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Asymptotically nonlocal field theories represent a sequence of higher-derivative theories whose limit
point is a ghost-free, infinite-derivative theory. Here we extend this framework, developed previously in a
theory of real scalar fields, to gauge theories. We focus primarily on asymptotically nonlocal scalar
electrodynamics, first identifying equivalent gauge-invariant formulations of the Lagrangian, one with
higher-derivative terms and the other with auxiliary fields instead. We then study mass renormalization of
the complex scalar field in each formulation, showing that an emergent nonlocal scale (i.e., one that does
not appear as a fundamental parameter in the Lagrangian of the finite-derivative theories) regulates loop
integrals as the limiting theory is approached, so that quadratic divergences can be hierarchically smaller
than the lightest Lee-Wick partner. We conclude by making preliminary remarks on the generalization of
our approach to non-Abelian theories, including an asymptotically nonlocal standard model.
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I. INTRODUCTION

Quantum field theories involving higher-derivative quad-
ratic terms have been of substantial interest due to the
improvement in the short-distance behavior of amplitudes
[1–14]. Higher-derivative theories can smooth singularities
at the origin in nonrelativistic potentials [2] and can provide
solutions to the standard model hierarchy problem, as in the
Lee-Wick Standard Model (LWSM) [7]. Theories involv-
ing a small, finite number of higher-derivative quadratic
terms, such as the LWSM, and ghost-free theories with an
infinite number of derivatives [3–6,9–14] have been studied
in the literature. In Ref. [1], we proposed a class of theories
that interpolates between these possibilities and that may
eventually have phenomenological applications. The pur-
pose of the present work is to explore how the framework of
our earlier paper, which focused on a higher-derivative
theory of a real scalar field, may be implemented in more
realistic quantum field theories.
More explicitly, in Ref. [1] we defined a sequence of

higher-derivative theories of a real scalar field with a limit
point that corresponds to an infinite-derivative, ghost-free
nonlocal theory. Such nonlocal theories have quadratic
terms involving entire functions of derivatives, so that no
new poles appear in the two-point function. The sequence

of local, higher-derivative theories that approach this
limiting theory have a finite but growing number of
propagator poles, with all but the lightest (i.e., the Lee-
Wick partners) becoming infinitely heavy as the limit is
approached. We called these theories “asymptotically non-
local” [1]. Asymptotically nonlocal theories are interesting
for a number of reasons: At low energies, these theories
exhibit some features of the nonlocal limiting theory while
avoiding the appearance of entire functions of momentum
in propagators that lead to complications associated
with the unitarity of the theory. We comment on this
issue in Sec. II. Moreover, when loop diagrams in the
limiting theory are regulated by the nonlocal scale, as in the
scalar theory of Ref. [1], one expects that this scale emerges
in the finite-derivative theories that approach it, even
though it does not appear as a fundamental parameter in
the Lagrangian. It was shown in the scalar theory of Ref. [1]
that the emergent regulator scale,Mnl, is related to the mass
of the lightest Lee-Wick particle, m1, by

M2
nl ∼O

�
m2

1

N

�
; ð1:1Þ

whereN is the number of propagator poles. This parametric
suppression allows one to hold the scale of quadratic
divergences fixed while allowing the lightest partner
particle to be arbitrarily heavy.
The results of Ref. [1] are intriguing, but were only

illustrated in a toy model of real scalar fields with a quartic
interaction term. It is natural to question whether the
qualitative features of the simple scalar theory persist in
more realistic ones. In this paper, we begin addressing this
issue by constructing and studying asymptotically nonlocal
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gauge theories. We focus primarily on an asymptotically
nonlocal generalization of scalar quantum electrodynamics
(QED). Paralleling the approach of Ref. [1], we first present
equivalent gauge-invariant formulations of the theory, one
with higher-derivative quadratic terms and one where
these are eliminated in favor of auxiliary fields. To under-
stand mass renormalization, we study the on-shell self-
energy for a complex scalar field in this theory, in
both formulations, and show that the same qualitative
behavior found in asymptotically nonlocalϕ4 theory persists
in scalar QED. In particular, we demonstrate that the theory
is free of a hierarchy problem, with corrections to the
squared mass of the complex scalar field set by an emergent
nonlocal scale that is hierarchically smaller than the lightest
Lee-Wick partner as the limiting theory is approached.
We also make some preliminary remarks on non-Abelian

theories, including the asymptotically nonlocal generaliza-
tion of the standard model. Higher-derivative non-Abelian
theories have unavoidable derivative interaction terms, so
that the resulting theory has logarithmic, but not quadratic,
divergences [7,8]. We present a plausibility argument for
why the dependence on any high cutoff (for example, the
Planck scale) should remain logarithmic in such a theory,
while the overall scale of radiative corrections to scalar
masses should be set by the emergent nonlocal scale, as the
asymptotically nonlocal limit is taken. Assuming the emer-
gent nonlocal scale is around a TeV, this could address the
hierarchy problem in the standard model while allowing the
masses of Lee-Wick resonances to be well beyond the reach
of current collider experiments (where they are notably not
seen [15]).We defer a test of this conjecture, by explicit loop
calculations in non-Abelian theories and in the standard
model itself, for futurework.We content ourselves herewith
briefly stating how to define asymptotically nonlocal non-
Abelian theories in higher-derivative form, theories that
display some of the distinctive features of the nonlocal
limiting theory in the infrared. For example, one would
expect deviations from the momentum dependence of tree-
level scattering amplitudes in the standard model, which
may have experimentally observable consequences.
Our paper is organized as follows: In Sec. II, we review

the framework for constructing asymptotically nonlocal
theories that was illustrated in a theory of real scalar fields
in Ref. [1], and summarize the main results of that work.
In Sec. III, we show how the same construction can be
generalized to scalar QED, an Abelian gauge theory.
We show how this theory can bewritten in higher-derivative
and in Lee-Wick form (i.e., a form with distinct fields
corresponding to each propagator pole, but no higher-
derivative terms), and introduce a coupling to a complex
scalar field of unit charge. In Sec. IV, we study the radiative
corrections to the complex scalar mass, verifying agreement
between results computed in the higher-derivative and
Lee-Wick descriptions, which are gauge fixed in different
ways. We use these results to show that the asymptotically

nonlocal behavior found in the scalar theory of Ref. [1], i.e.,
a separation between the scale of quadratic divergences (the
emergent nonlocal scale) and the mass of the lightest
Lee-Wick partner state, is replicated in this gauge theory.
In Sec. V, we briefly discuss the generalization to non-
Abelian theories, as well as the complications that arise
therein, and we state the full asymptotically nonlocal
Lagrangian for the standard model in higher-derivative
form, as a point of reference for further investigation. In
the final section, we summarize our conclusions.
Note that the results of Ref. [1] were determined at the

one-loop level, but argued to hold at all orders in perturba-
tion theory based on a dimensional argument that we
reiterate in Sec. II. As an additional nontrivial consistency
check, we provide Appendix in which we show by direct
calculation that the conclusions of Ref. [1] remain
unchanged when two-loop effects are taken into account.

II. REVIEW OF ASYMPTOTIC NONLOCALITY IN
A SCALAR THEORY

To illustrate our approach, we review the asymptotically
nonlocal theory of real scalar fields presented in Ref. [1].
Consider the following Lagrangian of N real scalar fields
ϕj, and N − 1 real scalar fields χj,

LN ¼−
1

2
ϕ1□ϕN−Vðϕ1Þ−

XN−1

j¼1

χj½□ϕj−ðϕjþ1−ϕjÞ=a2j �;

ð2:1Þ

where the constants aj have units of length. We have set the
coefficients of the terms involving χj to one without loss of
generality; this choicemay be achieved by rescalings of the χj,
as these fields do not appear anywhere else in the Lagrangian.
Integration over the χj leads to functional delta functions in the
generating functional for the theory. This allows one to
eliminate ϕj, for j ¼ 2 � � �N, via the constraints

□ϕj − ðϕjþ1 − ϕjÞ=a2j ¼ 0; for j ¼ 1 � � �N − 1: ð2:2Þ

In particular, this implies

ϕN ¼
�YN−1

j¼1

�
1þ l2

j□

N − 1

��
ϕ1; ð2:3Þ

where l2
j ≡ ðN − 1Þa2j , allowing one to rewrite Eq. (2.1) as

LN ¼ −
1

2
ϕ1□

�YN−1

j¼1

�
1þ l2

j□

N − 1

��
ϕ1 − Vðϕ1Þ: ð2:4Þ

If one takes the limit in which the lj approach a common,
fixedvalue,l,whileN is taken to infinity, then thisLagrangian
approaches the asymptotic form
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L∞ ¼ −
1

2
ϕ1□el

2
□ϕ1 − Vðϕ1Þ: ð2:5Þ

Nonlocal quantum field theories such as Eq. (2.5) that involve
the exponential of the □ operator1 have been studied
extensively in the literature; see Ref. [12] andmany historical
references therein. Since the propagator in such theories
involves an exponential of a momentump, which diverges in
some directions in the complex p0 plane, the usual
assumption of vanishing contours at infinity that allows for
Wick rotation cannot be justified, and there can be a loss of
unitarity in simple theories formulated in Minkowski space
[16]. One approach is to define such theories in Euclidean
space from the start, and only analytically continue ampli-
tudes to Minkowski space after the loop integrals have been
evaluated. (This was noted in Ref. [16], but is in fact an
assumption that is implicit in much of the phenomenological
literature on these theories; see the related discussions in
Refs. [17–20].) Asymptotically nonlocal theories defined in
Minkowski space do not present these difficulties and
unitarity ismaintained via the same prescriptions for handling
poles in the complexp0 plane that are employed in other Lee-
Wick theories [21,22]. As noted in Ref. [1], the asymptoti-
cally nonlocal theory defined by Eq. (2.4) has loop integrals
that are regulated by an emergent scaleM2

nl ∼Oð1=l2Þ that is
approached for large-but-finite N; this result can be antici-
pated since our higher-derivative ϕ4 model is a finite theory
and l is the only dimensionful scale appearing in the limiting
form of the Lagrangian that could serve as a regulator. It was
demonstrated in Ref. [1] that the scalar self-energy M2ðk2Þ
that follows from Eq. (2.4) in a massless theory with the
choice Vðϕ1Þ ¼ λϕ4

1=4! has the limit

lim
N→∞

M2ðk2Þ ¼ λ

32π2l2
¼ 3λM2

nl

128π2
; ð2:6Þ

when one parametrizes the Lee-Wick partner spectrum of the
theory by

m2
j ¼

3

2

1

2 − j
N

NM2
nl; for j ¼ 1 � � �N − 1; ð2:7Þ

where mj ≡ 1=aj, and we define M2
nl ≡ 4=ð3l2Þ, so that

ðN − 1Þa2j → l2 forN → ∞, as indicated earlier. [In fact, the
result in Eq. (2.6) was not sensitive to the form
of the parametrization provided that the masses approach a
common value as they are taken to infinity.] Equations (2.6)
and (2.7) make clear that the nonlocal mass scale can remain
fixed at any desired value as one increases N, while the
massive states become hierarchically heavier. A discussion of
mass renormalization at two loops in theϕ4 theory of Ref. [1]
is included in Appendix as further evidence of the robustness
of this qualitative result.

Note that the parametrization in Eq. (2.7) was chosen to
assure a spectrum of states that is nondegenerate for any
finite N. As a consequence, the propagator

DFðp2Þ ¼ i
p2

YN−1

j¼1

�
1 −

l2
jp

2

N − 1

�−1
ð2:8Þ

that follows from Eq. (2.4) can be decomposed via partial
fractions as a sum over simple poles with finite residues that
alternate in sign. This is precisely the expectation in theories
with higher-derivative quadratic terms [23] and has been
illustrated previously in generalizations of the LWSM that
involve more than one Lee-Wick partner state [8].
We do not repeat here the one-loop calculation inϕ4 theory

that establishes Eq. (2.6) withM2
nl ∼Oðm2

1=NÞ, wherem1 is
the mass of the lightest Lee-Wick partner. We refer the reader
to Ref. [1] for details. Nevertheless, a similar (though more
nontrivial) study of the one-loop contributions to the self-
energy in an Abelian gauge theory is discussed in depth in
Sec. IV, with calculations presented in both the higher-
derivative and the Lee-Wick forms of the theory. We will
see explicitly that an emergent cutoff is again obtained that is
hierarchically lighter than the Lee-Wick partners.

III. ASYMPTOTICALLY NONLOCAL ABELIAN
GAUGE THEORIES

Motivated by the results of Ref. [1], which we have
summarized in the previous section, we now present a
generalization to an Abelian gauge theory. As in Sec. II, we
first discuss the auxiliary Lagrangian, which involves a
generalization of the χj fields, and then consider the higher-
derivative theory that results from integrating out the
associated constraints. Alternatively, we show that it is
possible to recast the auxiliary theory into Lee-Wick form
by using field redefinitions and integrating out the remaining
nondynamical fields. Since the field redefinitions are iden-
tical to those encountered in the scalar model of Ref. [1], we
may use these results to aid us in extracting the physical
content of the theorywe consider here. Finally, in the limit of
infinitely many auxiliary fields, we show that the theory
becomes asymptotically nonlocal and is also free of a
hierarchy problem. Extending this theory to non-Abelian
theories and the standard model is discussed in Sec. V.
Let us first focus on the pure gauge field part of the

Lagrangian; the gauge fixing will be discussed shortly, and
the coupling to matter fields will be covered at the end of
this section. The Lagrangian contains N vector fields Âj

μ as
well as N − 1 auxiliary vector fields χjμ

2:

1As we noted in Ref. [1], the □ operator appearing in the
derivation above can be replaced by any χj-independent differ-
ential operator D.

2Here and in what follows we will use either Âj
μ or Â

μ
j ; that is,

Lorentz indices are raised and lowered as usual with the
Minkowski metric, but we will place the index j that numbers
the vectors wherever it is most convenient in order to improve the
readability of our formulas.
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Lgauge
N ¼ 1

2
Â1
μO

μ
νÂν

N þ
XN−1

j¼1

χjμ

�
Oμ

νÂν
j −

1

a2j
ðÂμ

jþ1 − Âμ
j Þ
�
:

ð3:1Þ

In the above, aj are positive constants and the operator Oμ
ν

is given by

Oμ
ν ≡ δμν□ − ∂μ∂ν: ð3:2Þ

The Lagrangian is invariant under the U(1) gauge trans-
formation

Âj
μ → Âj

μ þ ∂μλ; χjμ → χjμ; ð3:3Þ

where λ≡ λðxνÞ is an arbitrary gauge function. The
operator Oμ

ν has the following properties:
(i) Oμ

νÂj
μ is gauge invariant under (3.3), and Â

j
μO

μ
ν times

any product of the fields is gauge invariant up to a
surface term.

(ii) Oμ
ν gives rise to a Maxwell-like kinetic term,

1
2
Âj
μO

μ
νÂν

j ¼ − 1
4
F2
μν, up to surface terms, where

Fμν ¼ ∂μÂ
j
ν − ∂νÂ

j
μ.

(iii) The operator satisfies ðOμ
νÞn ≡Oμ

ν1O
ν1
ν2 � � �

Oνn−1
ν ¼ Oμ

ν□
n−1, which will be useful later.

Notice that (i) above requires that the χjμ transform as
singlets to maintain the invariance of the first term in the
sum, even if each Âj

μ were able to shift under different U(1)
gauge transformations; however, invariance of the second
term in the sum then requires that all the Âj

μ shift by a
common gauge function, as expected for a theory invariant
under a single U(1) gauge group. It then follows that the
off-diagonal kinetic term involving Â1

μ and ÂN
μ is gauge

invariant as well, establishing the U(1) gauge invariance of
the Lagrangian as a whole.
While the Lagrangian in Eq. (3.1) appears nongeneric,

this is somewhatmisleading since this expression should not
be thought of as the fundamental description of the theory.
As wewill see in the next section, Eq. (3.1) is equivalent to a
higher-derivative theory in which the quadratic terms are a
generic polynomial in the □ operator, up to the physical
constraint that its zeros are real and positive, as parametrized
by the 1=a2j . These will correspond to particle squared
masses. To extract the physical interpretation of Eq. (3.1), it
is instructive to follow two paths: the interpretation of the
theory as (i) a higher-derivative modification of Maxwell
theory, and (ii) a Lee-Wick theory, with additional particles
that are partners to the massless photon. As will become
apparent, each perspective can be of value in different
circumstances.

A. Higher-derivative picture

Since the χjμ fields only appear linearly in the Lagrangian
(3.1), the functional integral can be performed exactly,
giving rise to the N − 1 constraints

Âμ
jþ1 ¼ ðδμν þ a2jO

μ
νÞÂν

j ; for j ¼ 1;…; N − 1: ð3:4Þ

Inserting this back into the original Lagrangian one can
employ the property (iii) to recast

Oμ
ν

YN−1

j¼1

ðδνρ þ a2jO
ν
ρÞ ¼

YN−1

j¼1

ð1þ a2j□ÞOμ
ρ; ð3:5Þ

so that

Lgauge
N ¼ 1

2
Â1
μO

μ
ν

YN−1

j¼1

ð1þ a2j□ÞÂν
1: ð3:6Þ

This Lagrangian represents a higher-derivative modifica-
tion of Maxwell theory for the field Â1

μ, since, up to surface
terms, it corresponds to

Lgauge
N ¼−

1

4
Fμν

YN−1

j¼1

ð1þa2j□ÞFμν; Fμν≡∂μÂ
1
ν−∂νÂ

1
μ:

ð3:7Þ

In order to gauge fix this Abelian theory we add a standard
gauge-fixing Lagrangian

Lgf ¼ −
1

2ξ
ð∂μÂ

μ
1Þ2: ð3:8Þ

Then the propagator takes the form

D̂μ
νðp2Þ ¼ −i

p2fðp2Þ
�
δμν − ½1 − ξfðp2Þ�p

μpν

p2

�
;

fðp2Þ≡ YN−1

j¼1

ð1 − a2jp
2Þ: ð3:9Þ

We decorated the propagator with a hat to indicate that it is
the propagator of the higher-derivative theory. Next, it is
useful to perform the partial fraction decomposition

1

fðp2Þ ¼
XN−1

j¼1

bj
p2 −m2

j
; bj ≡ −m2

j

YN−1

k¼1
k≠j

m2
k

m2
k −m2

j
;

m2
j ¼

1

a2j
: ð3:10Þ

The coefficients bj satisfy the following useful relations:

JENS BOOS and CHRISTOPHER D. CARONE PHYS. REV. D 104, 095020 (2021)

095020-4



XN−1

j¼1

bj¼0;
XN−1

j¼1

bjm2n
j ¼0 for n¼1;…;N−2: ð3:11Þ

It is also convenient to define the quantities

cj ≡ bj=m2
j : ð3:12Þ

With c0 ¼ 1, the cj are the residues of the poles in the
partial fraction decomposition of ½p2fðp2Þ�−1. Defining
m0 ≡ 0 they inherit the properties

XN−1

j¼0

cj¼0;
XN−1

j¼0

cjm2n
j ¼0 for n¼1;…;N−2; ð3:13Þ

where the summation is now carried out from 0 to N − 1.
These technical relations are of central importance for
many subsequent conclusions of this paper, which is why
we display them here.3

B. Asymptotic nonlocality

Going back to the non-gauge-fixed Lagrangian, let us
introduce a new quantity,

l2
j ¼ ðN − 1Þa2j : ð3:14Þ

Then the N − 1 constraint equations take the form

Âμ
N ¼

YN−1

j¼1

�
δμν þ

l2
jO

μ
ν

N − 1

�
Âν
1: ð3:15Þ

In the limiting case of N → ∞ one finds (assuming that
lj → l) that Eq. (3.6) becomes

Lgauge
∞ ¼ 1

2
Â1
μel

2
□Oμ

νÂν
1: ð3:16Þ

This is, up to surface terms, the same Lagrangian as the
nonlocal Maxwell Lagrangian − 1

4
Fμνel

2
□Fμν that has been

studied elsewhere [25,26] (see also historical references
therein). We have discussed in Sec. II why the
large-but-finite-N limit may be preferable to the theory
defined at the limit point where N → ∞ and
ðN − 1Þa2j → l2, for all j. As we shall show explicitly in
Sec. IV, quadratic divergences in an Abelian gauge theory
with complex scalar fields are regulated by the would-be
nonlocal scale l, which is hierarchically separated from
the mass scales 1=a2j when one approaches this limit at
finite N.

C. Lee-Wick picture

Instead of integrating out the N − 1 auxiliary fields χjμ
directly, it is also possible to perform a field redefinition
and then integrate out the nondynamical fields that remain
in this new basis, which gives rise to a Lee-Wick-type
theory. Starting with the original Lagrangian (3.1) we
define the collection of all fields

Âμ ¼ ðÂ1
μ; χ1μ;…; ÂN−1

μ ; χN−1
μ ; ÂN

μ Þ ð3:17Þ

such that the Lagrangian takes the form

Lgauge
N ¼ 1

2
ÂT
μ ðKOμ

ν þMδμνÞÂν; ð3:18Þ

where K and M are ð2N − 1Þ × ð2N − 1Þ kinetic and mass
matrices, and a superscript “T” denotes transposition. This
system can be diagonalized via a field redefinition to a new
basis Ãμ ¼ ðAμ; Ã

1
μ;…; ÃN−1

μ ; χ̃1μ;…; χ̃N−1
μ Þ via

Âμ ¼ SNÃμ; ð3:19Þ

where SN is an invertible ð2N − 1Þ × ð2N − 1Þ matrix. The
matrices K and M are identical to those discussed in our
previous paper [1], where explicit forms were presented
for N ¼ 2 and N ¼ 3. In general, the resulting matrices
K0 ¼ STNKSN and M0 ¼ STNMSN are block diagonal,

K0 ¼

0
BBBBBBBB@

1 0

ð−1Þ1 0

. .
. ..

.

ð−1ÞN−1 0

0 0 � � � 0 X

1
CCCCCCCCA
; M0 ¼

0
BBBBBBBB@

0 0

ð−1Þ1m2
1 0

. .
. ..

.

ð−1ÞN−1m2
N−1 0

0 0 � � � 0 Y

1
CCCCCCCCA
; ð3:20Þ

3Let us note in passing that these expressions are vaguely reminiscent of Pauli’s sum rules from 1951 [24].
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where X and Y are ðN − 1Þ × ðN − 1Þ blocks that cannot be
simultaneously diagonalized and typically depend on
arbitrary parameters that enter the field redefinition matrix
SN . This suggests that the corresponding fields χ̃jμ with
j ¼ 1;…; N − 1 are unphysical. By checking concrete
expressions for K0 and M0 for various N one can show
that it is possible to successively integrate out these
auxiliary fields with no effect on the remaining fields Aμ

and Ãj
μ. For example, in the case of N ¼ 3 discussed in

Ref. [1], a vanishing eigenvalue in X allows one to perform
the functional integral over the corresponding χ̃ field,
leading to a functional constraint that forces the vanishing
of the remaining χ̃ field. This pattern must persist for
arbitrary N since the physical blocks of K0 and M0 (i.e.,
excluding X and Y) are in exact correspondence with the
residues and poles of the propagator of the higher-deriva-
tive form of the theory. Henceforth, we restrict ourselves to
this N × N subspace that corresponds to a Lee-Wick theory
of one massless photon and N − 1 massive vector partner
particles of mass mj.
In order to develop perturbation theory, we insert a usual

gauge-fixing term for the massless photon,

Lgf ¼ −
1

2ξ
ð∂μAμÞ2: ð3:21Þ

As noted in Ref. [7], one should obtain the same physical
results whether working in the higher-derivative theory,
with the field Âμ

1 gauge fixed as in Eq. (3.8), or in the
Lee-Wick form of the theory, with the field Aμ gauge fixed
as in Eq. (3.21). We will see this in our subsequent
calculations. The propagator for Aμ takes the form

Dμ
νðp2Þ ¼ −i

p2

�
δμν − ð1 − ξÞp

μpν

p2

�
; ð3:22Þ

and for the massive vectors Ãj
μ with j ¼ 1;…; N − 1 the

propagator can be read off directly,

D̃μ
νðp2Þ ¼ ð−1Þj −i

p2 −m2
j

�
δμν −

pμpν

m2
j

�
: ð3:23Þ

D. Coupling to matter

In order to study the issue of quadratic divergences, we
couple the gauge sector to a complex scalar field ϕ of unit
charge

Lmatter ¼ ðDμϕÞ�ðDμϕÞ −m2
ϕϕ

�ϕ − Vðϕ�ϕÞ; ð3:24Þ
where the covariant derivative is defined as

Dμϕ≡ ð∂μ − igÂ1
μÞϕ: ð3:25Þ

This is unique in the higher-derivative theory. If one started
instead with the theory defined in terms of the auxiliary

fields, one could imagine constructing alternative covariant
derivatives in which Â1

μ is replaced with any of the Âj
μ;

however, this corresponds to including additional derivative
couplings of the gauge field to the matter fields in the
higher-derivative description, which is arguably a less
minimal choice. In the higher-derivative picture, the cou-
pling to photons given by Eqs. (3.24) and (3.25) is identical
to standard scalar QED and the Feynman rules are the
same, aside from the differing form of the photon propa-
gator. In the Lee-Wick picture one can show that the first
row of the field redefinition matrix SN is given by4

ðSNÞ00 ¼ 1;

ðSNÞ0j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð−1Þjcj

q
> 0 for j ¼ 1;…; N − 1;

ðSNÞ0j ¼ 0 for j ¼ N;…; 2N − 2; ð3:26Þ

which implies that the vector field Â1
μ in the original

auxiliary theory is related to the massless photon Aμ and

its Lee-Wick partners Ãj
μ in the Lee-Wick theory as

follows:

Â1
μ ¼ Aμ þ

XN−1

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð−1Þjcj

q
Ãj
μ: ð3:27Þ

Hence the coupling to matter via Eq. (3.25) remains
unaffected in the massless gauge sector, whereas the
coupling to the Lee-Wick partner vectors Ãj

μ includes an

additional factor of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð−1Þjcj

q
> 0.

IV. SCALAR SELF-ENERGY

The asymptotically nonlocal ϕ4 model discussed in
Sec. II provided for the hierarchical separation of the
Lee-Wick scale and an emergent nonlocal regulator scale
in the decoupling limit, whenN becomes large and the ratio
m2

j=ðN − 1Þ remains constant. Here we show that the same
happens in the Abelian gauge theory of Sec. III, by
considering the one-loop self-energy for the complex scalar
field introduced in Sec. III D. We will compute the on-shell
self-energy M2ðm2

ϕÞ in both the higher-derivative and Lee-
Wick forms of the theory to understand how it is regulated.
Before delving into the detailed computations, however, let
us briefly anticipate the final result5:

4The overall sign of each column of SN may be changed
without altering the diagonal entries of the matrices in Eq. (3.20).
Our conventions here differ from Ref. [1] in that we take the
ðSNÞ0j > 0, for j ¼ 1;…; N − 1.

5When we write logarithms with dimensionful arguments,
we can always divide these arguments by an arbitrary
dimensionful scale—for example, m2

ϕ in the first logarithm of
Eq. (4.1)—without changing our results. This is a consequence of
Eq. (3.13).
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ð4:1Þ

In the limiting case of vanishing scalar mass, mϕ → 0, one
obtains the finite result

M2ðp2 ¼ 0Þ ¼ 3g2

ð4πÞ2
XN−1

j¼1

cjm2
j logm

2
j : ð4:2Þ

The scalar self-energy is manifestly finite, and the scale of
the corrections is set by the would-be nonlocal scaleMnl, as
we will show below. Since this scale is hierarchically lower
than the Lee-Wick masses, this scalar QED model
has no hierarchy problem as the Lee-Wick partners are
taken heavy. We will discuss this point in more detail
below.

A. Higher-derivative computation

As discussed in Sec. III D, the Feynman rules for the
higher-derivative theory are identical to those of scalar

QED, with the exception that the gauge propagator takes
the form

D̂μ
νðp2Þ ¼ −

i
p2fðp2Þ

�
δμν −

pμpν

p2

�
− iξ

pμpν

p4
;

fðp2Þ≡ YN−1

j¼1

ð1 − a2jp
2Þ: ð4:3Þ

Note that the gauge-dependent part proportional to ξ is
independent of the higher-derivative modification fðp2Þ,
and hence the question of gauge independence at one-loop
coincides with that of standard scalar QED. On-shell, the
scalar self-energy gives the shift in the physical pole mass
and is a manifestly gauge-independent quantity; we will
verify this explicitly in the calculations below.
The scalar self-energy is a sum of two diagrams, and the

first diagram can be written as

ð4:4Þ

¼ g2ðd − 1Þ
XN−1

j¼0

cj

Z
ddk
ð2πÞd

1

k2 −m2
j
þ g2ξ

Z
ddk
ð2πÞd

1

k2
ð4:5Þ

¼ −i
�XN−1

j¼0

ð1ÞM2
j þM2

ξ

�
; ð4:6Þ
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−iM2
ξ ¼ g2ξ

Z
ddk
ð2πÞd

1

k2
; ð4:7Þ

wherem0 ≡ 0 and c0 ≡ 1 for notational brevity. The gauge-
dependent termM2

ξ formally diverges, but wewill see that it
is canceled by the gauge-dependent contribution from the
second diagram when the latter is evaluated on-shell, the
case of interest. The remaining gauge-independent part is
easily evaluated using dimensional regularization in
Euclidean space (ϵ≡ 4 − d, p0 ¼ ip0

E, p
2 ¼ −p2

E):

−i
XN−1

j¼0

ð1ÞM2
j ¼−ig2ðd−1Þ

XN−1

j¼0

cj

Z
ddkE
ð2πÞd

1

k2Eþm2
j

ð4:8Þ

¼ −ig2ðd − 1Þ
XN−1

j¼0

cj

�
−
m2

j

8π2
×
1

ϵ
þ finite

�

¼ −
3ig2

ð4πÞ2
XN−1

j¼1

cjm2
j logm

2
j ; ð4:9Þ

where the 1=ϵ contributions add up to zero due to the
cancellation rules (3.13), provided N ≥ 3. The finite part
also picks up contributions proportional to sums over cjm2

j

which also add up to zero under the summation thanks to
(3.13); the argument of the logarithm can be normalized to
an arbitrary dimensionful constant for that reason.
The second diagram, evaluated on-shell, is

ð4:10Þ

¼−4g2
Z

ddk
ð2πÞd

XN−1

j¼0

cj
k2−m2

j

1

k2−2p ·k

�
m2

ϕ−
ðp ·kÞ2
k2

�
þiM2

ξ

ð4:11Þ

≡ − i
XN−1

j¼0

ð2ÞM2
j þ iM2

ξ ; ð4:12Þ

that is, the gauge-dependent part is identical to the gauge-
dependent part of the first diagram, up to a sign, such that
they cancel precisely. Moving to Euclidean space and
introducing Feynman parameters one finds

−ið2ÞM2
j ¼−4ig2m2

ϕcj

Z
1

0

dx
Z

ddlE

ð2πÞd
1

ðl2
EþΔðaÞ

j Þ2

þ8ig2m2
ϕcj

Z
1

0

dx
Z

1−x

0

dy

×
Z

ddlE

ð2πÞd
1

ðl2
EþΔðbÞ

j Þ3
�
l2
E

d
−y2m2

ϕ

�
; ð4:13Þ

where we defined the quantities

ΔðaÞ
j ¼xm2

j þð1−xÞ2m2
ϕ; ΔðbÞ

j ¼xm2
j þy2m2

ϕ: ð4:14Þ

Using dimensional regularization we can extract the
diverging parts of the Euclidean loop integrals,

−ið2ÞM2
j ¼ −4ig2m2

ϕcj

Z
1

0

dx

�
1

8π2
×
1

ϵ
þ finite

�

þ 8ig2m2
ϕcj

Z
1

0

dx
Z

1−x

0

dy

�
1

32π2
×
1

ϵ
þ finite

�
:

ð4:15Þ

The 1=ϵ poles vanish due to the sum rules in Eq. (3.13). The
finite parts are given by

−ið2ÞM2¼ ig2m2
ϕ

ð4πÞ2
XN−1

j¼0

cj

�Z
1

0

dxð4 logΔðaÞ
j Þ

−
Z

1

0

dx
Z

1−x

0

dy

�
2 logΔðbÞ

j þ4y2m2
ϕ

ΔðbÞ
j

��
: ð4:16Þ
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The final result for the on-shell scalar self-energy is then

M2ðp2 ¼ m2
ϕÞ ¼

XN−1

j¼0

ðð1ÞM2
j þM2

ξ þ ð2ÞM2
j −M2

ξÞ

¼ g2

ð4πÞ2
XN−1

j¼1

cj

�
1

2

m4
j

m2
ϕ

logm2
j þ

1

2

mjμ
3
j

m2
ϕ

log

�ðmj − μjÞ2
4m2

ϕ

��
;

cj ≡ ð−1Þ
YN−1

k¼1
k≠j

m2
k

m2
k −m2

j
; μj ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

j − 4m2
ϕ

q
: ð4:17Þ

B. Lee-Wick computation

The Feynman rules of scalar QED in the Lee-Wick picture were discussed in Sec. III D; in a nutshell, the photon-scalar
vertex remains unchanged, whereas the vertex of the scalar and a massive Lee-Wick partner field Ãj

μ comes with an

additional factor of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð−1Þjcj

q
. Moreover, in this case it is useful to fix the gauge to ξ ¼ 1 and directly compute the sum of

the bubble and rainbow diagram. Here, the external momentum is labeled as p, and d denotes the number of spacetime
dimensions:

−iM2ðp2Þ ¼ g2
Z

ddk
ð2πÞd

�
d
k2

−
ð2p − kÞ2

k2
1

ðp − kÞ2 −m2
ϕ

þ
XN−1

j¼1

cj
k2 −m2

j

�
d −

k2

m2
j
−

1

ðp − kÞ2 −m2
ϕ

×
�
ð2p − kÞ2 − 1

m2
j
ð2p · k − k2Þ2

���
: ð4:18Þ

On-shell, p2 ¼ m2
ϕ, this expression reduces appreciably (c0 ≡ 1, m0 ≡ 0):

−iM2ðp2¼m2
ϕÞ¼g2

XN−1

j¼0

Z
ddk
ð2πÞd

cj
k2−m2

j

�
d−

ð2p−kÞ2
k2−2p ·k

�
: ð4:19Þ

Combining denominators and moving to Euclidean space, one can perform the loop integration via dimensional
regularization:

−iM2ðp2 ¼ m2
ϕÞ ¼ −ig2

XN−1

j¼0

cj

Z
ddkE
ð2πÞd

�
d

k2E þm2
j
þ
Z

1

0

dx
ðx − 2Þ2m2

ϕ − k2E
ðk2E þ ΔÞ2

�

¼ −ig2
XN−1

j¼0

cj

�
−
m2

j

2π2
×
1

ϵ
þ finiteþ

Z
1

0

dx

�
2Δþ ðx − 2Þ2m2

ϕ

8π2
×
1

ϵ
þ finite

��
; ð4:20Þ

where we defined Δ ¼ x2m2
ϕ þ ð1 − xÞm2

j . The divergences, proportional tom
2
ϕ andm2

j , cancel as per Eq. (3.13), similar to
the higher-derivative calculation. The finite terms that do not vanish for the same reason are given by

−iM2ðp2 ¼ m2
ϕÞ ¼ −

ig2

ð4πÞ2
XN−1

j¼0

cj

�
4m2

j logm
2
j −

Z
1

0

dx½2Δþ ðx − 2Þ2m2
ϕ� logΔ

�
: ð4:21Þ

The Feynman parameter integral can be evaluated in closed form, and the final result is

M2ðp2 ¼ m2
ϕÞ ¼

g2

ð4πÞ2
XN−1

j¼1

cj

�
1

2

m4
j

m2
ϕ

logm2
j þ

1

2

mjμ
3
j

m2
ϕ

log

�ðmj − μjÞ2
4m2

ϕ

��
;

cj ≡ ð−1Þ
YN−1

k¼1
k≠j

m2
k

m2
k −m2

j
; μj ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

j − 4m2
ϕ

q
; ð4:22Þ
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in agreement with Eq. (4.17). This provides a nontrivial
cross-check given the different choice of fixing the gauge
after the field redefinitions that lead to the Lee-Wick basis.

C. Explicit parametrization

In the scalar model of Ref. [1], the emergent nonlocal
scale that regulates loop diagrams becomes relevant when
N → ∞ and the nondegenerate m2

j=ðN − 1Þ approach a
common value. Here we study Eq. (4.22) using the same
parametrization of the mass spectrum as in our scalar theory
(see Fig. 1 for a visualization),

m2
j ¼

3

2

NM2
nl

2 − j
N

: ð4:23Þ

We are interested in the limit of N → ∞, that is, mj → ∞,
so it is useful to introduce the dimensionless quantity
ηj ≡mϕ=mj. Then the self-energy takes the form

−iM2ðm2
ϕÞ ¼

ig2m2
ϕ

ð4πÞ2
XN−1

j¼1

cj
1

η4j

�
log ηj − ð1 − 4η2jÞ3=2

× log

�1 − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4η2j

q
2ηj

��
: ð4:24Þ

For small arguments, ηj → 0, again making use of the
cancellation rules (3.13), one has

−iM2ðm2
ϕÞ≈

6ig2m2
ϕ

ð4πÞ2
XN−1

j¼1

cj

��
1

η2j
−1

�
logηjþ

3

4

�
: ð4:25Þ

Reinserting the massesmj and utilizing the parametrization
Eq. (4.23) we can show that

lim
N→∞

½−iM2ðm2
ϕÞ� ¼ −

3ig2

ð4πÞ2 lim
N→∞

�
3

2
m2

ϕ þ
XN−1

j¼1

cjm2
j log

m2
j

m2
ϕ

−m2
ϕ

XN−1

j¼1

cj log
m2

j

m2
ϕ

�
ð4:26Þ

¼ −
3ig2

ð4πÞ2
�
M2

nl þm2
ϕ

�
log

M2
nl

m2
ϕ

þ 3

2
− γ

��
; ð4:27Þ

where the last equality follows from the relations:

XN−1

j¼1

cjm2
j log

m2
j

m2
ϕ

≈M2
nl þO

�
1

N

�
; ð4:28Þ

XN−1

j¼1

cj log
m2

j

m2
ϕ

≈ γ − log
M2

nl

m2
ϕ

þO
�
1

N

�
; ð4:29Þ

which were determined numerically. Here, γ ¼ 0.577216…
is the Euler-Mascheroni constant. Note that the scale m2

ϕ is
arbitrary in Eq. (4.28), as a consequence of the cancellation
rules, Eq. (3.13). Equation (4.27) confirms that the correc-
tion scale is indeed set by the nonlocal scale M2

nl, with a
subleading logarithmic term. In the massless limit mϕ → 0

one recovers a finite result that, up to the relabeling of
couplings, essentially reproduces the exact analytical result
obtained in Ref. [1].
In order to verify (4.27), we computed the self-energy

numerically at finiteN, for a range of scalar massesm2
ϕ, and

compared this to the asymptotic value. The results converge
at large N, as shown in Fig. 2.

FIG. 1. Seven lightest masses of the explicit mass parametriza-
tion (4.23), normalized to the asymptotically nonlocal scale Mnl.
For larger N they all approach one common value, as required.

FIG. 2. Scalar self-energy at one loop for various scalar masses
and N, normalized to M2

∞ð0Þ≡ 3g2M2
nl=ð4πÞ2. For larger N, the

self-energy does not diverge; rather, it approaches a common,
mϕ-dependent value indicated by the dashed lines.
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V. ASYMPTOTICALLY NONLOCAL
NON-ABELIAN THEORIES AND THE

STANDARD MODEL

In this section, we make some preliminary remarks on
how our approach may be applied to more general gauge
theories. In Sec. III, we considered a theory of a complex
scalar field ϕ coupled to an asymptotically nonlocal
Abelian gauge field. At the one-loop level, it is not hard
to see that we would obtain the same qualitative results for
the scalar self-energy if the gauge group in this theory were
made non-Abelian; we comment on higher loops below.
For concreteness, we promote the U(1) gauge group to
SU(N) and write the non-Abelian field strength tensor
using the matrix notation Fμν ≡ TaFa

μν. Then, the gauge-
invariant Lagrangian in a higher-derivative form includes
the terms

L¼−
1

2
TrFμν

�YN−1

j¼1

�
1þ l2

j□

N−1

��
Fμν−ϕ�

□ϕþ���; ð5:1Þ

where the □ operator is now built from covariant deriv-
atives □≡DμDμ, where Dμ ¼ ∂μ − igTaAa

μ, and where
the ellipsis includes the gauge-fixing terms. Here, the scalar
sector is local; we explain below how the result generalizes
when the scalar sector is asymptotically nonlocal as well.
To understand how the one-loop scalar self-energy com-
putation is modified we note the following: (i) the gauge
boson propagator is determined by the quadratic terms in
the Lagrangian, and hence has the same form as in the
Abelian theory, aside from a Kronecker delta in the adjoint
indices, and (ii) the vertices of the two diagrams that
contribute to the scalar self-energy differ from the Abelian
case only by factors of the group generators Ta, one for
each gauge boson line emanating from a vertex. Putting (i)
and (ii) together, and using the fact that

ðTaÞijðTaÞjk ¼ C2ðRÞδki ; ð5:2Þ

we conclude that the only change to the one-loop results
of Sec. III is that there is now an overall multiplicative
factor of the group invariant C2ðRÞ. Note that C2ðRÞ ¼
1
2N ðN2 − 1Þ for SU(N) if R is the fundamental representa-
tion; the indices i and k in Eq. (5.2) correspond to the
“colors” of the scalars on the external lines.
The one-loop results also hold qualitatively if asymptotic

nonlocality emerges in both the gauge and scalar sectors,
i.e., if we had

L ¼ −
1

2
TrFμν

�YN−1

j¼1

�
1þ l2

j□

N − 1

��
Fμν

− ϕ�
□

�YN−1

j¼1

�
1þ l2

j□

N − 1

��
ϕ −m2

ϕϕ
�ϕþ � � � ; ð5:3Þ

where we have assumed the same lj in both the scalar and
the gauge quadratic terms for simplicity and the□ operator
is again built from covariant derivatives. The key point is
that the scalar terms can be rewritten in Lee-Wick form (just
as in the mϕ ¼ 0 example of Ref. [1]), since our auxiliary
field construction works for any differential operator that is
exponentiated in the nonlocal limiting theory. Hence,

L ¼ −
1

2
TrFμν

�YN−1

j¼1

�
1þ l2

j□

N − 1

��
Fμν

þ
XN−1

j¼0

ð−1Þjϕ�
jð□þm2

jÞϕj; ð5:4Þ

where the mj represent the scalar mass eigenvalues. This
leads to the same self-energy diagrams that we encountered
previously for the local scalar field in Eq. (5.1), but for each
scalar mass eigenstate in Eq. (5.4) separately, up to over-
all signs.
At higher-loop order, and in more general non-Abelian

theories, the situation is more complicated. We argued in
the context of the scalar theory of Ref. [1] that our
qualitative results on the separation between the emergent
nonlocal scale and the lightest Lee-Wick mass should
persist to any loop order, since there is only one scale in
the limit of interest, Mnl, that could serve as a regulator of
the scalar self-energy. This statement is supported by the
explicit two-loop calculation that we include in Appendix.
More precisely, this dimensional argument is supported by
the observation that both our asymptotically nonlocal ϕ4

and Abelian gauge theories are finite theories: in the
formulation that we have presented, higher-derivative terms
affect only propagators, so that these theories can be made
arbitrarily more convergent than their local counterparts,
and the nonlocal scale becomes the sole regulator in the
theory. The situation is less obvious in non-Abelian
theories since gauge invariance requires higher-derivative
interaction terms when one modifies the quadratic terms in
the theory. As noted in the Lee-Wick Standard Model [7],
and illustrated in the N ¼ 3 model of Ref. [8], the higher-
derivative interactions lead to (at most) logarithmic diver-
gences, no matter how many additional derivatives are
added via the quadratic terms. Schematically, one might
expect the on-shell scalar self-energy to have the form

−iM2ðm2
ϕÞ ¼ F1ðfmjg; mϕ; NÞ logΛ

þ F2ðfmjg; mϕ; NÞ þOð1=ΛÞ; ð5:5Þ

where Λ represents the scale of a dimensionful, gauge-
invariant regulator (such as Pauli-Villars) and the Fi are
functions of the physical masses in the theory. We may
reasonably conjecture that

Fiðfmjg; mϕ; NÞ → FiðMnl; mϕÞ ð5:6Þ
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as N → ∞, with the masses parametrized as in Eq. (4.23).
In other words, functions of the physical masses should
become functions of Mnl and mϕ since no other dimen-
sionful physical parameters appear in the Lagrangian as the
limiting theory is approached. This would be sufficient to
address the hierarchy problem as N becomes large and the
Lee-Wick states are decoupled, since the dependence on the
high scale Λ remains logarithmic. Diagrammatic verifica-
tion of this conjecture in a dedicated study of asymptoti-
cally nonlocal non-Abelian theories will be deferred to
future work.
A separate challenge in the non-Abelian case is identi-

fying an intermediate auxiliary field Lagrangian of a form
similar to Eq. (3.1) that connects the higher-derivative and
Lee-Wick forms of a non-Abelian gauge sector for arbitrary
N. Finding a gauge-invariant Lagrangian of this form is no
longer obvious, as Eq. (3.3) is replaced by the more
complicated non-Abelian field transformation. For a spe-
cific choice of N, an auxiliary field representation of the
non-Abelian gauge sector can be found with some effort, as
was shown in the N ¼ 3 example in Ref. [8]; we do not
know whether it is possible to find a simple form for
arbitrary N. We also leave this problem for future work. In
the meantime, the higher-derivative form of the non-
Abelian gauge kinetic terms is sufficient for constructing
asymptotically nonlocal theories suitable for phenomeno-
logical study. For example, one may write an asymptoti-
cally nonlocal version of the standard model as follows:

L ¼ Lkin þ LYuk − VðHÞ; ð5:7Þ

where LYuk and VðHÞ represent the usual standard model
Yukawa couplings and Higgs doublet potential, respec-
tively, while the kinetic terms Lkin are modified:

Lkin ¼ −H†
□fð□ÞH −

1

2
TrGμνfð□ÞGμν

−
1

2
TrWμνfð□ÞWμν −

1

4
Bμνfð□ÞBμν

þ
X
f

f̄Li=Dfð□ÞfL þ f̄Ri=Dfð□ÞfR; ð5:8Þ

where

fð□Þ ¼
YN−1

j¼1

�
1þ l2

j□

N − 1

�
: ð5:9Þ

Here Gμν, Wμν, and Bμν represent the field strength tensors
for the SUð3ÞC, SUð2ÞW , and Uð1ÞY gauge groups, respec-
tively, and the □ operator is built from the standard model
covariant derivative, for example,

Dμ ¼ ∂μ − ig3TAgAμ − ig2
σa

2
Wa

μ − igYBμ ð5:10Þ

for a matter field that is charged under all three gauge group
factors. The sum over f ranges over the set of standard
model fermion fields.6

It is worth noting that one can easily construct an
auxiliary field formulation for an asymptotically nonlocal
fermion sector. Consider the following Lagrangian for N
left-handed fermions ψ j

L and N − 1 auxiliary right-handed
fermions χjR:

LN ¼ iψ̄1
L=DψN

L − Vðψ1
LÞ −

(XN−1

j¼1

χ̄jR½□ψ j
L

− ðψ jþ1
L − ψ j

LÞ=a2j � þ H:c:

)
: ð5:11Þ

Integrating out the χ̄jR gives the N − 1 relations

ψ jþ1
L ¼ ð1þ a2j□Þψ j

L: ð5:12Þ

Defining lj ≡ ðN − 1Þaj, one has

ψN
L ¼

YN−1

j¼1

�
1þ lj□

N − 1

�
ψ1
L: ð5:13Þ

A similar construction can be applied to fields with the
opposite chirality, yielding fermionic terms of the form
shown in Eq. (5.8). As we have seen before, fð□Þ → el

2
□,

as N → ∞, provided the lj → l in the same limit. The
construction summarized above also makes it straightfor-
ward to apply our previous asymptotically nonlocal gen-
eralization of scalar QED to QED itself.
It is interesting to note that the asymptotically nonlocal

standard model Lagrangian given in Eqs. (5.7) and (5.8)
has the property that tree-level scattering amplitudes will
have a momentum dependence that begins to deviate from
standard model expectations in a way indistinguishable
from the nonlocal limiting theory, when N is large. This
feature may lead to observable consequences at collider
experiments.

VI. CONCLUSIONS

In this paper, we have shown how to construct gauge
theories that exhibit asymptotic nonlocality, extending
previous work [1] that was limited to theories of real scalar
fields with ϕ4 interactions. Asymptotically nonlocal theo-
ries represent a sequence of higher-derivative theories that
approach a ghost-free nonlocal theory as a limit point.
Since the theories in this sequence involve finite numbers

6Note that in principle there could be different asymptotically
nonlocal scales for each kinetic term appearing in the Lagrangian.
The same is true for the possible Lee-Wick mass scales in the
LWSM, where a common one is chosen for simplicity.
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of derivatives, they avoid some of the technical complica-
tions inherent to infinite-derivative theories, but nonethe-
less exhibit some of their distinctive features. For example,
in the scalar theories previously studied, loop diagrams are
regulated by an emergent scale that does not appear as a
fundamental parameter in the Lagrangian, corresponding to
the nonlocal scaleMnl that is defined in the limiting theory.
As the limit is approached, Lee-Wick resonances become
more plentiful in number but also decouple; one finds the
relation

M2
nl ∼O

�
m2

1

N

�
; ð6:1Þ

where m1 is the lightest Lee-Wick resonance and N is the
total number of poles in the two-point function. In the ϕ4

theory that we previously studied [1], this parametric
suppression implies that the scale of quadratic divergences
may be held fixed as the Lee-Wick particles are taken
heavy, something not possible in theories with a minimal
spectrum of Lee-Wick particles. Precisely the same behav-
ior was found in the asymptotically nonlocal Abelian gauge
theory that we studied in the present work.
In particular, we studied the on-shell one-loop

self-energy of a complex scalar explicitly in both the
higher-derivative and the Lee-Wick forms of asymptoti-
cally nonlocal scalar QED, where the latter formulation
involves distinct fields for each physical particle, but no
higher-derivative terms. As the purely scalar theory that we
studied previously, we argued that our qualitative conclu-
sions should hold to arbitrary loop order on dimensional
grounds, asMnl is the only scale available that can regulate
loop diagrams in the limiting theory, which is a finite
quantum field theory. As a nontrivial check, we supported
this claim via an explicit two-loop calculation in asymp-
totically nonlocal ϕ4 theory, presented in Appendix of this
paper. We then showed how asymptotically nonlocal non-
Abelian theories could be defined in higher-derivative
form, assuring the existence of an emergent nonlocal scale
as the Lagrangian approaches its limiting form; we pre-
sented the corresponding generalization of the standard
model Lagrangian as a point of reference for future
investigation. Although asymptotically non-Abelian theo-
ries are not finite field theories (due to derivative inter-
actions), we presented a plausibility argument for why the
hierarchy problem may also be solved in these theories
when the Lee-Wick particles are heavy, as we anticipate the
scale of scalar self-energies to be set by Mnl with at most
logarithmic dependence on any higher cutoff. We defer to
future work a diagrammatic evaluation of this conjecture
and the related algebraic challenge of finding an auxiliary
field description of asymptotically nonlocal non-Abelian
theories that is valid for arbitrary N.
Whether this class of theories we study here can be made

fully realistic as an extension of the standard model that

addresses the hierarchy problem, while pushing some or all
of the new resonances outside the prying eyes of the LHC,
remains an open question. We hope the present work has
laid the groundwork to consider this and related technical
issues in future work.
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APPENDIX: ASYMPTOTICALLY NONLOCAL ϕ4

THEORY AT TWO LOOPS

In our review of asymptotically nonlocal ϕ4 theory in
Sec. II, we noted that the separation between the emergent
nonlocal scale and the lightest Lee-Wick partner particle
should persist at any order in perturbation theory, since the
asymptotic form of the Lagrangian provides only one
dimensional scale that could serve as a regulator of loop
diagrams. While this argument should be sufficient, we
show as a consistency check that our conclusions remain
unchanged if two-loop contributions to the mass renorm-
alization are taken into account.7 The three relevant dia-
grams are shown in Fig. 3, where diagram 3(a) was the one
studied in Ref. [1]. We note that the sum of diagrams in 3(a)
and 3(b) is nothing more than diagram 3(a) with the scalar
propagator replaced by a “dressed” propagator:

DFðp2Þ ¼ i

p2
Q

N−1
j¼1 ð1 − l2jp

2

N−1Þ

→
i

p2
Q

N−1
j¼1 ð1 − l2jp

2

N−1Þ −M2ðp2Þ
; ðA1Þ

where M2ðp2Þ is the one-loop scalar self-energy, an N-
dependent constant that we will call m2

0ðNÞ below, which
approaches the value given in Eq. (2.6) as N → ∞, namely
m2

0ð∞Þ ¼ 3λM2
nl=ð128π2Þ. To determine the asymptotic

value of diagrams 3(a) and 3(b), we may again use the
identity quoted in Ref. [1],

lim
N→∞

YN−1

j¼1

ð1þ a2jp
2
EÞ ¼ el

2p2
E

�
1 −

�
1þ 14

27
p2
El

2

�
p2
El

2

N

þO
�

1

N2

��
; ðA2Þ

to obtain the generalization of Eq. (4.15) appearing in the
same reference:

7We thank the referee of Ref. [1] for challenging us to provide
this example.
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lim
N→∞

M2ðk2Þaþb ¼
λ

16π2

Z
∞

0

dpEp3
E

1

p2
Ee

l2p2
E þm2

0ð∞Þ :

ðA3Þ

Notice that this reduces to the asymptotic form for the one-
loop self-energy if m2

0ð∞Þ is set to zero. To understand the
effect of the two-loop contribution we note that

lim
N→∞

M2ðk2Þaþb=M
2ðk2Þa ¼ 2

Z
∞

0

dx
x3

x2ex
2 þ λ

32π2

; ðA4Þ

where we have defined a dimensionless integration variable
x≡ lpE. The function on the right-hand side has an upper
bound of 1, which implies that the two-loop correction
from diagram 3(b) does not change the conclusion of
Ref. [1], that the scale of the result is set by the nonlocal
scale M2

nl.
The remaining diagram 3(c) is less trivial. To consider its

contribution to the scalar mass, we set the external
momentum to zero, equivalent to evaluating the self-energy
on-shell; in this case, expressing the propagators in the Lee-
Wick basis (or equivalently, using a partial fraction decom-
position of the propagators in the higher-derivative theory),
the contribution to the amplitude may be written as

−iM2ð0Þc ¼
iλ2

3!

XN−1

i;j;k¼0

cicjckIijk; ðA5Þ

where

Iijk ¼
Z

ddl
ð2πÞd

Z
ddp
ð2πÞd

1

p2 −m2
i

1

ðpþ lÞ2 −m2
j

1

l2 −m2
k

:

ðA6Þ

Here,m0 ¼ 0, corresponding to the massless theory studied
in Ref. [1]; the ci are defined in Eq. (3.12) and satisfy the
same cancellation rules (3.13).
The ultraviolet divergences of Eq. (A6) will cancel in

Eq. (A5), as a consequence of Eq. (3.13), leaving a finite
result. Nevertheless, it is useful if these divergences can be
isolated cleanly at an intermediate step; evaluation of
Eq. (A6) by standard methods does not provide for such
a simple separation, as the divergences live partly in
divergent Feynman parameter integrals. A more tractable
final form can be obtained by rewriting Eq. (A6) using a
trick [27]: one inserts the identity

1 ¼ 1

2d

�∂lμ

∂lμ þ
∂pμ

∂pμ

�
; ðA7Þ

and then integrates the two terms by parts. The result can be
manipulated algebraically to show that the original integral
may be reexpressed as

Iijk ¼
3m2

j

d − 3

Z
ddl
ð2πÞd

Z
ddp
ð2πÞd

1

ðp2 −m2
i Þ½ðpþ lÞ2 −m2

j �2ðl2 −m2
kÞ
; ðA8Þ

where we have used the freedom to relabel indices i, j,
and k using the total symmetry of cicjck. This integral
evaluates to

Iijk ¼ −
3m2

j

d − 3

Γð4 − dÞ
ð4πÞd

Z
1

0

dx½xð1 − xÞ�d2−2

×
Z

1

0

dwwð1 − wÞ1−d
2Δd−4; ðA9Þ

where

Δ ¼ wm2
j þ

ð1 − wÞ
xð1 − xÞ ½xm

2
i þ ð1 − xÞm2

k�: ðA10Þ

One may now expand with d ¼ 4 − ϵ. Writing the result in
terms of its divergent and finite parts, we find

Idiv ¼
3m2

j

ð4πÞ4
�
2

ϵ2
þ 1

ϵ
ð3 − 2γ þ 2 lnð4π=m2

jÞÞ
�
: ðA11Þ

(a) (b) (c)

FIG. 3. Diagrams that contribute to the scalar mass renormalization through two loops.
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Since this expression is entirely independent of the indices
i and k,

XN−1

i;k¼0

cickIdiv ¼ 0; ðA12Þ

and there are no divergent contributions to the amplitude in
Eq. (A5). The finite part of Eq. (A9) is given by

Ifinite¼−
3m2

j

ð4πÞ4
Z

1

0

dx
Z

1

0

dw
w

1−w
lnðΔ=m2

jÞþ��� ; ðA13Þ

where the ellipsis represents terms that vanish under the
same summation Eq. (A12). Discarding those terms we are
led to our final result

−iM2ð0Þc¼
−iλ2

2ð4πÞ4
XN−1

i;k¼0

XN−1

j¼1

cicjckm2
j Ĩijk;

Ĩijk¼
Z

1

0

dx
Z

1

0

dw
w

1−w

×log

�
wþð1−wÞxm

2
i þð1−xÞm2

k

xð1−xÞm2
j

�
: ðA14Þ

Assuming the mass parametrization given in Eq. (2.7), the
convergent integral Ĩijk can be evaluated numerically, and

one finds that it is roughly of order unity. However, one also
finds that the triple sum involves significant cancellations
between large terms of alternating sign, as a result of the
properties of the coefficients ci, cj, and ck. As a result, the
integral Ĩijk must be evaluated to high precision in order to
obtain accurate results; convergence is slow and worsens as
N becomes large. Nevertheless, one can see the expected
results emerging in the numerical data set shown in Table I
below, where we have chosen some points between N ¼ 5
and 20 for illustration. The results are given in units of
λ2M2

nl=ð512π4Þ.
Notice that in the case where N ¼ 20 the lightest Lee-

Wick partner squared mass is 4 times as large compared to
the case where N ¼ 5. The value of diagram 3(c), however,
shows no corresponding growth and remains of the same
order. This indicates that quadratic divergences are not
reemerging at the two-loop level, supporting the dimen-
sional argument that they will not do so at any order in the
loop expansion for this theory.
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