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A process specific methodology is defined to systematically assign theoretical uncertainties in the
Standard Model effective field theory when performing leading-order global fits. The method outlined also
minimizes the computational and theoretical burden to systematically advance such analyses to dimension
eight.
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I. INTRODUCTION

The Standard Model (SM) effective field theory
(SMEFT) is based on the infrared assumptions that physics
beyond the SM is present at scales Λ > v̄T ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2hH†Hi
p

,
with no light hidden states, and a SUð2ÞL scalar doublet (H)
with hypercharge yh ¼ 1=2 is in the effective field theory
(EFT). An expansion in the ratio of scales q2=Λ2 < 1,
with q2 a kinematic invariant associated with experimental
measurements in the domain of validity of the EFT, defines
the SMEFT Lagrangian

LSMEFT ¼ LSM þ Lð5Þ þ Lð6Þ þ Lð7Þ þ � � � ;

LðdÞ ¼
X
i

CðdÞ
i

Λd−4 Q
ðdÞ
i for d > 4: ð1Þ

Operators (QðdÞ
i ) define SMEFT corrections to the SM

predictions, and carry a mass-dimension d superscript.

Here C̃ð6Þ
i ¼ v̄2TC

ð6Þ
i =Λ2 and C̃ð8Þ

i ¼ v̄4TC
ð8Þ
i =Λ4. The oper-

ators multiply Wilson coefficients CðdÞ
i , which take on

specific values as a result of the Taylor expanded effects of
physics beyond the SM. We treat Wilson coefficients as
free constraint parameters. The sum over i, runs over the
operators in a particular operator basis. We use the Warsaw
basis [1,2] for Lð6Þ. For d > 6, we use Refs. [3–6], which
defines the geoSMEFT formulation of this theory to all
orders in

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hH†Hi=Λ

p
for n-point functions, with n ≤ 3.

Using SMEFT, ATLAS and CMS have started to
perform global analysis of LHC data. As approximations

are used in the theory predictions, it is required to define a
theoretical error, to avoid misinterpreting experimental
results in global SMEFT studies. In this paper we define
such a methodology.

II. MISSING HIGHER-ORDER TERMS

When a prediction is made in the SMEFT at leading
order (LO), subleading terms are neglected. The expansions
present are:
(a) the loop expansion in g2SM=16π

2, where gSM ⊂
½g1; g2; g3; λ; yψ � and yψ is the Yukawa coupling for
the fermion species ψ ,

(b) the vacuum expectation value expansion inffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hH†Hi

p
=Λ; this expansion is relevant when SM

kinematics is present in a process due to a resonant SM
state fixing q2 ≃ v̄2T , and

(c) the derivative expansion in q2=Λ2.
Collectively, we refer to the v̄T=Λ and q2=Λ2 expansion as
the SMEFT operator expansion.1 LO in the SMEFT means
considering Lð6Þ perturbations to the SM predictions, and
roughly ∼30 new parameters impact Higgs, electroweak,
and top-quark processes [7]. Global SMEFT fits constrain
these parameters. Uncertainties due to the truncation of
the EFT expansion and missing perturbative corrections,
should be assigned in this effort, following the usual
methodology of EFT studies.2

At LO, a dimensionless SM amplitude includes a
perturbation due to Lð6Þ. We illustrate the methodology
with a pole observable where
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1The expansion in v̄T=Λ is relevant if some SM particles go on
shell in an observable. We refer to these as pole observables. The
q2=Λ2 expansion is relevant when considering nonresonant
regions of phase space. We refer to these as tail observables.

2See for example Refs. [8–16].
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A ¼ ASM þ C̃ð6Þ
i ai þ � � � ; ð2Þ

where ai is a numerical coefficient that is process depen-
dent. Sums over repeated indices are implied. The expres-
sion is not exact [it should be understood to have arbitrary
and unfixed corrections of Oð1=Λ4Þ] until the SMEFT
corrections for this process are defined to Oð1=Λ4Þ. We
return to this point in Sec. V. Quantum corrections cannot
be forbidden, as the SMEFT is built of the SM fields.
As higher-order terms in the loop and operator expansion
are unknown it is important to access the impact of
neglecting these terms in LO SMEFT analyses of the data.
The next order in the missing terms in both expansions are

A ¼ ASM þ C̃ð6Þ
i ai þ C̃ð6Þ

j C̃ð6Þ
k bjk þ C̃ð8Þ

l cl

þ 1

16π2

�
dmC̃

ð6Þ
m þ enC̃

ð6Þ
n log

�
μ2

Λ2

��
þ � � � : ð3Þ

The expression is not exact and ai; bjk; cl; dm; en, are
process-dependent numerical coefficients. In each case,
the indicies i; j; k; � � � run over a subset of the full set of
operators in Lð6Þ and/or Lð8Þ.
Squaring this expression, integrating over phase space

with relevant experimental cuts, one finds a cross section
that is (schematically)3

σ1=Λ4 ¼ σSM þ
X

AiC̃
ð6Þ
i þ

X
BjkC̃

ð6Þ
j C̃ð6Þ

k

þ
X

DlC̃
ð8Þ
l þ � � � : ð4Þ

We assume that a LO simulation, including relevant
experimental cuts and acceptance corrections (i.e., Ai)
are known for all i in Lð6Þ using a SMEFTsim [7,17]
simulation. A class of terms in Bjk with operators residing
on different vertices, can also be known (see Ref. [17]). A
SMEFTsim simulation does not produce the effects of
canonically normalizing the SMEFT to Oð1=Λ4Þ and Lð8Þ
operators.
To estimate the effect of neglecting higher-order terms

for σ, knowing the prediction of all terms to subleading
order and varying the unknown parameters numerically is a
well defined and straightforward procedure. As such, we
focus on how to directly extract subleading terms from the
results of a LO simulation.
Higher-order terms in the SMEFT expansion that have

common kinematic populations of phase space as operators
at Lð6Þ (already in a LO simulation) receive common
numerical corrections due to Monte Carlo event generation,
and phase space/acceptance cuts. This means that for
classes of Lð8Þ, ðLð6ÞÞ2 and Lð6Þ=16π2 terms, these terms

can be produced with appropriate rescaling from LO
simulation results, without the need of redundant/costly
event generation. The methodology we lay out defines how
to leverage this fact in practice.

III. MISSING PERTURBATIVE CORRECTIONS

Consider a partonic scattering process X → Y defining a
tree-level SMEFT amplitude AX→YðCi=Λ2Þ that interferes
with the SM amplitude ASM

X→Y , the latter of which can be of
any perturbative order. By definition

X
AiC̃

ð6Þ
i ∝ ASM

X→Y ×AX→YðC̃ð6Þ
i Þ; ð5Þ

up to suppressed phase space integrals with cuts.
We estimate perturbative uncertainties on the EFT

parameters Cð6Þ
i using

�
aiC̃

ð6Þ
i þ dmC̃

ð6Þ
m

16π2
þ einC̃

ð6Þ
n

16π2
log

μ2

Λ2

�
: ð6Þ

The dm terms can be determined with a dedicated one-loop
calculation and are, in general, unknown. The coefficients
ein of the log-enhanced terms, which generally give the
largest contribution to the perturbative correction, are
known. The subscript has explicit dependence on i, the
coefficient appearing in the LO simulation, as these
corrections have associated divergences. Such divergences
are canceled by the renormalization group evolution (RGE)
of the SMEFTwas reported in Refs. [18–20] and must feed
in via a tree-level operator dependence. SMEFTsim has
bare SMEFT Lagrangian Lð6Þ;0 coded which is related to
the renormalized Lagrangian [denoted with an (r) super-
script] where the SMEFT RGE counterterms Zi;j are
introduced via

Lð6Þ;r ¼ ZSMZi;n
Cð6Þ
i

Λ2
Qð6Þ;r

n : ð7Þ

This rescaling by Zi;n is transparent to the simulation
chain. It is UV physics that scales with the leading-order
Wilson coefficient dependence, that is known, and being
used in the fit. The divergences exactly cancel after
renormalization, however the log terms that are associated
with the divergences, defining ein, do not cancel, but are
predicted.
The log terms have the interpretation of the Wilson

coefficients at the scale Λ vs the measurement scale μ.
For inclusive on-shell Higgs decay μ2 ¼ m2

h. If RGE-
improved perturbation theory is used, the log terms can
be summed using standard EFT techniques. When doing a
LO SMEFT fit in fixed-order perturbation theory the log
terms are the (generally largest) part neglected terms in
perturbation theory. ZSM refers to the SMwave function=v̄T
renormalization. This causes extra log terms in addition to

3The number of terms appearing in the sum over SMEFT
operators depends on the perturbative order of σSM.
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those inferred with this procedure [21], and ZSM is also

modified with dependence on Cð6Þ
i . This dependence [18] is

an example of operators mixing down, and is always
∝ λv̄2T . Such corrections can be included into the error
estimate by rescaling the SM couplings with these mod-
ifications. The RGE is insufficient to characterize the full
perturbative corrections for lower values of Λ and are used
for determining the central values of parameters [21].
Practically, for such Λ values, the Lð8Þ corrections that
are also neglected dominate the error estimate. Using the log
terms as a reasonable proxy for unknown perturbative
corrections, is sufficient, well defined, and known at this
time.
To preserve the Ward identities of the SMEFT [4]

operator by operator, it is necessary to expand out the
propagator shifts in the SM masses due to higher-
dimensional operators [22]. These shifts should be con-
sidered part of the theoretical prediction at LO. The
perturbative error algorithm can be applied to such cor-
rections. Width shifts are not required to preserve the Ward
ID at one loop, and the pert error algorithm should not be
applied to such terms.
The log-enhanced one-loop correction to the SMEFT

amplitude modifies each observable according to

∇σ1=16π2Λ2 ≈
X

AiC̃j
eij
16π2

log
μ2

Λ2
; ð8Þ

and provides an estimate of the neglected perturbative
corrections. We use ∇ for errors in this work.

A. Example: VBF Higgs production

To demonstrate the determination of perturbative uncer-
tainties we consider the inclusive result for the “q̄q → hq̄q
VBF-like” process quoted in Table 9 of Ref. [17] (“direct”
contributions)

Ahq̄q VBF-like
i

σhq̄qVBF-likeSM

¼ f−6; 0.109;−5.345;−0.323; 0.103; 3g; ð9Þ

for C̃ð6Þ
i ¼ fC̃ð3Þ

Hl; C̃
ð1Þ
Hq; C̃

ð3Þ
Hq; C̃Hu; C̃Hd; C̃ll

0g. We restrict
our attention to perturbative corrections proportional to
the top-quark Yukawa in this example, see Eqs. (A.27–30,
A.33,A.35) of Ref. [19].

C̃ð6Þ
j eij ¼ −2NcC̃

ð3Þ
lq

pp33
y2t þ 2Ncy2t C̃

ð3Þ
Hl
pp

þ � � � ð10Þ

for C̃ð6Þ
i ¼ C̃ð3Þ

Hl. The perturbative error that follows is

∼ AI
i C̃j

eij
16π2

log
μ2

Λ2
;

∼ −6
σhq̄qVBF-like

16π2

�
−2NcC̃

ð3Þ
lq

pp33

y2t þ 2Nc y2t C̃
ð3Þ
Hl
pp

�
log

μ2

Λ2
: ð11Þ

The results from Ref. [17] have the cuts mjj > 350 GeV
and pTðhÞ < 200 GeV. A reasonable kinematic invariant
to choose for the μ dependence in the logarithm is
μ ∼ 200 GeV. p is a flavor label. Consistent with the
lepton flavor assumption, it is summed over p ¼ f1; 2; 3g.
This procedure is repeated for all of C̃ð6Þ

i ¼ fC̃ð3Þ
Hl; C̃

ð1Þ
Hq;

C̃ð3Þ
Hq; C̃Hu; C̃Hd; C̃

0
llg for each SM coupling dependence

that one wishes to retain. For practical purposes retaining
the dependence on yt; yb; g1;2;3, is sufficient. An error
estimate results that is a linear sum of unknown (nuisance)
parameters, with calculated coefficients dominated by yt; g3
corrections. A distribution of the unknown Wilson coef-
ficients is chosen to produce a number, to add in quadrature
with other errors. Avery weak dependence is present on the
distribution chosen, consistent with the [23] central limit
theorem, as shown in Refs. [6,24].

IV. MISSING Oð1=Λ4Þ CORRECTIONS

Many of the Oð1=Λ4Þ corrections can be determined
from LO SMEFT results with rescalings. It is appropriate
to organize the theory as specific composite-operator
kinematics, with scalar dressings that do not introduce
new kinematics, to identify these rescalings. This is the
geoSMEFT approach developed in Refs. [3–6,25] where
scalar field dependent field-space connections Gi multiply
composite operator forms fi as

LSMEFT ¼
X
i

GiðI; A;ϕ…Þfi: ð12Þ

Powers of DμH are included in fi. The kinematic depend-
ence is factorized into the fi and the rescalings by Gi are
the rescalings needed to produceOð1=Λ4Þ corrections from
LO simulation results.
Example: h → γγ—The geoSMEFT is defined up to

four-point interactions at this time. The rescaling procedure
is best illustrated with a specific example. The three-point
function h − γ − γ in the SMEFT to all orders is given in
Ref. [5]. hhγμνγμνi is a common kinematic factor for the
Lð6;8Þ contributions. Replacements can be made on the Lð6Þ

dependence to directly generate Oð1=Λ4Þ terms. Using the
all-orders definition of the decay width Ref. [5,6] at LO one
finds

Γm̂W ðh → γγÞ
Γm̂W
SMðh → γγÞ ¼ 1 − 788fm̂W

1 ; ð13Þ

where fm̂W
i ≃ fα̂ewi for i ¼ 1, 2, 3 and these functions (and

δGð6Þ
F ) are defined in Ref. [6]. The full result toOð1=Λ4Þ, in

the mW scheme is [6]
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Γm̂W ðh → γγÞ
Γm̂W
SMðh → γγÞ ¼ 1 − 788fm̂W

1 þ 3942 ðfm̂W
1 Þ2 − 351 ðC̃ð6Þ

HW − C̃ð6Þ
HBÞ fm̂W

3 þ 2228 δGð6Þ
F fm̂W

1

þ 979C̃ð6Þ
HDðC̃ð6Þ

HB þ 0.80C̃ð6Þ
HW − 1.02C̃ð6Þ

HWBÞ − 788

��
C̃ð6Þ
H□

−
C̃ð6Þ
HD

4

�
fm̂W
1 þ fm̂W

2

�

þ 2283C̃ð6Þ
HWBðC̃ð6Þ

HB þ 0.66C̃ð6Þ
HW − 0.88C̃ð6Þ

HWBÞ − 1224ðfm̂W
1 Þ2: ð14Þ

A leading-order simulation result using SMEFTsim that gives dependence on the Wilson coefficients in fm̂W
1 or fα̂ew1 , with

numerical dependence multiplying this function in an observable Ni, can generate the remaining Oð1=Λ4Þ terms via the
replacement

Nif
m̂W
1 →

−Ni

788

�
3942ðfm̂W

1 Þ2 − 351ðC̃ð6Þ
HW − C̃ð6Þ

HBÞfm̂W
3 þ 2228 δGð6Þ

F fm̂W
1

þ 979C̃ð6Þ
HDðC̃ð6Þ

HB þ 0.80 C̃ð6Þ
HW − 1.02C̃ð6Þ

HWBÞ − 788

��
C̃ð6Þ
H□

−
C̃ð6Þ
HD

4

�
fm̂W
1 þ fm̂W

2

�

þ2283C̃ð6Þ
HWBðC̃ð6Þ

HB þ 0.66C̃ð6Þ
HW − 0.88C̃ð6Þ

HWBÞ − 1224ðfm̂W
1 Þ2

�
: ð15Þ

The use of this replacement in the one-loop result for the
fm̂W
1 dependence in Γðh → γγÞ introduces a relative un-

certainty of ðv̄4T=Λ4Þð1=16π2Þ. The replacement generates
not only the quadratic terms, but also the full set of v̄4T=Λ4

corrections contributing to ∇Γðh → γγÞ. An error is
assigned by choosing a set of distributions for the

Cð6Þ
i ; Cð8Þ

i , and a value for Λ when neglecting this class
of terms. The choice of Λ dictates the size of the
error induced, and it is appropriate to choose multiple
values of Λ when determining errors. A straightforward
choice is Λ ∼ 1 TeV and Λ ∼ 3 TeV. Lð8Þ induced errors
dominate for the former choice, while errors due to
neglected perturbative corrections dominate for the latter
choice.
h − γ − γ has only one vertex to rescale. Extending this

procedure to multiple Feynman diagrams, where each
vertex building up the individual Feynman diagrams is
generalized into the case of the geoSMEFT, requires the
individual dependence on at least one Wilson coefficient
present at Lð6Þ in each type of vertex be identified and
isolated, so that a rescaling procedure can be performed.
The same Lð6Þ correction can appear in multiple vertices, so
projecting out the dependence of a Wilson coefficient at a
particular vertex via linear algebra is required. Consider a

process where the same Lð6Þ Wilson coefficient, Cð6Þ
1 ,

appears in two vertices in a Feynman diagram, or sum
of diagrams with dependences

δV1 ∝ a1C̃
ð6Þ
1 þ a2C̃

ð6Þ
2 þ a3C̃

ð6Þ
3 ;

δV2 ∝ b1C̃
ð6Þ
1 þ b2C̃

ð6Þ
2 þ b3C̃

ð6Þ
3 : ð16Þ

The kinematics associated with the vertices δV1;2 can differ
in what follows.4 Each of the V1 and V2 have a rescaling in
the geoSMEFT, but the appearance in the overall result is a

convolution of dependence on C̃ð6Þ
1;2;3 from both vertices.

Isolating Cð6Þ
1 in V1 to generate theOð1=Λ4Þ result, one can

choose to fix δV2 ¼ 0 in the known SMEFT result by

choosing C̃ð6Þ
2 ¼ ð−b1C̃ð6Þ

1 − b3C̃
ð6Þ
3 Þ=b2 in the LO result.

The resulting shift due to δV1 is then modified to

δV 0
1 ∝

a1 − a2b1
b2

C̃ð6Þ
1 þ a3 − a2b3

b2
C̃ð6Þ
3 : ð17Þ

ThegeoSMEFTbased rescalinguses theknownδV1 ¼ a1C̃
ð6Þ
1

and Lð8Þ result δV1 ¼ bjkC̃
ð6Þ
j C̃ð6Þ

k þ clC̃
ð8Þ
l . The net depend-

ence on C̃ð6Þ
1 in Eq. (17) can be rescaled back to a net a1

dependence using the known dependence on all vertices in the
contribution to the observable; i.e., a1; a2; b1−3 are known
analytically in the LO SMEFT results encoded in SMEFTsim.
This procedure can be iterated. Performing the full set of
rescaling replacements then generalizes the LO SMEFTsim
result with a well-defined class of terms at Oð1=Λ4Þ.
Distributions of Cð6Þ

i and Cð8Þ
i , and a chosen Λ scale, then

defines a numerical error.

4Here a1;2;3 and b1;2;3 refer to explicit analytic (or numerically
evaluated) dependence on a Wilson coefficient in a vertex.
For example, when δV1 ¼ fm̂W

1 then aHB ¼ 1, aHW ¼ 0.29,
aHWB ¼ −0.54.
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V. NEW KINEMATICS BEYOND Lð6Þ

The procedure outlined above relies on the LO simu-
lation for global SMEFT studies having a complete set of
kinematic functions to rescale. New kinematic forms
appear first at Lð8Þ in SMEFT global fits of Higgs and
EW data, but such anomalous kinematics is remarkably
limited when only considering n ≤ 3 point interactions
building up pole observables. The anomalous kinematics
are limited to the field space connections of the geoSMEFT
of the form5

kIJAðϕÞðDμϕÞIðDνϕÞJWA
μν: ð18Þ

The operator contributions to this field space connection
are equation of motion (EOM) reducible at Lð6Þ, and hence
are not present in the Warsaw basis. At Lð8Þ such terms are
no longer EOM reducible. Such contributions modify
VV → h production, and h → 4l through the modification
of the hVV vertex (here V is a general vector). These
corrections must be added in a dedicated extension of
SMEFTsim [26].6 Similarly, modified kinematics is present
in VH production which requires a dedicated extension of
simulation tools, see Ref. [27]. These contributions can be
directly targeted for code extensions and direct simulation
to complete the calculation of relevant observables to
Oð1=Λ4Þ using the Lð8Þ operator basis in Refs. [28,29].
Such dedicated extensions to SMEFTsim by subsets of Lð8Þ
operators, combined with the algorithm above results in a
fully well-defined theoretical result to Oð1=Λ4Þ process by
process, and such results can then be used in order to
generate a theory error by directly varying the subleading
terms. The majority of the Oð1=Λ4Þ pole observables, can
be generated with geoSMEFT based rescaling, avoiding
the need for simulation or code modification. When
considering tail observables, four-point interactions are
generally important and unsuppressed compared to other
SMEFT corrections.7 It is then required to add more
operators to simulation tools to characterize observables
to Oð1=Λ4Þ.

VI. QUADRATIC TERMS

Here we assess the use of quadratic terms for a
theory error estimate, and if the use of quadratic terms
for SMEFT fits to define central values in the fit is well
defined.
Quadratic terms means the result of squaring Eq. (2); the

resulting Oð1=Λ4Þ term is the quadratic term. In general,
retaining only a subset of terms in the power counting of an
EFT is an ill-defined procedure, which is not invariant

under the field redefinitions that define the theory.8 In the
case of the SMEFT, retaining quadratic terms is subject to
the following field redefinition based ambiguities. Eq. (2)
should be understood to have unspecified but existent terms
of the form

A¼ASM

�
1þni

v̄4T
Λ4

�
þ C̃ð6Þ

k ak

�
1þoj

v̄2T
Λ2

�
þ��� : ð19Þ

There are also corrections of Oð1=Λ4Þ with dynamical
fields of dimension four and two in each case. Field
redefinitions of Oð1=Λ4Þ is fundamental to defining the
SMEFT, and such an ambiguity is not fixed by defining the
theory to Oð1=Λ2Þ. Predictions proportional to ni and oj
are ambiguous until the full set of corrections are defined at
Oð1=Λ4Þ by defining an operator basis for Lð8Þ. Squaring
this result gives terms of Oð1=Λ4Þ
�
akC̃

ð6Þ
k alC̃

ð6Þ
l þ2ni

v̄4T
Λ4

jASMj2þ2akASMC̃
ð6Þ
k oj

v̄2T
Λ2

�
: ð20Þ

All terms are of Oð1=Λ4Þ and the ni and oj are arbitrary as

it stands. These terms can be chosen to have C̃ð6Þ
i depend-

ence, modifying the dependence on C̃ð6Þ
k C̃ð6Þ

l .
Ref. [6] demonstrated that the quadratic term in h − γ − γ

was not correctly predicting dependence on ðfm̂W
1 Þ2 due to

the redefinition of the electric coupling in the geoSMEFT.
This redefinition is a specific example of field redefinition
based correction of the form shown in Eq. (19). In addition,
the arbitrariness represented by ni, oj until Lð8Þ is defined is
required to ensure that SMEFT predictions are well defined
at Oð1=Λ4Þ and not intrinsically dependent on the basis
chosen for Lð8Þ. When defining Lð8Þ the use of the Higgs
EOM

D2Hk − λv̄2THk þ 2λðH†HÞHk þ q̄jY†
uuϵjk

þ d̄Yd qk þ ēYelk ¼ 0; ð21Þ

leads to modifications of Lð6Þ terms that are ∝ λv̄2T . These
terms cancel in a full matching (see Ref. [6,24]). This
correlated matching of Lð8Þ and v̄2T corrections to Lð6Þ is an
example of matching effects descending down in an
operator mass dimension, which is similar to the mixing
of operators of different mass dimensions in the SMEFT

RGE; both effects come about due to v̄2T . C̃
ð6Þ
k ak is not well

defined in its predictions to Oð1=Λ4Þ neglecting such
effects as the Higgs EOM is not consistently applied when
neglecting such terms. The quadratic terms are in general

5Here ϕ is a four-component real vector defining the compo-
nents of the Higgs field H.

6This modification is available from the author and T. Corbett.
7See for example Ref. [30].

8One can directly confirm that inconsistent expansions in the
power counting expansion among vertex functions violate
SMEFT-Ward identities [4].
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not well-defined contributions atOð1=Λ4Þ for these reasons
and they should not be used to fix central values in the
global SMEFT fit as a default prediction. Such corrections
cannot be translated unambiguously between operator
bases until the theory is fixed to Oð1=Λ4Þ as Eq. (21),
and other EOM relations between Lð6Þ operators, have
implicit (usually unspecified) corrections that are further
suppressed by Oð1=Λ2Þ.9
Nevertheless, the use of quadratic terms to define an

error estimate is a reasonable procedure [32–35], in the
absence of complete results developed using this method-
ology for pole observables. As such, the use of quadratic
terms to estimate an error for tail observables as advocated
in Ref. [33–35] can be appropriate.

VII. CONCLUSIONS

We have defined a methodology to improve predictions
for pole observables in the SMEFT to Oð1=Λ4Þ
using geoSMEFT results. When new kinematics are first
present at Lð8Þ, modifications to code tools, and new
simulation and event generation is required to complete
results to Oð1=Λ4Þ. However such corrections are a small
subset of the full set of corrections extending predictions

to Oð1=Λ4Þ. This approach to improving LO results
to subleading order in the operator expansion relies
on simple linear algebra, Taylor expansions of
known closed form all-orders expressions in the
geoSMEFT, and the known dependence on Lð6Þ encoded
in SMEFTsim. The approach outlined here can be
combined with the approach of Refs. [32–36] for tail
observables.
Truncation errors result from taking the resulting

exact expressions to Oð1=Λ4Þ and varying the unknown
higher-order terms in a range of values. Thenffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð∇σ1=Λ4Þ2 þ ð∇σ1=16π2Λ2Þ2

q
defines a theory error esti-

mate. As the operator expansion in the SMEFT
involves many terms at Oð1=Λ4Þ that are randomly
chosen via distributions in linear sums, the central
limit theorem applies. In global combinations, common
values of Λ should be chosen to define errors for observ-
ables. The resulting SMEFT theory error for a LO fit is a
Gaussian-distributed numerical value for each observable,
with magnitude determined by the chosen Λ.
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