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We carry out a detailed study of the confinement phase transition in a dark sector with an SUðNÞ gauge
group and a single generation of a dark heavy quark. We focus on heavy enough quarks such that their
abundance freezes out before the phase transition, and the phase transition is of first order. We find that
during this phase transition, the quarks are trapped inside contracting pockets of the deconfined phase and
are compressed enough to interact at a significant rate, giving rise to a second stage of annihilation that can
dramatically change the resulting dark matter abundance. As a result, the dark matter can be heavier than
the often-quoted unitarity bound of ∼100 TeV. Our findings are almost completely independent of the
details of the portal between the dark sector and the Standard Model. We comment briefly on possible
signals of such a sector. Our main findings are summarized in a companion paper, while here we provide
further details on different parts of the calculation.
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I. INTRODUCTION

The cosmic abundance of dark matter (DM) is compa-
rable to the abundance of Standard Model (SM) particles up
to anOð1Þ factor [1]. The similarity of these two ostensibly
unrelated abundances raises the suspicion that the two
sectors may have been in chemical equilibrium at some
point in their history, implying some sort of interaction
portal between the SM and DM. Numerous experimental
efforts to look for such a portal are underway. Nonetheless,
the particle nature of DM and any potential portals to the
SM remain unknown at present.
In addition to probing interactions between DM and

the SM, many experimental and theoretical efforts aim to
probe possible dynamics within the dark sector itself. Often
simplified dark sectors with only a single DM particle are
considered. Yet, the rich gauge structure of the SM offers
no particular reason to believe that the dark sector will be
significantly simpler. A wide range of more involved dark
sectors have been studied, especially scenarios with a
new confining force in the dark sector; see for instance
Refs. [2–35]. Depending on the details of the sector,

different hadronic states can be the DM candidate in
different theories, and the stabilizing symmetry and the
DM mass scale can vary widely [30]. Such a sector can
further give rise to rich dynamics that can potentially solve
other problems in the SM as well; e.g., see Refs. [6,36]
where the observed baryon asymmetry is tied to the DM
abundance.
An interesting class of confining dark sector models is

the scenario where all the dark quarks are substantially
heavier than the dark confinement scale Λ. These models
and their experimental signals have been studied exten-
sively; see for instance Refs. [6,24–26,28]. For sufficiently
heavy quarks, lattice calculations have shown that the phase
transition in such a sector is of first order for SUðNÞ with
N ¼ 3 [37–41] or N > 3 [42,43]. There has been a recent
surge of interest in the study of the potential effects of first-
order phase transitions in other DM models; e.g., see
Refs. [44–47],1 but the effects of the phase transition
on the relic abundance of dark matter in confining dark
sector models are mostly unexplored, with the exception
of a recent study of dark sectors with only light quarks
(mq ≤ Λ) [51].
In this work, we consider the simplest such confining

model—an SUð3Þ gauge theory with one heavy quark in
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1See also Refs. [48–50] for another mechanism affecting DM
abundance in the presence of significant supercooling during a
phase transition.
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the fundamental representation—and focus on the effects of
the first-order phase transition on the DM relic abundance
calculation. Similar to the arguments put forward in
Ref. [52], we will argue that toward the end of the phase
transition, we will be left with pockets of the high temper-
ature (i.e., deconfined) phase submerged in a sea of low
temperature (i.e., confined) phase. We will argue that the
heavy quarks are all initially trapped inside these con-
tracting pockets.2 To determine important properties of
these pockets such as their initial characteristic size and
contraction rate, we will develop a simplified model to
numerically simulate the phase transition.
As a pocket contracts, the dark quarks within it are

compressed, allowing them to recouple and go through a
second stage of annihilation. We calculate the fraction of
the quarks that survive this new annihilation stage and
escape the pockets in the form of dark baryons. We refer to
this process as “thermal squeezeout,” as the dark quarks are
squeezed within the pockets and eventually leak out, in
contrast to the standard “thermal freezeout.” We find a
dramatic suppression in the final abundance thanks to this
phenomenon, which points to much heavier dark matter
parameter space than was previously thought. In particular,
the fact that the local DM density is much larger than the
globally averaged DM density during this second stage of
annihilation invalidates the homogeneity assumption made
in the unitarity bound argument of Ref. [53].3 As a result,
this model allows the DM candidate to be heavier than the
perturbative unitarity bound on weakly interacting massive
particles (WIMPs), despite being thermal.
Since this second stage of annihilation is controlled by

the dynamics within the dark sector and not the interaction
between the dark sector and SM, our results are largely
independent of the portal to the SM. In fact, we do not
constrain ourselves to any specific portal in this paper. The
only assumptions we make about such a portal are that (i) it
exists, (ii) it keeps the SM and the dark sector in thermal
contact during the phase transition, and (iii) it respects the
dark baryon number that stabilizes the dark baryons. These
assumptions streamline our calculations significantly.
However, it is worth considering the possibility of models
in which we can relax one or more of these assumptions; we
leave this for future work.

The current work is merely the start of a broader program
of studying such models in more details. The phenom-
enology of all such models should be revisited in light of
the dramatic change in the relic abundance calculation.
Depending on the gauge group under study, the quarks’
representation, and the portal, different models (with vastly
different phenomenology) can be constructed.
Our study indicates a natural window of DM masses

between 1 and 100 PeV for such a setup. While conven-
tional searches may lose sensitivity for such a high DM
mass, the stochastic gravitational wave background due to
the first-order phase transition in this scenario can be
detected by planned future facilities. (See Ref. [56] for
the projected reach of such facilities.) While this signal
depends on the UV parameters that control the thermody-
namics of the phase transition, it does not depend on the
nature of the portal.
The rest of this paper is organized as follows. In Sec. II,

we provide an overview of the cosmology of our dark
sector. In Sec. III, we write down and solve the Boltzmann
equations that determine the relic abundance of dark matter.
In Sec. IV, we provide an overview of the possible
phenomenological implications of our dark sector before
concluding in Sec. V. We also provide three Appendixes
with more details. In Appendix A, we provide more details
on the thermodynamics of first-order phase transitions in an
expanding universe and detail a simulation we performed to
fix the phase transition parameters that enter the relic
abundance calculation. In Appendixes B and C, we review
some results in the literature for the cross sections and
binding energies of heavy quarks and their bound states.
For a more condensed discussion than what follows, see the
companion paper Ref. [57].

II. QUALITATIVE OVERVIEW OF COSMOLOGY

We consider a dark sector with a non-Abelian SUð3Þ
gauge group and a single flavor of heavy quarks q in the
fundamental representation

L ⊃ −
1

4
GμνGμν þ q̄ðiγμDμ −mqÞq; ð2:1Þ

where Gμν is the dark gluon field strength and mq is the
dark quark mass with mq ≫ Λ (in practice, we consider
mq ≥ 100Λ), where Λ is the dark confinement scale at
which a phase transition takes place.
Given that mq ≫ Λ, we expect that such heavy quarks

decouple from the thermal bath well before the phase
transition, so the phase diagram of this model is very close
to that of pure Yang-Mills for T ≪ mq. Since the heavy
quark regime can be well approximated by the pure-gauge
regime, the phase transition behavior is almost independent
of the number of heavy quark flavors [58]. Then, the only
constraining condition on the number of quark flavors is

2This depends on the representation of the quarks under the
dark confining gauge group. For instance, if the quarks are in the
adjoint representation (similar to the model in Ref. [27]), they
could combine with the surrounding gluons, form color-neutral
hadrons, and move into the confined phase. Similarly, if in
addition to the heavy quarks the spectrum were to include light
quarks in the fundamental representation as well, the heavy
quarks would not remain trapped within the pocket as they could
make a color-neutral bound state with one of many light quarks
surrounding them to escape the pocket.

3See also Refs. [54,55] for more recent studies of the unitarity
bound on thermal DM models.
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asymptotic freedom or, in special cases, asymptotic safety
[59]. Various lattice gauge theory studies have established
that the SUð3Þ phase transition takes place at a critical
temperature very near the confinement scale, Tc ≈ Λ, and
is first order [38–41]. We therefore assume that this
dark sector features a first-order phase transition exactly
at Tc ¼ Λ.
The effects of this phase transition on the relic abundance

of DM have been relatively unexplored in previous studies
of such a confining gauge sector, e.g., [25]. In this section,
we discuss how this phase transition dramatically changes
the relic abundance calculation by causing a second stage
of significant DM annihilation.
We remain agnostic about how the dark quark mass is

generated as it will not affect our study. We also do not
commit to any specific portal between the dark sector and
the SM. We merely assume such a portal exists and that it
keeps the dark sector in kinetic equilibrium with the SM.
The portal enables the decay of dark glueballs and mesons
to the SM while respecting the dark baryon number
symmetry, thus stabilizing the dark baryons. These bary-
ons, which are three-quark bound states, are the DM
candidate in this setup. We also assume a symmetric initial
condition, nq ¼ nq̄.
In this section, we provide an overview of the cosmology

of such a sector, focusing primarily on the effect that the
phase transition has on the DM relic abundance. The goal is
to provide the reader with a broad picture of the various
moving parts in this study while leaving some of the more
detailed calculations for later sections and Appendix A.

A. Preconfinement epoch

For high enough temperatures, T > Tc, the dark sector
exists in a deconfined thermal state in which quarks move
freely within a gluon bath. Naively, this setup seems at odds
with confinement, which requires that colored objects not
propagate freely over distances greater than the confine-
ment length Λ−1. However, qualitatively, these colored
quarks can move freely because they are connected to a
network of thermal gluons [60]. These gluons screen a
quark’s color charge so that the quark effectively behaves
like a color neutral object, in a process analogous to Debye
shielding in plasmas. More quantitatively, lattice simula-
tions have shown that when T ≥ Tc, the potential between
two heavy quarks flattens when they are separated by a
distance of roughly more than Λ−1 [38]. In other words,
distant quarks in a gluon bath do not influence one another.
In the deconfined phase, the quark relic abundance

calculation proceeds analogously to a standard WIMP relic
abundance calculation. For large enough dark quark
masses, mq ≳ 20Λ, which will be satisfied for all the
parameter space we consider in our analysis, the dominant
number changing process qq̄ ↔ gg freezes out before
confinement. The Boltzmann equation governing this
freeze-out is simply

_nq þ 3HðTÞnq ¼ −hσviðn2q − ðneqq Þ2Þ; ð2:2Þ

where HðTÞ is the Hubble constant at temperature T, hσvi
is the thermally averaged annihilation rate for qq̄ ↔ gg, nq
is the quark number density, and neqq is its value in thermal
equilibrium with a thermal bath of temperature T and with
zero chemical potential. Since T ≫ Λ in this epoch, hσvi
can be calculated perturbatively [61],

hσvi ¼ ζπ
α2ðmqÞ
m2

q
; ð2:3Þ

where αðmqÞ is the dark, strong coupling constant evalu-
ated at the dark quark mass scale and ζ is a prefactor
encapsulating plasma effects and nonrelativistic enhance-
ments (with numerical values presented in Fig. 14). We find
that the exact size of this cross section does not qualitatively
change the main results of this paper. For further elabo-
ration about this cross section and others, see Appendix B.4

For the running coupling constant, we use [62]

αðmqÞ ¼
12π

ð11Nc − 2NfðmqÞÞ log m2
q

Λ2

; ð2:4Þ

where NfðμÞ is the number of light flavors contributing
to the beta function at mass scale μ. We set Nc ¼ 3
and NfðmqÞ ¼ 1.
In the left panel of Fig. 1, we show the resulting quark

number density evolution for specific choices of quark
mass and confinement scale. A generic obstacle in the study
of strong sectors is the uncertainty in determining cross
sections. To characterize this uncertainty, we vary the cross
section within an order of magnitude around the central
value in Eq. (2.3), which produces the green bands.
Importantly, we find that heavy quarks are well separated

just before the phase transition begins. To characterize their
separation, we define the typical interquark spacing in units
of the confinement length,

ξðtnÞ≡ Λ
ðnqðtnÞÞ1=3

; ð2:5Þ

where tn is the time at which extensive bubble nucleation
starts, i.e., the onset of the phase transition, and nqðtnÞ is the
number density of the quarks at this time. This quantity
measures, in units of Λ−1, the typical distance between
quarks at the onset of the phase transition. When ξðtÞ is
large, quarks are separated by much more than a

4In addition to q̄q annihilation, quarks are able to bind
into diquarks via the attractive antitriplet channel [61], and
diquarks can bind with quarks to form baryons. We have checked
that in the pre-confinement epoch and for the parameter space
we are considering, this bound state production is negligible
(see Sec. III).
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confinement length. In the right panel of Fig. 1, we show
ξðtnÞ as a function of mq and Λ. Indeed, quarks are
generically further from each other than a confinement
length just as the phase transition begins. Were quarks not
so well separated, the details of the phase transition would
have a less dramatic effect on the DM relic abundance
calculation, and we would be able to use the combinatorial
method of Ref. [25].

B. Bubble dynamics

Once the universe cools down to the critical temperature,
Tc ¼ Λ, a first-order phase transition begins. Phase con-
version cannot occur right at the critical temperature as both
phases have the same free energy, so the temperature of the
deconfined phase initially cools slightly below Tc. As the
deconfined phase supercools further into a metastable state,
bubbles of the confined phase begin to nucleate and expand
at a non-negligible rate.
As the deconfined phase is converted to the confined

phase, latent heat is released. In contrast to weakly coupled
phase transitions, there is no perturbative parameter sup-
pressing the latent heat, meaning that phase conversion will
serve as a significant heat source in the temperature
evolution of the universe. As a result, the plasma heats
back up to a temperature very close to Tc quickly after
bubble nucleation becomes efficient. Since the nucleation
rate is exponentially sensitive to the degree of supercooling,
ðT − TcÞ=Tc, subsequent nucleation of bubbles is com-
pletely suppressed.
For the phase transition to continue, at least some of the

bubbles from the brief period of efficient nucleation must
continue to grow. To determine the bubble growth rate, we
borrow an argument from [52]. As bubbles grow, the local
temperature at the bubble walls increases towards Tc,
diminishing the free energy difference between the two
phases that drives the expansion. The expansion rate is then

limited by the rate at which the wall can cool. The cooling
rate is controlled by the temperature gradient between the
wall and surrounding fluid—if there were no temperature
difference, heat would not flow. Since the wall temperature
cannot exceed Tc without reversing direction, we assume
that this temperature difference is bounded above by the
small degree of supercooling ðTc − TÞ=Tc. By modeling
the heat dynamics near the wall in Appendix A, we estimate
that the wall velocity is also bounded above by the degree
of supercooling, vw ≤ ðTc − TÞ=Tc. For simplicity, we
assume that vw saturates this bound.
In Fig. 2, we plot the degree of supercooling as a

function of time during the bubble expansion stage of the

FIG. 1. Left panel: yield (number density normalized by the entropy density of the universe), Y ¼ nq
s , of the quarks for a quark mass of

103 TeV and confinement scale of 1 TeV. Right panel: average separation of quarks as defined in Eq. (2.5) at the onset of the phase
transition for various values of Λ and mq=Λ. In each plot, we vary the cross section by a factor of 10 above or below the central value
(dashed lines) in Eq. (2.3) to produce the shaded regions.

FIG. 2. The degree of supercooling prior to percolation. The
temperature supercools until bubbles nucleate efficiently. The
nucleated bubbles quickly expand, depositing latent heat that
drives T back up to Tc and eliminates further bubble nucleation.
The temperature then stays roughly constant as latent heat
deposited from bubble growth nearly cancels Hubble cooling.
This plot ends at percolation, when half of the universe is in each
phase. Notice that the timescale of the phase transition is much
shorter than the Hubble timescale.
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phase transition. This result comes from a simple simu-
lation that we develop to track the nucleation and growth
of bubbles during this epoch. Further details about this
simulation can be found in Appendix A. The stages of the
phase transition discussed above are visible in this plot. The
universe initially supercools through Hubble expansion
until bubble nucleation becomes efficient, leading to quick
bubble growth and latent heat injection that reheats the
universe. The heating and cooling rates then roughly
balance one another, leaving the temperature at a value
very near Tc, which suppresses further bubble nucleation as
explained above.
Eventually, half of the universe converts to the confined

phase. At around this so-called percolation time, most
bubbles are in contact with one another and start coalesc-
ing. Soon after, we are left with isolated “pockets” of the
deconfined phase submerged in a sea of the confined phase.
To properly compute the spectrum of shapes and sizes of
these pockets would require a full numerical 3D bubble
simulation. Instead, to simplify our analysis, we assume
that soon after percolation there is a characteristic size of a
typical pocket, that pockets can be approximated as
spherical, and that the details of the spectrum of pocket
shapes and sizes will give only subdominant corrections to
our results.
To determine this characteristic pocket size, we first

determine the characteristic size of bubbles just before
percolation. Using our simulation from Appendix A, we
find that at percolation the spectrum of bubble radii peaks
strongly at

R0 ≈ 10−6 ×

�
Λ
Mpl

�
−0.9 1

Λ
; ð2:6Þ

where Mpl ¼ 2.4 × 1018 GeV is the reduced Planck mass.
We now borrow another argument from [52] that for most

values of Λ, these bubbles coalesce quickly until they reach
a larger characteristic size, denoted as R1.
The central idea is that small bubbles coalesce and merge

quickly into bigger bubbles, and that the timescale for two
bubbles in contact to merge becomes longer as bubble sizes
grow. Intuitively, the larger the coalescing bubbles, the
more matter has to be moved via the bubbles’ surface
tension, which takes more time. Thus, there is a special
bubble size R1 above which bubbles merge slower than the
timescale over which the phase transition takes place. We
find this critical size to be

R1 ≈
�

Mpl

104Λ

�
2=3 1

Λ
: ð2:7Þ

Figure 3 shows that for Λ≳ 1 TeV, the typical size of
bubbles just before percolation (R0) is always smaller than
R1. Thus, we assume that, for this range of Λ, at percolation
all bubbles quickly coalesce until they reach a size of R1.
For smaller Λs, we assume that all bubbles will have radius
R0 instead. We then make the simplifying assumption that
the characteristic size of pockets just after percolation is the
same as the characteristic size of bubbles just before
percolation, i.e.,

Ri ¼ max ðR0; R1Þ; ð2:8Þ

where Ri is the characteristic initial pocket radius after
percolation.
It is more complicated to determine the wall velocity of

the contracting pocket. The main complication is that
quarks are trapped within pockets, which we will show
in the next section, and will generically slow down the wall.
For now, we assume that we can neglect the effect of the
enclosed quarks, which will lead to an overestimate of vw.

FIG. 3. Left panel: typical radius of bubbles just before percolation (blue line) and the characteristic coalescence radius R1 (orange
line). For any Λ with R0 ≤ R1, we assume that bubbles quickly coalesce and grow to radius R1 at percolation. Right panel: asymptotic
velocity of the pocket wall during its contraction as a function of the confinement scale when quark pressure is ignored. In the more
realistic case where internal quark pressure is allowed to resist the contraction of the pocket, we expect vw to be much smaller and to not
necessarily asymptote to a constant value at small radii.
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In Sec. II D, we will revisit the effect these quarks have
on vw.
In Appendix A, we find that at radii much smaller than

Ri, the pocket contraction rate asymptotes to a constant
value, which is shown in the right panel of Fig. 3 and can be
fit by

vwðΛÞ ≈ 0.2 ×

�
Λ
Mpl

�
0.2
: ð2:9Þ

In Sec. III, we see that the relic abundance of DM is set
while R ≪ Ri, so we can neglect the initial stages when vw
varies and treat it as a constant. The pockets’ radii therefore
shrink as a function of time according to

Rðt0Þ ¼ Ri − vwt0 ð2:10Þ

where t0 is the time after percolation.
To the best of our knowledge, the problem of character-

istic bubble properties, e.g., the wall velocity and character-
istic size at percolation, is not completely settled for
first-order phase transitions even in weakly interacting
theories (see [63] and the references therein for recent
discussions on calculating the wall velocity). In our
numerical calculations in Sec. III, we characterize these
uncertainties by varying both vw and Ri within 1 order of
magnitude of the results shown in Fig. 3.
We note here that since the quark temperature is fixed

near Tc throughout the phase transition, the typical quark
velocity is

vq ∼
ffiffiffiffiffiffiffiffiffiffiffiffi
Λ=mq

q
: ð2:11Þ

For the range of parameters that we are interested in, we
find vq ≫ vw. This inequality will become important in the
next section when we analyze the effects that the walls have
on the quarks.
To summarize, the phase transition begins with an initial,

complicated stage of bubble nucleation and growth until
bubbles come into contact with one another. It then enters
an even more complicated bubble coalescence stage. The
space between bubbles is made of pockets of the decon-
fined phase with the same characteristic size, Ri. These
pockets become isolated and eventually spherical, and then
contract initially with a velocity that is determined by the
local heat diffusion rate. The contraction rate gradually
slows down due to the pressure of the enclosed quarks, and
the pockets eventually vanish. The phase transition has
been completed at this point, and the universe can proceed
with its standard expansion history.
Further details of this phase transition, as well as an

overview of the relevant thermodynamics, can be found in
Appendix A. Our study of the phase transition’s effect
on the DM relic abundance is insensitive to many of the
details of the phase transition; we merely need an

expression for the characteristic initial radius of pockets
and their wall velocity, which are respectively provided in
Eqs. (2.8) and (2.9). We emphasize that this latter expres-
sion for vw, which neglects the effect of quark pressure,
overestimates the wall velocity during the contrac-
tion phase.

C. Heavy quarks during the phase transition

During the entire process of bubble nucleation and
expansion described in the previous section, bubble walls
run into quarks and antiquarks. In this section, we study
these encounters in detail and argue that the walls are
impermeable to quarks but permeable to color-neutral bound
states. While we focus on the interaction between walls and
quarks, our conclusions hold for antiquarks as well.
When a wall encounters a quark, the quark can push

against it and deform it locally. Whereas in electroweak-
like phase transitions a particle is able to penetrate through
the wall at the cost of only a finite mass difference [44,45],
the energy cost for an isolated quark to enter the confined
phase is unbounded [38], preventing it from traveling far
into the confined phase. Therefore, a quark can enter a
bubble only if it either forms a color-neutral bound state
before it enters the bubble or it deforms the wall so that it
remains immersed in the color-screening gluon bath
(see Fig. 4).
There are two ways in which the quark could form a

bound state. First, q̄q pairs could be spontaneously created,
binding with the quark as it passes through the wall. We can
imagine a scenario as in Fig. 4 in which the quark pushes
into the bubble and is connected to a gluon string [60]
starting from its initial point of contact with the wall. If the
quark were light enough, at some point this stretched string
could break into a q̄q pair and the q̄ could bind with the
incoming quark to form a color-singlet bound state that
enters the bubble (see [51] for an example in which this
process is efficient). However, for a heavy quark, the string
breaking rate is extremely suppressed; this rate can be
approximated [64] using the Schwinger mechanism [65],

ðtstringÞ−1 ∼
mq

4π3
e−m

2
q=Λ2

: ð2:12Þ

The exponential of the square of the large ratio mq=Λ
makes this string breaking timescale much larger than all
other timescales, completely shutting off this process. The
inefficiency of string breaking and the quark’s inability to
pass through bubble walls are the main features distinguish-
ing our model from those that involve light quarks.
The second way a quark could form a bound state is by

encountering an antiquark or two quarks somewhere within
the deconfined phase, binding, then escaping into the
confined phase before the bound state dissociates. These
processes are important and will be analyzed in the next
section via Boltzmann equations.
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If a quark has not managed to bind into a color singlet
state by the time it reaches a bubble wall, it deforms the
wall to avoid entering the confined phase. As the wall
deforms, its surface area increases, which increases the
energy of the system. The surface tension therefore creates
a force that opposes this deformation. If we estimate this
force to be of order Λ2 on dimensional grounds, then we
find that the timescale for the surface tension to restore the
shape of the wall and reverse the quark’s velocity is

trebound ∼
vq
_vq

∼
vq

Λ2=mq
¼

ffiffiffiffiffiffi
mq

Λ

r
1

Λ
: ð2:13Þ

This rebound timescale is much shorter than the string
breaking timescale. It is also orders of magnitude smaller
than the phase transition timescale, which we find in
Appendix A to be tPT ∼ 10−2H−1 ∼ 10−2Mpl=Λ2 (also,
see Fig. 2). Finally, the pocket contraction timescale is
of order tcontract ∼ R=vw. Since R > Λ−1 and we find that
vw ≲ 10−3, we have tcontract > 103=Λ. Since we only con-
sider quark masses that satisfy

ffiffiffiffiffiffiffiffiffiffiffiffi
mq=Λ

p
≤ 102 in this paper,

we have trebound ≪ tcontract. Since this rebound timescale is
the shortest timescale in the problem, quarks rebound off
walls very quickly before any other process can take place.
Therefore, the bubble walls act like very stiff surfaces that
quickly reflect quarks that come into contact with them.
As these bubbles grow, the walls sweep quarks and

antiquarks into the ever-shrinking deconfined regions,
increasing the quark density over time. Moreover, since
vq ≫ vw, quarks that are swept in can quickly travel
through the shrinking deconfined region and maintain
homogeneity, meaning that nq is independent of position

in the pocket throughout the phase transition. Eventually,
these particles end up inside the isolated pockets formed
toward the final stage of the phase transition (see Fig. 5).
We note that in models with additional light (though not

massless) quarks, there would be no first-order phase
transition [66], and even if such a transition did exist,
quarks would easily pass through bubble walls and would
most likely be unaffected by the phase transition.
Within any fixed volume of the universe, including the

isolated pockets, the baryon number is a fluctuating random
variable. Although the baryon number averaged over all
pockets must be zero due to our symmetric initial con-
dition, any given pocket is expected to have an overabun-
dance or underabundance of quarks relative to antiquarks,
which we call the pocket asymmetry, η. We find that the
initial total number of quarks in a pocket,Ninitial

q , is large, so
by the central limit theorem, the standard deviation of

fluctuations above and below the mean is
ffiffiffiffiffiffiffiffiffiffiffiffi
Ninitial

q

q
.

Therefore, no matter how efficient q̄q annihilation proc-
esses are in these contracting pockets, on average, at least a
fraction

ηrms ≡
ffiffiffiffiffiffiffiffi
hη2i

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
Ninitial

q

q
=Ninitial

q ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffi
Ninitial

q

q
ð2:14Þ

of the initial quarks (or antiquarks) in a pocket will survive.
This observation will have important consequences for our
relic abundance calculation in the next section.
Once isolated pockets have formed and their asymme-

tries have been set, they will contract and compress quarks
and antiquarks until formerly frozen-out interactions turn
back on. These interactions include q̄q annihilation as well
as qþ q binding via the attractive antitriplet channel [61].

FIG. 4. Depiction of a quark interacting with a phase boundary. As bubbles of the confined phase grow (the wall moves to the right in
the figure), their walls run into quarks that move with typical velocity vq, which is much larger than the wall velocity vw (left
configuration). The quark locally deforms the wall (center configuration), introducing an opposing force via surface tension. One can
think of the quark as connected to the deconfined phase through a gluon string [60]. Since string breaking is shut off, i.e., the quark-
gluon configuration does not have sufficient energy to pull a heavy q̄q pair out of the thermal background, eventually the quark comes to
a halt and then rebounds back into the deconfined phase with its initial speed (right configuration).
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As these diquarks build up their occupationnumber, theycan
eventually bind with quarks to form color-singlet baryons
that can quickly fly out of the pocket.5 These escaping stable
baryons constitute theDMcandidate of ourmodel, while the
rest of the particles eventually dump their energy into the SM
sector through an unspecified portal interaction.
We define a survival factor as the fraction of quarks and

antiquarks that escape the pocket within baryons and
antibaryons,

S ≡ Nsurvived
q

Ninitial
q

: ð2:15Þ

In the next section, we write down the Boltzmann equations
governing the quark dynamics within contracting pockets

and calculate this survival factor. As remarked above, S is
bounded below by the asymmetry of a given pocket, and
the expectation value of this lower bound is

S ≥ ηrms ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi
Ninitial

q

q : ð2:16Þ

After these surviving baryons escape the pockets and after
the phase transition is eventually completed, these baryons
continue to diffuse away until they reestablish homogeneity
in the universe. If the asymmetry bound is not saturated,
baryons and antibaryons can continue to annihilate as they
diffuse outside of the pocket. A more detailed study of this
final annihilation stage requires integrating inhomogeneous
Boltzmann equations, which we leave for future work.
In summary, dark matter undergoes a short squeeze,

where collapsing bubbles during the phase transition
induce a second stage of rapid annihilation that drastically

FIG. 5. Schematic illustration of different stages of the phase transition and its effect on the DM abundance. Violet indicates the
confined phase and light blue the deconfined phase. Top-left panel: Once the temperature drops slightly below Tc ¼ Λ, bubbles of the
confined phase begin nucleating everywhere. The nucleated bubbles start growing and push quarks (black dots) around. Top-middle
panel: The bubbles grow to a point where a Oð1Þ fraction of the universe has converted into the confined phase. At this point, bubbles
start coalescing and quickly grow larger. Top-right panel: As the bubbles keep growing and combining, eventually we are left with
isolated pockets of the deconfined phase submerged in a sea of the confined phase. Bottom-left panel: A single isolated pocket with
quarks trapped inside it. Each pocket contracts as the phase transition continues. Bottom-middle panel: The particles in the pocket are
compressed, and their interactions recouple. During this phase, the particles can either annihilate or bind with one another. Nonsinglet
states cannot enter the confined phase, but once they form color-neutral bound states (orange dots), they can escape into the confined
phase. Bottom-right panel: In the end, the pockets vanish, and only the fraction of quarks that ended up inside color-neutral baryons
survive. These particles diffuse away from the original pocket’s position due to their local overdensity.

5Notice that the formation of baryons through an intermediate
diquark is more efficient than the formation of baryons via direct
3-body recombination, which we ignore.
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depletes the universe’s preexisting stock of dark matter.
This extra annihilation after freeze-out opens up parameter
space that had previously been ruled out due to over-
production of DM. We will show that this effect allows for
thermal DM to be heavier than the conventional unitarity
bound of ∼300 TeV [53].

D. Quark pressure on the wall

Although we have considered the effect that the wall has
on the trapped quarks, we have ignored the effect that the
trapped quarks have on the wall. In this section, we argue
that the trapped quarks generically slow down the con-
traction rate of the wall.6

Much like a piston, a pocket wall can contract only if it
works on the enclosed gas of heavy quarks. Since we have
assumed that this gas is thermally coupled to the rest of the
SM bath, which has a much larger heat capacity than that of
the dark sector, the quarks contract at constant temperature.
Using an ideal gas equation of state, we can write the
pressure of this quark gas as pq ¼ nqT. The work that the
wall does on the gas when it contracts by an amount dR is
therefore pqdV ¼ 4πR2nqTdR.
The forces that are responsible for this change of pocket

radius are the surface tension and net gluonic pressure, the
latter of which is directed inward whenever T < Tc. We
will show in the next section that during the earliest stages
of pocket contraction, quark interactions are inefficient, and
the total number of quarks in the pocket is initially
conserved. As a result, when the pocket shrinks, the work
required to contract the pocket grows like R−1. At the same
time, the work that the surface tension and net gluonic
pressure do when contracting the pocket by dR is propor-
tional to the change in area and volume, respectively, so
they shrink like R and R2. Altogether, as R contracts, the
forces pushing out grow while the forces pushing in shrink.
We therefore expect that vw decreases with decreasing R.
As this physics involves nonequilibrium, strong dynam-

ics, we cannot reliably compute vw as a function of R.
Instead, in the remainder of this section, we will argue that
the effect of quark pressure is to slow down vw by orders of
magnitude relative to the upper bound of Eq. (2.9) we
computed when we neglected the quark pressure. For more
details relevant to the following discussion, we refer the
reader to Appendix A 4.
When we simulate pocket contraction while keeping

track of the quark density within a pocket (see next
section), we find that there always comes a point when
the quark pressure has grown to such an extent that, were
we to suddenly include it, the quark pressure would exactly
oppose all inward-pointing forces. This point of mechanical
equilibrium is defined by σdAþ ðPpÞdV ¼ 0, where σ is
the surface tension, dA the change in surface area, dV the

change in volume, and
P

p the sum of pressures acting on
the wall. (Inward-pointing pressures are defined to be
positive while outward facing pressures are negative.) If
we were to include the effects of quark pressure, the motion
of the wall would suddenly become calculable since the
state of the wall would be determined by equilibrium
physics. The pocket would slow down and proceed to
adiabatically shrink while maintaining mechanical equilib-
rium. Number changing processes would deplete nq,
diminishing the quarks’ outward-pointing pressure, and
the universe would supercool further, increasing the net
gluonic inward-pointing pressure. We find that in this
scenario, vw suddenly drops by orders of magnitude when
mechanical equilibrium is achieved, and vw steadily
decreases by many more orders of magnitude as the pocket
contracts.
The discontinuous drop in vw signals a breakdown of our

assumption that quark pressure was negligible before
mechanical equilibrium was achieved. This simulation
merely demonstrates that it is inconsistent to neglect quark
pressure and that it can potentially slow down the pocket
contraction rate by orders of magnitude. We therefore
expect that a more realistic simulation that correctly
includes the effects of quark pressure from the very
beginning will lead to a vw that gradually decreases from
our upper bound of Eq. (2.9), which eventually over-
estimates vw by orders of magnitude.
We will use the results of our pocket evolution simu-

lations to calculate a few parameters that enter the
Boltzmann equations that govern the abundances of various
bound states in the pocket. While the expression for the
pocket radius, Eq. (2.8), is robust to the uncertainties
introduced by quark pressure, we argue that the wall
velocity vw is sensitive to this uncertainty. In the next
section, we will study the evolution of the bound state
abundances in the pocket in two extreme cases: (i) when the
effect of quark pressure on vw is completely ignored, or
(ii) when its effect dramatically reduces vw.

III. BOLTZMANN EQUATIONS DURING
COMPRESSION

As described above, toward the end of the phase
transition, the deconfined regions form isolated pockets
that contain all of the dark quarks. In this section, we
describe the dynamics of the dark quarks and their bound
states as the contracting pockets compress them. The
Boltzmann equations that we solve keep track of the many
processes by which quarks either ultimately annihilate into
gluons or form baryons that escape the pockets and become
dark matter. We solve the Boltzmann equations for a typical
pocket with initial characteristic radius Ri and pocket

asymmetry set to its root-mean-square value,
ffiffiffiffiffiffiffiffiffiffiffiffi
Ninitial

q

q
.

We assume that the S of this typical pocket is approx-
imately equal to S averaged over the full distribution of6We thank Filippo Sala for pointing out this effect.
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initial pocket radii and pocket asymmetries. The total
number of DM particles that survive until today will then
equal the total number of DM particles entering the phase
transition times S.

A. Ingredients of the Boltzmann equations

We begin by listing the degrees of freedom that we will
include in our Boltzmann equations, which have been
tabulated in Table I. We have neglected a host of exotic
hadronic bound states like tetraquark and pentaquark states
because we assume that they are unstable and promptly
decay to the states listed in Table I. We also do not consider
excited states of any of the bound states. To simplify the
notation, we label states by their quark number throughout
the text (for example, a baryon state is a 3 state while an
antidiquark is a −2 state).
We also neglect the mesons q̄q in our analysis. This can

be justified by comparing their decay rate to the fastest
annihilation rate that we will encounter (see Appendix B),

Γq̄q ∼ α5mq;

hσvimaxnq ∼
1

α3
α2

m2
q

�
Λ
ξðtÞ

�
3

;

⇒
hσvimaxnq

Γq̄q
∼
�

1

ξðtÞα2
Λ
mq

�
3

≪ 1; ð3:1Þ

where the last inequality is obtained because we have heavy
quarks (mq=Λ ≥ 100) and the interquark spacing in units of
Λ satisfies ξðtÞ ≥ 1. Such a fast meson decay rate ensures
that these states are kept in equilibrium so that their number
density is negligibly small. We have also verified numeri-
cally that including the mesons in our Boltzmann equations
below has a negligible effect on our results.
Let us now look into the Boltzmann equation for the

particles in Table I as they are compressed by the
contracting pockets. We start with the Liouville operators.
For the colored particles, i.e., �1 (quarks/antiquarks) and
�2 (diquarks/antidiquarks), we have

L½i� ¼ _ni − 3
vw
R

ni; i ¼ 1; 2; ð3:2Þ

where the second term captures the effect of pocket
compression. Notice that we have not included the usual
factor of þ3Hni for the dilution of space due to Hubble
expansion. As argued above, tPT ≪ H−1. Therefore, the
Hubble dilution rate is negligible during the phase tran-
sition and can be ignored.
For the color-neutral particles, i.e., baryons and anti-

baryons, the compression term will be absent. Unlike the
colored particles, the baryons are not constrained by
confinement to remain in the deconfined pockets. The
baryons formed in the pocket can then be thought of as a
gas created in a container without walls. The gas of baryons
will thus escape with a rate governed by its internal pressure
or, equivalently, by the thermal velocities of the baryons.7

Once the baryons escape the pocket, they are no longer
tracked by the Boltzmann equations. So we must include
baryon escape as a sink term in our Boltzmann equations,
which we do by modifying the Liouville operator,

L½3� ¼ _n3 þ 3
vq
R
n3: ð3:3Þ

To derive this escape rate, consider a small time step dt. In
each time step, the pocket radius contracts by vwdt. The
typical baryon moves a distance of about vqdt, where we
ignore the distinction between the baryon and quark veloc-
ities. We then overestimate the escape rate by anOð1Þ factor
by assuming that all baryons at the edge of the bubble move
radially outward, giving a total number of escapedbaryons of

dNesc
3 ¼ 4πR2n3ðRÞðvq þ vwÞdt: ð3:4Þ

Combining this with the rate of change for pocket volume
gives the density loss rate due to baryon escape used
in Eq. (3.3).
It will be convenient to track the evolution of the total

number of particles in a pocket as opposed to number
densities. Define the pocket volume,

VðRÞ ¼ 4π

3
R3: ð3:5Þ

Multiplying the number density of species i by the volume
of a pocket then gives the total number of species i in the
pocket,

Ni ≡ Vni: ð3:6ÞTABLE I. Different degrees of freedom entering the Boltzmann
equations of the contracting pockets. We use the quark number of
each state to refer to them throughout the text. The existence of
antiparticles, with negative dark quark numbers and conjugate
representations under SUð3Þ, is implied.

State Dark quark number Color representation

Gluons 0 8
Quark 1 3
Diquark 2 3̄
Baryon 3 1

7Notice that the justification for why baryons in the pocket are
homogeneously distributed is different than that of the quarks and
diquarks. Gradients in the baryon density naturally arise as the
baryons flow from their high density points of creation to the low
density exterior of the pockets. However, a homogeneous
component of baryons is constantly being produced within a
pocket due to the binding of (homogeneously distributed) quarks
and diquarks. We find that the rate of production is faster than the
escape rate, so the baryon density in the pocket remains
homogeneous to a good approximation.
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It will also be convenient to replace the time coordinate
with R using Eq. (2.10). We can then rewrite the Liouville
operators as

L½i� ¼ −
vw
V

N0
i; i ¼ 1; 2; ð3:7Þ

L½3� ¼ −
vw
V

�
N0

3 −
3

R

vq þ vw
vw

N3

�
; ð3:8Þ

where N0 ≡ dN=dR and we have used _R ¼ −vw.
Now that we have dealt with the Liouville operators, we

write down the collision operators. We are only concerned
with 2-to-2 processes since n-to-2 processes are Boltzmann
suppressed while 2-to-n processes are suppressed by extra
factors of αðmqÞ and phase space factors. We denote each
of these terms by the following notation,

hða; bÞ → ðα; βÞi ¼ hσviab→αβ

�
nanb − nαnβ

neqa neqb
neqα neqβ

�

¼ hσviab→αβ

V2
ðNaNb − NαNβfab;αβÞ;

ð3:9Þ

with a; b; α; β ¼ 0;�1;�2;�3, and fab;αβ ≡ Neq
a Neq

b
Neq

α Neq
β
. For

gluons we have n0 ¼ nðeqÞ0 ; i.e., the gluons are always in
equilibrium.
Once we have identified all the important interac-

tions to be included in our Boltzmann equations, we
can write down the complete system of differential
equations for NiðRÞ. We supply these equations with
the initial conditions, which were derived in Sec. II. The
initial pocket radius is Ri while the initial quark number
in the pocket, N1, is found by multiplying the number
density result of the preconfinement freeze-out calcu-
lation in Eq. (2.2) by 4π

3
R3
i . We find that the initial

conditions for N2 and N3 are irrelevant, as they quickly
approach an equilibrium value independent of whatever
values we initially choose (so long as N2; N3 ≪ N1

initially). All that is left is to write down these equations
and solve them.

B. Complete set of Boltzmann equations

The complete set of Boltzmann equations is

L½i� ¼ C½i�; i ¼ 1; 2; 3.

C½1� ¼ −hð−3; 1Þ → ð−1;−1Þi − hð−3; 1Þ → ð−2; 0Þi þ 2hð3;−1Þ → ð1; 1Þi
þ hð3;−2Þ → ð1; 0Þi − hð1;−1Þ → ð0; 0Þi þ hð2; 2Þ → ð3; 1Þi − 2hð1; 1Þ → ð2; 0Þi
þ hð−3; 2Þ → ð−2; 1Þi þ hð2;−2Þ → ð1;−1Þi þ hð2;−1Þ → ð1; 0Þi
− hð2; 1Þ → ð3; 0Þi − hð−2; 1Þ → ð−1; 0Þi þ hð3;−3Þ → ð1;−1Þi;

C½2� ¼ hð1; 1Þ → ð2; 0Þi − hð−3; 2Þ → ð−1; 0Þi þ hð3;−1Þ → ð2; 0Þi
− hð2;−2Þ → ð0; 0Þi þ hð3;−2Þ → ð2;−1Þi þ hð3;−3Þ → ð2;−2Þi
− hð2;−1Þ → ð1; 0Þi − 2hð2; 2Þ → ð3; 1Þi − hð2; 1Þ → ð3; 0Þi
− hð−3; 2Þ → ð−2; 1Þi − hð2;−2Þ → ð1;−1Þi;

C½3� ¼ hð2; 1Þ → ð3; 0Þi þ hð2; 2Þ → ð3; 1Þi − hð3;−3Þ → ð0; 0Þi − hð3;−1Þ → ð2; 0Þi
− hð3;−1Þ → ð1; 1Þi − hð3;−3Þ → ð1;−1Þi − hð3;−3Þ → ð2;−2Þi
− hð3;−2Þ → ð2;−1Þi − hð3;−2Þ → ð1; 0Þi ð3:10Þ

where hð·; ·Þ → ð·; ·Þi is defined in Eq. (3.9). The right-hand
side consists of all interactions that are consistent with
quark number conservation. We also make the approxima-
tion that

Ni ¼ N−i: ð3:11Þ

While this equality is not strictly satisfied due to the pocket
asymmetry, we are able to satisfy it because only one of
three scenarios can occur: Either (i) the symmetric com-
ponent is never depleted to the point that the asymmetry is

important, (ii) it is completely depleted and the accidental
asymmetric abundance is all that survives, or (iii) the
symmetric and the asymmetric components are comparable
and our answer is off by an Oð1Þ factor. As argued before,
this asymmetry introduces a lower bound on S [Eq. (2.16)].
Despite Eq. (3.10) having numerous terms, solving these

equations numerically is rather straightforward. For con-
venience, we list the important parameters entering into
these equations and their reference values in Table II. We
remind the reader that Eq. (2.9) overestimates vw since it
neglects the quark pressure’s ability to oppose pocket
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contraction. As we will discuss below, we can bracket
the effect that a slower vw would have on the final DM
relic abundance quite robustly; see Sec. III E for further
details. We also reemphasize that we have used sim-
ple approximations for some of the other quantities—
particularly the bubble radius—and a rigorous determina-
tion of them is only possible through more extensive
numerical calculations.
In Fig. 6, we show the solution of the Boltzmann

equations in Eq. (3.10) for a specific quark mass and con-
finement scale when we neglect quark pressure and use
Eq. (2.9) for the pocket wall velocity. There are a number of
important observations to be made about this figure. First,
the fractions of diquarks and baryons are initially very
small, justifying why we did not include them in our
calculations prior to pocket formation. Next, as the pockets
contract, the number of bound states initially grows while
the number of free quarks decreases due to binding or anni-
hilation to gluons. As the number of free quarks decreases,
the annihilation or escape of bound states becomes more
important than their production, so their occupation num-
bers reach a maximum and monotonically decrease from
there. Finally, we see that each step in the chain of bound
state formation (qþ qþ q → qqþ q → qqq) results in a
suppression; i.e., the total number of diquarks is suppressed
compared to the total number of free quarks, while the total
number of baryons is suppressed compared to the diquarks.
We anticipate that had we started with a larger SUðNÞ
gauge group (N ≥ 4), the bound states with higher quark
numbers would have been further suppressed and the final
DM survival factor would be lower. We leave a more
detailed analysis of this scenario to future work.
Finally, to calculate the survival factor, we simply

integrate Eq. (3.4) to calculate the total number of baryons
that escaped during the contraction of the pocket and
normalize to the initial quark number in the pocket.
Rewriting Eq. (3.4) in terms of N and R, we find

Ssymm ¼ 3
R
dNesc

3

Ninitial
q

¼ 9

N1ðRiÞ
Z

dR
vq þ vw
vwR

N3ðRÞ;

ð3:12Þ
where we have used Eqs. (2.10) and (3.6) to change
variables, and the subscript in Ssymm is to indicate that
this is the survival factor of the symmetric component of the
dark quarks. The factor of 3 in the first equality accounts for

TABLE II. Relevant quantities in the Boltzmann equations and our expression for each. More discussion on how
we treat vw is included in the main text.

Quantity vw RiðΛÞ ξðtnÞ vq σv Binding energies

Central value See main text Eq. (2.8) Eq. (2.5) Eq. (2.11) See Appendix B See Appendix C

FIG. 6. Top panel: evolution of the fractional number of free
quarks (red), diquarks (green), and baryons (black) inside the
pocket, normalized to the initial quark number. We neglect the
effect of quark pressure on vw in solving the Boltzmann equations
for this plot, meaning that we use Eq. (2.9) for vw. As the phase
transition proceeds, the pocket radius decreases. Initially, almost
all the quarks are unbound. As the pocket contracts, more bound
states are formed and fewer quarks are found as free particles. As
their numbers increase, the various states’ annihilation rates
increase as well. At some point, their production and annihilation
rates are comparable, and the number of bound states inside the
pocket reaches its maximum. The accumulative surviving frac-
tion assuming zero pocket asymmetry predicted by Eq. (3.12) is
denoted by the dotted purple line. The asymptotic value of this
line is equal to Ssymm. We denote the asymmetric lower bound on
S from Eq. (2.16) by the orange dashed line. Bottom panel: DM
abundance evolution for this mass and confinement scale. The
T > Λ region is similar to Fig. 1; the confinement takes place at
T ¼ Λ and gives rise to the abundance suppression predicted
by Eq. (3.13).
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the fact that three quarks exists within every baryon that
escapes.
Note that in deriving this result we assumed no asym-

metry exists in the pocket. Combining this result with the
lower bound on S from the asymmetry component,
Eq. (2.16), we have

S ¼ max fSsymm:; ηrmsg: ð3:13Þ

In Fig. 6, we show Ssymm and ηrms as well. We find that for
the chosen Λ and mq, while neglecting the effect of quark
pressure on the wall velocity, Ssymm ≥ ηrms; i.e., the local
pocket asymmetry is not saturated during the contraction,
but S is within ∼1 order of magnitude of this asymmetry
bound. In fact, we find that this is true for all the points in
the parameter space that we study. In the upcoming section
we will describe how we can leverage this observation to

bracket the range of parameter space that gives rise to the
correct DM relic abundance.

C. Analytic approximation

While the Boltzmann equations in Eq. (3.10) can be
solved numerically, the large number of terms involved can
muddle one’s intuition. In this section, we develop a simple
analytic approximation for solving these equations and
determining Ssymm.
From the full set of interactions included in Eq. (3.10),

we identify and neglect all but the most relevant processes
that provide a closed set of equations with an analytic,
asymptotic solution that shows good qualitative agreement
with the numerical treatment. The subset of processes that
we include are the formation of diquarks and the sub-
sequent capture of quarks that lead to the formation of
baryons. The reduced set of Boltzmann equations is then

−
vw
V

N0
1 ¼ −hð1;−1Þ → ð0; 0Þi − 2hð1; 1Þ → ð2; 0Þi − hð2; 1Þ → ð3; 0Þi þ hð2;−1Þ → ð1; 0Þi;

−
vw
V

N0
2 ¼ −hð2;−2Þ → ð0; 0Þi − hð2; 1Þ → ð3; 0Þi þ 2hð1; 1Þ → ð2; 0Þi;

−
vw
V

N0
3 ¼ −hð3;−3Þ → ð0; 0Þi − hð3;−1Þ → ð2; 0Þi þ hð2; 1Þ → ð3; 0Þi − dNesc

3

dR
: ð3:14Þ

The analytic solution for this set of equations is obtained
by relying on several assumptions.

(i) The initial dark quark abundance Ninitial
q is deter-

mined by the preconfinement freeze-out of the
elementary constituents.

(ii) As long as the annihilation rate and the baryon
escape rate in the contracting pocket is slower than
the pocket contraction rate vw=R, the total quark
number is conserved. Once those rates are of the
same order, the annihilation process “recouples,”
and the free quark abundance drops toward zero.
The condition Γann ≈ Ninitial

q hσvi1ð−1Þ→00=V ¼ vw=R
defines the recoupling pocket radius

Rrec ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Ninitial

q hσvi1ð−1Þ→00

ð4πvwÞ

s
: ð3:15Þ

(iii) The initial number of bound states, NX (X ¼ 2, 3), is
negligible. As the pocket contracts, bound states
start forming. Thus, we can write NX ∼ R−n, with
n > 0, which implies N0

X ∼ NX=R. Inserting this
into the Boltzmann equation shows that there is a
small parameter controlling the rate of change,
which is proportional to δ ¼ NXhσvi=ðR2vwÞ ∝
hσvi=R2

1 ∼ hσviΛ10=3=M4=3
pl ≪ 1. Thus, expanding

in δ, the leading order result is obtained by setting

N0
X ≈ 0, which is the equilibrium condition before

the recoupling due to pocket contraction.
Given the above assumptions, before the annihilation

process recouples, we have the quark number conservation
N1 ¼ Ninitial

q − 2N2 − 3N3. Applying the equilibrium con-
dition before recoupling and neglecting the escape and
annihilation terms for the bound states at that point gives

2hσvi11→20ðN2
1− f̃1N2VÞ¼hσvi21→30ðN2N1− f̃2N3VÞ;

hσvi21→30ðN1N2− f̃2N3VÞ¼hσvi3ð−1Þ→20ðN3N1− f̃3N2VÞ;
ð3:16Þ

where

f̃1 ¼
ðneq1 Þ2
neq2

∝ exp ð−ΔE1=TcÞ;

f̃2 ¼
neq2 neq1
neq3

∝ exp ð−ΔE2=TcÞ;

f̃3 ¼
neq3 neq1
neq2

∝ exp ð−ΔE3=TcÞ; ð3:17Þ

and ΔEi denote the heat released during the above
processes. The solution to the above algebraic set of
equations provides the abundances of quarks and bound
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states in the contracting pocket before recoupling as a
function of the pocket radius R. The total abundance of the
produced color-singlet baryons is given by the total baryon
abundance N3 evaluated at the recoupling radius Rrec.
Notice that e−ΔE1;2=Tc ∼ e−α

2mq=Tc ≫ e−ΔE3=Tc ∼ e−mq=Tc ,
where α is evaluated at the bound state’s Bohr radius.
Thus, we identify a strong hierarchy f̃1; f̃2 ≫ f̃3.
As a result, a simple analytic expression for the baryon

fraction that survives the phase transition relative to the
initial quark abundance Ninitial

q can be found. In the limit of
inefficient bound state breaking reactions f̃1;2V ≪ 1, it is

N3

Ninitial
q

¼ 2hσvi21→30hσvi11→20

hσvi3ð−1Þ→20hσvi21→30 þ 4hσvi3ð−1Þ→20hσvi11→20

:

ð3:18Þ

Thus, assuming all the cross sections are of the same order
of magnitude, we see that the baryon survival factor is of
order one, if deeply bound states dominate the system. This
is the case if the scale hierarchy mq ≫ Λ is taken to be
extremely large.
In the regime of efficient bound state breaking

f̃1;2V ≫ 1, we find stronger DM abundance suppression.
To simplify things even further, we assume that the terms
with f̃ dominate and that f̃1 ∼ f̃2.

8 With these assumptions,
we find that at the recoupling radius, we have

N3

Ninitial
q

¼ 4πv3w
3f̃21N

initial
q hσvi3

1ð−1Þ→00

: ð3:19Þ

Now if we assume in Eq. (3.12) the integral is dominated by
the contribution around the recoupling point where the
bound state total numbers peak, we find

Ssymm ≈ 9
vq
vw

4πv3w
3f̃21N

initial
q hσvi3

1ð−1Þ→00

: ð3:20Þ

We can better understand from this equation the effects
that various parameters have on the survival factor.
Increasing the quark velocity vq enhances their escape
rate [see Eq. (3.4)], thus increasing Ssymm. We also see that
by increasing hσvi1ð−1Þ→00, the survival factor decreases,
which was expected since, by increasing this cross section,
quarks become more likely to annihilate against each other
than bind together. For shallower bound states, the binding
processes are less favored; thus, we expect that the survival
factor should decrease. This is exactly what Eq. (3.20)
suggests: For shallower bound states, the Boltzmann

suppression in f̃1 becomes less severe and f̃1 increases;
thus, Ssymm decreases.
The initial density of quarks in a pocket is determined via

a preconfinement, perturbative freeze-out calculation. Yet,
Ninitial

q in Eq. (3.20) depends on the initial pocket radius,
too. Thus, through Ninitial

q we find that Ssymm ∼ R−3
i .

Finally, by decreasing vw, according to Eq. (3.15), the
recoupling radius increases, which gives less time for the
baryon abundance in the pocket to build up before the
interactions become efficient again; see Fig. 6. A larger
recoupling radius means a smaller peak value for the N3

abundance, like the one seen at RΛ ∼ 105 in Fig. 6, which
in turn decreases the survival factor Ssymm. This behavior is
exactly what we see in Eq. (3.20).

D. Effect of quark pressure and summary
of assumptions

The vw scaling of Eq. (3.20) helps us better understand
how our determination of S would change had we included
the effect of quark pressure on vw. This equation suggests
that by using Eq. (2.9) for vw and ignoring the fact that quark
pressure can oppose pocket contraction, we are actually
calculating an upper bound on the survival factor since we
are certainly overestimating vw. Also, this vw scaling,
combined with the proximity of Ssymm to the asymmetry
bound ηrms across our parameter space when we use
Eq. (2.9), motivates us to believe that when the quark
pressure is properly taken into account, we should expect
that the asymmetry bound S ¼ ηrms is saturated for every
point in the parameter space thatwe study (seeAppendixA 4
for more empirical evidence of this claim). In the next
section, we use these two limits to bracket the parameter
space of the model that reproduces the observed DM relic
abundance. We refer to these two limiting scenarios as the
zero quark pressure and the asymmetry scenarios.
Before solving the Boltzmann equations, it is useful to

review all the parameters affecting our calculation of S and
the final DM abundance. The UV model has a very limited
set of parameters: the confinement scale Λ and the quark
mass mq. These parameters feed into the calculation of a
few secondary quantities that directly affect the calculation
of S and are listed in Table II. A precise calculation of these
secondary quantities requires various nonperturbative stud-
ies. These quantities can be divided into two broad
categories: macroscopic and microscopic.
The macroscopic quantities are those concerning the

dynamics of the bubbles and pockets, i.e., their initial
radius Ri and their wall velocity vw. While our expressions
for these quantities in Eqs. (2.8) and (2.9) were based
on a simplified simulation of the phase transition (see
Appendix A), there is extensive literature concerned with
the detailed calculation of these quantities. Unfortunately,
this literature has not yet settled on a single, definitive
calculation of these quantities, which is why we content
ourselves with simple order-of-magnitude estimates. (See,

8Both f̃1 and f̃2 depend on the ratio mq=Λ. Formq=Λ ≲ 1000,
they are within an order of magnitude of each other, justifying our
assumption. Neglecting this difference allows us to find a simple
analytic formula that sheds light on the effect of various quantities
on the survival factor.
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for example, Refs. [63,67–69] and references within for
various calculations of the wall velocity.)
The microscopic quantities include various cross sec-

tions and binding energies. They also determine the
dimensionless interquark spacing ξ, which directly affects
our final results as well. We use the results from [61] for the
cross sections and the binding energies. We summarize the
relevant quantities in Appendixes B and C.
It is also worth reiterating a few important assumptions

that significantly streamlined our analysis. Recall that in
Sec. II B, we argued that the wall velocity is controlled by
the amount of supercooling and quark pressure during the
phase transition. Following that assumption, we found that
the typical velocity of quarks in Eq. (2.11) is much faster
than the wall velocity even when the quark pressure effect
is neglected in Eq. (2.9). Therefore, any density gradient
within a pocket caused by the compression of the walls can
be quickly smoothed out by the thermal motion of the
quarks. As a result, we assume that the particles within the
pockets are homogeneously distributed, which simplifies
our analysis significantly.
We also neglect the abundance of the bound states before

the phase transition. Furthermore, as suggested in Fig. 1, we
assume the quarks are initially well separated inside the
pockets and that they promptly rebound off the wall surface.
As we will argue later, all of our assumptions determine the
parts of the parameter space where our analysis is valid.
In principle, the baryons formed could further interact to

form dark nuclei at the end of the pocket contraction phase.
The formation of such multibaryon states in dark sectors
has been discussed in Ref. [70]. To estimate the effect in
our scenario, we can rescale the predicted interaction rate
by the compression factor inside the pockets, which

quadratically enhances the formation rate. The contraction
factor is defined as cf ¼ ðR1=RrecÞ3, where Rrec is the
radius where the interactions recouple. An estimate
of this value based on our analytic solution gives
cf ≈ 104ðmq=ΛÞ3=2. In addition, the number density of

baryons is rescaled by the survival factor of 1=
ffiffiffiffiffiffiffiffiffiffiffiffi
Ninitial

q

q
,

which counteracts the compression effect. Evaluating this
in our scenarios, where the constituent quark mass is large,
and thus the number density at freeze-out is significantly
reduced, leads to the conclusion that, in the parameter space
region we consider, the dibaryon fraction is at most of the
order of 0.5%. Formation of larger multibaryon clusters is
also severely suppressed due to this dibaryon production
bottleneck.

E. Results and discussion

We now turn to the central results of this paper. We scan
over a range of Λ and mq=Λ values, solving the Boltzmann
equations at each point to calculate the survival factor S. As
mentioned above, we use Eq. (2.9) for the wall velocity
when solving the equations and finding the viable part of
the model’s parameter space that produces the correct
present-day abundance of DM. We argued that this zero
quark pressure scenario and the asymmetry scenario, in
which we assume S ¼ ηrms, are the two limiting cases that
bracket the uncertainties in our DM relic abundance
calculation. We find that these two scenarios only give
rise to an Oð1Þ difference in the DM mass range that can
explain the observed relic abundance.
In Fig. 7, we show contours of a constant survival factor

for both of these scenarios and for different values of Λ and
mq=Λ. The asymmetry scenario plot shows the smallest

FIG. 7. Contours of constant survival factor S (green contours) in the two limiting scenarios that we consider: (i) assuming the
asymmetry bound on S is saturated (on the left) or (ii) neglecting the quark pressure effect on the pocket wall velocity (on the right). The
contours of constant DM mass in TeV are shown as well (black dashed). To obtain the right plot, we solve the full set of Boltzmann
equations in Eq. (3.10) using the values for the initial pocket radius Ri and the pocket wall velocity vw based on our simulation results
discussed in Sec. II and Appendix A. In the light blue region on the right plot, we find that the suppression is so severe that only the
accidental asymmetric abundance of quarks in each pocket survives after the phase transition. For the left plot, we simply assume
S ¼ ηrms for every point in the parameter space. We observe orders-of-magnitude suppression in the DM abundance due to the second
stage of annihilation during the phase transition in either scenario. Note that the small difference in the 10−7 contours in the overlap
region is a plotting artifact.
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survival factor possible while the zero quark pressure
scenario gives an upper bound on the survival factor for
every point in the parameter space; see the discussion in
Sec. III C. In the asymmetry scenario, the only sources of
uncertainty are those affecting the preconfinement calcu-
lation and the initial pocket size, while in the zero quark
pressure scenario, the uncertainty in determining the wall
velocity vw should also be included.
The available parameter space in the asymmetry limit

scenario is shown in Fig. 8. Equation (2.7) shows that as Λ
increases, R1, and thus the number of trapped quarks inside
the pocket, decreases. Thus, as expected from Eq. (2.16),
we find that the larger the initial radius, the smaller the
survival factor.
We should keep in mind that many simplifying approx-

imations were made about the dynamics of the phase
transition in Appendix A in order to obtain Eq. (2.8) for the
bubble radius. This, inevitably, introduces some uncertainty
in our calculation. To characterize this uncertainty, in Fig. 8
we introduce a fudge factor for the bubble radius denoted
by fR, to be multiplied against the values from Eq. (2.8).
The observed relic abundance line moves within the light
purple band as we vary fR between 0.1 and 10. Any point

above and to the right of the relic abundance line, including
the entire red region, is ruled out.
Since the asymmetry limit scenario is the lowest attain-

able S in our setup, the relic abundance line in this scenario
is an upper bound on the possible masses in our model.
In the other limit, the zero quark pressure scenario

provides us with a lower bound on the range of DM
masses in this setup that can explain the observed DM
abundance. In Fig. 9, we show the available parameter
space in this scenario. The calculation can now be affected
by a change in both the initial pocket radius R1 and its wall
velocity vw. To characterize this uncertainty, in Fig. 9 we
introduce a fudge factor for both the bubble radius and the
wall velocity, denoted by fR and fv, respectively. As
expected, for any fixed Λ the observed DM relic abundance
in this scenario is obtained by smaller DM masses than that
of the asymmetry scenario in Fig. 8.

FIG. 8. Produced abundance of dark baryons, the DM candi-
date, in the asymmetry abundance scenario. The black dashed
lines are contours of constant DM mass in TeV. The relic
abundance line (with the initial radius fixed to its central value,
i.e., fR ¼ 1) is plotted (purple line) along with its uncertainty
(light purple shades) corresponding to an order-of-magnitude
variation of the initial radius. The shaded red region is excluded,
as it produces too much DM, while the unshaded region produces
too little DM. The baryons can therefore constitute a subcompo-
nent of the DM within the unshaded regions of parameter space.
The survival factor is determined by the accidental asymmetry of
the pocket, which is independent of the wall velocity as long as
the asymmetry bound is saturated. Thus, the major source of
uncertainty in the location of the relic abundance line is the initial
pocket radius. We also find that the uncertainty from microscopic
quantities is subdominant to those of the initial pocket radius.
This figure clearly shows that the baryon masses accounting for
the observed DM abundance can be much heavier than the
unitarity bound [53].

FIG. 9. Similar to Fig. 8 but now with zero quark pressure. We
vary the pocket initial radius (top) or the wall velocity (bottom)
within 1 order of magnitude of the central values in Eqs. (2.8) and
(2.9) to characterize the uncertainty in the final relic abundance
calculation stemming from these quantities. The relic abundance
line using the analytic approximation of Eq. (3.20) for the
survival factor is denoted by the orange curve, too. Even with
the quark pressure neglected, we still find a substantial suppres-
sion in the DM abundance during the phase transition. We also
find that the baryon masses accounting for the observed DM
abundance can be much heavier than the unitarity bound [53].
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In this figure, we also show the relic abundance line
when we use the analytic approximation of Eq. (3.20) to
calculate the survival factor. We find reasonable agreement
between our analytic approximation (orange curve) and the
full numerical result (purple curve).
In both of these limiting scenarios studied in Figs. 8

and 9, we find a similar range of DMmasses and Λ that can
account for the present-day DM abundance. We expect that
these two scenarios bracket the true location of the relic
abundance line when the effect of the quark pressure on the
pocket wall velocity is appropriately included. The figures
indicate that, depending on the macroscopic parameters,
the region of parameter space that produces the observed
DM abundance predicts mDM ∼Oð1Þ −Oð100Þ PeV, well
above the thermal relic unitarity bound of mDM ≲ 300 TeV
[53]. Even with various sources of uncertainty, our results
predict a confinement scale roughly in the Oð1Þ −
Oð100Þ TeV range, in contrast to [25], which predicts a
much wider range of confinement scales in such models.
The parameter space above this range is ruled out, while the
remaining parameter space is allowed, producing a sub-
component of DM.
The values of the cross sections and the binding

energies entering the Boltzmann equations can be found
in Appendixes B and C, respectively. We find that the
uncertainty in our results due to these microscopic quan-
tities is subdominant to the uncertainty from the macro-
scopic bubble dynamics parameters discussed above. For
further details about these parameters and the uncertainties
in determining them, see the aforementioned Appendixes
and the references therein.
Determining the exact position of the relic abundance

line requires more precise calculations of both macroscopic
and microscopic quantities. Nonetheless, such calculations
will not change our qualitative conclusion: that the phase
transition gives rise to a new stage of annihilation that
reduces the relic abundance by orders of magnitude and
shifts the DM mass to well above the unitarity bound.
We can also understand the expected results for the parts of

parameter space not plotted. For largerΛs than were plotted,
Figs. 8 and 9 suggest that this model always overproduces
DM and is ruled out. For smaller Λs than were plotted, our
assumption that the preconfinement abundances of bound
states are negligible breaks down. Since somany baryons are
produced before the start of the phase transition, the survival
factor becomes comparable to 1. For low enough Λ, we
should use the combinatoric calculation of the relic abun-
dance described in Ref. [25]. An additional aspect is that, in
this region of parameter space, the glueball lifetime can be
substantial, which leads to entropy injection and makes the
abundance calculation more model dependent, as discussed
explicitly for several models in Ref. [25]. Further inves-
tigation of this region is left for future works.
As we go to larger values of mq=Λ, our assumption that

vq ≫ vw breaks down. In this case, local inhomogeneities

appear in the distribution of particles in the pockets, and the
entire homogeneous system of equations in Eq. (3.10) must
be modified. Furthermore, we find that, for higher mq=Λ
than is shown in Figs. 8 and 9, the quark separations during
the contraction epoch can become as low as ∼1=Λ (due to
the small cross sections allowing for a greater degree of
compression). In this case, the picture of well-separated
quarks that rebound off the stiff bubble wall (before they
run into other colored particles) must be modified.
Nonperturbative effects become more relevant in this case.
It is also possible that at such high densities, quarks bind
into more stable and massive dark nuclear states such as
nuggets; see [71] for a study of dark quark nuggets in the
light dark quark limit.
Furthermore, a recent study has investigated the creation

of multibaryon bound states in a very similar framework
[72]. It was found that at mq=Λ > 108 the fermi pressure
of the quark constituents can lead to the formation of
compact objects. However, the framework of the mentioned
investigation significantly differs from the setup used in
our work. In particular, the DM number density is fixed by
a preexisting asymmetry, and the temperature of the
decoupled dark sector is chosen as an initial condition.
Finally, as we go to lower values ofmq=Λ, eventually the

first-order phase transition turns into a second-order one
and then a cross-over; see e.g., [41]. In this regime there
will be no bubble walls to compress quarks into a second
stage of annihilation. Even for lower values of mq=Λ for
which there still exists a first-order phase transition, we run
the risk of breaking our assumption that the string breaking
rate is negligible, so quarks and diquarks can escape from
the pocket before significant annihilation takes place.
All in all, outside of the window shown in Figs. 8 and 9,

either the parameter space is already ruled out, or at least
one of the simplifying assumptions we made fails and our
analysis becomes unreliable.

F. Extensions of our analysis

So far we have focused on a confining SUð3Þ gauge
group with a single generation of heavy fermions in the
fundamental representation. Nonetheless, it is conceptually
straightforward to repeat our analysis for slightly different
setups. In this section we comment on the differences that
we expect would arise had we varied the number of colors,
Nc, or the quark representation.
Had we chosen a gauge group with a larger number of

colors, SUðNc ≥ 4Þ, we expect that we would have found a
smallerSsymm since the stable DMcandidate in such a theory
(the analogueof thebaryon) requiresmore constituent quarks
to bind together in more steps. (Notice that in Fig. 6 as the
quark number of a state increases, its abundance decreases
within a pocket.) However, if even with Nc ¼ 3 we find
Ssymm ≤ ηrms, we expect to saturate the asymmetry bound
for larger gauge groups as well. The additional Ssymm

suppression would not change the final survival factor S.
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The quark representation under the dark gauge group has
a slightly more complicated effect on our results. For any
quark representation, one must first identify the list of all
possible bound states and then write down the Boltzmann
equations with all possible interactions. As explained in
Sec. III C, the binding energies of these bound states can
also have a significant effect on the solutions of the
Boltzmann equations. As an example, consider the case
in which quarks are in the adjoint representation of the
group. These quarks can bind with gluons to form color-
neutral gluequarks [27]. Since the gluons can be found
abundantly, we expect that quarks can easily pass through
pocket walls by binding with a nearby gluon. Thus, pocket
walls will not compress the quarks, and there will be no
second stage of annihilation due to the phase transition.
Besides changing the model under consideration,

our work would also benefit from improving our order-
of-magnitude estimates and simplifying assumptions.
Dedicated numerical simulations that more carefully model
the bubble dynamics and nonperturbative physics could
reduce the uncertainties in both macroscopic and micro-
scopic quantities listed in Table II, narrowing down the
uncertainty on the relic abundance line in Figs. 8 and 9.

IV. POTENTIAL EXPERIMENTAL SIGNALS

So far, our study has only relied on fairly general
properties of a dark sector. We assumed that the dark
sector under study is a confining SUð3Þ gauge theory with a
single generation of heavy fermions; we also assumed a
portal exists between the sectors that keeps them in kinetic
equilibrium and allows the glueballs and mesons to decay
to the SM. All the conclusions drawn in the previous
sections were independent of further details of the portal
and the origin of the heavy dark quark mass.
A detailed study of all the phenomenological signals of

such a sector has to be carried out in a model-dependent
way with a specified portal. As a result, here we merely list
the signals and constraints that should be expected from
this broad class of models.

(i) The main feature of our setup is a first-order phase
transition in the early universe. Such a phase transition
can also give rise to a stochastic gravitational wave
(GW) background that can be detected in a host of
different future experiments; e.g., see [73] for a recent
study of theGWsignals of confiningdark sectors. The
characteristics of the resulting GW, such as the
frequency and the strength, depend on a handful of
thermodynamical parameters; see [74] for a brief
review. This GW signal is independent of the portal
to the SM.A naive estimate9 shows that different parts

of our parameter space could potentially be probed in
future experiments like DECIGO [76,77] and BBO
[78]. Early universe phase transitions can also give
rise to anisotropies in the GW spectrum, which can
potentially be detected at future facilities (see e.g.,
[79]). Given the extremely highmass range of theDM
candidates in our model, the GW signals could have
the highest discovery potential in such sectors. We
leave the further study of GW signals in this class of
models for future work.

(ii) The glueballs and the mesons are unstable due to the
portal to the SM. Stringent bounds from BBN
require that these relics have a short lifetime. See
for instance [80–82] for recent studies. As a rule of
thumb, one can avoid various constraints by assum-
ing all these bound states decay before the BBN; i.e.,
their lifetime is τ ≤ 1 s. This bound on the lifetime
introduces a lower bound on the strength of the
portal. This lower bound can vary substantially
depending on the details of the portal. Our require-
ment that both sectors are in kinetic equilibrium also
imposes a lower bound, though we expect the BBN
bound to be more stringent.

(iii) The portal to the SM introduces possible direct and
indirect detection signals. However, the DM number
density in the Universe and in our Galaxy is very
suppressed due to this model’s heavy DM mass. A
naive estimation suggests that our model’s indirect
signal from DM annihilation within the Milky Way
is severely suppressed and undetectable. The direct
detection signal, however, depends on the details of
the portal and should be studied model dependently.
We note that in this heavy mass range, even very
large DM-SM elastic cross sections are allowed, but
within the reach of upcoming and ongoing experi-
ments [83].

(iv) A separate indirect detection signal comes from the
observation that our composite DM model admits
excited states. Deexcitations from these excited
states might lead to radiation that could be detected.
Excitations could be produced in the early universe
or via interactions with matter today.

(v) Yet another indirect signal could come from the
capture of DM in celestial bodies; see for example
Refs. [84,85].10 As DM accumulates at the bottom of
these potential wells, it can begin to annihilate at a
significant rate, possibly affecting the evolution of
these celestial bodies in an observable way or
enhancing a potential annihilation signal [88,89].

(vi) For the OðPeVÞ and above DM masses predicted in
our model, direct production of DM at collider
facilities is not possible in the foreseeable future.

9We use the formulas in [75] to estimate the GW signal
produced during the phase transition. We use the interface
introduced in [56] to compare the result to the reach of various
experiments.

10See also [86,87] for studies of lighter DM capture in
gravitational basins or exoplanets, respectively.
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Yet, if the portal is substantially lighter, it can be
directly observed at collider experiments. While the
dark quarks are too heavy to produce at collider
facilities, the glueballs of the new dark sector, whose
mass is Oð10ΛÞ, could potentially be produced at
future colliders.

(vii) Various studies suggest an upper bound on the DM
self-scattering [90–96]. As a rough estimate,

σSI=mDM ≲ 1 cm2 g−1 ∼ ð60 MeVÞ−3: ð4:1Þ

It is straightforward to check that for the high
confinement scales we are studying, this upper
bound is easily satisfied.

(viii) One can also search for signals coming from the
inhomogeneities in the DM density that were pro-
duced during the phase transition when DM was
compressed by contracting pockets, but this seems
unlikely. By performing a Jeans stability analysis,
we find that the internal baryon pressure easily
overcomes the self-gravity of these overdensities.
Therefore, pockets do not seed self-gravitating DM
clumps. One might also look for modifications to the
matter power spectrum due to these overdensities,
but initial estimates indicate that the matter power
spectrum would only be modified at unobservably
small mass scales if at all. Specifically, the total
DM mass within a horizon radius soon after the
phase-transition epoch (after which the comoving
abundance is fixed) can be estimated as the DM
density multiplied by H−3, with a DM density
crudely approximated (ignoring changes in the
number of relativistic degrees of freedom over time)
as ∼ðΛ=TCMB;0Þ3× the present cosmological density
of DM, where TCMB;0 ∼ 2 × 10−4 eV is the present-
day temperature of the radiation bath. This gives an
enclosed mass:

Menc ∼ ðΛ2=MplÞ−3ðΛ=TCMB;0Þ3 × 10−6 GeV=cm3

∼
�
1 TeV
Λ

�
3

× 10 kg: ð4:2Þ

Thus, for phase transitions at the TeV scale and
above, we would expect phase-transition-induced
inhomogeneities to affect DM clumps at the kg scale
and below. Even if these clumps survived, this mass
scale is vastly lower than what can be probed by any
possible observational constraints on the matter
power spectrum, which are currently exploring halo
masses of order 107–8 M⊙ (e.g., [97–99]).

Because of its low number density, the dark matter in our
setup can have significant interactions with the SM
particles and still have escaped detection so far. Creative
new search strategies will be needed to explore this

possibility. Novel ideas for direct detection of such a
scenario have been put forward in Ref. [83], and interesting
signals in heavy isotope searches [100] could arise if our
dark baryons can bind to SM atoms and nuclei.
In addition to the above signals, which should exist for

any specific realization of the DM-SM portal, there may
exist additional portal-dependent signatures. We also find,
using the results of Ref. [25], that depending on the type
of portal to the SM, the glueballs’ lifetime could be larger
than the Hubble time at T ¼ Λ. In such a scenario, the
delayed decay of the glueballs can further dilute the DM
abundance [27,30] in the parameter space that we have
studied, thus pushing the relic abundance line in Figs. 8 and
9 to even higher DM masses. A proper study of this effect,
as well as other signals from any specific portal, is left for
future works.

V. CONCLUSION

In this work we studied the consequences of a first-order
phase transition in a confining dark sector with a single
heavy quark in the fundamental representation. We
assumed a portal exists between our sector and the dark
sector that keeps the two sectors at kinetic equilibrium at
the time of the phase transition and respects dark baryon
number conservation. The arguments we presented do not
depend on further details of the portal.
We argued that the bubbles of the confined phase, after

nucleation, expand very slowly. Soon after the bubbles
come in contact and coalesce, pockets of the deconfined
phase form and are submerged in a sea of the confined
phase. The quarks are trapped inside these isolated and
ever-contracting deconfined phase pockets. There is always
an accidental asymmetry in the net dark baryon number in a
given pocket, due to local stochastic fluctuations in the
number of quarks and antiquarks at the onset of pocket
formation. As the pockets contract, the enclosed quarks
compress until formerly frozen-out interactions recouple,
giving rise to a second stage of annihilation.
We wrote down the complete set of Boltzmann equations

with all 2 → 2 interactions between lowest-lying bound
states of the heavy quark. By solving these equations,
we were able to calculate the fraction of dark quarks that
survive the second annihilation event. These surviving
quarks bind into stable, color-singlet states that comprise
the DM abundance we see today. We find that these
Boltzmann equations predict a dramatic suppression in
the DM relic abundance. This suppression is sensitive to
the initial size of the pocket, the density of the quarks
trapped within, and the pocket wall velocity. While there is
a large uncertainty in determining these parameters, we
showed that for virtually any reasonable values of these
parameters, there is a significant suppression in the DM
relic abundance.
We find the effect of quark pressure on the pocket wall

velocity difficult to model. However, we do know that this
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effect will further slow down the pocket wall, which we
implies a smaller survival factor. We calculated the relic
abundance of DM in this setup in two extreme scenarios:
(i) in the zero quark pressure scenario and (ii) when we
assume the quark pressure is so severe that the asymmetry
bound on the survival factor is saturated. These two
limiting scenarios bracket the range over which the relic
abundance line can move when the quark pressure effects
are properly taken into account. We found that for a fixed
dark confinement scale Λ, the DM mass in this setup only
changes by Oð1Þ factors between these two scenarios.
After identifying the parts of themq − Λ parameter space

that predict the observed present-day DM abundance, we
found that this large suppression opens up parts of the
parameter space that were previously thought to be ruled
out. In particular, we found a DM mass scale well above
the often-quoted unitarity bound. Our calculation also
suggests an upper bound on the dark confinement scale
Λ ∼Oð1Þ −Oð100Þ TeV. For any Λ above this bound,
DM is overproduced, despite the dramatic suppression of
its abundance during the phase transition. Depending on
the value of Λ, the dark baryon mass that can explain the
observed DM abundance varies roughly between 103

and 105 TeV.
There are many possible signals that our setup can give

rise to. With the exception of gravitational waves, all the
other potentially detectable signals depend on the specific
form of this model’s portal to the SM. It will be interesting
to investigate the signatures of specific portals and their
constraints, which we leave to future work.
There are numerous ways in which our analysis can be

improved. To decrease the uncertainties in our results, it
will be important to perform more detailed numerical
simulations of the macroscopic bubble dynamics during
the phase transition and the microscopic strong dyna-
mics that determine the particle interactions. The most
important quantities to be calculated would be the initial
pocket size and its subsequent contraction rate, and the
cross sections and binding energies included in our
Boltzmann equations. Additionally, it will also be interest-
ing to study the relic abundance calculation for other gauge
groups and different quark representations. Furthermore,
for any specific portal, we should study the potential DM
dilution due to a delayed glueball decay after the phase
transition.
Confining sectors are natural dark sector candidates. In

this paper we focused on such sectors with only a single
species of heavy dark quark. We pointed out the dramatic
effect that this model’s first-order phase transition has on
the relic DM abundance of such a sector. The dynamics
lead us to a sharp prediction about the natural mass scale
of such DM candidates, 103–5 TeV. It is of paramount
importance to study variations of these minimal dark
sectors in greater detail and their potential signatures in
various upcoming experiments.
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APPENDIX A: THERMODYNAMICS OF A
FIRST-ORDER PHASE TRANSITION

In this Appendix, we collect results that are helpful for
understanding the dynamics of a first-order phase transition.
We also describe a numerical simulation of the confining
phase transition from the main text, which we perform to fix
the initial pocket radius and its contraction rate. The codewe
used to perform this simulation can be found in Ref. [112].

1. Standard thermodynamics

The defining characteristic of a first-order phase tran-
sition is that a first derivative of the free energy, or the free
energy density f, is discontinuous at a critical point. In our
case, the entropy density, s ¼ − ∂f

∂T, is discontinuous,
corresponding to a nonzero latent heat release due to phase
conversion. In contrast, f itself is continuous, meaning that
the free energy of the two phases is the same at the critical
point, fdeconf ¼ fconf .
To better understand the latent heat, first notice that in the

absence of chemical potentials, the critical point is speci-
fied by a single parameter, the critical temperature Tc, and
the free energy density is minus the pressure, f ¼ −p.
Since the free energy of both phases is the same at the
critical point, their pressure is the same. Using the Euler
relation, ρ ¼ Ts − p, where ρ is the energy density, one can
take the difference in energy densities of the two phases at
the critical temperature to find
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Δρ ¼ TcΔs≡ l; ðA1Þ

which defines the latent heat density. Whereas the free
energy density is continuous, the energy density is not.
Another important quantity that characterizes first-order
phase transitions is the surface tension σ. The surface
tension is the energy cost per unit area of an interface
separating the two phases.
The latent heat density and surface tension are calculable

via lattice simulations. We assume that at temperatures
below the quark mass, the thermodynamics of the system
are insensitive to the heavy quark field, and we need only
consider lattice simulations of pure SUð3Þ Yang-Mills
theory. In particular, the authors of [43] calculated a latent
heat density and surface tension in the infinite volume limit
(see their Tables 7 and 15),

l ¼ 1.413T4
c;

σ ¼ 0.02T3
c: ðA2Þ

These quantities have been computed elsewhere [101–104],
and we find that the uncertainties on l and σ among
these different lattice calculations are not large enough to
qualitatively change our results.
As the universe expands, our thermal system, still in the

deconfined phase, supercools.11 Once the system is super-
cooled, the free energy of the confined phase is lower than
the free energy of the deconfined phase, meaning that it is
energetically favorable for a phase transition to take place.
For any nonzero amount of supercooling, there now exists a
critical radius Rc at which the energy cost of increasing a
spherical bubble’s surface area is exactly compensated by
the free-energy decrease due to phase conversion,

∂F
∂R

����
Rc

¼ ∂
∂R

�
4πR2σ −

4π

3
R3Δf

�����
Rc

¼ 0

⇒ Rc ¼
2σ

Δf
; ðA3Þ

where Δf is the confined phase free energy density minus
that of the deconfined phase, so it is positive.
To relate Δf to the latent heat density, first recall that

at Tc the entropy difference is given by Δs ¼ l=Tc. If we
then use the thermodynamic relation ∂f

∂T ¼ −s, we find
∂Δf
∂T jTc

¼ −l=Tc. If we assume small supercooling, we can
use a Taylor expansion, which at leading order gives

Δf ¼ ∂Δf
∂T ðT − TcÞ

¼ l
ðTc − TÞ

Tc
: ðA4Þ

We then find

Rc ¼
2σTc

lðTc − TÞ : ðA5Þ

The total free energy of a bubble at the critical radius is

Fc ¼ 4πR2
cσ −

4π

3
R3
cΔf

¼ 16π

3

σ3

Δf2

¼ 16π

3

�
σ

T3
c

�
3
�

l
T4
c

�
−2 T3

c

ðTc − TÞ2 : ðA6Þ

Thermal fluctuations will randomly convert regions
of varying shapes and sizes from one phase to the other.
When the system is supercooled, there is a chance that a
converted region will be large enough that it expands rather
than contracts. The probability per unit time and volume of
converting a region with free energy F is determined
primarily by the Boltzmann factor e−F=T. Using dimen-
sional analysis we have [107]

Γ ¼ AT4e−
F
Tc ; ðA7Þ

where A is assumed to be some Oð1Þ number that is
roughly constant with respect to temperature and deter-
mined by the microscopic theory. Provided A is indeed an
Oð1Þ number, we find that the exponential is by far the
more important factor for determining the behavior of the
phase transition, so we set A to 1 without qualitatively
changing our results. For an alternative, though similar,
expression for Γ, see [106] (Sec. 99).
Let us make the simplifying assumption that all bub-

bles can be approximated as spherical. Then, bubbles
that nucleate with radii below Rc are ephemeral, quickly
shrinking due to surface tension, while bubbles with radii
well above Rc are exponentially less likely to nucleate than
critical bubbles by Eq. (A7). Then, to a good approxima-
tion, we can assume that only bubbles at the critical radius
nucleate. Combining Eqs. (A6) and (A7), we find that the
nucleation rate of these critical bubbles is

Γ ¼ AT4
ce

− κT2c
ðTc−TÞ2 ; ðA8Þ

κ ¼ 16π

3

�
σ

T3
c

�
3
�

l
T4
c

�
−2
;

∼ 7 × 10−5; ðA9Þ

where in the last line we have used the lattice results from
Eq. (A2). Because the latent heat density is an order-one
number in units of Tc while the surface tension is a small
number in units of Tc, κ turns out to be a very small number

11Much of the following discussion can be found in Refs. [105]
(Sec. 162) and [106] (Secs. 99 and 100).
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[which Ref. [43] indicates is generically true for SUðNÞ
theories]. As a result, very little supercooling is required
before bubble nucleation becomes efficient.

2. First half of the phase transition: Bubble growth

After bubble nucleation begins, the phase transition
proceeds via the nucleation of new bubbles and the
expansion of old bubbles. To keep track of the progress
of the phase transition, we define the fraction of the
universe that is in the confined phase [107],

xðtÞ ¼
Z

t

tc

dt0Γðt0Þ 4π
3
R3ðt; t0Þð1 − xðt0ÞÞ; ðA10Þ

where tc is the time at which the universe first reaches the
critical temperature and Rðt; t0Þ is the radius at time t of a
bubble nucleated at time t0. Applying a time derivative
yields

_xðtÞ ¼ ΓðtÞð1 − xðtÞÞ 4π
3
R3
cðtÞ

þ
Z

t

tc

dt0Γðt0Þ4πR2ðt; t0Þ _Rðt; t0Þð1 − xðt0ÞÞ; ðA11Þ

where the first term corresponds to the nucleation of new
bubbles while the second corresponds to the expansion of
old bubbles.
The temperature evolution of the early universe plasma

includes the usual adiabatic cooling term due to Hubble
expansion, but now it also includes a new heating term due
to the steady release of latent heat as the deconfined phase
converts to the confined phase. By Eq. (A1), converting a
fraction dx from the deconfined to the confined phase
releases dρ ¼ ldx energy per unit volume. The released
energy is absorbed in each phase with a temperature
increase determined by each phase’s respective specific
heat, dρ=dT. For now, we will focus on the large scale
average temperature rather than deal with small scale
temperature gradients between points near and far from
the sites of latent heat release. If we assume that the portal
interaction between the SM bath and dark sector leads to
frequent enough interactions between the two sectors per
Hubble time, then in each phase the specific heat is
dominated by the many degrees of freedom of the high
temperature SM bath. For example, the deconfined phase of
the dark sector is found to contribute about 5% to the
specific heat at the critical temperature [104]. We can
then use

ρðTÞ ≈ g�ðTÞπ2
30

T4; ðA12Þ

for both phases, where g�ðTÞ is the effective number of
relativistic degrees of freedom and it is g�ðTÞ ≈ 106.75 for
all temperatures of interest in our analysis. We therefore

approximate both phases as having the same specific heat
and find

dT ≈ l

�
dρðxÞ
dT

ðTcÞ
�

−1
dx

≈ 10−2Tcdx: ðA13Þ

The total temperature evolution of the universe during the
phase transition is then given by

_T ¼ −HT þ 10−2Tc _x; ðA14Þ

where the first term comes from the adiabatic cooling of
relativistic species due to Hubble expansion. Had we
considered a model in which few interactions take place
between the standard model and dark sector baths per
Hubble time, then the two sectors would be thermally
decoupled. Note that T would refer to the dark sector’s
temperature, which would heat relative to the SM temper-
ature, and we would divide by the dark sector’s specific
heat, eliminating the factor of 10−2 in Eq. (A14).
There is an important distinction between the temper-

ature evolution of a weakly first-order phase transition and
a strongly first-order phase transition. In a weakly first-
order phase transition the latent heat in units of Tc is
typically small (see [107]), so the heating term in Eq. (A14)
is negligible and the amount of supercooling does not
change much due to the added latent heat. In a strongly
first-order phase transition the latent heat in units of Tc can
be order one or larger [see Eq. (A2)], so T can be driven
back up to Tc before the phase transition is completed.
Furthermore, since κ in Eq. (A9) scales inversely with l2,
the large value of the latent heat decreases the amount of
supercooling needed to achieve efficient bubble nucleation
as is seen in Eq. (A8), making it easier for the universe to
reheat to a point where nucleation is negligible. In a
simulation below, we show that this reheating scenario is
achieved in our phase transition.
Notice also that T cannot ever reheat all the way up to Tc.

If it did, the critical radius would diverge and all bubbles
would shrink. The second term in Eq. (A14) would change
sign and become a cooling term since latent heat would be
absorbed, and hence T would be driven back below Tc.
Instead, jT − Tcj decreases from its maximum to an
equilibrium value very close to zero at which the heating
and cooling terms in Eq. (A14) nearly balance one another,
as we will show below. This equilibrium phase coexistence
is exactly the regime described by the Maxwell construc-
tion for first-order phase transitions (see [105], Sec. 84).
As explained in the previous section, we assume that

bubbles nucleated at time t0 are of size RcðTðt0ÞÞ, giving
the initial condition Rðt ¼ t0; t0Þ ¼ RcðTðt0ÞÞ. To deter-
mine the radius at a future time, we need an expression for
the bubble wall velocity, _Rðt; t0Þ. An accurate treatment of
the bubble wall velocity requires full 3þ 1 dimensional
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numerical simulations of bubble dynamics during the
phase transition. However, even in simplified settings,
various numerical simulations have not converged on a
single, definitive answer [63,67–69]. Instead, we will use a
convenient, basic model of _Rðt; t0Þ. We require that critical
bubbles not change their radius and that larger bubbles
expand while smaller bubbles contract. To capture this
behavior, we use the simple functional form

_Rðt; t0Þ ¼ vwðtÞsign½Rðt; t0Þ − RcðtÞ�; ðA15Þ

where we define signð0Þ ¼ 0.
Determining vwðtÞ would require a better understanding

of the underlying strong dynamics. Instead, we will
estimate an upper bound on vwðtÞ based on thermodynamic
arguments. As argued in the main text, the larger vw is, the
less the DM relic abundance will be suppressed. Thus, we
will always set vw to its upper bound, assuming it to be a
conservative choice.
As a bubble expands, it releases latent heat near its

wall, locally heating the plasma at the wall to a tempera-
ture Twall > T and reducing the free energy difference at
the interface. Since the free energy density is minus the
pressure, this local heating reduces the net pressure acting
on the wall [see Eq. (A4)]. Since the degree of supercooling
is so small, the wall could potentially heat up to a tem-
perature at which the net pressure balances against the
surface tension. If the wall reaches this temperature, bubble
growth would no longer be thermodynamically favorable,
so the wall motion would come to a halt. By an argument
completely analogous to the one that led to Eq. (A3), except
we evaluate Eq. (A4) at the wall temperature, we find this
equilibrium wall temperature to be

Teq
wall ¼ Tc

�
1 −

2σ

lR

�
: ðA16Þ

We assume that as the wall temperature approaches Teq
wall,

its growth slows down gradually. Before the wall temper-
ature reaches Teq

wall, it will have slowed down to a steady
state at which the rates of wall heating and cooling cancel
one another. By estimating the rates of wall heating and
cooling and then setting them equal, we will determine an
approximate expression for vwðtÞ.
We start with the cooling rate. We will assume that Twall

is very close to Teq
wall, which is, in turn, very close to Tc

since the second term in Eq. (A16) is very small compared
to 1 for bubbles larger than Λ−1. This assumption will lead
to a faster vw. The fractional temperature difference
between points near and far from the wall is then
ðTc − TÞ=Tc. We assume that the heat loss rate is given
by a diffusion equation, _Tcool ∼ −K∇2T, and that the
transport coefficient at Tc is of order K ∼ Λ−1. If we

further assume that the length scale of the density gradient
is Λ−1, then we find _Tcool ∼ −Λ2ðTc − TÞ=Tc.
Now we move on to the heating rate. We start with the

energy injected per unit wall area and time, lvw. If we
assume that this energy is injected within a typical length
Λ−1 of the wall, then the energy injected per unit volume is
lvwΛ. As before, dividing by the specific heat, dρ=dT,
converts the energy increase into a temperature increase.
Rather than assume that the specific heat is dominated by
the SM degrees of freedom as we did when deriving
Eq. (A13), we assume that for this process the SM degrees
of freedom are irrelevant and the specific heat is dominated
by the dark sector degrees of freedom, though this choice
will not affect our final result. We do so because we
anticipate that for most models the portal interaction
between the SM and dark sector will generically take place
on timescales much slower thanΛ−1, so it will be inefficient
compared to the interactions within the dark sector. Hence,
we assume that the dark degrees of freedom disperse latent
heat on a fast timescale of order Λ−1, and only on much
longer timescales does this heat find its way into the SM
degrees of freedom.12 Then, we can use dρDS=dT ∼ T3

[104], which gives a heating rate of _Theat ∼ Λ2vw.
13 The

wall velocity at which both rates are in balance is then

vw ¼
�
Tc − T
Tc

�
: ðA17Þ

As argued in Ref. [52], we see that vw is suppressed
by the small degree of supercooling during the phase
transition.
We apply a similar argument to the wall velocity of

contracting bubbles, which are smaller than the critical
radius. As bubbles contract, latent heat is absorbed near the
wall, decreasing the wall temperature, increasing the net
pressure on the wall, and thus opposing further contraction.
The contraction rate is therefore limited by the rate at which
the cold wall can heat due to heat flow from the hotter
surrounding plasma. Balancing the heating and cooling
rates as before leads to a wall velocity given by Eq. (A17)
up to a relative sign, justifying the symmetric functional
form of Eq. (A15).
Again, the above expression for vw is, in reality, an upper

bound. An expanding bubble wall cannot move any faster

12We assume that the timescale over which interactions
between the SM and dark sector baths exchange energy is much
faster than the Hubble rate, justifying why the SM degrees of
freedom are included in the heat capacity in Eq. (A13).

13If the portal interaction is actually efficient enough to keep
the two sectors in equilibrium on this short timescale, then the
heating rate would be suppressed by a factor of g⋆. However, the
cooling rate would also be suppressed by a factor of g⋆ since K is
inversely proportional to the number density of interacting
degrees of freedom (Sec. 3.9 of [108]). These two factors would
then cancel in the expression for vw. We therefore expect
Eq. (A17) to be independent of the specific portal interaction.
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than Eq. (A17), at least for an extended period, because
then it would locally overheat the wall. There is a similar
consideration that the global rate of increase in temperature
from bubble expansion should not significantly outpace the
Hubble cooling, lest the whole universe be heated above
T ¼ Tc. Consequently, we see that the value of vw derived
in Eq. (A17) evolves so that it always lies below or close to
this “global threshold.”
The wall velocity [Eq. (A17)] and global threshold are

plotted in Fig. 10. At the start of the phase transition, when
bubbles are rare and their radii are small, the global heating
from bubble expansion is very small even for vw → c, so
the global threshold velocity goes to infinity. The same is
true at the end of the phase transition, when there is very
little volume available for phase conversion. However,
during the phase transition when the rate of phase con-
version is rapid, this threshold becomes relevant.
Let us consider what happens when bubble coalescence

and growth causes vw ¼ ðTc − TÞ=Tc to exceed this global
threshold (which depends on the bubble density and typical
bubble radius) for the first time. If vw overshoots the
threshold, then the universe will begin to heat up on
average, thus reducing vw. The net effect is for the degree
of supercooling to evolve such that vw tracks the global
threshold velocity. In practice, we observe that there is, at
first, an abrupt drop in both vw and the global threshold
velocity, associated with a sharp increase in the bubble
number density due to nucleation; in this epoch, vw slightly
exceeds the global threshold velocity, and this supports a
fairly rapid increase in T. Once nucleation becomes
inefficient due to the rising temperature, the global thresh-
old velocity evolves more slowly, driven by the expansion
of the largest existing bubbles. In this epoch vw tracks the
global threshold closely and _T ≈ 0, with a slow adiabatic
increase in temperature toward Tc driven by the slow
decrease in the global threshold velocity (which requires a

corresponding decrease in vw and hence in the degree of
supercooling). We can even derive the scaling of the global
threshold (and vw) with t during this period. By Eq. (A14),
_T ≈ 0 implies _x ≈ 100H. Using the fact that the spectrum of
bubbles is strongly peaked at a single radius R and that the
nucleation of bubbles is so suppressed that the number
density of bubbles is constant, we have x ¼ 4πR3nbub=3.
Combining the two equations gives dR=dt ∝ R−2 so that
R ¼ 3Aðt − t0Þ1=3 for some constants A and t0. Therefore,
vw ¼ dR=dt ¼ Aðt − t0Þ−2=3. Indeed, we find that the slope
of the line in Fig. 10 between times 0.001=H and 0.005=H
is precisely −2=3.
The Hubble cooling can be relevant here, even though

the phase transition takes place on timescales much smaller
than a Hubble time, because the bubble expansion is so
sensitive to the degree of supercooling; in contrast, we can
freely drop e.g., density dilution terms corresponding to the
Hubble expansion, as there is no comparably small density
difference relevant to our calculation [see e.g., Eq. (3.2)].
After coalescence, when the heating comes from pockets of
shrinking radius rather than bubbles of expanding radius,
the reverse process occurs, with a slow adiabatic decrease
in the equilibrium temperature due to the decreasing size of
the pockets. The temperature evolution eventually switches
over to the standard Hubble cooling once vw ¼ ðTc −
TÞ=Tc can no longer reach the global velocity threshold
(and hence _T ≈ 0 cannot be maintained).
With Eqs. (A11) and (A14)–(A17) in hand, we are able

to simulate the first half of the phase transition. This system
of equations models the initial bubble nucleation and
accompanying latent heat release, and the proceeding
equilibrium regime up until percolation when bubbles
begin to overlap and new dynamics must be included.
Our initial conditions are that the universe has supercooled
a little bit, T−Tc

Tc
¼ −10−4; that the universe is fully in the

FIG. 10. Wall velocity (blue) and “global threshold” (black dashed) above which phase conversion is so fast that the universe
experiences net heating. The right panel displays the same data as the left panel, but it zooms in to the very end of the phase transition
when pockets have contracted significantly. The discontinuity in the middle is an artifact of our modeling. It occurs when the spectrum
of bubbles, which peaks at R0, discontinuously jumps to a delta function spectrum of pockets centered at R1.
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deconfined phase, x ¼ 0; and that no bubbles have
nucleated yet. We evolve forward in small time steps,
Δt ¼ 10−6=HðTcÞ. In each time step we nucleate
ΓðTðtÞÞð1 − xðtÞÞΔt bubbles per unit volume at radius
RcðTðtÞÞ and add them to a list. We allow all other bubbles
from previous steps to expand or contract by an amount
_Rðt; t0ÞΔt, which only depends on the bubble size and
temperature within that time step. This procedure produces
bubbles with radii less than or equal to 0, so we set such
bubbles’ radii to zero and remove them from our list.
Additionally, many time steps result in an additional
number density of bubbles that is so exponentially small
that the computer sets the number density to zero. We
remove these bubbles from our list, too. Each bubble
nucleation and all bubble expansions increase x by _xΔt
and the temperature by _TΔt according to Eqs. (A11) and
(A14). We finish our evolution once x ¼ 1

2
.

Outputs of our simulation are shown in Fig. 11. The left
plot shows the degree of supercooling before percolation,
and the middle plot shows the fraction of the phase
converted, x. These plots make it clear that the first half
of the phase transition can be divided into three distinct
stages. In the first stage, the degree of supercooling is so
small that the bubble nucleation rate is too suppressed to
have a significant effect on the simulation. During this
period x ¼ 0, and the universe cools through Hubble
expansion. In the second stage, the supercooling reaches
a point at which nucleation becomes efficient. These
nucleated bubbles quickly grow and inject heat, corre-
sponding to the sudden jump in the temperature and x a
little before t ¼ 0.001=H. The temperature reaches a
point very close to Tc at which nucleation of new bubbles
becomes inefficient again, leading to the third stage. This
stage is exactly the equilibrium phase coexistence regime
described above. There are a fixed number density of large
bubbles that grow and inject latent heat at such a rate so as
to cancel Hubble cooling. The net effect is that _T ≈ 0. By
Eq. (A14), we have

_x ≈ 102H: ðA18Þ

Since the temperature is constant during this stage, the
Hubble rate is as well, meaning that x grows linearly in
time, which can be seen in our middle plot. This equation
explains why the phase transition occurs over a timescale of
10−2=H. Had we assumed instead that the portal interaction
between the SM bath and dark sector was very weak and
led to few scatters per Hubble time, then the dark sector
would not have access to the SM heat capacity, and the
above factor of 102 would be replaced by an Oð1Þ factor
instead.
The rightmost plot in Fig. 11 shows the spectrum of

bubble radii at the time of percolation, x ¼ 1=2. The shape
of this spectrum is a product of the preceding stages. The
earliest bubbles were nucleated during the first stage. They
had the longest time to grow but were nucleated at a time of
relatively small supercooling, meaning that their number
density was exponentially suppressed. So as R increases
away to the right of the peak of the spectrum, dnbub=dR
decreases. Just as the second stage begins, the universe is
maximally supercooled. The bubbles produced at this point
are the most numerous and constitute the peak of the
distribution. In the rest of the second stage, the super-
cooling quickly diminishes, producing an exponentially
suppressed population of bubbles that are smaller than the
peak radius since they have less time to grow, leading to the
sharp decrease of the spectrum to the left of the peak.
We define the peak in dnbub=dR to occur at R0 and

empirically find that it is very well fit by the function

R0Λ ¼ 10−6 ×

�
Λ
Mpl

�
−0.9

¼ 6.7 × 107 ×

�
Λ

TeV

�
−0.9

:

ðA19Þ

However, R0 is not the only relevant length scale for the
bubbles. An additional length scale, R1, emerges from the
dynamics of bubble coalescence.
At percolation, bubbles frequently come into contact

with one another and begin to coalesce. To model the
coalescence dynamics, we borrow another argument from
[52]. When two spherical bubbles of radius R coalesce into
one larger-radius bubble, they decrease their surface area

FIG. 11. Degree of supercooling as a function of time (left), confined phase fraction as a function of time (middle), and spectrum of
bubble radii at percolation, when x ¼ 1=2 (right).
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and therefore reach a more energetically favorable con-
figuration due to surface tension. The energy difference
between the two configurations is ΔE ∼ 4πR2ð2 − 2

2
3Þσ ¼

4πR2ð2 − 2
2
3Þ × :02T3

c. This change in energy is achieved
by applying a force to the mass M in the bubbles over a
characteristic distance R. So F ∼ ΔE=R ∼Ma, where a is
the acceleration of the material in the bubbles. This
acceleration can also be estimated as a ∼ R=t2coalesce, where
tcoalesce is the coalescence timescale. If we then use that the
total mass in the two bubbles is M ¼ 2 × 4

3
πR3ρdeconf ≈

8
3
πR3T4

c, where we used ρdeconfðTcÞ ≈ T4
c [104], then

we find

tcoalesce ∼
�
MR2

ΔE

�1
2 ðA20Þ

∼ 10T
1
2
cR

3
2: ðA21Þ

The above equation shows that small bubbles coalesce
quicker than large ones. Therefore, at percolation small
bubbles will quickly coalesce until they reach a size R1 past
which tcoalesce takes longer than the timescale of percola-
tion. From Fig. 11 we can estimate the timescale of
percolation as the time it takes x to change by a couple

percent at around x ¼ 1
2
. We find tperc ∼ 10−3H−1 ∼ 10−3

Mpl

T2
c

where Mpl ¼ ð8πGÞ−1=2 ∼ 2.4 × 1018 GeV is the reduced
Planck mass and G is Newton’s constant. Setting the
percolation timescale equal to tcoalesce then yields the
critical bubble size of

R1Λ ≈ 10−8=3
�
Mpl

Λ

�
2=3

≈ 4 × 107
�
TeV
Λ

�
2=3

; ðA22Þ

in units of Tc ¼ Λ.
In Fig. 3 we plot R0 and R1 as a function of the

confinement scale. We find that for Λ≳ 1 TeV, R0 is less
than or equal to R1. Therefore, for this range of Λ, once our
simulation finishes at x ¼ 1

2
, we assume that all bubbles

begin coalescing and quickly grow to radius R1. Since x
does not change during this process, we assume that T
remains fixed, too. For Λ < 1 TeV, we assume that
coalescence is inefficient and bubbles remain at radius R0.

3. Second half of the phase transition:
Pocket contraction

After percolation, most bubbles are in contact with one
another. The confined regions form a web, and the
deconfined regions form isolated pockets. We assume these
pockets quickly attain spherical symmetry due to surface
tension and also that the typical size of a bubble before
percolation is equal to the typical size of a pocket after
percolation, R1.

Since all pockets are at the same initial radius, we can
solve for the initial density of pockets. The number density
of pockets that are all of radius R satisfies

1 − x ¼ 4π

3
R3npocket: ðA23Þ

Since x ¼ 1
2
at percolation, we have

npocket ¼
3

8πR3
1

: ðA24Þ

We find that the degree of supercooling continues to be so
small during pocket contraction that the nucleation of
more bubbles is completely suppressed. Therefore,
npocket remains constant, and we find

x ¼ 1 −
R3

2R3
1

: ðA25Þ

As before, the contraction rate of the pockets is limited
due to the latent heat release near the pocket wall. However,
the wall velocity estimate for pockets is slightly different
than it was for bubbles. Whereas supercooling results in a
net pressure outward for bubbles, supercooling results in a
net pressure inward for pockets since the two phases are on
opposite sides of the wall in either case. With this caveat in
mind, we can repeat our argument leading to Eq. (A17).
As before, we argue that as it expands, the wall quickly

heats up, approaching a threshold temperature at which
pressure and surface tension are in equilibrium. This
threshold now corresponds to slight superheating at the
temperature Tcð1þ 2σ

lRÞ. Before Twall reaches this threshold,
it achieves a steady state at which heating from latent heat
injection cancels against cooling from heat diffusion from
the wall. Using the same arguments as before, we find that
this steady state corresponds to a velocity of

dR
dt

¼ −ðTc − TÞ=Tc: ðA26Þ

Again, we use that 2σ
lR ¼ :03

RΛ ≪ 1, so we approximate the
temperature difference between the wall and its surround-
ings appearing in the above equation as Tc − T, which
leads to an overestimate of the wall velocity.
There is another, much more important, new effect

modifying the contraction rate of a pocket: quark pressure.
The density of quarks trapped within pockets increases as
they are forced within ever-shrinking volumes. This pres-
sure opposes contraction, slowing down the wall velocity
relative to Eq. (A26). For now, to build intuition, we ignore
the effect of quark pressure, and we consider it in the next
section.
With Eqs. (A14), (A25), and (A26), we have all we need

to simulate the second half of the phase transition. We use
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the same method and parameters as we did for the first half
of the phase transition. In Fig. 12 we show the results of our
simulation. The first instant of the simulation features a
discontinuity in the temperature (and thus vw). This
discontinuity results from our discontinuous change of
the spectrum of bubbles from the smooth form of dn=dR in
the right panel of Fig. 11 to a delta function at R1. As the
pockets get smaller, their heating rate diminishes. Hubble
cooling becomes relatively more important over time,
leading to the steady decrease in T over time. By the very
end of the phase transition, the temperature evolution is
purely determined by Hubble cooling.
The right panel shows the pocket wall velocity as a

function of the pocket radius. As a function of R, vw
asymptotes to a well-defined value near 2 × 10−4 for the
choice of Λ shown in the figure. Naively, this plot seems to
be at odds with the left panel since the two plots are
equivalent up to a minus sign. Whereas the velocity seems
to asymptote to a constant value at late times, the degree of
supercooling seems to vary greatly at late times. The
apparent discrepancy is a result of the different x-axis
scales. Whereas the x axis in the left panel is linearly scaled
in t, the x axis in the right panel is log scaled in R. The
majority of the simulation takes place when the pocket radii
are very large. The pocket radii are much smaller than their
initial value only for a very short time at the end of the
simulation, at timescales much shorter than 1=H. In fact,
the small time step 10−6=H was chosen to resolve this
smaller timescale. At such small timescales and pocket
radii, very little Hubble cooling or latent heat injection
takes place, leading to the plateau in vw. Since most of the
quark interactions recouple at pocket radii much smaller
than R1 (see e.g., Fig. 6), we are justified in treating vw as
constant within the Boltzmann equations of Sec. III.14 The
asymptotic vw value as a function of Λ is plotted in Fig. 3
and is well fit by

vwðR ≪ R1Þ ¼ 0.2

�
Λ
Mpl

�
0.2

¼ 1.7 × 10−4 ×

�
Λ

TeV

�
0.2
:

ðA27Þ

4. Effect of quark pressure

Up to this point we have neglected the effect of quark
pressure on the phase transition,

pq ¼ nqT: ðA28Þ
For the first half of the phase transition, this approximate
treatment was justified. At the start of the phase transition,
pq is suppressed compared to the gluon pressure. During
the phase transition nq grows, so the quark pressure could
potentially become large enough to affect the bubble
dynamics. During the first half of the phase transition,
however, the quark density, and hence pq, grows by only a
factor of 2. Including this factor of 2 enhancement, we find
that the quark pressure is subdominant compared to the net
gluon pressure during the bubble growth stage of the phase
transition and hence can be neglected.
On the other hand, during the second half of the phase

transition, the quarks are compressed much more. We find
that for every point in the DM parameter space we consider,
the quark pressure eventually becomes comparable to the
other forces acting on the wall. Most likely, the increased
quark pressurewould oppose further contraction and slow vw
down. Unfortunately, the process by which pq gradually
grows and, in response, vw gradually shrinks is a non-
equilibrium, strong physics problem for which we have no
solution. Nevertheless, we can still use thermodynamic
arguments as before to understand the possible limiting
behavior of vw.
Consider the scenario in which the enhanced quark

pressure forces the pocket into a state of mechanical
equilibrium. Mechanical equilibrium is achieved when the
four forces on the wall—gluon pressure inside the pocket,
glueball pressure outside the pocket, surface tension, and
quark pressure—are in balance. At this equilibrium point, we
must have

FIG. 12. Degree of supercooling as a function of time (left), confined phase fraction as a function of time (middle), and pocket wall
velocity as a function of bubble radius during the second half of the phase transition (right).

14Recall that by “recoupling”we mean the point when the rates
of quark interactions become large compared to the contraction
rate of the pocket, so the quark density evolution is dominated by
interactions.
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0 ¼ dAσ þ dV
�X

p
�����

wall

¼ 8πσRþ 4πΔfðTwallÞR2 − 4πpqR2

¼ 8πσRþ 4π
ðTc − TwallÞ

Tc
lR2 − 3NqTwallR−1; ðA29Þ

where Δf still refers to the confined phase minus the
deconfined phase gluonic pressures. The temperatures are
all evaluated at the local wall temperature, and we use
Nq ¼ 4π

3
R3nq. If the system ever reached this equilibrium

point, it would be a stable equilibrium: If Rwere to contract,
the increased quark density would oppose it; if R were to
expand, the surface tension would increase, the quark
pressure would decrease, and the wall would absorb latent
heat and increase the net gluon pressure difference, all of
which oppose further expansion. After achievingmechanical
equilibrium, thewall would proceed to contract adiabatically
as quark annihilation decreases the quark pressure and wall
cooling increases the net gluon pressure compressing the
wall. By differentiating Eq. (A29) with respect to time and
defining vw ¼ − _R, we find

vw ¼
−3 _NqTwall − ðNq þ 4πlR3

Tc
Þ _Twall

ð8πσRþ 8π ðTc−TwallÞ
Tc

lR2 þ 3NqTwallR−1Þ
: ðA30Þ

Since we do not keep track of Twall, nor can we calculate
vw as a function of Twall when the wall is out of mechanical
equilibrium, we have no way of knowing when or if
mechanical equilibrium is achieved.
However, to develop some intuition for the possible

effects of quark pressure, we can perform a crude
approximate calculation. For this calculation, we perform
our pocket contraction simulation while simultaneously

keeping track of the quark abundance within each step
using the Boltzmann equations of Sec. III. Since the quark
pressure is subdominant initially, we start with vw given by
Eq. (A26). Eventually, there is a radius when the quark
pressure is so large that it is able to oppose the combined
forces of surface tension and the net gluonic pressure,
even when the latter pressure is at its maximum (which is
attained when the wall temperature is at its minimum,
Twall ¼ T). At this radius, we say that the wall has suddenly
attained mechanical equilibrium. We then switch over to a
wall velocity of Eq. (A30) for the rest of the simulation. We
assume that the system maintains mechanical equilibrium
and Twall ¼ T until the end of the simulation.
In Fig. 13 we plot the velocity and particle abundances

within the pocket as functions of R for this new simu-
lation. One can see that the velocity discontinuously drops
at a radius of R ∼ 105Λ−1 when the pocket abruptly
achieves mechanical equilibrium. When this happens,
further contraction is allowed only by subsequent quark
annihilations; the quark depletion processes immediately
recouple and dominate the density evolution due to the
sharp drop in the contraction rate vw=R. At this same
radius, the baryon abundance is at a maximum, and we
find that the DM relic abundance is set. Afterwards, the
pocket slowly contracts, and all particle numbers are
depleted until the pocket vanishes. Importantly, we find
that the pocket asymmetry is saturated in this simulation
[see Eq. (2.16)], and it is also saturated for every other
point in the DM parameter space that we consider. Of
course, this is a crude approximation—a realistic scenario
could have a smoother evolution of vw, or if the wall
velocity falls sharply, this could induce plasma shock
waves which modify the pocket evolution. However, this
explicit example supports our intuition that turning on
quark pressure will drive the system rapidly into the
regime where the asymmetry is saturated, and once in this

FIG. 13. Pocket wall velocity (left) and particle abundances (right) within the pocket using a model that crudely incorporates the
effects of quark pressure on vw. We choose a confinement scale of 1 TeVand dark matter mass of 103 TeV. We begin the simulation by
neglecting the quark pressure, allowing us to use Eq. (A26) to determine the contraction rate (red-dotted line). Eventually, the quark
pressure is so large that it is able to come into mechanical equilibrium with the other forces acting on the wall, which happens at the
discontinuity near RΛ ¼ 105. At this point, we switch over to a contraction rate given by Eq. (A30), leading to the discontinuous drop in
vw in the left panel and the sudden depletion of all particle abundances in the right panel.
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regime, the details of the evolution do not affect the final
relic abundance.

APPENDIX B: CROSS SECTIONS

For the computation of the baryon survival factor,
multiple processes are relevant. We distinguish between
three classes of interactions:

(i) Annihilation process, i.e., a direct annihilation of
free quarks into dark gluons: 1þ ð−1Þ → 0þ 0.

(ii) Capture processes, where a dark gluon is emitted for
momentum conservation, for example: 1þ1→2þ0.

(iii) Rearrangement processes, where no gluon is emitted
and only quark constituents exchanged, for exam-
ple: 2þ 2 → 3þ 1.

Similar to Table I, in writing these equations we use each
relic’s quark number.
For the values of the annihilation and capture cross

sections, explicit calculations taking into account group
theory factors have been performed in [25,26,61]. The
cross sections scale as

hσann=capvi ¼ ζ
πα2

m2
q
≡ ζσ0; ðB1Þ

where ζ is a numerical factor that depends on the number
of colors and flavors in the theory, and the coupling
strength α is evaluated at the scale of the momentum
transferred in the annihilation process, which is mq. In
addition, at low interaction energies, the bound state
formation and the annihilation process experience enhance-
ment due to nonperturbative Sommerfeld corrections. The
cumulative effect of those nonperturbative effects at finite
temperature can be taken into account by the effective cross
section hσeffvreli defined in [25,26,61]. In Fig. 14 the factor
ζ is shown for different annihilation and capture processes
in our full set of Boltzmann equations.

Thermal masses of the dark gluons prevent bound state
formation at large temperatures, an effect that has been
confirmed by additional investigations of the process at hand
in a nonequilibrium field theory treatment [61,109,110].
The rearrangement process is more complex and requires

taking into account nonperturbative effects. Here, simu-
lations and comparisons to hydrogen-antihydrogen anni-
hilation have been performed in [25]. The resulting cross
section scales with the area set by the Bohr radius of the
colliding bound states and contains a suppression factor
which becomes effective once the kinetic energy exceeds
the available binding energy:

σRA ¼ πR2
Bohrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ekin=EEB

p : ðB2Þ

This results in a constant σv cross section, which is
expected for an exothermic reaction

hσRAvi ¼
1

CNα

π

m2
q
¼ σ0

CNα
3
; ðB3Þ

with CN being the quadratic Casimir of the dark quark
representation [CN ¼ 4=3 for quarks in the fundamental
representation of SUðNÞ] that controls the interquark
attraction in a non-Abelian theory. The overall scaling is

FIG. 14. Reproducing the results of [25,26,61] for the ζ factor
in Eq. (B1) for various annihilation or capture processes entering
our full set of Boltzmann equations.

TABLE III. Processes and cross-section classes involved in the
annihilation and baryon formation. Bound states are denoted by
their baryon number. Direct annihilation takes place if multiple
gluons need to be emitted in the final state. If one gluon is
radiated, then perturbative capture cross-section calculations
apply. In the case that the final states have no gluons that would
be needed for momentum conservation, we use the geometric
rearrangement cross sections discussed below. The 0 in the
rearrangement processes denotes a pion q̄q that promptly decays
to gluons. Generally, all processes above have equivalent reac-
tions, where all particles are replaced by antiparticles. For those
we assume the same cross sections, i.e., assuming CP is
conserved.

Class Process Cross section

Annihilation 1þ ð−1Þ → 0þ 0 Fig. 14 and Eq. (B1)
Capture 1þ 1 → 2þ 0

2þ 1 → 3þ 0

Rearrangement ð−3Þ þ 1 → ð−1Þ þ ð−1Þ Eq. (B3)
ð−3Þ þ 1 → ð−2Þ þ 0
ð−2Þ þ 1 → ð−1Þ þ 0
3þ ð−2Þ → 1þ 0
2þ 2 → 3þ 1
3þ ð−2Þ → 2þ ð−1Þ
3þ ð−3Þ → 2þ ð−2Þ
2þ ð−2Þ → 1þ ð−1Þ
3þ ð−3Þ → 1þ ð−1Þ
3þ ð−3Þ → 0þ 0
2þ ð−2Þ → 0þ 0
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thus σRAv ∼ σann=capv=α3, in agreement with the numerical
results of [111]. This nonperturbative enhancement results
from taking into account the finite size of the colliding
bound states.
We summarize all the cross sections entering Eq. (3.10)

in Table III. Notice that in this table, some processes
involving gluons (denoted by 0) are listed as a rearrange-
ment. These processes, in fact, have an intermediate step in
which the quarks are rearranged and make pions (q̄q),
which can promptly decay into gluons; see Eq. (3.1).

APPENDIX C: BINDING ENERGIES

The binding energies of several types of dark states enter
the full set of Boltzmann equations. For the two quark
states, exact results are available. Since we work in the limit
mq ≫ ΛDC, the Coulomb potential approximation is valid.
For the baryon binding energy, variational methods are
needed, and numerical evaluations were performed in [25].
We focus on the case where N ¼ 3. The resulting binding
energies are as follows:

(i) Binding energy of a singlet diquark, or meson
q̄q: Eq̄q

B ¼ 1
4
α2C2

Nmq.
(ii) Binding energy of a bound nonsinglet diquark state

qq in a binding configuration: Eqq
B ¼ 1

4
Eq̄q
B .

(iii) Binding energy of a baron qqq singlet state:
Eqqq
B ¼ 0.26α2C2

Nmq.
Here α is the gauge coupling of the confining group

given by Eq. (2.4). The relevant scale at which the coupling
should be evaluated is the Bohr momentum αmq, which can
be determined iteratively, starting from the value of αðmqÞ.
It has been shown that the corrections due to the linear
(confining) part of the potential between quarks has a
negligible effect on these binding energies [see Eq. (4)
of [26]].
Note that the binding energies inside and outside the

pockets differ only by the subdominant contribution of
the Cornell potential Λ2r, evaluated at the interquark
spacing Rb ∼ 1=ðαmqÞ. That contribution is suppressed
by Λ2=m2

q ≪ 1 with respect to the ground-state binding
energy, which is of the order α2mq.
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