters to vary within the following
bounds:

0 ≤ κ ≤ 0.03; −0.3 ≤ Ptc ≤ 0;

0 ≤ jTj ≤ 0.5; 0 ≤ jCj ≤ 0.1: ð22Þ

We find that there is no acceptable fit in this region (p-value
< 1%). This holds true even if we extend the analysis to
Order-3 and scan the four additional parameters in the
following way

0 ≤ jAj ≤ 0.01; 0 ≤ jPucj ≤ 0.01;

0 ≤ δA ≤ 2π; 0 ≤ δPuc
≤ 2π: ð23Þ

In other words, such a naive-SM parameter space is
definitely ruled out by the data.
Next, we focus on κ and C, and take some leeway from

the naive estimates. Using the approximate value of κ
mentioned in Sec. II A, we use a normal prior for κ in the
fit, with the same median, but five times the uncertainty [fit
(iii)]. This prior is mentioned in the second column of
Table II. Throughout this fit, we use the following addi-
tional constraints,

−0.3 ≤ Ptc ≤ 0; 0 ≤ jTj ≤ 0.5; jCj ≤ ðjTj=2Þ;
ð24Þ

i.e., the tight jCj < 0.1 being relaxed without jeopardising
the SM expectation for the ratio. It can, therefore, be
argued, that any allowed parameter space we find in this
region, may safely be labelled SM-like. Let us call this
the SM-like κ-prior Order-2 fit. In a frequentist fit,
this corresponds to a quite acceptable p-value. The medians
of the 1D-marginals with 1σ CIs around them are listed in
the third column of Table II. The constant (red) probability
contours enclosing respectively the 68.28% (solid) and
95.45% (dot-dashed) CIs are shown as 2D marginal
posteriors (with contours enclosing gradually increasing
total probability-content from darker to lighter) in all the
plots of Figs. 3 and 4. As expected, this parameter space has
some overlap with that of the real κ Order-2 fit. Similar 2D
marginals containing the parameter κ are shown with
similar purple contours in Fig. 2.
In the next stage, we consider fit (vi), i.e., two parameters

κ1 and κ2 instead of a single κ and perform the Order-2 fit.
From the frequentist result, we find two distinct minima
here (one deeper than the other): one where κ1 ∼ κ2 and
another where κ2 is considerably larger than κ1. For both

best fits, κ1-values are similar, and both are excellent fits.
As can be seen from Figs. 2(a) and 2(b), the Bayesian
posteriors [in Fig. 2(a), blue solid (68.28%) and dot-dashed
(95.45%) contours; in Figs. 2(b)–2(f), same for κ1 and
green dashed (68.28%) and dotted (95.45%) contours for
κ2] are consistent with this finding.
Let us note here the ranges over which fit-parameters

other than κ are scanned, which clearly highlight the
beyond-SM nature of the parameter space,

−0.3 ≤ Ptc ≤ 0; 0 ≤ jTj ≤ 1; 0 ≤ jCj ≤ 1;

0 ≤ δT ≤ 2π; 0 ≤ δC ≤ 2π: ð25Þ

From Figs 2 and 3, one may see that there are two distinct
high probability regions, separated at 1σ but connected at
higher σs in the Ptc direction, in the parameter space. The
actual best fit in Bayesian approach has considerable
overlap with the SM-like region of the single real κ fit,
except for the parameter jCj. This is evident from Figs. 2(d),
3(b), 3(e), 4(c), and 4(d), where the agreement is seen to be
at ∼2σ. One may note the physics behind this. The SM-like
parameter-space is actually very skewed, due to the abrupt
cut that we had imposed on jCj and jTj (jTj ≤ 0.5 and
jCj ≤ ðjTj=2Þ). Relaxing both these constraints even slightly
should naturally include a higher-probability parameter
space. Following the discussion in Section II A, we see that
such possibilitiesmay not be entirely ruled out, inwhich case
these regions, can, in turn, be completely consistent with
those for the free real κ case. The other high probability
region (containing the actual maximum likelihood estimate
from the frequentist fit) is clearly far away from the SM
expectations for the amplitudes. Where κ1 shares most of its
high-probability parameter space with that of the single
real κ, a set of quite large values of κ2 are allowed in the
nonstandard region.A significant variation of κ fromEq. (12)
indicates that the WCs for the EWP operators are enhanced
from their SM values, most probably because of NP.
If we vary Ptc to include positive values as well, we will

get a disjointed but identical parameter space symmetric
about Ptc ¼ 0. Since the strong phase of Ptc is set to zero
and the rest of the phases are defined relative to it, this sign
ambiguity should be resolved by keeping only the positive
or negative set of values of Ptc. We chose the negative part
of the parameter space arbitrarily.
We can go further, consider fit (v), i.e., take κ to be a

complex parameter κ ¼ jκj expðiδκÞ for the sake of the
analysis, and repeat fit (i). The constant (blue) probability
contours enclosing respectively the 68.28% (solid) and
95.45% (dot-dashed) credible regions in 2D marginal
posteriors in the jκj–δκ plane are shown in Fig. 5(c), where
δκ is equivalent to the relative strong phase between tree
and electroweak penguin amplitudes, and is expected to be
close to zero [64,67]. Due to this, unlike the other phases
occurring in this analysis, the prior for δκ is set to be a
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FIG. 2. Marginal posteriors (2D) with constant probability contours. In Fig. 2(a), contours enclose 68.28% (blue, solid) and 95.45%
(blue, dot-dashed) CIs. Those in the rest of the figures are for κ1 vs the corresponding parameter in the y-axis, while green ones, dashed
and dotted, represent the κ2 marginals. The reddish brown contours with changing opacity enclose regions with decreasing probability
(from darker to lighter) for the Order-2 fit with a single real κ. (a) κ1vs κ2 (b) κ1; κ2and κ vs Ptc (c) κ1; κ2and κ vsjTj (d) κ1; κ2and κ vsjCj
(e) κ1; κ2and κ vs δT (f) κ1; κ2and κ vs δC.
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FIG. 3. Marginal posterior distributions (2D) with constant probability contours. Green dashed (dotted) contours represent the 68.28%
(95.45%) CIs for the Double-κ Order-2 fit, while red (solid, dot-dashed) contours denote those of the κ-Prior Order-2 fit. The bluish
contours with changing opacity enclose the high probability regions with decreasing probability (from darker to lighter) for the Single
real κ Order-2 fit. (a) PtcvsjTj (b) PtcvsjCj (c) Ptcvs δT (d) Ptcvs δC (e) jTj vs jCj (f) Legend.
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FIG. 4. Continued from Fig. 3. (a) jTjvs δT (b) jTjvs δC (c) jCjvs δT (d) jCjvs δC (e) δT vs δC (f) Legend.
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uniform distribution 0 ≤ δκ ≤ π
2
. The central tendency and

dispersion of the posterior parameter space is depicted in
the last column of Table II in terms of the median and 1σ
CIs around it. It is evident that the best-fit solution is
consistent with δκ ¼ 0.

B. Order-3 fits

We can perform an analogous exercise, i.e., fits (ii) and
(iv), taking into account the four parameters neglected so
far, and scanning them over the range

0 ≤ jAj ≤ 0.1; 0 ≤ jPucj ≤ 0.1;

0 ≤ δA ≤ 2π; 0 ≤ δPuc
≤ 2π: ð26Þ

As we pointed out earlier, a frequentist Order-3 fit is
questionable, and a Bayesian fit leads to unconstrained
posteriors.
In other words, we expect the newly introduced Oðλ3Þ

parameters to be very imprecise and the amplitudes to be
consistent with zero. This is supported from the correspond-
ing entries of the sixth column of Table II [Real κ (Free)

FIG. 5. 2D marginal posteriors similar to Fig. 2. First two figures are for the extra four parameters for the Single Real κ Order-3 Fit.
The last one is the jκj–δκ plane for the Complex κ Order-2 Fit. (a) jAjvsjPucj (b) δA vs δPuc

(c) jκjvs δκ .
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Order-3] as well as from Figs. 5(a) and 5(b), which show the
2D marginal-posteriors of the higher-order parameters as
reddish constant probability contours. Thoughapparently the
highest probability regions are close to zero, note that we
have only scanned these amplitudes up to 0.1, and observe a
more or less flat nature of the 1D posterior in that region. We
refrain from showing the posteriors for the other parameters,
as they are very similar to those of Order-2 fits, with only a
slight increase in spread for some parameters.
The posterior medians with 1σ CIs for fit (iv), SM-like (κ-

prior) Order-3, are listed in the fourth column of Table II.
TheOrder-2 fits being quite optimal at the present level, we
have not tried the Order-3 analogs for fits (v) and (vi), i.e.,
with a complex κ and with two real κs.
At this point, a few comments on the fit results are in order.

From the unconstrained fit, we see that for the best-fit region,
the color-suppressed tree amplitude jCj is enhanced and is of
the same order of magnitude as the color-allowed tree
amplitude jTj, resulting in 0.7 < jCj=jTj < 1 for all the fits
in Table II, except the SM-like fits, wherewe had specifically
set jCj=jTj < 0.5. This is consistent with the predictions
from specific model calculations [32,34] for the topological
amplitudes. On the other hand, where soft collinear effective
theory based approaches predict ArgðC=TÞ ∼ 0 [32], a quite
largevalue ofArgðC=TÞ (∼200°) is found to be favored in the
previousB → πK fits [44]. Nonzero values of ArgðC=TÞ are
also expected from global analysis of B decays to two
pseudoscalar mesons [81]. As can be seen from Table II,
for all fits with free κ and no constraint on jCj=jTj,
ArgðC=TÞ ∼ −2.7 ≈ 205°, making our results consistent
with the earlier B → πK fits. For the constrained SM-like
fits, ArgðC=TÞ ∼ −2.35 ≈ 225°.

C. Predictions

Before we talk about predictions of observables, namely,
ΔACP and Δ4, the reader may note that the global average
of the observable ΔACP, defined in Eq. (19) and quoted in
the introduction [18], does not contain the latest results
from Belle-II, as the latter results came after the publication
of Ref. [18]. Also, the only measurement of the observable
Δ4, defined in Eq. (21), can be found in Ref. [11], which is
almost a decade old. We have thus used the results listed in
Table I and found the global averages of the observables
and in turn, that of ΔACP and Δ4. The results are

ΔAglobal
CP ðπKÞ ¼ 0.112� 0.013;

Δglobal
4 ðπKÞ ¼ −0.122� 0.097; ð27Þ

with correlation ¼ −0.175. From here onwards, whenever
we mention the global average of these observables, wewill
mean these numbers.
We mentioned earlier that ΔACP is expected to be zero in

SM [19] and the main goal of the present work is to check
the robustness of that claim. The rationale for this claim is

the expected smallness ofC and the expected small value of
ArgðC=TÞ. Once these two assumptions are relaxed, which
still does not take us beyond the SM, ΔACP need not be
small. As has been shown in the earlier sections, the
favored parameter spaces for most of the parameters are
consistent with their respective SM expectations within 2σ.
Using the extended sample of the posteriors of these fits,
we can find the predicted distributions of ΔACP and Δ4.
Figure 6(a) compares the predicted values ofΔACP with the
global average, as well as the recent LHCb measurement
[18]. We have used the mode (maximum a posteriori) and
1σ high-density CIs around them in showing the predicted
distributions of the observables. We see that both real κ
(unconstrained) fits yield very similar values of ΔCP. The
complex κ fit provides slightly shifted, but completely
consistent results. For the SM-like fits with κ as a prior,ΔCP
is smaller than the global average. The central result is that
the predictions for these SM-like fits are more than 5σ away
from zero but are consistent with both the LHCb result

FIG. 6. The predicted 1D distributions of observablesΔACP and
Δ4. Figure 6(a) compares various predictions of ΔACP with
experiment, while Fig. 6(b) does the same for Δ4.
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and the global average within 2σ. This shows that the data,
though not completely consistent with the SM yet, is
nowhere near the assumed large deviation of ∼8σ.
The case of Δ4, as seen in Fig. 6(b), is more interesting.

First of all, except the Double-κ Order-2 fit, none of the
predictions are consistent with either zero or the global
average within 1σ, though they are quite close to that. The
biggest uncertainty comes from the Double-κ fit. This
prediction contains both the high-probability regions of the
corresponding posterior.
Figure 7 shows the correlation between ΔCP andΔ4. One

may note that the global average ellipse is only at 1σ, so none
of the fits show any serious tension. However, if a more
precise measurement unambiguously points to a negative
definite value of Δ4, the Double-κ fit will be favored, which
definitely indicates NP. Thus, we conclude that along with
ΔACP, Δ4 too may act as an indicator for NP, or some new
SM dynamics. Moreover, as can be seen from the varying
uncertainties of the predictions in Fig. 6(b), it may differ-
entiate among all these possibilities.

V. DISCUSSION

In this paper, we have critically analyzed the data on all
the B → πK modes coming from all experiments, and
checked how far the claim of an 8σ tension between the
global average of ΔACP and its SM expectation can be
sustained. Thanks to all the independent experiments, there
is no scarcity of data, and the fitting procedure, as outlined
previously, makes sense. What we find is more or less on
the expected line:

(i) If we take a very naive estimate of the SM
topological amplitudes, as dictated by the CKM
elements, there is no reasonable fit with the data, be
it Bayesian or frequentist.

(ii) Even within the framework of the SM, the color-
suppressed tree amplitude, C, may be significantly
larger than the naive prediction. If we extend the
allowed region for C, keeping jCj=jTj ≤ 0.5, we are
still in the SM-like region, but the fit is considerably
improved; in fact, one obtains a perfectly acceptable
fit, and the fitted value of ΔACP is within 2σ of the
global average when the color-suppressed tree am-
plitude is allowed to vary in the above mentioned
range. We have checked the allowed region with
several fits, neglecting and including suppressed
contributions, and playing with the relative impor-
tance of the electroweak penguin WCs. Everything
gives the same result; the posterior distribution is
almost identical, and the suppressed amplitudes are
hardly constrained.

Thus, the first conclusion is that there is no immediate
need to go beyond the SM, although a more precise
estimate of various amplitudes is welcome. There is now
a tension of about 2σ between the global average and the
best-fit value of ΔCP; with more precise data this tension
can grow and that will be a serious indication for beyond-
SM dynamics.
There is a second conclusion, too. For the Double-κ fit,

the parameter space shows another best-fit region, which, in
fact, contains the global maximum-likelihood estimate.
However, the region is far from what is allowed by the

FIG. 7. The predicted combined distributions of observables ΔACP and Δ4. Figure 7(a) compares the experimental results with
predicted combined distributions in the ΔACP–Δ4 plane for various fit results. Figure 7(b) zooms in to the predicted distributions from
several fits. The first (second) figure exclusively contains the Double-κ Order-2 (SM-like κ-Prior Order-3) fit. All experimental bands
and error ellipses denote only 1σ confidence intervals.
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SM. For this region, NP is definitely indicated. Thus, we
have found that both the observables, namely, ΔACP and
Δ4, can differentiate between these two high-probability
regions of parameter space, or, in other words, act as
smoking guns for new physics. We, therefore, urge our
experimental colleagues to measure this quantity as pre-
cisely as possible.
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APPENDIX: BAYESIAN TERMINOLOGY

For a point or interval estimation of a parameter θ in a
model M based on data y, Bayesian inference is based off
the Bayes’ Theorem,

pðθ⃗jyÞ ¼ pðyjθ⃗Þpðθ⃗Þ
pðyÞ ∝ pðyjθ⃗Þpðθ⃗Þ; ðA1Þ

where
(1) pðθ⃗Þ is the prior probability density (in short, prior)

for the parameter-vector θ⃗, encapsulating all of our
initial knowledge about the parameters. In this work,
the priors for the free parameters are set as uniform
distributions of a very large range, whereas the
theoretical inputs are incorporated as multidimen-
sional Gaussian distributions.

(2) pðyjθ⃗Þ is the ‘likelihood function’ (in short, like-
lihood). It quantifies the likelihood that the observed
data would have been observed as a function of θ⃗
(but it is not a probability density for θ⃗).

(3) pðyÞ is the evidence, defined as pðyÞ ¼R
pðyjθ⃗Þpðθ⃗Þdθ⃗ and is just a constant for our

purpose, i.e., parameter estimation.

(4) pðθ⃗jyÞ is the coveted posterior (or ‘inverse’, in old
usage) probability distribution (in short, posterior)
of θ⃗, given the data y. We generate samples from this
distribution (actually the unnormalized one, ignoring
the generally intractable ‘evidence’) by running an
MCMC process.

(5) For estimating any single parameter θj among n such
parameters, we need to find the one-dimensional (1D)
marginal distribution of that parameter by integrating
the full posterior over all other parameters; pðθjjyÞ ¼R
pðyjθ⃗Þdθ1…dθj−1dθjþ1…dθn. In practice, once

the MCMC sample is generated, marginalizing is
as trivial as neglecting all other parameter values from
the sample. Similarly, higher-dimensional marginal
posteriors can also be generated. Such 2D marginal
posteriors are used to depict the parameter spaces in
most places in this work.

Credible Intervals (CIs): In Bayesian parlance, the
interval within which the appearance of an unobserved
parameter value has a particular probability, is called a
credible interval (credible region, for multivariate cases).
As we obtain a probability distribution (posterior) after a

Bayesian analysis, point (central tendency) or interval
(dispersion) estimation is not unique and quite problematic.
The best Bayesian analog of the MLE is the maximum
a posteriori probability (MAP) estimate, which is (a) really
ambiguous for multimodal distributions (as in the case of
the ‘Real κ Global Order-2’ fit), (b) generally uncharacter-
istic of the majority of the posterior, and (c) is not invariant
under re-parametrization. We have thus only mentioned
medians as point estimates of parameters, only for the
unimodal ‘local’ fits. Furthermore, the credible intervals
(CIs) around these estimates, in addition to implying
completely different conceptual things from confidence
intervals (their frequentist analogs), depict different regions
with different probability content, in general.
This is why we refrain from using the point estimates for

calculating our numerical predictions, and instead use the
whole posterior samples to do that.
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