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We study the inclusion of Oð1=Λ4Þ effects in the Standard Model effective field theory in fits to the
current Drell-Yan data at the LHC. Our analysis includes the full set of dimension-6 and dimension-8
operators contributing to the dilepton process, and is performed to next-to-leading-order in the QCD
coupling constant at bothOð1=Λ2Þ and Oð1=Λ4Þ. We find that the inclusion of dimension-6 squared terms
and certain dimension-8 operators has significant effects on fits to the current data. Neglecting them leads to
bounds on dimension-6 operators off by large factors. We find that dimension-8 four-fermion operators can
already be probed to the several-TeV level by LHC results, and that their inclusion significantly changes the
limits found for dimension-6 operators. We discuss which dimension-8 operators should be included in fits
to the LHC data. Only a manageable subset of two-derivative dimension-8 four-fermion operators need to
be included at this stage given current LHC uncertainties.
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I. INTRODUCTION

The Standard Model (SM) of particle physics has
successfully withstood rigorous tests across a wide range
of energies, from low-energy nuclear decays to high-energy
collisions. Despite its elegance and successes, the SM is not
the final theory of nature, as it does not accommodate
neutrino masses [1,2], it does not have a dark matter
candidate and it cannot explain the origin of the matter-
antimatter asymmetry in the universe [3–6]. Experiments at
the Large Hadron Collider (LHC) are probing the SM at the
TeV scale, looking for clues that might lead to solutions to
these three outstanding problems and to a better under-
standing of the mechanism of electroweak symmetry
breaking. Despite a few tantalizing hints of discrepancies
[7–11], no direct evidence for new particles has so far
emerged at the LHC, suggesting that the scale of new
physics Λ is larger than the electroweak scale.

A powerful theoretical framework for investigating
indirect signatures of heavy new physics is the SM effective
field theory (SMEFT). The SMEFT is formed by aug-
menting the SM Lagrangian with higher-dimensional
operators consistent with the SM gauge symmetries and
formed only from SM fields. The higher-dimensional
operators in the SMEFT are suppressed by appropriate
powers of a characteristic energy scale Λ below which
heavy new fields are integrated out. Complete, nonredun-
dant bases for the dimension-6 [12–14] and dimension-8
operators [15,16] have been constructed. Odd-dimensional
operators violate lepton-number and will not be considered
here. It is an ongoing effort to analyze the numerous
available data within the SMEFT framework, primarily in
partial analyses of individual SMEFT sectors [17–37].
Recent work has been devoted to performing a global,
simultaneous fit of all data available [38–49], and to study
the interplay between SMEFT fits and the extraction of
parton distributions from data [48,50].
Most of these global fits have focused on the truncation

of the SMEFT expansion to dimension-6 operators at
Oð1=Λ2Þ. An issue that must be addressed with such an
approach is the sensitivity of fits to Oð1=Λ4Þ effects from
dimension-8 operators and the square of dimension-6
terms. Intuitively their effects should be suppressed, but
since many measurements at the LHC probe high energies
this assumption must be tested. Furthermore, dimension-8
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effects sometimes represent the leading SMEFT contribu-
tions in models with certain approximate symmetries
[51,52], and their identification will be crucial to determine
the UV model responsible for deviations from the SM in
LHC and low-energy data [53–55]. Previous analyses of
the impact of dimension-8 operators can be found in the
literature [56–64], and there is a growing body of work
devoted to study the constraints from basic principle of
quantum field theory, such as unitarity and analyticity, on the
allowed space of dimension-8 coefficients [53–55,65–70]
Our goal in this work is to explore the sensitivity of high-

energy Drell-Yan production of lepton pairs to dimension-8
effects in the SMEFT. Since it is calculated to high
precision in the SM and is measured with residual exper-
imental uncertainties approaching the percent level, it is
an ideal channel in which to search for such effects. In
previous work we have shown that a category of dimen-
sion-8 operators induce novel angular dependences not
generated by QCD, and which can be potentially measured
at the LHC [61]. In this work we study the impact of all
sources of 1=Λ4 effects, which can arise from either
genuine dimension-8 operators or from the square of
dimension-6 effects, on existing experimental measure-
ments. We include the SM next-to-next-to-leading order
(NNLO) QCD and NLO electroweak corrections in the
next-to-leading logarithmic approximation, as well as NLO
QCD corrections to the 1=Λ2 and 1=Λ4 terms. We note that
higher-order electroweak corrections to the ð1=Λ2Þ terms
have recently been calculated [71]. We summarize below
the main messages of our analysis.

(i) Effects quadratic in the dimension-6 Wilson coef-
ficients have a significant impact on fits of the
current data. For dimension-6 four-fermion opera-
tors that interfere with the SM, including 1=Λ4

effects can shift bounds on the Wilson coefficients
by factors of 2-3 depending on the operator.

(ii) Genuine dimension-8 operators can be strongly con-
strained by existing Drell-Yan measurements at the
LHC. For example, existing high-precision measure-
ments of the Drell-Yan invariant mass distribution up
to 1.5 TeV can probe dimension-8 operator scales
approachingΛ ≈ 4 TeV in the case of two-derivative
operators of the form ∂μðψ̄γνψÞ∂μðχ̄γνχÞ, withψ (χ) a
lepton (quark) field.

(iii) Dimension-6 scalar and tensor semileptonic four-
fermion operators, which contribute to the cross
section atOð1=Λ4Þ, are currently probed at the same
level as four-fermion operators that interfere
with SM.

(iv) The inclusion of dimension-8 operators in the fit can
significantly change the allowed regions of dimen-
sion-6 Wilson coefficients.

In the light of these results, we advocate for the inclusion of
the dimension-6 squared contributions and of the most
relevant dimension-8 operators in the analysis of LHC

Drell-Yan data. At a minimum the two-derivative four-
fermion operators that give contributions to the cross
section scaling asOðs2=Λ4Þ in the high-energy limit should
be included in fits to the current data to avoid misleading
bounds. The number of such operators at dimension-8 is
only Oð10Þ, so that the complexity of including the full
dimension-8 operator set is avoided in this setup.
The paper is organized as follows. In Sec. II we provide

the definition of the dimension-6 and -8 operators relevant
for dilepton production. In Sec. III we sketch the calcu-
lation of the cross section and analyze the directions in
parameter space that can be probed by the Drell-Yan
process. In Sec. IV, we study the numerical impact of
Oð1=Λ4Þ effects. In Secs. V and VI we perform a fit to the
dilepton invariant mass distribution, measured at the center-
of-mass energy of 8 TeV [72]. To assess the sensitivity of
existing data to Oð1=Λ4Þ effects, we first perform a single
coupling analysis, in which only one operator coefficient
is turned on at the new physics scale Λ. We then study to
which extent dimension-8 effects can cancel dimension-6
contributions by performing a multiple parameter fit. We
conclude in Sec. VII.

II. OPERATOR BASIS

The SMEFT Lagrangian contains the most general set of
operators that are invariant under the Lorentz group, the
gauge group SUð3Þc × SUð2ÞL ×Uð1ÞY , and that have the
same field content as the SM, with the Higgs boson
belonging to an SUð2ÞL doublet. SMEFT operators are
organized according to their canonical dimension, with
operators of higher dimension suppressed by higher powers
of the new physics scale Λ. The rapid advance of Hilbert
series methods [73] has allowed the derivation of the
complete SMEFT Lagrangian up to dimension nine
[15,16,74–76]. In this work we are concerned with
Oð1=Λ4Þ contributions to the Drell-Yan cross section,
which arise from the square of dimension-6 operators
and from the interference of dimension-8 operators with
the SM. Here we list the relevant dimension-6 and
dimension-8 operators that we consider.
We first establish our notation. The left-handed quarks

and leptons and the scalar field φ transform as doublets
under SUð2ÞL

qL¼
�
uL
dL

�
; lL¼

�
νL

eL

�
; φ¼ vffiffiffi

2
p UðxÞ

�
0

1þh
v

�
; ð1Þ

while the right-handed quarks, uR and dR, and charged
leptons, eR, are singlets under SUð2ÞL. v ¼ 246 GeV is the
scalar vacuum expectation value (vev), h is the physical
Higgs field and UðxÞ is a unitary matrix that encodes the
Goldstone bosons. We will denote by φ̃ the combination
φ̃ ¼ iτ2φ�. The gauge interactions are determined by the
covariant derivative
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Dμ ¼ ∂μ þ ig0yBμ þ i
g
2
τIWI

μ þ igsGa
μta ð2Þ

where Bμ, WI
μ and Ga

μ are the Uð1ÞY , SUð2ÞL and SUð3Þc
gauge fields, respectively, and g, g0, and gs are their gauge
couplings. y denotes the field hypercharge assignment,
given explicitly by

yq ¼
1

6
; yu ¼

2

3
; yd ¼ −

1

3
;

yl ¼ −
1

2
; ye ¼ −1: ð3Þ

Furthermore, τI=2 and ta are the SUð2ÞL and SUð3Þc
generators, in the representation of the field on which the
derivative acts.

A. Dimension six operators

The dimension-6 SMEFT Lagrangian was constructed in
Refs. [12,14], and the operators that give the most

important contributions to Drell-Yan can be organized into
three different classes:

Ld6 ¼ Lψ2Xφ þ Lψ2φ2D þ Lψ4 : ð4Þ

(i) ψ2Xφ contains dipole couplings to the Uð1ÞY ,
SUð2ÞL and SUð3Þc gauge bosons. Here we focus
on weak dipoles, which contribute at tree level:

Lψ2Xφ ¼
1

Λ2
fl̄Lσ

μνðCeBBμνþCeWτ
IWI

μνÞφeR
þ q̄LσμνðCdBBμνþCdWτ

IWI
μνÞφdR

þ q̄LσμνðCuBBμνþCuWτ
IWI

μνÞφ̃uRþH:c:g:
ð5Þ

(ii) ψ2φ2D contains corrections to the W and Z boson
couplings to fermions

Lψ2φ2D ¼ 1

Λ2
fφ†iD

↔

μφðl̄Lγ
μCð1Þ

HllL þ ēRγμCHeeRÞ þ φ†iD
↔I

μφl̄Lτ
IγμCð3Þ

HllL

þ φ†iD
↔

μφðq̄LγμCð1Þ
HqqL þ d̄RγμCHddR þ ūRγμCHuuRÞ

þ φ†iD
↔I

μφq̄LτIγμC
ð3Þ
HqqL þ ðφ̃†iDμφūRγμCHuddR þ H:c:Þg; ð6Þ

where D
↔

μ ¼ Dμ − D⃖μ, D
↔I

μ ¼ τIDμ − D⃖μτ
I . The right-handed charged-current operator CHud contributes to

pp → lν, but does not induce corrections to lþl− production, at LO in electroweak interactions.
(iii) Lψ4 includes four-fermion operators. The most relevant for Drell-Yan are semileptonic four-fermion operators,

Lψ4 ¼ 1

Λ2
fCð1Þ

lq l̄Lγ
μlLq̄LγμqL þ Cð3Þ

lq l̄Lτ
IγμlLq̄LτIγμqL þ CeuēRγμeRūRγμuR þ CedēRγμeRd̄RγμdR

þ Clul̄Lγ
μlLūRγμuR þ Cldl̄Lγ

μlLd̄RγμdR þ CqeēRγμeRq̄LγμqLg

þ 1

Λ2
fCledql̄i

LeRd̄Rq
i
L þ Cð1Þ

lequε
ijl̄i

LeRq̄
j
LuR þ Cð3Þ

lequε
ijl̄i

Lσ
μνeRq̄

j
LσμνuR þ H:c:g: ð7Þ

Several additional operators not listed here lead to shifts
of the SM couplings once the electroweak gauge boson
mass matrices are diagonalized to Oð1=Λ2Þ. Although we
include these terms in our analysis, their impact is numeri-
cally small compared to the effects we focus on here. In the
SMEFT, the EFT expansion is a double expansion in
fv2; sg=Λ2, where we use the partonic center of mass
energy s to denote the typical kinematic variables in the
process. As the LHC probes higher and higher scales,
s ≫ v2, different dimension-6 and -8 operators give con-
tributions of different importance to the cross section. The

seven vertex corrections Cð1;3Þ
Hl , Cð1;3Þ

Hq , CHe, CHu, CHd and

the seven four-fermion operators Cð1;3Þ
lq , Ceu, Ced, Clu, Cld,

and Cqe interfere with the SM, and thus give corrections to
the Drell-Yan cross section at Oð1=Λ2Þ. The operators in
the first class shift the value of Z andW boson couplings to
quarks and leptons by Oðv2=Λ2Þ with respect to the SM
expectation, and thus give rise to cross sections that have
the same energy behavior as the SM. Operators in these
classes can be sensitively probed by electroweak precision
data at the Z-pole [77]. In addition, they give important
contributions to diboson production or Higgs production in
association with W=Z, where they induce corrections that
grow with energy [37,78]. Four-fermion operators, on the
other hand, induce contributions that grow with energy and
scale as Oðs=Λ2Þ. If we neglect small quark and lepton
Yukawas, the dipole operators in Eq. (5) do not interfere

DILEPTON PRODUCTION IN THE SMEFT AT PHYS. REV. D 104, 095022 (2021)

095022-3



with the SM and they thus contribute to the cross section at
Oðv2s=Λ4Þ, where the power of s arises from the additional
derivative in the dipole interaction with respect to the SM.

Finally, the scalar and tensor operators Cledq, C
ð1;3Þ
lequ in

Eq. (7) contribute at Oðs2=Λ4Þ.
The Wilson coefficients of the operators in Eqs. (5), (6),

and (7) are in principle matrices in flavor space. Here, for
simplicity and to avoid stringent constraints from flavor
physics, we choose them to be universal in both quark and
lepton flavor.

B. Dimension eight operators

At dimension eight, we only consider operators that can
interfere with the Standard Model. We can split the
dimension-8 operators into four categories:

Ld8 ¼ Lψ4D2 þ Lψ4φ2 þ Lψ2D3 þ Lψ2φ4D: ð8Þ

As in the dimension-6 section we do not explicitly list those
operators that shift the electroweak couplings at Oð1=Λ4Þ.

(i) The two derivative operators are

Lψ4D2 ¼ 1

Λ4
fCð1Þ

l2q2D2∂νðl̄Lγ
μlLÞ∂νðq̄LγμqLÞþCð3Þ

l2q2D2Dνðl̄Lγ
μτIlLÞDνðq̄LγμτIqLÞ

þCð1Þ
e2u2D2∂νðēRγμeRÞ∂νðūRγμuRÞþCð1Þ

e2d2D2∂νðēRγμeRÞ∂νðd̄RγμdRÞ
þCð1Þ

l2u2D2∂νðl̄Lγ
μlLÞ∂νðūRγμuRÞþCð1Þ

l2d2D2∂νðl̄Lγ
μlLÞ∂νðd̄RγμdRÞþCð1Þ

q2e2D2∂νðēRγμeRÞ∂νðq̄LγμqLÞg: ð9Þ

These operators interfere with the SM to generate aOðs2=Λ4Þ correction to the cross section. The other class of two-
derivative operators has the form [79]

Cð2Þ
l2q2D2 q̄Lγ

ðμ
D
↔νÞ

qLl̄LγðμD
↔

νÞlL; ð10Þ

where the notation ðμνÞ denotes symmetrization over the indices μ and ν

γ
ðμ
D
↔νÞ ¼ ðγμD↔ ν þ γνD

↔μÞ: ð11Þ

These operators give rise to interesting angular distributions, which we considered in Ref. [61]. The interference with
the SM, however, vanishes once we integrate over the lepton angle cos θ. While the cuts on the leptons transverse
momenta and rapidities prevent an exact cancellation, these operators cannot be efficiently probed with the
distributions we study in this paper.

(ii) There are several semileptonic operators with two Higgses:

Lψ4φ2 ¼ 1

Λ4
fCð1Þ

l2q2H2 q̄LγμqLl̄LγμlLφ
†φþ Cð3Þ

l2q2H2 q̄LτIγμqLl̄Lτ
IγμlLφ

†φþ Cð4Þ
l2q2H2 q̄LτIγμqLl̄LγμlLφ

†τIφ

þ Cð2Þ
l2q2H2 q̄LγμqLl̄Lτ

IγμlLφ
†τIφþ Cð5Þ

l2q2H2εIJKq̄LτIγμqLl̄Lτ
JγμlLφ

†τKφ

þ Cð1Þ
e2u2H2 ūRγμuRēRγμeRφ†φþ Cð1Þ

e2d2H2 d̄RγμdRēRγμeRφ†φþ Cð1Þ
l2u2H2 ūRγμuRl̄LγμlLφ

†φ

þ Cð2Þ
l2u2H2 ūRγμuRl̄Lγμτ

JlLφ
†τJφþ Cð1Þ

l2d2H2 d̄RγμdRl̄LγμlLφ
†φþ Cð2Þ

l2d2H2 d̄RγμdRl̄Lγμτ
JlLφ

†τJφ

þ Cð1Þ
q2e2H2 q̄LγμqLēRγμeRφ†φþ Cð2Þ

q2e2H2 q̄LγμτJqLēRγμeRφ†τJφg: ð12Þ

Cð5Þ
l2q2H2 does not interfere with the SM. The net effect of the other operators is to provide an independent coefficient

in the 12 channels eiuj, eidj, νLuj, νLdj with i; j ∈ fL;Rg. The contributions of the operators in Eq. (12) to each
flavor and helicity channel are given in Eq. (A5).

(iii) The next class we consider are fermion bilinear operators with three derivatives. They give rise to vertices of the form
f̄γμf∂2Zμ:
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Lψ2D3 ¼ 1

Λ4
fCð1Þ

l2H2D3il̄Lγ
μDνlLðDðμDνÞφÞ†φþ Cð2Þ

l2H2D3il̄Lγ
μDνlLφ

†DðμDνÞφ

þ Cð3Þ
l2H2D3il̄Lγ

μτIDνlLðDðμDνÞφÞ†τIφþ Cð4Þ
l2H2D3il̄Lγ

μτIDνlLφ
†τIDðμDνÞφg

þ 1

Λ4
fCð1Þ

e2H2D3iēRγμDνeRðDðμDνÞφÞ†φþ Cð2Þ
e2H2D3iēRγμDνeRφ†DðμDνÞφg

þ 1

Λ4
fCð1Þ

q2H2D3iq̄LγμDνqLðDðμDνÞφÞ†φþ Cð2Þ
q2H2D3iq̄LγμDνqLφ†DðμDνÞφ

þ Cð3Þ
q2H2D3iq̄LγμτIDνqLðDðμDνÞφÞ†τIφþ Cð4Þ

q2H2D3iq̄LγμτIDνqLφ†τIDðμDνÞφg

þ 1

Λ4
fCð1Þ

u2H2D3iūRγμDνuRðDðμDνÞφÞ†φþ Cð2Þ
u2H2D3iūRγμDνuRφ†DðμDνÞφg

þ 1

Λ4
fCð1Þ

d2H2D3id̄RγμDνdRðDðμDνÞφÞ†φþ Cð2Þ
d2H2D3id̄RγμDνdRφ†DðμDνÞφg þ H:c: ð13Þ

Only six linear combinations contribute to Drell-Yan. We introduce the coupling to left-handed electrons

CðeÞ
l2H2D3 ¼ Cð1Þ

l2H2D3 − Cð2Þ
l2H2D3 þ Cð3Þ

l2H2D3 − Cð4Þ
l2H2D3 : ð14Þ

The other linear combinations are Cð1Þ
f2RH

2D3 − Cð2Þ
f2RH

2D3 , with fR ∈ fe; u; dg, and Cð1Þ
q2H2D3 − Cð2Þ

q2H2D3 ,

Cð3Þ
q2H2D3 − Cð4Þ

q2H2D3 .

(iv) The final corrections we consider are fermion bilinear operators with a single derivative. These give rise to
momentum independent corrections to the Z-boson vertices. We can write the relevant operators as

Lψ2φ4D ¼ 1

Λ4
fCe2H4DðēRγμeRÞðφ†D

↔

μφÞðφ†φÞ þ Cð1Þ
l2H4D

iðl̄Lγ
μlLÞðφ†D

↔

μφÞðφ†φÞ

þ Cð2Þ
l2H4D

iðl̄Lγ
μτIlLÞ½ðφ†D

↔I
μφÞðφ†φÞ þ ðφ†D

↔

μφÞðφ†τIφÞ� þ Cð1Þ
q2H4D

iðq̄LγμqLÞðφ†D
↔

μφÞðφ†φÞ

þ Cð2Þ
q2H4D

iðq̄LγμτIqLÞ½ðφ†D
↔I

μφÞðφ†φÞ þ ðφ†D
↔

μφÞðφ†τIφÞ� þ Cu2H4DðūRγμuRÞðφ†D
↔

μφÞðφ†φÞ

þ Cd2H4Dðd̄RγμdRÞðφ†D
↔

μφÞðφ†φÞg ð15Þ

This class of operators introduces seven independent
Wilson coefficients. Since they give rise only to
momentum-independent vertex corrections they are
difficult to disentangle from similar effects at dimen-
sion-6, and are typicallymuch smaller than other shifts
of the cross section induced by SMEFT operators.

The corrections to the cross section from the operators in
Eqs. (12) and (13) scale as Oðv2s=Λ4Þ, while those in
Eq. (15) scale as Oðv4=Λ4Þ. For dimension-8 operators we
also make the assumption of flavor universality.

III. CALCULATION OF THE CROSS SECTION

The Drell-Yan cross section has the structure

dσ
dmll

¼ dσSM
dmll

þ
X
i

�
að6Þi ðmllÞ

Λ2
Cð6Þ
i þ að8Þi ðmllÞ

Λ4
Cð8Þ
i

�

þ
X
ij

bð6Þij ðmllÞ
Λ4

Cð6Þ
i Cð6Þ

j ; ð16Þ

where we collectively denote by Cð6Þ and Cð8Þ the coef-
ficients of dimension-6 and dimension-8 operators, respec-
tively. As we already mentioned, the chiral structure of the
SM implies that only a limited number of interference terms
exist. Similarly, if we neglect small lepton and quark
Yukawas, the interference terms between different dimen-

sion-6 operators, bð6Þij , are limited to interference between

the purely left-handed operators Cð1Þ
lq and Cð3Þ

lq , between the

SUð2ÞL and Uð1ÞY dipole operators, and between scalar
and tensor operators. The latter vanishes when integrating
over the angular variables, leaving some small residual
effects due to the cuts on the lepton transverse momenta
and rapidities.
A detailed discussion of the SMEFT vertices that enter

the Drell-Yan cross section is given in Appendix A. We
summarize here the main points of this discussion. At the
Oð1=Λ4Þ level, three distinct contributions to the Drell-Yan
cross section are possible.
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(i) The most important class of corrections scales as
Oðs2=Λ4Þ. Examples of operators that lead to this
dependence are momentum-dependent four-fermion
operators at dimension-8, and scalar/tensor dimen-
sion-6 four-fermion operators. These terms have a
large effect on the cross section, and our numerical
fits in the next section show that they cannot be
neglected in fits to the current data.

(ii) The second type of correction scales as Oðv2s=Λ4Þ.
Dimension-6 dipole operators and momentum-
dependent Z-vertex corrections at dimension-8 lead
to this behavior. The impact of these terms on
fits to the Drell-Yan data is smaller than those in
the previous category.

(iii) Finally, the last type of correction scales as
Oðv4=Λ4Þ. These terms come from momentum-
independent Z-boson vertex corrections at dimen-
sion-8. Their effects on the Drell-Yan cross section
are small for all reasonable choices of parameters.

An enumeration of the Wilson coefficients that appear in
the Drell-Yan cross section at each order in the Oð1=ΛÞ
expansion is given in the Appendix. The number of Wilson
coefficients that enters the Drell-Yan cross section does not
increase dramatically upon going from dimension-6 to
dimension-8, increasing from approximately 30 to 60.
One reason for this is that the dimension-8 scalar, tensor
and dipole operators do not interfere with the SM amplitude
and therefore have no effect at Oð1=Λ4Þ. Such operators at
dimension-6 can interfere with themselves and contribute
at Oð1=Λ4Þ. We also note that not all of these Wilson
coefficients can be independently measured in the Drell-
Yan process. The simplest way to see this is to count the
number of vertex structures that appear at each order in
Oð1=ΛÞ. The number of such structures sets the upper limit
on how many combinations of parameters are in principle
distinguishable at each order. We note that not every term
may be distinguishable in practice given limited exper-
imental measurements, or approximate degeneracies
between the behavior of different vertices. We also
note that for some structures, such as the momentum-
dependent four-fermion vertices defined in Eq. (A3) that
first appear at Oð1=Λ4Þ, the number of Wilson coefficients
is greater than the number of independent interaction
structures. The vertices are given in the Appendix, and
include both four-fermion interactions and corrections to
gauge boson-fermion vertices. Structures with different
momentum dependence can be distinguished through
measurements of the invariant mass distributions, up-quark
and down-quark structures can in principle be distinguished
through their different rapidity dependence, while angular
distributions can disentangle vector from dipole, scalar and
tensor operators. A total of 14 structures contributes at
Oð1=Λ2Þ. An additional 32 enter atOð1=Λ4Þ, including the
two-derivative operators discussed in Eq. (10) but not
explicitly considered here.

We compute að6Þ, að8Þ and bð6Þ at NLO in QCD. A first
OðαsÞ effect arises from the renormalization group evolu-
tion of the Wilson coefficients of SMEFT operators. The
dimension-6 corrections to the Z and W boson couplings,
the vectorlike semileptonic operators and the dimension-8
operators in Eqs. (9), (12), (13), and (15) do not run at one
loop in QCD. For the dipole, scalar and tensor operators,
we evolve the coefficients from the scale μ0, chosen to be
close to the new physics scale Λ, to the renormalization
scale μR, using two-loop anomalous dimensions [80–82];
see Appendix B and Ref. [29] for more details. The

renormalization of the two-derivatives operator Cð2Þ
l2q2D2,

and similar operators with different quark and lepton
chiralities, has been studied in the context of higher-twist
operators, and it is known to three-loops [83]. The second
effect arises from QCD virtual and real emissions. For the
dimension-6 and dimension-8 operators with the same
chiral structure as the SM, these corrections are identical
to QCD corrections to SM amplitudes. For dipole, scalar,
and tensor operators we use the calculation of Ref. [29],

while we compute the corrections induced by Cð2Þ
l2q2D2. Our

calculation is complete at Oðαs=Λ2Þ. At Oðαs=Λ4Þ, we
include all corrections proportional to operators that con-
tribute at the Born level, and that thus generate contribu-
tions enhanced in the soft and collinear limits. We do not
include corrections from dimension-8 operators with
gluons, such as

Cð1Þ
l2q2G

q̄LtaγμqLl̄Lγ
νlLGa

μν: ð17Þ

While these operators induce small corrections to the
dilepton invariant mass distribution, and we can safely
neglect them, they might play a more prominent role in
studies of the dilepton transverse momentum distribution.
In the invariant mass bins we consider, NLO QCD

corrections increase the SM cross section by about 20%,
reaching 26% in the highest bin. SMEFT cross sections
receive contributions of similar size, about 30% for scalar,
tensor, and dipole operators.

IV. NUMERICAL IMPACT OF DIMENSION-6
AND DIMENSION-8 OPERATORS

Before discussing the constraints and the impact of
OðΛ−4Þ corrections, in Fig. 1 we show the linear (að6Þ)
and quadratic (bð6Þ) corrections to the SM cross sections for
the representative SMEFT coefficients Ceu and Clu, for the
choice of UV scale Λ ¼ 4 TeV. For this choice of UV scale
we have ðs=ΛÞ2 ≪ 1 since the maximum invariant
mass probed is 1.5 TeV, and we expect the EFT expansion
to be well behaved. In the case of Ceu, we see that for
Λ ¼ 4 TeV the quadratic term is negligible up to about
mll ∼ 500 GeV, while it becomes approximately 25% and
50% of the linear piece in the two highest invariant mass
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bins. The quadratic and linear terms become comparable in
the highest invariant mass bin, mll ∈ ½1.0; 1.5� TeV, for
Λ ¼ 3 TeV, which we also expect to be in the range of
validity of the EFT. For Clu, bð6Þ is even more important,
being, in the highest bin, larger than the linear term at Λ ¼
4 TeV and 70% of the linear term at Λ ¼ 5 TeV. The
values of the coefficients að6Þ=Λ2 and bð6Þ=Λ4 induced by
the dimension-6 SMEFT operators that can interfere with
the SM are given in Tables II and III in Appendix C for
Λ ¼ 4 TeV. In the highest invariant mass bin,
mll ∈ ½1.0; 1.5� TeV, the quadratic term ranges from half
to two times að6Þ. We thus expect quadratic contributions to
have a significant impact on the coefficient fits.
In Figs. 2, 3, and 4 we examine the behavior of vector-

like four-fermion operators, scalar, tensor and dipole
operators and dimension-8 operators, respectively. All
vector operators induce comparable corrections to the

SM cross sections, with some enhancement for the oper-
ators that couple to u quarks. The size of the interference
with the SM is dictated by the SM Z boson and photon
couplings. Scalar and tensor four-fermion operators do not
interfere with the SM. However, the left panel of Fig. 3
shows that these operators induce large corrections to the
Drell-Yan cross section, comparable to (if not larger than)
vector operators. Since these operators always increase the
SM cross section and do not leave room for cancellations,
we will see that, in a single coupling analysis, the bounds
on scalar and tensor coefficients are stronger than on vector
operators. The dipole operators also do not interfere with
the SM. In their case, however, the correction to the SM
cross section grows as s=Λ2 compared to s2=Λ4 for four-
fermion operators. For Λ ¼ 4 TeV, the dimensionless
dipole coefficients CfW and CfB need to be larger than
four-fermion coefficients by about a factor of ten to cause

FIG. 2. Contributions of vector and axial operators to dilepton production. The colored bands denote the deviation from the Standard
Model cross sections, as the couplings vary between �1 for Λ ¼ 4 TeV.

FIG. 1. að6Þ and bð6Þ coefficients for the operators Ceu and Clu, for Λ ¼ 4 TeV.

DILEPTON PRODUCTION IN THE SMEFT AT PHYS. REV. D 104, 095022 (2021)

095022-7



comparable corrections to the cross section. The correc-
tions to dσ=dmll induced by dipole, scalar, and tensor
operators, in the binning of Ref. [72], are given in
Tables IV, V, and VI.
Finally in Fig. 4 we show the corrections induced by four

dimension-8 operators that couple right-handed quarks and
electrons: the two-derivative operator Ce2u2D2, the correc-
tion to the dimension-6 coupling Ce2u2H2 , and two deriva-
tive couplings of the Z boson to quark and leptons, Ce2H2D3

and Cu2H2D3 . We see that the derivative operator
induces sizable corrections to the cross section. At
Λ ¼ 4 TeV, a dimensionless coupling of order 10, corre-
sponding to a UV scale of 2 TeV, gives a 40% corrections to
the Drell-Yan cross section in the invariant mass bin
mll ∈ ½1.0; 1.5� TeV. The corrections are smaller in the

case of Ce2u2H2 . Its contribution to the cross section
becomes visible for Ce2u2H2 ¼ Oð100Þ, corresponding to
an effective scale of about 1 TeV. The Z-boson form factor
operators need very low scales, Λ ∼ 400 GeV, assuming
Wilson coefficients of Oð1Þ, to induce large corrections.
For such a low scale, of course, a SMEFT analysis of the
data in Ref. [72] is not justified. We note that this
conclusion is valid only when assuming that the underlying
UV completion giving rise to the SMEFT is weakly
coupled. The dimensionless Wilson coefficients generically
behave as Ci ∼ g2UV, where gUV represents a coupling
constant of the UV model, and we have assumed that
the SMEFT operators are generated at tree-level. If we
assume that the UV completion is strongly coupled we can
have gUV ≈ 4π. In the case of the Z-boson form factor

FIG. 3. Contributions of scalar, tensor and dipole operators to dilepton production. The colored bands denote the deviation from the
Standard Model cross sections, as the couplings vary between 0 and 1 for Cð1;3Þ

lequðμ0Þ and between 0 and 20 for CeW;eBðμ0Þ, with
Λ ¼ 4 TeV. The Wilson coefficients are defined at the initial scale μ0 ¼ 1 TeV.

FIG. 4. Contributions of dimension-8 operators to dilepton production. The colored bands denote the deviation from the Standard
Model cross sections, as the couplings vary between �10 for Ce2u2D2, �100 for Ce2u2H2 and �104 for Ce2H2D3 and Cu2H2D3 ,
with Λ ¼ 4 TeV.
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operators being generated by strongly coupled UV physics
we would instead arrive at an effective scale of Λ ≈ 1 TeV.
The corrections to dσ=dmll induced by dimension-8
operators are given in Tables VII and VIII.

V. SINGLE COUPLING ANALYSIS

We now extract bounds on SMEFT coefficients from the
results of Ref. [72], which measured pp → lþl−, with
l ¼ fe; μg at 8 TeV with luminosity 20.3 fb−1. The data
are binned in twelve invariant mass bins with mll varying
between mll ¼ 116 GeV and mll ¼ 1.5 TeV. The exper-
imental uncertainties go from 0.63% in the smallest
invariant mass bin to 17.31% in the highest invariant mass
bin. The uncertainty in the lower invariant mass bins is an
approximately equal split between statistical and systematic
errors, while in the highest bins it is dominated by statistics.
An important feature of the data set of Ref. [72] is that it
was originally intended as a SMmeasurement of the photon
PDF, and therefore a careful accounting of experimental
errors was performed and released publicly. This is an
important point that can outweigh the improvement in
constraints expected from 13 TeV collisions if those are not
done with the same level of detail.
We choose the UV scale Λ ¼ 4 TeV, which is above the

highest invariant mass bin studied in the experimental
analysis, as a reference scale. We calculate the SM cross
section at next-to-next-to leading order (N2LO) in QCD
using the N-jettiness subtraction method [84,85] as imple-
mented in MCFM [86] and include next-to-leading-
logarithmic (NLL) electroweak corrections [87,88], which
become important in the high invariant mass bins. The
theoretical uncertainties in the SM arise from the parton
distributions (PDFs), from missing higher order corrections
and from uncertainties in the SM parameters. We estimate
PDF uncertainties by using the 100 members of the
NNPDF31_nnlo_as_0118 PDF set [89]. The PDF error
ranges between less than 1% and 2.8%. PDF uncertainties
between different bins are strongly correlated. We estimate
the theoretical error from missing higher-order corrections
by separately varying the renormalization and factorization
scales in the range mll=2 ≤ μR;F ≤ 2mll subject to the
constraint 1=2 ≤ μR=μF ≤ 2. To provide a conservative
uncertainty estimate we vary the scales in the NLO cross
section. The scale uncertainty estimated in this way ranges
from 1.2% to 3.1% in the highest invariant mass bin. We
assume that the scale uncertainty is uncorrelated between
the experimental bins. The SMEFT-induced corrections are
calculated at NLO in the QCD coupling constant. We have
assumed no underlying hierarchy regarding the dimension-
6 and dimension-8 coefficients, and rely instead upon the
experimental data to determine their allowed ranges.
Figure 5 shows the comparison between the SM pre-

diction and the measurement of Ref. [72]. We see that there
is in general a very good agreement. For mll > 300 GeV
the data lie below the SM expectation by about one sigma.

Taking into account the experimental and theoretical
correlations, for the SM cross section we find a χ2 per
degree of freedom (dof) of 11.7=12 ¼ 1.05.
The bounds from turning on only a single coefficient at a

time are shown in Figs. 6–10. We begin by discussing the
bounds on dimension-6 four-fermion coefficients in Fig. 6.
We compare the results obtained by keeping onlyOð1=Λ2Þ

FIG. 5. Comparison between the SM prediction (blue) and the
measurement of the Drell-Yan invariant mass distribution of
Ref. [72] (black). In the top panel, the grey shaded area and blue
error bars denote, respectively, the experimental and theoretical
errors. In the bottom panel, the error on the ratio σth=data
is dominated, at high invariant mass, by the experimental
uncertainties.

FIG. 6. 95% CL intervals for the dimension-6 four-fermion
operators that interfere with the SM. Both the limits obtained by
considering only Oð1=Λ2Þ effects, as well as those including the
Oð1=Λ4Þ corrections, are shown.
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corrections with those obtained by keeping the square of
dimension-6 operators that contributes Oð1=Λ4Þ effects. In
general the fits to the data are good, with a χ2=dof below
one for most operators, implying that the data prefer a non-
zero contribution from SMEFT operators, which interfere
destructively with the SM. The impact of Oð1=Λ4Þ cor-
rections are significant for most operators, with the upper
and lower limits of the 95%CL ranges shifting by factors of
2 or 3 in most cases.
We proceed to discuss next the bounds on the dipole,

scalar and tensor couplings shown in Fig. 7. As explained
previously these enter the cross section quadratically, so the
bounds are symmetric around zero. The χ2 per dof is
slightly over unity, indicating a reasonable fit to the data.
Since these operators always increase the SM cross section
and no destructive interference is possible, their inclusion
does not improve the agreement with data. The scalar and
tensor operators give Oðs2=Λ4Þ contributions to the matrix
elements squared while the dipole corrections only grow as
Oðv2s=Λ4Þ, leading to the order-of-magnitude difference
in the bounds observed for these classes of operators.
Defining the effective scale probed as Λ=

ffiffiffiffiffi
Ci

p
for each

Wilson coefficient Ci, we see that scales from 4.6 TeV to
7.7 TeV are probed for scalar and tensor operators, far
above the 1.5 TeV limit of the highest invariant mass bin.
Scales ranging from 1.0 to 1.6 TeVare probed for the dipole
operators.
It is interesting to compare these bounds with those

from flavor physics and low-energy experiments. The off-
diagonal components of the scalar operator CLedQ are
strongly constrained by flavor-changing-neutral-current
(FCNC) decays of kaons and B mesons, such as B →
lþl− or KL;S → lþl−. These bounds can be converted
into scales Λ≳ 150 TeV. In the case of the scalar operators

Cð1Þ
LeQu,D0 → lþl− probes the uc component at the level of

20 TeV, while the limits on the tensor coupling Cð3Þ
LeQu,

which contributes to D → πlþl−, are weaker, at the TeV
level. These very stringent limits (especially on operators
with d-type quarks) can be brought closer to the TeV scale
by assuming flavor symmetries, such as minimal flavor
violation (MFV) [90]. In MFV, chiral breaking operators
are proportional to quark Yukawa couplings, suppressing
both flavor-changing transitions but also the flavor-
diagonal components that give the largest contributions
to the Drell-Yan process. Here, to avoid relying too heavily
on specific flavor scenarios, we simply account for the
FCNC constraints by choosing the scalar/tensor couplings

Cð1;3Þ
LeQu, CLedQ and the dipole couplings CfB, CfW , with f ∈

fu; dg to be proportional to the identity in the quark mass
basis [91]. In this case, the strongest limit on scalar
operators arise from the ratios

Rπ ¼
Γðπþ → eþνÞ
Γðπþ → μþνÞ ; RK ¼ ΓðKþ → eþνÞ

ΓðKþ → μþνÞ ; ð18Þ

which scale as m2
e=m2

μ in the SM, but are not suppressed in
the presence of pseudoscalar operators. Assuming flavor
universality, and, in addition, that the couplings are real,
one gets ð100 TeVÞ2

−
0.2

ð100 TeVÞ2 <
1

Λ2
½CLedQ−Cð1Þ

LeQu�<
0.1

ð100 TeVÞ2 : ð19Þ

The limits on Λ can be weakened by one order of
magnitude assuming quark flavor diagonal rather than
flavor universal couplings [92].
For the scalar and tensor couplings, the best constraints

come nuclear beta decays, Rπ and radiative pion decays
[18,92–94]. In this case one finds [93,94]

−
0.6

ð4 TeVÞ2 <
1

Λ2
½CLedQ þ Cð1Þ

LeQu� <
0.5

ð4 TeVÞ2 ;

−
0.5

ð4 TeVÞ2 <
v2

Λ2
½Cð3Þ

LeQu� <
0.3

ð4 TeVÞ2 ;

at 95% CL. These bounds are very close to those showed in
Fig. 7. Therefore, while the linear combination constrained
by Rπ and RK is out of the LHC reach, we can conclude that
for the other two linear combinations of chiral-breaking
scalar and tensor coefficients there is a strong interplay
between low- and high-energy searches, as already pointed
out in Refs. [29,93–95]. Similar conclusions apply to the
real part of flavor-diagonal dipole operators. Electric dipole
moments put strong constraints on the imaginary part of the
coefficients of flavor-diagonal chiral-breaking operators, so
that for these the LHC is never competitive.

FIG. 7. 95% CL intervals for dimension-6 dipole, scalar and
tensor interactions that first contribute at Oð1=Λ4Þ. The Wilson
coefficients are defined at the scale μ0 ¼ 1 TeV.
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Finally we proceed to discuss the dimension-8 operator
bounds in Figs. 8, 9, and 10. The first plot discusses
operators of the form Lψ4D2 that give momentum-
dependent four-fermion corrections that scale as
Oðs2=Λ4Þ, the second gives momentum-independent
four-fermion corrections from Lψ4H2 that scale as
Oðv2s=Λ4Þ, and the third gives momentum-dependent
Vf̄f vertex corrections, which also scale as Oðv2s=Λ4Þ.
These different scalings lead to vast differences in the
effective scales probed for each type of operator. Defining
the effective scale as Λ=

ffiffiffiffiffi
Ci

4
p

for these dimension-8 terms,
UV scales ranging from 1.3 to 4.3 TeV are reached for
operators of the Lψ4D2 class. Given that these are pure
dimension-8 effects that appear first at Oð1=Λ4Þ this is

striking. Since these scales approach those of the dimen-
sion-6 effects, these operators cannot be safely neglected in
fits to the data. We study this point further in the next
section. Bounds on operators from the Lψ4H2 class are
weaker, with the maximum scale probed reaching 1.7 TeV
at most. The scales associated with the vertex corrections
do not reach 1 TeV, and these corrections can be safely
neglected in fits compared to the larger corrections arising
from dimension-6 effects.
We used in this analysis 8 TeV data, for which detailed

information about the experimental errors and their corre-
lations is available. Including the full correlation matrix is
particularly important for the constraints on operators that
interfere with the SM. Since formll > 300 GeV all bins lie
below the SM expectation, neglecting the experimental
correlations leads to a better SM fit and changes the
smaller side of the bounds in Figs. 6, 8, 9 and 10 by up
to a factor of two. The bounds on scalar, tensor and dipole
operators, which do not interfere with the SM, are
only marginally affected by neglecting correlations.
ATLAS and CMS have also published searches for reso-
nant and non-resonant phenomena in high-mass dilepton
and lepton plus missing energy final states based on
40 fb−1 and 139 fb−1 of 13 TeV data [96–102]. While
these datasets play an important role in further constraining
the SMEFTexpansion, they are published with less detailed
error information, and the extraction of reliable bounds
requires a detailed detector simulation not available to
theorists. We note that the search for contact interactions
in Ref. [101] considers a subset of the dimension-6
operators that we included, and uses a signal region of
2 < mll < 6 TeV. The uncertainties on the background in
this region are quite significant, and the limits on the new
physics scale Λ, once converted into the conventions of

FIG. 8. 95% CL intervals for the dimension-8 momentum-
dependent four-fermion operators.

FIG. 9. 95% CL intervals for the dimension-8 momentum-
independent four-fermion operators. A combination such as
ð1Þ þ ð2Þ in a superscript indicates that the indicated linear
combination of the two relevant operators has been considered.

FIG. 10. 95% CL intervals for a selection of dimension-8 Z-
boson vertex corrections. A combination such as ð1Þ − ð2Þ in a
superscript indicates that the indicated linear combination of the
two relevant operators has been considered.
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Eq. (7), are about Λ ∼ 7 TeV, stronger by only a factor of
approximately 1.5 compared to our analysis. This again
highlights the importance that precise data at all energies
can have on SMEFT analyses.

VI. MULTIPLE COUPLINGS SCENARIOS

We study in this section the impact of turning on several
dimension-6 and dimension-8 SMEFT operators at the
same time. Since angular information can in principle
disentangle operators with different helicities [29], we
consider one specific helicity channel, with right-handed
u quarks and right-handed electrons. The dimension-6
operator that contributes in this channel is Ceu. At dimen-
sion eight, we turn on Ce2u2H2 , the derivative operator
Ce2u2D2 , and one momentum-dependent correction to

the Z-vertex, Cð1Þ
u2H2D3 − Cð2Þ

u2H2D3 (we note that Cð1Þ
u2H2D3 −

Cð2Þ
u2H2D3 also contributes to the helicity channel with right-

handed quarks and left-handed electrons). With these four
couplings, we find a best fit χ2=dof ¼ 5.8=8, indicating that
multiple couplings do not significantly improve the fits. The
95% CL limits on the four SMEFToperators we considered
are shown in Table I. In the two leftmost columnswegive the
limits obtained in the single coupling hypothesis, truncating
the EFTexpansion at dimension-6 and dimension-8, respec-
tively. In the third column, we show the 95% CL limits
obtained by marginalizing over the remaining three cou-
plings. In this case, the correlation matrix of the four

couplings ðCeu; Ce2u2D2 ; Ce2u2H2 ; Cð1Þ
u2H2D3 − Cð2Þ

u2H2D3Þ is
given by

corr ¼

0
BBB@

1.00 0.995 −0.91 −0.02
0.995 1.00 −0.92 −0.02
−0.91 −0.92 1.00 0.42

−0.02 −0.02 0.42 1.00

1
CCCA; ð20Þ

indicating strong correlations between dimension-6 and
dimension-8 four-fermion operators. The rightmost column
show marginalized bounds, but with the coefficients of
dimension-8 operators allowed to vary between �256, so
that the effective scale of the operators does not go
below 1 TeV.

From Table I, we see that the bounds on the dimension-6
operator Ceu can be weakened by turning on dimension-8
operators with arbitrary coefficients. In the case that all
couplings are allowed to vary freely without enforcing
consistency of the EFT expansion for all non-zero cou-
plings, the bounds on Ceu are weakened by more than an
order of magnitude. Even if we constrain the dimension-8
operators to have coefficients compatible with the EFT
expansion, the derivative operator Ce2u2D2 plays an impor-
tant role, and weakens the bounds on Ceu by a factor of 2
compared to the single coupling analysis truncated at
Oð1=Λ2Þ. We conclude that fits to the Drell-Yan data that
truncate to dimension-6 operators only can be misleading
by a significant amount.

VII. CONCLUSIONS

In this manuscript we have studied the Drell-Yan process
at Oð1=Λ4Þ in the SMEFT, including effects from both the
square of dimension-6 operators and genuine dimension-8
effects. Our calculation of the SMEFT contributions to this
process includes NLO QCD corrections through
Oðαs=Λ4Þ. It is missing only effects from dimension-8
operators containing explicit gluon fields that are not
enhanced in the soft or collinear limits. We have found
that corrections from Oð1=Λ4Þ are significant, with the
terms quadratic in the dimension-6 Wilson coefficients
becoming as important as the linear effects far below the
UV scale Λ. Energy-dependent dimension-8 four-fermion
operators whose effects scale as s2=Λ4 in the high-energy
limit also become nearly as large as the dimension-6 terms
for s ≪ Λ.
To illustrate the impact of these findings we perform fits

to the ATLAS high-mass data from Ref. [72]. Our fits
include the full experimental correlated errors, as well as
the SM Drell-Yan cross section calculation through NNLO
in QCD and NLL in the electroweak coupling constant.
Inclusion of the quadratic dimension-6 effects can shift the
limits on the relevant Wilson coefficients by factors of 2-3.
The dimension-8 effects further shift the bounds by addi-
tional large factors. Our findings clearly show that trunca-
tion of the SMEFT expansion to Oð1=Λ2Þ does not
properly account for the SMEFT effects on the Drell-
Yan process. We note that improved experimental precision

TABLE I. 95% CL intervals for four operators with right-handed u quarks. The first and second columns show the bounds obtained
assuming that only one operator is on at a time, and truncating the EFT expansion at dimension-6 and dimension-8, respectively. The
third column shows the limits on a given coefficient obtained marginalizing over the other three. In the rightmost column, we
marginalize over the couplings, but allow dimension-8 coefficients to vary between �256, corresponding to an effective scale of 1 TeV.

dim-6 Single coupling Marginalized Marginalized�

Ceu [0.08, 1.0] [0.1, 1.8] ½−39; 39� ½−0.6; 2.4�
Ce2u2D2 … ½−1.5; 13� ½−17; 9.2 × 103� ½−14; 18�
Ce2u2H2 … [45, 555] ½−1.9; 1.2� · 104 ½−256; 256�
Cð1Þ−ð2Þ
u2H2D3

… ½−24;−1.8� · 103 ½−1.2; 1.8� · 105 ½−256; 256�
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in the higher invariant mass bins would reduce the impact
of Oð1=Λ4Þ effects. In the last bin the ATLAS data
considered here allows for a 25% deviation from the
SM. Improving this precision would reduce the allowed
parameters to a region where the SMEFT expansion
converges more quickly.
Although the inclusion of the full dimension-8 correc-

tions in the SMEFT may at first appear to be a daunting
task, our results show that only the subset of dimension-8
operators consisting of two-derivative four-fermion inter-
action must be included. Other categories of corrections,
including energy-independent dimension-8 four-fermion
operators whose effects scale as v2s=Λ4 and Z-boson
vertex corrections, can be neglected given the current data
precision. We believe that our findings provide a solid
foundation for future analyses of LHC Drell-Yan measure-
ments within the SMEFT framework. To this goal, on the
experimental side it will be important to have access to
more differential distributions, including rapidity and
angular distributions, at high invariant mass. These mea-
surements will allow to disentangle the flavor and helicity
structure of dimension-6 and dimension-8 operators, reduc-
ing the degeneracies that affect the dilepton invariant mass
distribution. On the theoretical side, a consistent dimen-
sion-8 fit will need to include the “positivity” constraints
that can be inferred by fundamental principles of quantum
field theory [53–55,65–70]. While the most naive elastic
positivity constraints do not apply to the operators in the
class Lψ4D2 that are most relevant to Drell-Yan [67], a more
detailed analysis of elastic positivity and extremal positivity
bounds is necessary [67,68].
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APPENDIX A: VERTEX PARAMETRIZATIONS

In order to discuss exactly which combinations of
Wilson coefficients can be probed in the Drell-Yan process,
it is helpful to introduce general parametrizations for the
gauge boson-fermion vertices and for the four-fermion
interactions. We begin with the four-fermion interactions.
We parametrize the four-fermion interaction as (quark
momenta incoming, lepton momenta outgoing):

−iVq3q̄4l1 l̄2 ¼Vð6Þ
LLðγμPLÞqðγμPLÞlþVð6Þ

RRðγμPRÞqðγμPRÞlþVð6Þ
RLðγμPRÞqðγμPLÞlþVð6Þ

LRðγμPLÞqðγμPRÞlþSð6ÞðPq
LP

l
LþPq

RP
l
RÞ

þTð6Þ½ðσμνPLÞqðσμνPLÞlþðσμνPRÞqðσμνPRÞl�þðp1þp2Þ ·ðp3þp4Þ½Vð8Þ
LLðγμPLÞqðγμPLÞlþVð8Þ

RRðγμPRÞqðγμPRÞl

þVð8Þ
RLðγμPRÞqðγμPLÞlþVð8Þ

LRðγμPLÞqðγμPRÞl�

As explained previously we have neglected operators of the

type q̄Lγ
ðμ
D
↔νÞ

qLl̄LγðμD
↔

νÞlL. We note that this parametri-

zation holds for both up and down type quarks. The
coefficients Sð6Þ, Tð6Þ, and the Vð8Þ all begin contributing
to the cross section at Oð1=Λ4Þ. The Vð6Þ begin at
Oð1=Λ2Þ. They have the following expansion:

Vð6Þ ¼ 1

Λ2
Vð6aÞ þ 1

Λ4
Vð6bÞ: ðA1Þ

It is straightforward to use the operators listed in the
previous section to determine these vertex factors in terms
of Wilson coefficients. We begin with the scalar and tensor
couplings defined in Lψ4 :

Sð6Þu ¼ −Cð1Þ
lequ=Λ2;

Sð6Þd ¼ −Cð3Þ
lequ=Λ2;

Tð6Þ
u ¼ Cleqd=Λ2;

Tð6Þ
d ¼ 0 ðA2Þ

All three scalar and tensor Wilson coefficients can in
principle be determined since they appear in different
vertex factors, and lead to different angular dependences
in the cross section. The matrix element squared for these
interactions, which only appears interfered with itself,
scales as Oðs2=Λ4Þ.
We next consider theVð8Þ vertex factors which come from

Lψ4D2 . These can bewritten in terms ofWilson coefficients as
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Vð8Þ
LL;u ¼ ðCð1Þ

l2q2D2 − Cð3Þ
l2q2D2Þ=Λ4;

Vð8Þ
LL;d ¼ ðCð1Þ

l2q2D2 þ Cð3Þ
l2q2D2Þ=Λ4;

Vð8Þ
RR;u ¼ Cð1Þ

e2u2D2=Λ4;

Vð8Þ
RR;d ¼ Cð1Þ

e2d2D2=Λ4;

Vð8Þ
RL;u ¼ Cð1Þ

l2u2D2=Λ4;

Vð8Þ
RL;d ¼ Cð1Þ

l2d2D2=Λ4;

Vð8Þ
LR;u ¼ Cð1Þ

q2e2D2=Λ4;

Vð8Þ
LR;d ¼ Cð1Þ

q2e2D2=Λ4: ðA3Þ
All seven Wilson coefficients appear in separate vertex
factors. We note that these contributions lead to different
energy dependences than the V6 vertex correction factors
defined in Eq. (A1), and the effects of these two classes of
operators can in principle be disentangled in the Drell-Yan
process. Contributions from these vertex factors scale as
Oðs2=Λ4Þ in the high-energy limit.
We now proceed to the momentum-independent four-

fermion operators that first contribute atOð1=Λ2Þ. The first
terms in their expansion take the forms

Vð6aÞ
LL;u ¼ Cð1Þ

lq − Cð3Þ
lq ;

Vð6aÞ
RR;u ¼ Ceu;

Vð6aÞ
LR;u ¼ Cqe;

Vð6aÞ
RL;u ¼ Clu;

Vð6aÞ
LL;d ¼ Cð1Þ

lq þ Cð3Þ
lq ;

Vð6aÞ
RR;d ¼ Ced;

Vð6aÞ
LR;d ¼ Cqe;

Vð6aÞ
RL;d ¼ Cld: ðA4Þ

TheOð1=Λ4Þ terms in the expansion come from Lψ4H2 , and
take the form

Vð6bÞ
RR;u¼

v2

2
Ce2u2H2 ;

Vð6bÞ
RR;d¼

v2

2
Ce2d2H2 ;

Vð6bÞ
RL;u¼

v2

2
ðCð1Þ

l2u2H2 þCð2Þ
l2u2H2Þ;

Vð6bÞ
RL;d¼

v2

2
ðCð1Þ

l2d2H2 þCð2Þ
l2d2H2Þ;

Vð6bÞ
LR;u¼

v2

2
ðCð1Þ

q2e2H2 −Cð2Þ
q2e2H2Þ;

Vð6bÞ
LR;d¼

v2

2
ðCð1Þ

q2e2H2 þCð2Þ
q2e2H2Þ;

Vð6bÞ
LL;u ¼

v2

2
ðCð1Þ

l2q2H2 −Cð2Þ
l2q2H2 −Cð3Þ

l2q2H2 −Cð4Þ
l2q2H2Þ;

Vð6bÞ
LL;d ¼

v2

2
ðCð1Þ

l2q2H2 −Cð2Þ
l2q2H2 þCð3Þ

l2q2H2 þCð4Þ
l2q2H2Þ: ðA5Þ

Only eight linear combinations of the twelve coefficients in
Lψ4H2 appear in the vertex factors. These corrections scale
asOðv2s=Λ4Þ. They do not grow with energy as quickly as
the Vð8Þ contributions. We note that the overall Λ depend-
ence of these corrections has been extracted following the
definition in Eq. (A1). The remaining four linear combi-
nation appear in vertices with two neutrinos and right- or
left-handed u and d quarks, and are therefore difficult
to probe.
We now proceed to parametrize the corrections to the

photon and Z-boson vertices. We express these vertices as

iVAf̄ifi ¼ fēQiγ
μ − iDAi

σμνpAνg
iVZf̄ifi ¼ fVZLi

PL þ VZRi
PR þ p2

Z½WZLi
PL þWZRi

PR� − iDZi
σμνpZνg: ðA6Þ

PL;R are the standard left and right-handed projection operators, and Qi is the electric charge of fermion i. The normal SM
couplings receive corrections in SMEFT, and must be expanded in κ ¼ 1=Λ2:

ē ¼ êþ κē1 þ κ2ē2;

ḡZ ¼ ĝþ κḡZ1 þ κ2ḡZ2;

s̄2W ¼ ŝ2W þ κs̄2W1 þ κ2s̄2W2;

VZLi
¼ VZL0i þ κVZL1i þ κ2VZL2i ;

VZRi
¼ VZR0i þ κVZR1i þ κ2VZR2i : ðA7Þ

We have shown as well the expansion of the momentum-independent Z-boson vertex factors. We note that the dipole
corrections, as well as the momentum-dependent vertex corrections factorsWZ, contribute first at Oðκ2Þ. The expansion of
the input parameters in κ has been studied to all orders in the SMEFT [63,103].
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We can write all of these variables in terms of the input
parameters and Wilson coefficients. We begin with the
dipole terms:

DZl
¼

ffiffiffi
2

p v̂
Λ2

ðŝWCeW − ĉWCeBÞ;

DZl
¼

ffiffiffi
2

p v̂
Λ2

ðĉWCeW þ ŝWCeBÞ;

DAu
¼

ffiffiffi
2

p v̂
Λ2

ð−ŝWCuW − ĉWCuBÞ;

DZu
¼

ffiffiffi
2

p v̂
Λ2

ð−ĉWCuW þ ŝWCuBÞ;

DAd
¼

ffiffiffi
2

p v̂
Λ2

ðŝWCdW − ĉWCdBÞ;

DZd
¼

ffiffiffi
2

p v̂
Λ2

ðĉWCdW þ ŝWCdBÞ: ðA8Þ

TheOðκ0Þweak mixing angle and Higgs vev are defined in
the ðGF;MW;MZÞ scheme used here as

ŝW ¼ 1 −
M2

W

M2
Z
;

v̂2 ¼ 1ffiffiffi
2

p
GF

: ðA9Þ

Since the dipole terms first contribute at Oðκ2Þ we have
replaced the couplings with their Oðκ0Þ values. The
following six Wilson coefficients contribute to the dipole
terms:

CeW; CeB; CuW; CuB; CdW; CdB: ðA10Þ

These corrections scale as Oðv2s=Λ4Þ in the high-
energy limit.
We now present the momentum-dependent vertex cor-

rections. These can be written as

WZLl
¼ ĝZv̂2

4Λ4
CðeÞ
l2H2D3 ;

WZRl
¼ ĝZv̂2

4Λ4
½Cð1Þ

e2H2D3 − Cð2Þ
e2H2D3 �;

WZLu
¼ ĝZv̂2

4Λ4
½Cð1Þ

q2H2D3 − Cð2Þ
q2H2D3 − Cð3Þ

q2H2D3 þ Cð4Þ
q2H2D3 �

WZRu
¼ ĝZv̂2

4Λ4
½Cð1Þ

u2H2D3 − Cð2Þ
u2H2D3 �

WZLd
¼ ĝZv̂2

4Λ4
½Cð1Þ

q2H2D3 − Cð2Þ
q2H2D3 þ Cð3Þ

q2H2D3 − Cð4Þ
q2H2D3 �;

WZRd
¼ ĝZv̂2

4Λ4
½Cð1Þ

d2H2D3 − Cð2Þ
d2H2D3 �: ðA11Þ

where CðeÞ
lH2D3 was defined in Eq. (14). The Oðκ0Þ

Z-coupling is

ĝZ ¼ 2 × 21=4MZ

ffiffiffiffiffiffiffi
GF

p
; ðA12Þ

Since these corrections contribute first at Oðκ2Þ we can use
the leading-order expressions for the Z-boson coupling. We
see that these couplings depend on the following six
combinations of Wilson coefficients:

Cð1Þ
l2H2D3 −Cð2Þ

l2H2D3 þCð3Þ
l2H2D3 −Cð4Þ

l2H2D3 ;C
ð1Þ
e2H2D3 −Cð2Þ

e2H2D3

Cð1Þ
q2H2D3 −Cð2Þ

q2H2D3 ;C
ð3Þ
q2H2D3 −Cð4Þ

q2H2D3 ;C
ð1Þ
u2H2D3 −Cð2Þ

u2H2D3 ;

Cð1Þ
d2H2D3 −Cð2Þ

d2H2D3 :

There are 14 Wilson coefficients in total, so multiple flat
directions appear in the parameter space. We enumerate the
eight directions that cannot be probed in neutral-current
Drell-Yan below:

Cð1Þ
l2H2D3 − Cð2Þ

l2H2D3 − Cð3Þ
l2H2D3 þ Cð4Þ

l2H2D3 ;

Cð1Þ
l2H2D3 þ Cð2Þ

l2H2D3 ; C
ð3Þ
l2H2D3 þ Cð4Þ

l2H2D3 ; C
ð1Þ
e2H2D3 þ Cð2Þ

e2H2D3

Cð1Þ
q2H2D3 þ Cð2Þ

q2H2D3 ; C
ð3Þ
q2H2D3 þ Cð4Þ

q2H2D3 ; C
ð1Þ
u2H2D3 þ Cð2Þ

u2H2D3 ;

Cð1Þ
d2H2D3 þ Cð2Þ

d2H2D3 :

The first linear combination is in principle accessible
in pp → νν or Z → νν. Probing the remaining combina-
tions requires processes with multiple Higgs and
gauge bosons. The WZ terms induce corrections to the
Drell-Yan cross section that scale as Oðv2s=Λ2Þ in the
high-energy limit.
We now proceed to study the momentum-independent

Z-boson vertex factors. The Oðκ0Þ pieces are given by

VZL0i ¼ ĝZðI3i −Qiŝ2WÞ;
VZR0i ¼ ĝZð−Qiŝ2WÞ: ðA13Þ

The Oðκ1Þ pieces contain two distinct contributions: the
expansion of the couplings ĝZ and ŝ2W , and the explicit
dimension-6 vertices. The explicit vertices can be obtained
from Ref. [15]:
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VZL1l ¼ ḡZ1ðI3e−Qeŝ2WÞ− ĝZQes̄2W1−
ĝZv̂2

2
ðCð1Þ

HlþCð3Þ
HlÞ;

VZR1l ¼−ḡZ1Qeŝ2W − ĝZQes̄2W1−
ĝZv̂2

2
ðCHeÞ;

VZL1u ¼ ḡZ1ðI3u−Quŝ2WÞ− ĝZQus̄2W1−
ĝZv̂2

2
ðCð1Þ

Hq−Cð3Þ
HqÞ;

VZR1u ¼−ḡZ1Quŝ2W − ĝZQus̄2W1−
ĝZv̂2

2
ðCHuÞ;

VZL1d ¼ ḡZ1ðI3d−Qdŝ2WÞ− ĝZQds̄2W1−
ĝZv̂2

2
ðCð1Þ

HqþCð3Þ
HqÞ;

VZR1d ¼−ḡZ1Qdŝ2W − ĝZQds̄2W1−
ĝZv̂2

2
ðCHdÞ: ðA14Þ

These vertices are dependent on the following six Wilson
coefficient combinations:

Cð1Þ
Hl þ Cð1Þ

Hq; CHe; CHu; CHd; C
ð1Þ
Hq; C

ð3Þ
Hq: ðA15Þ

There are seven Wilson coefficients total. The combination

Cð1Þ
Hl − Cð3Þ

Hl cannot be probed in neutral current Drell-Yan.
It is accessible in the charged-current Drell-Yan process.
AtOðκ2Þ there are three distinct contributions: theOðκ2Þ

corrections to the overall couplings, theOðκÞ corrections to
the OðκÞ explicit vertex factors, and the explicit Oðκ2Þ
vertex factors. The explicit vertex corrections can be found
in Ref. [15]:

VZL2l ¼ ḡZ2ðI3e −Qeŝ2WÞ − ĝZQes̄2W2 − ḡZ1Qes̄2W1 −
ĝZv̄21 þ ḡZ1v̂2

2
ðCð1Þ

Hl þ Cð3Þ
HlÞ −

ĝZv̂2

4
ðCð1Þ

l2H4D
þ Cð2Þ

l2H4D
Þ

VZR2l ¼ ḡZ2ð−Qeŝ2WÞ − ĝZQes̄2W2 − ḡZ1Qes̄2W1 −
ĝZv̄21 þ ḡZ1v̂2

2
ðCHeÞ −

ĝZv̂2

4
ðCe2H4DÞ

VZL2u ¼ ḡZ2ðI3u −Quŝ2WÞ − ĝZQus̄2W2 − ḡZ1Qus̄2W1 −
ĝZv̄21 þ ḡZ1v̂2

2
ðCð1Þ

Hq − Cð3Þ
HqÞ −

ĝZv̂2

4
ðCð1Þ

q2H4D − Cð2Þ
q2H4DÞ

VZR2u ¼ ḡZ2ð−Quŝ2WÞ − ĝZQus̄2W2 − ḡZ1Qus̄2W1 −
ĝZv̄21 þ ḡZ1v̂2

2
ðCHuÞ −

ĝZv̂2

4
ðCu2H4DÞ

VZL2d ¼ ḡZ2ðI3d −Qdŝ2WÞ − ĝZQds̄2W2 − ḡZ1Qds̄2W1 −
ĝZv̄21 þ ḡZ1v̂2

2
ðCð1Þ

Hq þ Cð3Þ
HqÞ −

ĝZv̂2

4
ðCð1Þ

q2H4D
þ Cð2Þ

q2H4D
Þ

VZR2d ¼ ḡZ2ð−Qdŝ2WÞ − ĝZQds̄2W2 − ḡZ1Qds̄2W1 −
ĝZv̄21 þ ḡZ1v̂2

2
ðCHdÞ −

ĝZv̂2

4
ðCd2H4DÞ: ðA16Þ

A total of seven new dimension-8 coefficients enter the
vertices at Oðκ2Þ. These coefficients introduce corrections
to the cross section that scale as Oðv4=Λ4Þ, and are
negligible for typical parameter choices.
We comment here briefly on the number of Wilson

coefficients that enter our calculation. After accounting for
the redefinitions of the input parameters, a total of 28
dimension-6 Wilson coefficients and 54 dimension-8
Wilson coefficients enter our result in the flavor-universal
limit assumed here (we note that many enter only in linear
combinations, and cannot independently be probed). The
number of contributing dimension-8 coefficients is reduced
by the fact that since these couplings must interfere with the
SM amplitude, the contributions from all scalar and tensor
four-fermion operators, as well as all dipole operators,
vanish in the massless fermion limit. This removes approx-
imately 20 additional Wilson coefficients that would appear
if fermion masses were not neglected.

APPENDIX B: RENORMALIZATION GROUP
EVOLUTION OF SMEFT COEFFICIENTS

Most operators we consider are built out of quark vector
and axial currents, which do not run in QCD [104]. This is

the case for Cð1;3Þ
Hq , CHd, CHu and CHud in Eq. (6), Cð1;3Þ

lq ,
Ceu, Ced, Clu, Cld and Cqe in Eq. (7) and all the operators
in Eq. (12) and (15). The additional derivatives in the
operators in Eq. (9) do not affect the renormalization of

these operators under QCD. The operators Cð1;2;3;4Þ
q2H2D3 Cð1;2Þ

u2H2D3

and Cð1;2Þ
d2H2D3 in Eq. (13) have a covariant derivative acting

on the quark field, which could in principle affect the
renormalization of these operators. In the combinations that
contribute to Drell-Yan, however, the covariant derivative
can be moved on the weak bosons and Higgs fields, so that
again these operators do not renormalize in QCD. For
example, we can write

1

2
ðCð1Þ

u2H2D3−Cð2Þ
u2H2D3ÞiūRγμDνuR

×fðDðμDνÞφÞ†φ−φ†ðDðμDνÞφÞg
∝ðCð1Þ

u2H2D3−Cð2Þ
u2H2D3ÞūRγμuR∂νð∂ðνZμÞÞþ… ðB1Þ

where the … denote terms with more Higgs and weak

gauge boson fields, implying that Cð1Þ
u2H2D3 − Cð2Þ

u2H2D3 does
not run in QCD.
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The coefficients of scalar operators in Eq. (7), Cð1Þ
lequ

and Cledq, obey the same renormalization group equa-
tion as the quark masses. The dipole operators in Eq. (5)

and the tensor operator in Eq. (7) have the same QCD
anomalous dimension. The scalar and tensor operators
satisfy

d
d log μ

CS ¼
αs
4π

X
n

�
αs
4π

�
n
γðnÞS CS; CS ∈ fCð1Þ

lequ; Cledqg

d
d log μ

CT ¼ αs
4π

X
n

�
αs
4π

�
n
γðnÞT CT; CT ∈ fCuW;CuB; CdW; CdB; C

ð3Þ
lequg; ðB2Þ

where the two loop anomalous dimensions are [80–82]

γð0ÞS ¼−6CF; γð1ÞS ¼−
�
3CFþ

97

3
NC−

10

3
nf

�
CF;

γð0ÞT ¼þ2CF; γð1ÞT ¼
�
257

9
NC−19CF−

26

9
nf

�
CF: ðB3Þ

Here CF ¼ 4=3, NC ¼ 3 and nf ¼ 5 is the number of light
flavors. The limits in Fig. 7 are on scalar and tensor
coefficients defined at the arbitrary scale μ0 ¼ 1 TeV. They
can be translated into limits at other scales by using
Eq. (B3).
Finally, two-derivative operators in the same class as

Cð2Þ
l2q2D2 behave under QCD like twist-two operators.

Their anomalous dimension is known to three loops
[83,105,106], and, at one loop:

d
d log μ

Cð2Þ
l2q2D2 ¼ 16

3

αsCF

4π
Cð2Þ
l2q2D2 : ðB4Þ

APPENDIX C: CROSS SECTIONS

We report in this Appendix the contributions to the
differential cross section dσ=dmll from dimension-6 and

dimension-8 SMEFT operators, at
ffiffiffi
S

p ¼ 8 TeV and
using the invariant mass binning of Ref. [72]. In
Tables II and III we give results for the dimension-6
semi-leptonic vector operators in Eq. (7), which inter-
fere with the SM. For each Wilson coefficient, the first
and second column report the values of the terms
linear and quadratic in C, [að6Þ and bð6Þ in Eq. (16)].
Tables IV, V and VI give the cross sections induced by
dipole, scalar and tensor operators. We do not show in
this case the interference terms between Uð1ÞY and
SUð2ÞL dipoles. The interference between scalar and
tensor operators is negligible. In Table VII we show the
cross section from dimension-8 derivative operators in
Eq. (9), while in Table VIII the corrections from the

operators in Eq. (13). With the exception of Cð2Þ
q2e2H2 , the

contributions from the operators in the class Lψ4H2 can
be obtained by rescaling the að6Þ terms in Tables II
and III according to Eqs. (A4) and (A5). We therefore

only give the cross section induced by Cð2Þ
q2e2H2, in the

last column of Table VII.
We do not give cross sections from the operators that

only modify the Z couplings, at dimension-6 in Eq. (6) and
dimension-8 in Eq. (15).

TABLE II. Contributions to the differential cross section from vectorlike four-fermion operators, in units of pb/GeV for the choice of
Λ ¼ 4 TeV. For each coefficient, the first column denotes the interference with the SM, the second column the term quadratic in the
SMEFT coefficient. The error denotes the PDF uncertainty.

Ceu Ced Cqe

Bins að6Þ=Λ2 bð6Þ=Λ4 að6Þ=Λ2 bð6Þ=Λ4 að6Þ=Λ2

116–130 −4.91ð8Þ × 10−4 2.25ð5Þ × 10−6 2.54ð3Þ × 10−4 2.32ð4Þ × 10−6 −2.59ð7Þ × 10−4

130–150 −3.80ð6Þ × 10−4 2.45ð5Þ × 10−6 1.91ð2Þ × 10−4 2.45ð3Þ × 10−6 −1.90ð3Þ × 10−4

150–175 −2.87ð5Þ × 10−4 2.61ð5Þ × 10−6 1.39ð2Þ × 10−4 2.52ð4Þ × 10−6 −1.40ð2Þ × 10−4

175–200 −2.18ð4Þ × 10−4 2.73ð5Þ × 10−6 1.02ð1Þ × 10−4 2.55ð3Þ × 10−6 −1.03ð1Þ × 10−4

200–230 −1.67ð3Þ × 10−4 2.79ð5Þ × 10−6 7.54ð11Þ × 10−5 2.53ð3Þ × 10−6 −7.77ð10Þ × 10−5

230–260 −1.29ð2Þ × 10−4 2.84ð6Þ × 10−6 5.58ð8Þ × 10−5 2.48ð4Þ × 10−6 −5.85ð9Þ × 10−5

260–300 −9.79ð21Þ × 10−5 2.84ð6Þ × 10−6 4.10ð7Þ × 10−5 2.37ð4Þ × 10−6 −4.40ð7Þ × 10−5

300–380 −6.48ð14Þ × 10−5 2.78ð6Þ × 10−6 2.58ð5Þ × 10−5 2.21ð4Þ × 10−6 −2.84ð5Þ × 10−5

(Table continued)
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TABLE III. Contributions to the differential cross section from the operators Clu and Cld, in units of pb/GeV for the choice of
Λ ¼ 4 TeV. For each coefficient, the first column denotes the interference with the SM, the second column the term quadratic in the
SMEFT coefficient. The error denotes the PDF uncertainty.

Clu Cld

Bins að6Þ=Λ2 bð6Þ=Λ4 að6Þ=Λ2 bð6Þ=Λ4

116–130 −5.98ð13Þ × 10−5 2.23ð5Þ × 10−6 2.82ð11Þ × 10−5 2.30ð4Þ × 10−6

130–150 −9.42ð19Þ × 10−5 2.43ð5Þ × 10−6 4.80ð9Þ × 10−5 2.42ð4Þ × 10−6

150–175 −9.60ð17Þ × 10−5 2.61ð5Þ × 10−6 4.60ð8Þ × 10−5 2.51ð3Þ × 10−6

175–200 −8.42ð17Þ × 10−5 2.73ð5Þ × 10−6 3.96ð7Þ × 10−5 2.55ð3Þ × 10−6

200–230 −6.96ð14Þ × 10−5 2.80ð5Þ × 10−6 3.14ð6Þ × 10−5 2.53ð4Þ × 10−6

230–260 −5.65ð12Þ × 10−5 2.84ð6Þ × 10−6 2.44ð4Þ × 10−5 2.48ð4Þ × 10−6

260–300 −4.45ð9Þ × 10−5 2.85ð6Þ × 10−6 1.86ð5Þ × 10−5 2.37ð4Þ × 10−6

300–380 −3.05ð7Þ × 10−5 2.78ð6Þ × 10−6 1.21ð2Þ × 10−5 2.20ð4Þ × 10−6

380–500 −1.73ð4Þ × 10−5 2.56ð6Þ × 10−6 6.38ð14Þ × 10−6 1.89ð4Þ × 10−6

500–700 −7.95ð24Þ × 10−6 2.13ð6Þ × 10−6 2.71ð7Þ × 10−6 1.45ð4Þ × 10−6

700–1000 −2.77ð7Þ × 10−6 1.47ð5Þ × 10−6 8.81ð29Þ × 10−7 9.28ð29Þ × 10−7

1000–1500 −7.14ð34Þ × 10−7 7.55ð27Þ × 10−7 2.06ð10Þ × 10−7 4.40ð19Þ × 10−7

TABLE II. (Continued)

Ceu Ced Cqe

Bins að6Þ=Λ2 bð6Þ=Λ4 að6Þ=Λ2 bð6Þ=Λ4 að6Þ=Λ2

380–500 −3.60ð9Þ × 10−5 2.57ð6Þ × 10−6 1.32ð3Þ × 10−5 1.89ð4Þ × 10−6 −1.53ð3Þ × 10−6

500–700 −1.61ð4Þ × 10−5 2.12ð6Þ × 10−6 5.52ð13Þ × 10−6 1.45ð4Þ × 10−6 −6.72ð18Þ × 10−6

700–1000 −5.63ð19Þ × 10−6 1.47ð5Þ × 10−6 1.78ð6Þ × 10−6 9.28ð29Þ × 10−7 −2.30ð7Þ × 10−6

1000–1500 −1.41ð5Þ × 10−6 7.54ð27Þ × 10−7 4.18ð17Þ × 10−7 4.40ð19Þ × 10−7 −5.54ð18Þ × 10−7

Cð1Þ
lq Cð3Þ

lq
Cqe

Bins að6Þ=Λ2 bð6Þ=Λ4 að6Þ=Λ2 bð6Þ=Λ4 bð6Þ=Λ4

116–130 −0.2ð1.9Þ × 10−5 4.54ð6Þ × 10−6 1.73ð2Þ × 10−3 4.54ð6Þ × 10−6 4.61ð5Þ × 10−6

130–150 −4.57ð1.31Þ × 10−5 4.87ð6Þ × 10−6 1.21ð1Þ × 10−3 4.87ð6Þ × 10−6 4.86ð6Þ × 10−6

150–175 −5.99ð91Þ × 10−5 5.14ð6Þ × 10−6 8.44ð10Þ × 10−4 5.14ð6Þ × 10−6 5.12ð6Þ × 10−6

175–200 −6.10ð65Þ × 10−5 5.27ð7Þ × 10−6 6.06ð8Þ × 10−4 5.27ð7Þ × 10−6 5.30ð7Þ × 10−6

200–230 −5.59ð45Þ × 10−5 5.32ð8Þ × 10−6 4.46ð6Þ × 10−4 5.32ð8Þ × 10−6 5.34ð7Þ × 10−6

230–260 −4.97ð34Þ × 10−5 5.33ð8Þ × 10−6 3.33ð5Þ × 10−4 5.33ð8Þ × 10−6 5.31ð8Þ × 10−6

260–300 −4.22ð25Þ × 10−5 5.21ð9Þ × 10−6 2.46ð4Þ × 10−4 5.21ð9Þ × 10−6 5.21ð9Þ × 10−6

300–380 −3.15ð16Þ × 10−5 4.98ð10Þ × 10−6 1.58ð3Þ × 10−4 4.98ð10Þ × 10−6 4.98ð10Þ × 10−6

380–500 −2.01ð10Þ × 10−5 4.46ð10Þ × 10−6 8.39ð19Þ × 10−5 4.46ð10Þ × 10−6 4.45ð10Þ × 10−6

500–700 −1.00ð4Þ × 10−5 3.57ð9Þ × 10−6 3.66ð10Þ × 10−5 3.57ð9Þ × 10−6 3.57ð9Þ × 10−6

700–1000 −3.81ð19Þ × 10−6 2.40ð6Þ × 10−6 1.23ð4Þ × 10−5 2.40ð7Þ × 10−6 2.40ð7Þ × 10−6

1000–1500 −1.04ð5Þ × 10−6 1.19ð4Þ × 10−6 2.98ð10Þ × 10−6 1.19ð4Þ × 10−6 1.19ð4Þ × 10−6
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TABLE IV. Contributions to the differential cross section from the dipole operators CuW and CuB, in units of pb/GeV for the choice of
Λ ¼ 4 TeV. The error denotes the PDF uncertainty. We do not show the interference term between CuW and CuB. The Wilson
coefficients are defined at the scale μ0 ¼ 1 TeV.

CuW CuB

Bins bð6Þ=Λ4 bð6Þ=Λ4

116–130 9.55ð13Þ × 10−6 1.27ð2Þ × 10−6

130–150 5.15ð8Þ × 10−6 8.96ð14Þ × 10−7

150–175 3.02ð5Þ × 10−6 6.39ð10Þ × 10−7

175–200 1.97ð3Þ × 10−6 4.75ð8Þ × 10−7

200–230 1.36ð2Þ × 10−6 3.54ð6Þ × 10−7

230–260 9.76ð18Þ × 10−7 2.68ð5Þ × 10−7

260–300 7.01ð13Þ × 10−7 1.99ð4Þ × 10−7

300–380 4.38ð9Þ × 10−7 1.30ð2Þ × 10−7

380–500 2.28ð5Þ × 10−7 6.96ð16Þ × 10−8

500–700 9.71ð26Þ × 10−8 3.01ð8Þ × 10−8

700–1000 3.26ð10Þ × 10−8 1.03ð3Þ × 10−8

1000–1500 7.78ð27Þ × 10−9 2.47ð8Þ × 10−9

TABLE V. Contributions to the differential cross section from the dipole operators CdW , CdB, CeW , and CeB, in units of pb/GeV for the
choice of Λ ¼ 4 TeV. The error denotes the PDF uncertainty. We do not show the interference term between CdW and CdB and CeW and
CeB. The Wilson coefficients are defined at the scale μ0 ¼ 1 TeV.

CdW CdB CeW CeB

Bins bð6Þ=Λ4 bð6Þ=Λ4 bð6Þ=Λ4 bð6Þ=Λ4

116–130 9.54ð11Þ × 10−6 1.27ð1Þ × 10−6 2.07ð2Þ × 10−5 9.86ð11Þ × 10−7

130–150 4.99ð6Þ × 10−6 8.65ð10Þ × 10−7 1.06ð1Þ × 10−5 5.40ð7Þ × 10−7

150–175 2.82ð3Þ × 10−6 5.98ð7Þ × 10−7 5.89ð7Þ × 10−6 3.27ð4Þ × 10−7

175–200 1.78ð2Þ × 10−6 4.29ð6Þ × 10−7 3.69ð5Þ × 10−6 2.28ð4Þ × 10−7

200–230 1.17ð2Þ × 10−6 3.05ð4Þ × 10−7 2.48ð3Þ × 10−6 1.62ð3Þ × 10−7

230–260 8.14ð12Þ × 10−7 2.23ð3Þ × 10−7 1.73ð3Þ × 10−6 1.21ð2Þ × 10−7

260–300 5.52ð10Þ × 10−7 1.58ð3Þ × 10−7 1.21ð2Þ × 10−6 8.75ð17Þ × 10−8

300–380 3.36ð6Þ × 10−7 9.87ð18Þ × 10−8 7.45ð14Þ × 10−7 5.76ð12Þ × 10−8

380–500 1.61ð3Þ × 10−7 4.92ð10Þ × 10−8 3.75ð8Þ × 10−7 3.01ð6Þ × 10−8

500–700 6.38ð16Þ × 10−8 1.99ð5Þ × 10−8 1.56ð4Þ × 10−7 1.31ð4Þ × 10−8

700–1000 2.02ð6Þ × 10−8 6.38ð19Þ × 10−9 5.14ð16Þ × 10−8 4.47ð14Þ × 10−9

1000–1500 4.50ð19Þ × 10−9 1.43ð6Þ × 10−9 1.19ð4Þ × 10−8 1.06ð4Þ × 10−9
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TABLE VII. Contributions to the differential cross section from two-derivative dimension-8 operators, in units of pb/GeV for the
choice of Λ ¼ 4 TeV. The last column gives the cross section for the four-fermion two-Higgs operator Cð2Þ

q2e2H2, which cannot be
obtained by rescaling the að6Þ term in Table II.

Cð1Þ
e2u2D2 Cð1Þ

e2d2D2 Cð1Þ
e2q2D2 Cð1Þ

l2q2D2 Cð3Þ
l2q2D2

Bins að8Þ=Λ4 að8Þ=Λ4 að8Þ=Λ4 að8Þ=Λ4 að8Þ=Λ4

116–130 −4.64ð7Þ × 10−7 2.40ð3Þ × 10−7 2.40ð9Þ × 10−7 −0.7ð1.8Þ × 10−8 1.62ð2Þ × 10−6

130–150 −4.64ð8Þ × 10−7 2.32ð3Þ × 10−7 2.38ð7Þ × 10−7 −5.5ð1.6Þ × 10−8 1.47ð2Þ × 10−6

150–175 −4.70ð8Þ × 10−7 2.27ð3Þ × 10−7 2.25ð3Þ × 10−7 −1.00ð15Þ × 10−7 1.38ð2Þ × 10−6

175–200 −4.75ð9Þ × 10−7 2.22ð3Þ × 10−7 2.24ð4Þ × 10−7 −1.35ð14Þ × 10−7 1.33ð2Þ × 10−6

200–230 −4.81ð9Þ × 10−7 2.16ð3Þ × 10−7 2.25ð3Þ × 10−7 −1.61ð13Þ × 10−7 1.28ð2Þ × 10−6

230–260 −4.80ð10Þ × 10−7 2.09ð3Þ × 10−7 2.16ð4Þ × 10−7 −1.86ð13Þ × 10−7 1.24ð2Þ × 10−6

260–300 −4.77ð10Þ × 10−7 1.99ð3Þ × 10−7 2.15ð4Þ × 10−7 −2.05ð12Þ × 10−7 1.20ð2Þ × 10−6

300–380 −4.61ð10Þ × 10−7 1.82ð3Þ × 10−7 2.02ð4Þ × 10−7 −2.26ð12Þ × 10−7 1.12ð2Þ × 10−6

380–500 −4.23ð10Þ × 10−7 1.56ð3Þ × 10−7 1.80ð4Þ × 10−7 −2.36ð11Þ × 10−7 9.87ð22Þ × 10−7

500–700 −3.48ð10Þ × 10−7 1.19ð3Þ × 10−7 1.45ð4Þ × 10−7 −2.18ð10Þ × 10−7 7.86ð20Þ × 10−7

700–1000 −2.41ð8Þ × 10−7 7.60ð24Þ × 10−8 9.71ð29Þ × 10−8 −1.65ð8Þ × 10−7 5.27ð16Þ × 10−7

1000–1500 −1.23ð4Þ × 10−7 3.59ð15Þ × 10−8 4.88ð16Þ × 10−8 −9.17ð51Þ × 10−8 2.62ð9Þ × 10−7

Cð1Þ
l2u2D2 Cð1Þ

l2d2D2 Cð2Þ
q2e2H2

Bins að8Þ=Λ4 að8Þ=Λ4 að8Þ=Λ4

116–130 −5.80ð11Þ × 10−8 2.80ð12Þ × 10−8 −1.09ð1Þ × 10−6

130–150 −1.16ð2Þ × 10−7 5.84ð9Þ × 10−8 −5.43ð6Þ × 10−7

150–175 −1.57ð3Þ × 10−7 7.64ð10Þ × 10−8 −2.61ð4Þ × 10−7

175–200 −1.84ð3Þ × 10−7 8.61ð13Þ × 10−8 −1.31ð2Þ × 10−7

200–230 −2.01ð4Þ × 10−7 9.05ð13Þ × 10−8 −6.64ð14Þ × 10−8

230–260 −2.11ð4Þ × 10−7 9.15ð14Þ × 10−8 −3.37ð10Þ × 10−8

260–300 −2.17ð5Þ × 10−7 9.05ð16Þ × 10−8 −1.56ð7Þ × 10−8

300–380 −2.16ð5Þ × 10−7 8.57ð16Þ × 10−8 −3.81ð47Þ × 10−9

380–500 −2.04ð5Þ × 10−7 7.52ð17Þ × 10−8 1.23ð26Þ × 10−9

500–700 −1.71ð5Þ × 10−7 5.83ð15Þ × 10−8 1.62ð13Þ × 10−9

700–1000 −1.19ð4Þ × 10−7 3.76ð12Þ × 10−8 8.53ð56Þ × 10−10

1000–1500 −6.13ð22Þ × 10−8 1.79ð8Þ × 10−8 2.60ð19Þ × 10−10

TABLE VI. Contributions to the differential cross section from scalar and tensor four-fermion operators, in units of pb/GeV for the
choice of Λ ¼ 4 TeV. The error denotes the PDF uncertainty. We do not show the interference between the scalar and tensor operators

Cð1Þ
lequ and Cð3Þ

lequ. The Wilson coefficients are defined at the scale μ0 ¼ 1 TeV.

Cledq Cð1Þ
lequ Cð3Þ

lequ

Bins bð6Þ=Λ4 bð6Þ=Λ4 bð6Þ=Λ4

116–130 5.42ð8Þ × 10−6 5.28ð10Þ × 10−6 1.61ð2Þ × 10−5

130–150 5.53ð7Þ × 10−6 5.53ð10Þ × 10−6 1.79ð2Þ × 10−5

150–175 5.54ð7Þ × 10−6 5.76ð11Þ × 10−6 1.92ð3Þ × 10−5

175–200 5.46ð8Þ × 10−6 5.92ð12Þ × 10−6 2.00ð3Þ × 10−5

200–230 5.28ð8Þ × 10−6 5.94ð12Þ × 10−6 2.04ð3Þ × 10−5

230–260 5.07ð9Þ × 10−6 5.89ð12Þ × 10−6 2.05ð4Þ × 10−5

260–300 4.78ð8Þ × 10−6 5.77ð12Þ × 10−6 2.04ð4Þ × 10−5

300–380 4.29ð8Þ × 10−6 5.49ð12Þ × 10−6 1.97ð4Þ × 10−5

380–500 3.55ð8Þ × 10−6 4.88ð12Þ × 10−6 1.81ð4Þ × 10−5

500–700 2.60ð7Þ × 10−6 3.86ð11Þ × 10−6 1.52ð4Þ × 10−5

700–1000 1.59ð5Þ × 10−6 2.54ð8Þ × 10−6 1.08ð3Þ × 10−5

1000–1500 7.14ð3Þ × 10−7 1.23ð4Þ × 10−6 5.72ð20Þ × 10−6
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