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We study the effect of interference on the lepton number violating (LNV) and lepton number conserving
(LNC) three-bodymeson decaysMþ

1 → lþi l
�
j π

∓ that arise in a TeV-scale left-right symmetric model (LRSM)
with degenerate or nearly degenerate right-handed (RH) neutrinos. The LRSM contains three RH neutrinos
and a RH gauge boson. The RH neutrinos with masses in the range of MN∼ (MeV–few GeV) can give
resonant enhancement in the semileptonic LNV and LNC meson decays. In the case where only one RH
neutrino contributes to these decays, the predicted new physics branching ratios of semileptonic LNV and
LNCmeson decaysMþ

1 → lþi l
þ
j π

− andMþ
1 → lþi l

−
j π

þ are equal. We find that with at least two RH neutrinos

contributing to the process, the LNV and LNC decay rates can differ. Depending on the neutrino mixing
angles andCP-violating phases, the branching ratios of LNVand LNC decay channels mediated by the heavy
neutrinos can be either enhanced or suppressed, and the ratio of these two rates can differ from unity.

DOI: 10.1103/PhysRevD.104.095009

I. INTRODUCTION

The observation of light neutrino masses and mixings
clearly indicates the existence of beyond-the-Standard-
Model (BSM) physics. A number of models exist in the
literature that have been successful in explaining small
neutrino masses and their mixings. One of the most
interesting models among them is the left-right symmetric
model (LRSM) [1], which not only explains the small light
neutrino masses but also addresses parity violation in the
SM. The model contains three right-handed (RH) neutrinos
and two Higgs triplet fields that generate the Majorana mass
terms for light neutrinos via the type-I and type-II seesaw
mechanisms. The RH neutrinos in this model are Majorana
in nature. The Majorana masses violate lepton number, and
hence these neutrinos can directly induce LNV processes.

The Majorana nature of the light and heavy neutrinos can be
tested via the lepton number violating (LNV) neutrinoless
double beta decay (0νββ) [2–7]. Their LNV nature can also
be probed at the colliders through direct searches [8–13], as
well as through the rare LNV decays of mesons and the tau
lepton [14–25]. The

ffiffiffi
s

p ¼ 13 TeV LHC search in the same-
sign dilepton and dijet channel has so far ruled out RH
neutrino masses in the mass range from MN ∼ 100 GeV up
to a few TeV, andMWR

< 4.7 TeV [26,27]. The boosted RH
neutrino search for the LRSM also places strong constraints
on the RH gauge boson mass MWR

> 4.8 TeV [10,28] for
the RH neutrino and a RH gauge boson mass hierarchy of
Oð0.1Þ. The nature of couplings of additional charged gauge
bosons with leptons has been studied in Ref. [29]. The effect
of helicity inversion on LNV transition rates at the LHC has
been studied in the context of a type-1 seesaw model in
Ref. [30]. For complementarity between Z0 andWR searches
in the LRSM, see Ref. [31]. While LHC searches are mostly
sensitive to MN ∼Oð100Þ GeV–few TeV, and MWR

up to a
few TeV, the rare LNVand LNC semileptonic meson decays
on the other hand are sensitive to a much smaller RH
neutrino mass range MN∼ (MeV–few GeV), and to a much
higher value of the WR gauge boson mass. These searches
are thus complementary to LHC searches. It is well known
that for very light and heavy neutrino masses the rates of
these LNV meson and tau decays are extremely suppressed
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[21,24], well below the sensitivity reach of any future
experiment. This changes dramatically if there exists a
heavy neutrino in the MeV–GeV mass domain, which
can be produced on shell in the parent meson decay. This
can lead to large resonant enhancement of these processes.
Various ongoing experiments—including NA62, LHCb, and
Belle-II—are searching for the LNV meson decays. The
LHCb experiment looked for the process B− → μ−μ−πþ,
and has constrained the light neutrino–heavy neutrino
mixing [15]. Due to the order-of-magnitude increase in
the meson and tau flux and the long detector distance in
experiments such as SHiP, MATHUSLA, and others under
discussion, one expects to achieve better sensitivity for LNV
meson and tau decays in the future. Even nonobservations
can set tight limits on the relevant parameter space, such as
on the heavy neutrino mass MN and RH gauge boson mass
MWR

[21,32].
In this work, we study the three-body LNV and LNC

meson decays—Mþ
1 → lþi l

þ
j M

−
2 andMþ

1 → lþi l
−
j M

þ
2 for the

LRSM, in particular focusing on the implications of possible
interference effects that may occur due to degenerate or
nearly degenerate RH neutrino states. With only a single
heavy neutrino, the rates of LNVand LNCmeson decays via
RH neutrino mediation are predicted to be the same,
irrespective of any CP-violating phase present in the RH
neutrino mixing matrix. This scenario changes dramatically
if more than one heavy neutrino state contributes in these
processes with a nontrivial RH neutrino mixing matrix. In
this case, the predictions for the LNVand LNC meson decay
rates can differ widely due to the interference among the
contributions of different RH neutrinos. This leads to a
change in the interpretation of data in the LRSM compared
to the case of a single heavy neutrino. For a study of
interference effects in semileptonic meson decays for a pure
sterile neutrino without any additional gauge extension, see
Ref. [25]. The CP violation in semileptonic decays of
charged mesons with nearly degenerate heavy neutrinos
has been extensively studied in Refs. [33–36], and for CP
violation in rare τ� decays with nearly equal heavy neutrino
masses, see Ref. [37]. A comprehensive study of heavy
neutrino oscillation in rare W decays as well as tau decays
with degenerate heavy neutrinos has been performed in
Refs. [38–40]. The interference effect in the LRSM, relevant
for collider searches, has been discussed in Ref. [41]. The
interference effects have also been studied in type-I and
generalized inverse seesaw models in Ref. [42]. The
enhancement of CP asymmetry at the LHC has been studied
for heavy degenerate neutrinos in Ref. [43] and for degen-
erate scalars in Ref. [44].
To quantify the interference effect in meson decays, we

consider K- and B-meson LNV and LNC semileptonic
three-body decays with a pion in the final state as
illustrative examples. We develop the generic theory
framework with two degenerate or nearly degenerate RH
neutrino states that contribute significantly in the LNVand

LNC semileptonic three-body meson decays. Using this,
we then evaluate the analytic results for the partial decay
widths and branching ratios in the presence of interference
terms in the amplitude. We focus on the final states that
contain electrons and muons. We consider two different
mass ranges of the two RH neutrino states, 0.14 GeV <
MN < 0.49 GeV and 0.14 GeV < MN < 5 GeV, relevant
for Kþ → eþeþπ−=eþμ�π∓ and Bþ → eþeþπ−=eþμ�π∓
meson decays, respectively. These decay modes, including
the flavor-violating LNC modes Kþ → eþμ−πþ and
Bþ → eþμ−πþ, are absent in the SM, and hence serve
as a clear indication of new physics.
The paper is organized as follows. In Sec. II we review

the basic features of the LRSM, and in Sec. III we discuss
in detail the RH neutrino contributions in LNV and LNC
meson decays. In Sec. IV we discuss our results with the
assumption that only two RH neutrinos are contributing
with an effective 2 × 2 RH neutrino mixing matrix. In
Sec. V we discuss the interference effects with two RH
neutrinos considering the full 3 × 3 RH neutrino mixing
matrix. Finally, we summarize our most important findings
in the conclusion.

II. LEFT-RIGHT SYMMETRIC MODEL

The LRSM is a simple extension of the SM, where both
the left and right chiral fermions are treated on an equal
footing. The model is based on the gauge group
SUð3Þc ⊗ SUð2ÞL ⊗ SUð2ÞR ⊗ Uð1ÞB−L, where the left
and right chiral fermions are doublets of SUð2ÞL and
SUð2ÞR, respectively. The model necessarily contains three
RH neutrinos (NRi), which are part of the three right-
handed lepton doublets. The electric charge generator Q is
related to the third component of weak isospins I3L and I3R
as Q ¼ I3L þ I3R þ ðB − LÞ=2. The scalar sector is also
enlarged because of the extra symmetry. The LRSM
contains one bidoublet Φ and two scalar triplets ΔR and
ΔL under SUð2ÞR and SUð2ÞL, respectively. The particle
content is given below:

lL ¼
�
νLi

eLi

�
; lR ¼

�
NRi

eRi

�
; ð1Þ

QL ¼
�
uLi
dLi

�
; QR ¼

�
uRi
dRi

�
; ð2Þ

Φ¼
"
ϕ0
1 ϕþ

2

ϕ−
1 ϕ0

2

#
; ΔL=R¼

"
Δþ

L=R=
ffiffiffi
2

p
Δþþ

L=R

Δ0
L=R −Δþ

L=R=
ffiffiffi
2

p
#
: ð3Þ

The SUð2Þ doublets lL and lR have the charges ð1; 2; 1;−1Þ
and ð1; 1; 2;−1Þ, while the Higgs multiplets have
the charges Φ ∼ ð1; 2; 2; 0Þ, ΔL ∼ ð1; 3; 1;þ2Þ, and
ΔR ∼ ð1; 1; 3;þ2Þ. The bidoublet being neutral under
B − L, additional Higgs triplets are required to break the
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left-right symmetric gauge group to the SM gauge group
SUð2ÞL ⊗ Uð1ÞY . The neutral component of ΔR takes the
vacuum expectation value (VEV) vR and breaks the gauge
group SUð2ÞR ⊗ Uð1ÞB−L to Uð1ÞY . In the next step, the
VEV of the bidoublet Φ breaks the SM gauge group to
Uð1ÞQ. The VEV of the bidoublet is denoted as
hΦi ¼ Diagð κ1ffiffi

2
p ; κ2ffiffi

2
p Þ. Due to the strong constraint on the

ρ parameter, the VEV of ΔL should be very small, vL <
5 GeV [45]. Hence, the different VEVs of SUð2Þ triplets
and the bidoublet follow the hierarchy vL ≪ κ1;2 ≪ vR.
The Yukawa Lagrangian responsible for generating the
lepton masses has the following form:

−LY ¼ yl̄LΦlR þ ỹl̄LΦ̃lR þ yLlTLC
−1iσ2ΔLlL

þ yRlTRC
−1iσ2ΔRlR þ H:c:; ð4Þ

where C is the charge-conjugation operator, C ¼ iγ2γ0, and
Φ̃ ¼ σ2Φ�σ2. Here γμ and σi are the Dirac and Pauli
matrices, and y; ỹ, yL, and yR are the Yukawa couplings,
respectively. After spontaneous symmetry breaking, the
neutral lepton mass matrix is obtained as

Mν ¼
�
ML MD

MT
D MR

�
: ð5Þ

In the above, the Dirac mass matrix MD ¼ 1ffiffi
2

p ðyκ1þ
ỹκ2Þ ¼ yDκs, and ML;R are given by ML ¼ ffiffiffi

2
p

vLyL and
MR ¼ ffiffiffi

2
p

vRyR. The Higgs triplets ΔR and ΔL generate
Majorana masses of heavy and light neutrinos, respectively.
The parameter κs is the electroweak VEV, and is related to
κ1;2 as κs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ21 þ κ22

p
. The light and heavy neutrino

masses can be calculated by using the seesaw approxima-
tion ML ≪ MD ≪ MR. This leads to the following light
and heavy neutrino mass matrix:

Mν ∼ML −MDM−1
R MT

D þOðM−2
R Þ

∼
ffiffiffi
2

p
vLyL −

κ2sffiffiffi
2

p
vR

yDy−1R yTD ð6Þ

and

MN ∼MR þOðM−1
R Þ

∼
ffiffiffi
2

p
yRvR: ð7Þ

The mass matrix Mν in Eq. (5) can be diagonalized by a
unitary transformation,

VT

"
ML MD

MT
D MR

#
V ¼

"
M̃ν 0

0 M̃R

#
; ð8Þ

where M̃ν ¼ Diagðm1; m2; m3Þ and M̃R ¼ DiagðM1;
M2;M3Þ. Up to OðM−2

R Þ, the mixing matrix V has the
following form:

V ¼
"
UPMNS S†

T K†
R

#
; ð9Þ

where S; T ≈MDM−1
R . In the above, KR is the diagonaliza-

tion matrix for the RH neutrino mass matrix MR. We will
neglect the effect of S, T in our subsequent discussions, as
S; T ∼Oð10−5Þ forMν ∼Oð0.1Þ eV andMN ∼Oð1 GeVÞ.

A. Gauge sector

In addition to the SM gauge bosons WL and Z, this
model also has a RH gauge boson WR and an additional
neutral gauge boson Z0. The left- and right-handed charged
gauge bosons (WL,WR) will mix and the mixing angle can
be approximated to be

ζ ≃
κ1κ2
v2R

≃ 2
κ2
κ1

�
MWL

MWR

�
2

: ð10Þ

Due to this small mixing between the charged gauge
bosons, the masses of the gauge bosons can be approxi-
mated as

MWL
≃MW1

≃
gκ1ffiffiffi
2

p ; MWR
≃MW2

≃gvR: ð11Þ

Note that throughout our calculation we assume
g≡ gL ¼ gR, which is justified as we consider parity as
a symmetry in the LRSM. The mass of the neutral gauge
boson Z0 for this choice becomes MZ0 ∼ 1.7MWR

.

B. Charged- and neutral-current Lagrangian

The charged-current Lagrangian for the quark sector has
the following form:

Lq
cc ¼ gffiffiffi

2
p

X
i;j

ūiVCKM
ij Wþ

Lμγ
μPLdj

þ gffiffiffi
2

p
X
i;j

ūiVR-CKM
ij Wþ

Rμγ
μPRdj þ H:c:; ð12Þ

where PL ¼ 1
2
ð1 − γ5Þ and PR ¼ 1

2
ð1þ γ5Þ. In our analy-

sis, we consider VR-CKM to be the same as VCKM. This holds
naturally if parity is realized as a symmetry in the LRSM
together with the phase of the bidoublet Higgs VEV
considered to be zero [46,47]. The charged-current
Lagrangian for the lepton-neutrino sector is given by
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Ll
CC ¼ gffiffiffi

2
p

X
i

l̄Li
W−

Lμγ
μPLðUPMNSνL þ S†NcÞi

þ gffiffiffi
2

p
X
i

l̄Ri
W−

Rμγ
μPRðKT

RN þ T�νcLÞi þ H:c: ð13Þ

Note that in a few of the decay channels of Ni, the neutral
current will also contribute. The neutral current for the
LRSM has the following form [48,49]:

LNC ¼ g
cos θw

�
ZμJ

μ
Z þ cos2 θwffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos 2θw
p Z0

μJ
μ
Z0

�
; ð14Þ

where

JμZ ¼
X
i

f̄iγμðI3LPL −Q sin2 θwÞfi; ð15Þ

JμZ0 ¼
X
i

f̄iγμðI3RPR − tan2 θwðQ − I3LÞÞfi: ð16Þ

As emphasized before, for the particular choice of the
neutrino mixing matrix V, we neglect interaction terms
proportional to the mixing matrices S and T.
Note that the masses of both the RH gauge bosons and RH

neutrinos are proportional to the SUð2ÞR breaking scale vR.
However, since the RH neutrino masses also depend on the
Yukawa couplings of ΔR with the heavy neutrinos, one can
choose to have a wide splitting between the two. In this paper
we consider the masses of the heavy neutrino in the MeV–
GeV range, in particular, in between 0.14 GeV < MNi

<
5 GeV, so that the decay of the mesons can produce on-shell
RH neutrinos. Semileptonic meson decays such as Mþ

1 →
lþi l

�
j M

∓
2 will then be resonantly enhanced due to the on-shell

production of the RH neutrinos.

III. LNV AND LNC MESON DECAYS

Lepton number is broken in the LRSM due to SUð2ÞR ×
Uð1ÞB−L symmetry breaking. The heavy neutrinos being
Majorana particles can result in LNVas well as LNCmeson
decay processes:

LNV∶ Mþ
1 ðpÞ → lþi ðk1Þ þ lþj ðk2Þ þM−

2 ðk3Þ; ð17Þ

LNC∶ Mþ
1 ðpÞ → lþi ðk1Þ þ l−j ðk2Þ þMþ

2 ðk3Þ: ð18Þ

In the above, M1 is a pseudoscalar meson and M2 can be
either a pseudoscalar or a vector meson. Here we consider
only the case of a pseudoscalar mesonM2. The LNV mode
for all flavors of final-state leptons arises entirely from RH
neutrino mediation. Also, for the LNC mode with different
lepton flavors (such as a eþμ− combination) the contribu-
tion arises solely from RH neutrino mediation. These
processes are absent in the SM, and hence serve as a
distinct signature of new physics. On the other hand, for the

LNC mode with the same lepton flavors (eþe−; μþμ−),
virtual photon and virtual Z diagrams (one-loop penguin
diagrams) will also contribute in addition to the RH
neutrino contribution with a substantial branching ratio
∼10−7=10−8 for Kþ → eþe−π−=μþμ−πþ [50–52]. In our
subsequent discussions, the contribution to such LNC
processes coming from diagrams involving RH neutrino
mediation will be referred to as the new physics (NP)
contribution. In the rest of the paper, we focus mainly on
the RH neutrino contribution to the LNV and LNC meson
decays, as the main focus of this paper is on the interference
effect of RH neutrino states.
For our later discussion on the RH neutrino contribution

in LNVand LNC semileptonic meson decays, which is the
main subject matter of this paper, we assume that there are
at least two RH neutrinos with masses in the range
100 MeV–5 GeV mediating these meson decays. The
Feynman diagrams for the LNV process are shown in
Fig. 1. The different contributions are mediated through
WL − Nk −WL, WL − Nk −WR, WR − Nk −WL, and
WR − Nk −WR, respectively. Note that, while the WR −
Nk −WR diagram completely depends on the mixing
matrix in the RH neutrino sector, the other diagrams also
depend on the light-heavy neutrino mixing. Throughout
this work, we consider the contribution from the WR −
Nk −WR diagram only, as the light-heavy neutrino mixing
angle that comes from the off-diagonal blocks (S, T) of the
mixing matrix V is very small. Considering the heavy
neutrinos to be OðMeVÞ, the RH neutrinos can be
produced on shell and the semileptonic meson decay will
be resonantly enhanced. In addition, there can also be
contributions from WL −WR mixing in one of the legs,
but these are suppressed due to the small mixing angle ζ.
The contributions from the light-neutrino-mediated proc-
ess will be much smaller due to mass suppression. Hence,
we do not consider all of these other contributions in our
analysis. In Fig. 2 we show the Feynman diagram for the
LNC process.
The contribution from heavy neutrinos Na to the decay

amplitude of the LNV process Mþ
1 ðpÞ → lþi ðk1Þlþj ðk2Þ

M−
2 ðk3Þ can be written as

MLNV;a
ij ¼ ðMμν

lepÞaijMhad
μν ; ð19Þ

where

Mhad
μν ¼ GFffiffiffi

2
p M2

WL
VCKM
M1

VCKM
M2

× h0jq̄2γμγ5q1jMþ
1 ðpÞihMþ

2 ðk3Þjq̄3γνγ5j0i

¼ GFffiffiffi
2

p M2
WL

VCKM
M1

VCKM
M2

fM1
fM2

pμk3ν: ð20Þ

In the above, GF is the Fermi coupling constant, VCKM
M1

(VCKM
M2

) are the Cabibbo-Kobayashi-Maskawa (CKM)
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matrix elements at the decay (production) vertex of the
meson M1 (M2), and fM1

, fM2
are the decay constants of

M1, M2. The relevant leptonic matrix element for the
(ΔL ¼ 2) LNV process is given by the following product of
two charged currents:

Mμν
lep ∝ ðN̄γμPRlÞðN̄γνPRlÞ

¼ ðN̄aðK�
RÞaiγμPRliÞðN̄aðK�

RÞajγνPRljÞ
¼ ðlci K�

Raiγ
μPLNaÞðNaK�

Rajγ
νPRljÞ; ð21Þ

where we have used the fact that massive neutrinos are
Majorana type (Nc

a ¼ Na). We can now write the leptonic
part of the amplitude as

ðMμν
lepÞaij ¼ 2

ffiffiffi
2

p
GF

M2
WL

M4
WR

ðK�
RÞaiðK�

RÞaj

×MNa

ūðk1Þ=p=k3PRvðk2Þ
q2 −M2

Na
þ iΓNa

MNa

; ð22Þ

where q ¼ p − k1. The 1=M4
WR

term appears due to the two
WR gauge boson propagators in the bottom most panel of

Fig. 1. Finally, we can write the individual contributions
from heavy neutrinos Na to the amplitude as

MLNV;a
ij ¼ 2G2

FV
CKM
M1

VCKM
M2

fM1
fM2

�
MWL

MWR

�
4

ðK�
RÞaiðK�

RÞaj

×MNa

ūðk1Þ=p=k3PRvðk2Þ
q2 −M2

Na þ iΓNaMNa
; ð23Þ

where ΓNa
is the decay width of heavy neutrinos Na,

obtained by summing over all accessible final states.
Adding the contributions from all heavy neutrinos, we
can write the full amplitude as

MLNV ¼
X3
a¼1

ðMLNV;a
ij þMLNV;a

ji Þ; ð24Þ

where the second contribution comes from the exchange of
two leptons. Finally, the total amplitude squared jMLNVj2
can be written as

jMLNVj2 ¼
X3

a;b¼1;b>a

ðjMLNV;a
ij j2 þ jMLNV;a

ji j2

þ 2Re½ðMLNV;a
ij Þ†ðMLNV;b

ij Þ�
þ 2Re½ðMLNV;a

ji Þ†ðMLNV;b
ji Þ�Þ: ð25Þ

The explicit forms of these squared matrix elements are
provided in the Appendix A.

A. Decay widths of RH neutrino

The RH neutrino state Ni of mass MeV to few GeV
can decay to various final states, such as l�V∓; l�P∓;

FIG. 2. Feynman diagram for LNC meson decay, mediated via
the RH neutrino.

FIG. 1. Feynman diagrams for LNV meson decays. See text for details.
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νlV0; νlP0, where V, P are the vector and pseudoscalar
mesons, respectively. The choice of KR plays a crucial role
in determining the different possible decay modes of the RH
neutrino. Following the parametrization given in Eq. (32),
which depends on only one angle and one phase, we show
the decay width of the RH neutrino state N1;2 in Fig. 3. The
left panel represents the variation of the decay widths of N1;2

with the masses of the RH neutrinos, and the right panel
represents the variation with respect to the mixing angle θ,
where θ parametrizes the mixing between N1 and N2 in the
two-generation case. For a detailed discussion, see Eq. (32).
We find that for smaller values of MN1;2

the dependency of
the decay width on mixing angles is more prominent,
whereas for higher values of MN1;2

the θ dependency is
negligible. This is clearly evident in the right panel, where
forMN ¼ 2 GeV both of the decay widths ΓN1;2

coincide. In
the left panel, which represents decay widths for various θ,
the decay widths of N1;2 show some difference for smaller

masses and for θ ≠ π=4, while for larger masses MN1;2
>

1.5 GeV both of the decay widths are same. This will have
an impact on the estimated branching ratios for K and B
mesons, which we will discuss in the subsequent sections.
From Fig. 3, it is clear that the decay width of the RH
neutrino is indeed very small for our chosen mass range.
Hence, we can safely use the narrow-width approximation,

jMLNV;a
ij j2 ∝ 1

ððp − k1Þ2 −M2
Na
Þ2 þ Γ2

Na
M2

Na

¼ π

MNa
ΓNa

δððp − k1Þ2 −M2
Na
Þ: ð26Þ

We have verified that for the parametrization given in
Eq. (52) the narrow-width approximation is valid too.
Note that we are neglecting terms like ðMLNV;a

ij Þ†MLNV;b
ji as

ðMLNV;a
ij Þ†MLNV;b

ji ∝
1

ððp − k1Þ2 −M2
Na

− iΓNa
MNa

Þððp − k2Þ2 −M2
Nb

þ iΓNb
MNb

Þ
≠

π

MNa
ΓNa

δððp − k1Þ2 −M2
Na
Þ: ð27Þ

Hence, contributions from these terms will not be reso-
nantly enhanced and can be safely neglected compared to
other terms; see Ref. [24]. Finally, the LNV decay rate can
be written as

dΓLNV¼
�
1−

δij
2

�
1

2m
jMLNVj2d3ðPS;p→k1k2k3Þ; ð28Þ

where d3ðPS;p → k1k2k3Þ is the three-body phase space
which can be written in terms of the product of two two-
body phase spaces as follows:

d3ðPS;p → k1k2k3Þ
¼ d2ðPS;p → k1qÞdq2d2ðPS; q → k2k3Þ: ð29Þ

The full analytical expressions for the LNV decay width
and three-body phase space are given in Appendix A.
Similarly, the LNC process can also be mediated by the
heavy neutrinos and the relevant leptonic part of the matrix
element:

FIG. 3. Left: variation of the decay widths of the RH neutrino states N1;2 with the masses of RH neutrinos for different values of θ and
RH gauge boson mass MWR

. Right: variation of the decay widths of N1;2 with θ. For MN1;2
¼ 0.38ð2Þ GeV, we consider

MWR
¼ 22ð5Þ TeV, respectively.
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Mμν
lep ∝ ðl̄γμPRNÞðN̄γνPRlÞ

¼ ðl̄iγμPRðKT
RÞiaNaÞðN̄aðK�

RÞajγνPRljÞ: ð30Þ

The amplitude coming from individual contributions of
heavy neutrinos Na is given by

MLNC;a
ij ¼ 2G2

FV
CKM
M1

VCKM
M2

fM1
fM2

ðMWL

MWR

Þ4ðKRÞaiðK�
RÞaj

×
ūðk1Þ=p=q=k3PRvðk2Þ

q2 −M2
Na

þ iΓNa
MNa

: ð31Þ

Following the same approach as in the LNV case, one can
also derive the partial decay width for the LNC process.
The details are given in Appendix A. In the subsequent
sections, we will consider a simplified scenario where both
RH neutrino states N1;2 can give resonantly enhanced
contributions in the LNV and LNC processes, and we will
quantify the effect of the interference.
Before presenting our analysis on the interference effect,

we make a few remarks about the bound appearing on such
RH neutrino states from cosmology. Note that RH neu-
trinos with masses in the range MeV–OðGeVÞ can also be
constrained from cosmological considerations. A RH
neutrino with a mixing angle θ with the active neutrino
can decay to leptonic and hadronic final states. If the decay
happens around the time of big bang nucleosynthesis
(BBN) τ ≥ 1 sec, this can alter the prediction for the light
element abundance in the Universe. Constraints from BBN
on the MeV-scale RH neutrino have been discussed in
detail in Ref. [53], with the assumption of a pure sterile
neutrino. See also Refs. [54,55] for a generic discussion on
BBN constraints for a late-decaying massive state X.
Similar constraints would also be applicable for the
LRSM, where the RH neutrino decays via off-shell WR
gauge bosons and leads to semileptonic final states. We
estimate the lifetime of the RH neutrino states for 380 MeV
and 2 GeV, and the RH gauge boson masses as 22 TeVand
5 TeV, respectively. We find that the RH neutrino lifetime
varies between 10−6–1 sec. For these RH neutrino masses,
a WR gauge boson heavier than 22 TeV will be tightly
constrained from BBN. Note that the decay width/lifetime
of the RH neutrino states can be made larger/smaller if
additional channels for RH neutrino decay open up. For
example, with a sizable active-sterile mixing S, T in
Eq. (13), the decay lifetime can be made sufficiently
smaller, and hence BBN constraints can be avoided. In
that scenario, additional diagrams L − R, L − L shown in
Fig. 1 will also contribute in three-body LNV and LNC
meson decays. A detailed evaluation of these processes is
beyond the scope of this paper, and will be pursued
elsewhere.

IV. ANALYSIS FOR THE CASE OF TWO
GENERATIONS

We consider the case where two of the heavy neutrino
states are degenerate or nearly degenerate, i.e., MN1

∼MN2

and MN3
is very heavy. The two degenerate states mediate

the LNV and LNC meson decays of K and B mesons, and
give resonance enhancement in the branching ratios, being
in the MeV–GeV mass domain. The choice of the RH
neutrino masses can be justified, as the free parameters yD
and yR in the Lagrangian (4) that can be adjusted to get eV
light neutrino mass, along with two nearly degenerate RH
neutrinos. The matrix KR is in general a 3 × 3 unitary
matrix with few angles and phases. However, to present the
effect of interference in a more simplified way, we choose
the following parametrization of KR:

KR ¼

2
64

cos θ − sin θ 0

e−iϕ sin θ e−iϕ cos θ 0

0 0 1

3
75: ð32Þ

The above matrix KR is just the product of an orthogonal
matrix with angle θ and a diagonal phase matrix. By
choosing such a parametrization, we are interested only in
mixing between the two flavors (N1, N2) which are
assumed to have degenerate or nearly degenerate masses.
The parametrization of the mixing matrix KR enables the
three-body decay of the meson into e and μ lepton flavors,
and suppresses any final state with a tau. In Secs. IVA and
IV B we explicitly demonstrate the impact of this angle and
phase on LNV and LNC meson decay rates.
Note that in addition to the mixing angle and phase, the

contributions of N1 and N2 states in LNVand LNC decays
also depend on the mass difference of the RH neutrino
states N1;2, along with their decay widths ΓN1;2

. For
degenerate or nearly degenerate masses of RH neutrinos,
the states N1;2 will both be resonantly produced in the K, B
meson decays. Depending on the angle and phases of the
mixing matrix, the contributions of the N1;2 states can
interfere either constructively or destructively. For a very
large mass difference between the N1;2 states, the interfer-
ence effect will fade away. Therefore, for a large mass
splitting between the RH neutrinos, the LNV and LNC
meson decays are similar to the one-generation case, which
has been studied in detail in Refs. [14,19,21,24]. To
demonstrate the effect of the mass splitting δM and the

decay width Γ ¼ ΓN1
þΓN2

2
on the interference effect, in Fig. 4

we show the ratio of LNV and LNC branching ratios for
different values of the δM=Γ, where we consider the Kþ →
eþe�π∓ channel as an illustrative example. The left panel
shows the new physics contribution, mediated via RH
neutrinos (referred to as NP in the plot). In the right panel
we show a conservative estimate of the LNVand LNC ratio.
The ratio of the mass difference between the two states N1;2
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and the decay width Γ has a large impact on the interference
effect. Without any interference effect, the LNV and LNC
decay branching ratios would be the same, leading the ratio
to be identity. For a very small value of δM=Γ, the ratio
deviates significantly from unity. As is evident from the
figure, by increasing the δM=Γ ratio the interference
between N1;2 state tends to become less prominent, but
still has a visible effect for δM ∼ Γ. For much larger values,
such as δM=Γ ¼ 10, the interference effect and the oscil-
latory behavior fade away, causing the LNV and LNC
branching ratios to be equal. While we present the
discussion on the ee final state, it is to be noted that this
is not the most optimal channel due to large SM contri-
butions in the LNC process. However, the left panel of
Fig. 4 can be used to demonstrate the dependency of the
interference effect on δM=ΓN . We have verified that this
feature is present in the μμ and eμ channels (for non-
degenerate RH neutrino masses) with the KR matrix given
in Eq. (32), and also in the eμ channel for the para-
metrization of KR discussed in Sec. V.

A. LNV

We give the complete list of decay channels of Ni for a
general light-heavy mixing matrix in Appendix C. We list
only the channels that are kinematically allowed for RH
neutrino masses in the range 0.14 GeV < MNi

< 5 GeV.
Note that for our chosen mass range of RH neutrino states
and with the off-diagonal mixing elements S; T ∼ 0,
decay modes such as N → l�P∓; l∓V�, νlP0, and νlV0

will only be allowed. With the mixing matrix KR given in
Eq. (32), the RH neutrino decay width will also depend
on the mixing angle θ. One can write down a generic
expression for the total decay width of degenerate RH
neutrinos as

ΓN1
¼ 1

M4
WR

ðAðMNÞ þ BðMNÞ cos 2θÞ; ð33Þ

ΓN2
¼ 1

M4
WR

ðAðMNÞ − BðMNÞ cos 2θÞ: ð34Þ

Note that the above expressions can be obtained by
substituting KR into the expressions of the decay widths
given in Appendix C, where we consider S; T ∼ 0. For the
choice of MN1

∼MN2
∼MN ¼ 0.38 GeV, which we con-

sider for Kþ meson decay, the RH neutrinos will only
have decay modes with a charged pion in the final state,
i.e., Nj → l�i þ π∓. The expressions of the two functions
AðMNÞ and BðMNÞ have a simpler form, and are given in
Appendix C [see Eqs. (C10) and (C11)]. We note that for
a relatively larger mass MNi

> 1.5 GeV of the RH
neutrino states, the decay widths are nearly independent
of the mixing angle θ (Fig. 3). This can be understood
easily as follows. We can neglect the final-state lepton
masses in evaluating the decay widths for RH neutrinos
with masses MN∼ few GeV. The unitarity relation for the
mixing matrix KR makes the total decay widths of N1;2

nearly independent of θ. In this case, one can write down
the expression for the total decay width as

ΓN1
∼

1

M4
WR

AðMN1
Þ; ΓN2

∼
1

M4
WR

AðMN2
Þ: ð35Þ

Here AðMNÞ is a function of the mass MN and can
be derived from different decay modes, given in
Appendix C. Therefore, for degenerate masses
(MN1

¼ MN2
≡MN), the above two decay widths will

be nearly the same.
Using the general form of the heavyN decay width given

in Eqs. (33) and (34), one can write down the LNV decay
rate of the parent meson M1 in terms of same-flavor final-
state leptons, which leads to a rather complicated expres-
sion. The explicit expressions for the ee and μμ cases are as
follows:

FIG. 4. Variation of the ratio of LNVand LNC branching ratios of Kþ → eþe�π∓ with the mixing angle θ. The red solid, blue dash-
double-dotted, green dash-dotted, and black dashed lines represent four different δM=Γ ratios (0, 0.5, 1, 10). The RH neutrino mass has
been set at MN ∼ 0.38 GeV. The left panel represents only the RH-neutrino-mediated contribution. In the right panel we present a
conservative estimate by including the “polluting” SM contribution maximally.
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ΓLNV
ee ¼ πβMN

�
cos4θ

AðMNÞ þ BðMNÞ cos 2θ
þ sin4θ
AðMNÞ − BðMNÞ cos 2θ

þ 1

4
cos 2ϕsin22θ

�
1

AðMNÞ þ BðMNÞ cos 2θ
þ 1

AðMNÞ − BðMNÞ cos 2θ
��

feeðMNÞ; ð36Þ

ΓLNV
μμ ¼ πβMN

�
sin4θ

AðMNÞ þ BðMNÞ cos 2θ
þ cos4θ
AðMNÞ − BðMNÞ cos 2θ

þ 1

4
cos 2ϕsin22θ

�
1

AðMNÞ þ BðMNÞ cos 2θ
þ 1

AðMNÞ − BðMNÞ cos 2θ
��

fμμðMNÞ: ð37Þ

The partial decay width for different-flavor final-state leptons is given by

ΓLNV
eμ ¼ πβMN

�
sin22θ

4ðAðMNÞ þ BðMNÞ cos 2θÞ
þ sin22θ
4ðAðMNÞ − BðMNÞ cos 2θÞ

−
1

4
cos 2ϕsin22θ

�
1

AðMNÞ þ BðMNÞ cos 2θ
þ 1

AðMNÞ − BðMNÞ cos 2θ
��

feμðMNÞ; ð38Þ

where β ¼ 1
128π3

M8
WL

M4
WR

G2
FðVCKM

M1
VCKM
M2

Þ2f2M1
f2M2

, and we

consider MN1
¼ MN2

¼ MN. The functions fee, fμμ, and
feμ can be identified from Eq. (A11). The first two terms
are due to the individual N1;2 contributions in the decay
amplitude. The term in the partial decay width expressions
proportional to cos 2ϕ sin2 2θ is due to the interference of
the N1;2 contributions.
These complicated expressions simplify for RH neutri-

nos with a mass MN∼ few GeV range, where the mass of
the final-state leptons can be ignored in evaluating the total
decay width of RH neutrinos. Using Eq. (35), and
Eqs. (36), (37), and (38), we find that for RH neutrinos
with masses ∼ few GeV, the LNV partial width of the
parent meson M1 (such as a B meson) has the following
simplified dependencies on the mixing angle and phase:

ΓLNV
ij ∝

(
ð1 − sin22θsin2ϕÞ; for i ¼ j;

ðsin22θsin2ϕÞ; for i ≠ j:
ð39Þ

In the above equation i, j can be either e or μ. Similar
expressions for the lljj production cross section at the LHC
were obtained in Ref. [41].
The branching ratios of the different LNV modes of the

parent meson M1 are then given by

BrðMþ
1 → lþi l

þ
j M

−
2 Þ ¼

ΓLNV
ij

ΓMþ
1

; ð40Þ

where ΓMþ
1
is the total decay width of the parent meson. In

Fig. 5 we show the branching ratios of the LNV meson

FIG. 5. Branching ratio of LNV meson decay to same-flavor ðeþ; eþÞ and different-flavor ðeþ; μþÞ final states along with a pion (πþ).
The plot in the left panel is for the kaon (Kþ) decay, and the plot in the right panel is for B-meson (Bþ) decay. The branching ratio is not
constant; rather, it exhibits constructive and destructive interference effects for different values of θ and ϕ. The dotted line and solid line
correspond to the eþeþ and eþμþ mode, respectively. For Kþ decay we consider MN ≃ 0.38 GeV and MWR

¼ 22 TeV, and for Bþ-
meson decay we consider MN ≃ 2 GeV and MWR

¼ 5 TeV.
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decays Kþ=Bþ → eþeþπ− and Kþ=Bþ → eþμþπ− vs
mixing angle θ for different values of ϕ. The left panel
corresponds to the kaon decay. We consider the mass of
the RH gauge boson as MWR

¼ 22 TeV, and the mass of
the heavy neutrino as MN ≃ 0.38 GeV. In the right panel
we show the LNV decay of the Bþ meson. For this case, we
consider the RH gauge boson mass to be MWR

¼ 5 TeV,
and the mass of the heavy neutrino is MN ≃ 2 GeV. This
choice of RH neutrino and RH gauge boson mass, which is
relevant for Bþ study, is unconstrained from Kþ-meson
decays. The branching ratios derived for these benchmark
mass points are consistent with the experimental limits
BrðKþ → eþeþπ−; eþμþπ−Þ < ð2.2; 5.0Þ × 10−10 and
BrðBþ → eþeþπ−; eþμþπ−Þ < ð2.3; 15.0Þ × 10−8, respec-
tively [56]. The figures confirm the angular dependencies
of the branching ratios of the LNV decay process. The solid
and dashed lines correspond to the eþμþ and eþeþ
channels. Note that the eþeþ and eþμþ channels have
complimentary nature with respect to the angular variables.
This can be further highlighted by a contour plot in the
θ − ϕ plane. Figure 6 shows the variation of the LNV
branching ratios of the Kþ → eþeþπ− and Kþ → eþμþπ−

processes for different values of mixing angle θ and phase
ϕ. With two degenerate heavy neutrinos, the branching
ratios of the above processes exhibit constructive and
destructive interference, as is clearly evident from the
figures. The white region in the right panel of Fig. 6
occurs as for θ ¼ π=4, and ϕ ∼ 0; π, the LNV branching
ratio to the eþeþ channel shows a maxima (see left panel of
Fig. 5). A different value of the RH gauge boson mass will
simply give an overall scaling in the branching ratios and
will not change the nature of Fig. 5. For the Bþ meson, the
plots are very similar. Hence, we do not show them
explicitly.

B. LNC

The parent meson can decay via LNC processes
Mþ

1 → lþi l
−
j M

þ
2 . The RH neutrino states N1;2 will mediate

these processes. Considering the general form of the Ni
decay width as given in Eqs. (33) and (34), the LNC decay
rate can be calculated. For the ee and μμ channels the N-
mediated decay rate is given by

ΓLNC
ee ¼ π

β

MN

�
cos4θ

AðMNÞ þ BðMNÞ cos 2θ
þ sin4θ
AðMNÞ − BðMNÞ cos 2θ

þ 1

4
sin22θ

×

�
1

AðMNÞ þ BðMNÞ cos 2θ
þ 1

AðMNÞ − BðMNÞ cos 2θ
��

heeðMNÞ; ð41Þ

ΓLNC
μμ ¼ π

β

MN

�
sin4θ

AðMNÞ þ BðMNÞ cos 2θ
þ cos4θ
AðMNÞ − BðMNÞ cos 2θ

þ 1

4
sin22θ

×

�
1

AðMNÞ þ BðMNÞ cos 2θ
þ 1

AðMNÞ − BðMNÞ cos 2θ
��

hμμðMNÞ; ð42Þ

FIG. 6. Left: variation of the branching ratio of LNV kaon decay Kþ → eþ μþπ− with the variation of the angle and phase ðθ;ϕ). The
final-state leptons have the same charge and different flavors. Right: the same but for final states with same-charge and same-flavor
leptons, Kþ → eþ eþπ−. The masses of the RH neutrino and RH gauge bosons are MN1

≃MN2
≃ 0.38 GeV and MWR

¼ 22 TeV,
respectively. The maximum values of the branching ratios are Oð10−10Þ, consistent with the current experimental bounds.
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and for the eμ channel, the decay rate has the following form:

ΓLNC
eμ ¼ π

β

MN

�
sin22θ

4ðAðMNÞ þ BðMNÞ cos 2θÞ
þ sin22θ
4ðAðMNÞ − BðMNÞ cos 2θÞ

−
1

4
sin22θ

×

�
1

AðMNÞ þ BðMNÞ cos 2θ
þ 1

AðMNÞ − BðMNÞ cos 2θ
��

heμðMNÞ: ð43Þ

The functions hee, hμμ, and heμ can be identified from
Eq. (A15). Note that the functions hij in the above
expressions are related to fij of the previous section as
M2

Nf
ij ¼ hij. We use the same values for the RH neutrino

and RH gauge boson masses that we considered for LNV
processes. Using Eq. (43), and after simplification, the
LNC partial decay width for different lepton flavor eμ
becomes zero for degenerate RH neutrino masses
MN1

¼ MN2
. This however becomes nonzero if we con-

sider nondegenerate masses of RH neutrinos. In the left
panel of Fig. 7, we show the branching ratios of Kþ →
eþμþπ−; eþμ−πþ for δM

ΓN
∼ 10. In the right panel of Fig. 7,

we show the ratio of the two branching ratios for the eμ
channel. As can be seen, due to the interference between
the two RH neutrino states the ratio of the LNVand LNC
branching ratios differs from unity. Using Eqs. (41) and
(42), the partial width for same-flavor leptons turns out to
be large, and is almost independent of the mixing angle θ.
We find that the contributions of RH-neutrino-mediated
diagrams in the branching ratio of the same-flavor LNC
decay mode of Kþ (Kþ → eþe−πþ) and Bþ

(Bþ → eþe−πþ) mesons are Oð10−10Þ and Oð10−12Þ,
respectively. As these same-flavor LNC decay modes
also contain large SM contributions (BR ∼ 10−7=10−8)
along with the order-of-magnitude suppressed new phys-
ics contribution, we do not show them here. In Sec. V we
elaborate on the large LNC branching ratio for the eμ
case, while using a 3 × 3 KR matrix.

1. Effect of interference for RH neutrino and RH gauge
boson masses

In Fig. 8, we represent the effect of interference in the
MN −MWR

mass plane, considering LNV modes. We
consider two different decay modes: Kþ=Bþ → eþμþπ−

and Kþ=Bþ → eþeþπ−. The solid red line in the left panel
has been derived by assuming only one generation RH
neutrino state N1. This corresponds to the present exper-
imental limit of the branching ratio Kþ → eþμþπ−, which
is BrðKþ → eþμþπ−Þ < 5 × 10−10 [56]. The blue dashed
and blue solid lines correspond to the two-generation RH
neutrino scenario where both N1;2 can be produced on shell
from parent meson decay. The subsequent decays of N1;2

lead to the same final state eþμþπ− with the same value of
the branching ratio. We have set the mixing angle and phase
as θ ¼ π=4;ϕ ¼ π=2þ 0.1 for the blue dashed line. The
solid blue line corresponds to the two-generation scenario,
with θ ¼ π=4;ϕ ¼ 0.1, and again corresponds to the
experimental limit on the branching ratio.1 The black
dashed line and black solid line correspond to a value of
10−12 for the branching ratios of Kþ → eþμþπ− and
Kþ → eþeþπ−. In the right panel, we show the result
for B meson decays Bþ → eþeþπ−=eþμþπ−. The two
kinks occur as new decay modes of the RH neutrinos into

FIG. 7. Left: branching ratios of Kþ → eþμþπ− and eþμ−πþ vs angle θ for nondegenerate RH neutrino masses considering δM
ΓN

∼ 10.
Right: variation of the ratio of the two branching ratios vs mixing angle θ. The results for Bþ decays are similar, and hence we do not
show them explicitly.

1We have not considered ϕ to be exactly π=2 or 0 as the
theoretical branching ratio will be exactly zero, and hence it is not
possible to derive any kind of bound in the MN-MWR

plane.
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a lepton associated with a ρ and D meson open up in these
mass ranges. The solid pink line in the right panel has been
again derived by assuming only the one-generation RH
neutrino state N1, where as the blue dotted and red dashed
lines stand for the two-generation RH neutrino scenario.
For the B-meson case, we consider the future sensitivity on
the branching ratio to be Oð10−12Þ.2 Note that the limit on
WR can be significantly lowered in the presence of
destructive interference as it leads to a natural suppression
of the LNV branching ratio. Nonobservation of any LNV
signal for the LRSM could signify interference effects due
to more than one generation of RH neutrinos.

C. Asymmetries in LNV and LNC processes

The nontrivial phase ϕ, along with the interference effect
between N1;2 contributions result in asymmetries in LNV

and LNC processes. Before discussing the different asym-
metries and the effect of interference, we first quantify the
effect of a small mass splitting on the LNVand LNC meson
decays. The obtained expressions will be used in deriving
the expressions of CP asymmetries. We represent the
average mass of the two RH neutrinos as MN and the
mass splitting as δM. Therefore, we follow the convention
MN1

¼ MN − δM
2

and MN2
¼ MN þ δM

2
. We assume the

following conditions are realized:

δM ≪ MN and δM < ΓN1
;ΓN2

: ð44Þ

With the above set of approximations, the LNV and LNC
meson decay rates for a nontrivial mixing matrix KR can be
written as follows:

ΓLNV;þþ
ij ¼

�
1 −

δij
2

�
πβ

�
jðKRÞ1ij2jðKRÞ1jj2

ðMN − δM
2
Þ

ΓN1

fij

�
MN −

δM
2

�

þ jðKRÞ2ij2jðKRÞ2jj2
ðMN þ δM

2
Þ

ΓN2

fij

�
MN þ δM

2

�
þ ðMN − δM

2
ÞðMN þ δM

2
Þ

MN

× Re

�
ðKRÞ1iðKRÞ1jðKRÞ�2iðKRÞ�2j

� 1 − 4i δMΓN1

ΓN1
ð1þ 4 δM2

Γ2
N1

Þ þ
1 − 4i δMΓN2

ΓN2
ð1þ 4 δM2

Γ2
N2

Þ

��
fijðMNÞ þ ði ⇔ jÞ

�
: ð45Þ

The charge-conjugate process M−
1 → l−

i l
−
j π

þ can be obtained by replacing KR with K�
R in Eq. (45):

ΓLNV;−−
ij ¼ ΓLNV;þþ

ij ðKR → K�
RÞ: ð46Þ

2The current bounds for the B-meson LNV semileptonic decays are BRðBþ → eþeþπ−Þ ≤ 2.3 × 10−8 and BRðBþ → eþμþπ−Þ ≤
1.5 × 10−7 [56].

FIG. 8. Sensitivity of the RH neutrino mass MN and the RH gauge boson mass MWR
from the LNV processes Kþ → eþeþπ−,

Kþ → eþμþπ− (left panel) and Bþ → eþμþπ−, eþeþπ− (right panel). For the Kþ decay mode in the upper panel, the red solid line
corresponds to the one-generation scenario, while the blue dashed line represents the two-generation scenario with constructive interference,
θ ¼ π=4, ϕ ∼ 0; π=2. The blue solid line represents the two-generation scenario with destructive interference. The black solid and dashed
lines represent Br ∼ 10−12. The figure in the right panel indicates the future sensitivity of LNV Bþ meson decay with Br ∼ 10−12.
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For LNC, this takes the following form:

ΓLNC
ij ¼ πβ

�
jðKRÞ1ij2jðKRÞ1jj2

1

ΓN1
ðMN − δM

2
Þ hij

�
MN −

δM
2

�
þ jðKRÞ2ij2jðKRÞ2jj2

1

ΓN2
ðMN þ δM

2
Þ hij

�
MN þ δM

2

�

þ 1

MN
Re

�
ðKRÞ�1iðKRÞ1jðKRÞ2iðKRÞ�2j

� 1 − 4i δMΓN1

ΓN1
ð1þ 4 δM2

Γ2
N1

Þ þ
1 − 4i δMΓN2

ΓN2
ð1þ 4 δM2

Γ2
N2

Þ

��
hijðMNÞ

�
: ð47Þ

The interference between the two RH neutrino N1 and N2

contributions along with a nonzero CP phase ϕ can lead to
a difference between the LNV processMþ

1 → lþ
i l

þ
j π

− and
the charge-conjugate process M−

1 → l−
i l

−
j π

þ. This can be
quantified by the following definition:

Aij
CP ¼ ΓLNV;þþ

ij − ΓLNV;−−
ij

ΓLNV;þþ
ij þ ΓLNV;−−

ij

ði; j ¼ e; μÞ: ð48Þ

Using Eqs. (45), (46), and (32) and the nearly degenerate
limit of the masses and decay widths,MN1

≈MN2
≡MN ,

3

ΓN1
≈ ΓN2

≡ ΓN , A
ij
CP takes the following simple forms:

Aii
CP≈

4xsin2ϕsin2 2θ
ð1þ4x2Þð2cos4θþ2sin4θÞþcos2ϕsin2 2ϕ

;

with i¼e;μ; ð49Þ

Aij
CP ≈

−4x sin 2ϕ
ð1þ 4x2 − cos 2ϕÞ ; where i ≠ j: ð50Þ

In the above, x ¼ δM
ΓN
. For a fixed θ and x, the above

equations lead to a maximum value of ACP if ϕ ¼ π
4
. In

Fig. 9, we show the variation of the LNV-CP asymmetry
as a function of δM

ΓN
for the channels eþeþ, μþμþ, and

eþμþ, where we fix θ ¼ π
4
and ϕ ¼ π

4
. We see from this

figure that Aee or μμ
CP and Aeμ

CP have complementary behavior
as a function of δM

ΓN
. In order to discuss the impact of the

CP phase and mixing angle on the LNV width, we further
define one more asymmetry R̃ as

R̃ij ¼
ΓLNV
Kþ→lþi l

þ
i π

− − ΓLNV
Kþ→lþi l

þ
j π

−

ΓLNV
Kþ→lþi l

þ
i π

− þ ΓLNV
Kþ→lþi l

þ
j π

−

; where i ≠ j: ð51Þ

Figure 10 shows the variation of R̃eμ for different values
of mixing angle θ and phase ϕ. It is evident from this
figure that R̃eμ varies between ½−1∶1�. Note that jR̃eμj
have complimentary nature with respect to the angular
variables and their analytical expressions can be found in

Appendix B. Similar results can also be obtained for B
decays. This implies that the two asymmetries ACP and
R̃eμ do not contain any SM contribution, and hence serve
as a clear indication of new physics.

FIG. 10. Variation of R̃eμ with the variation of angle and phase
(θ,ϕ). R̃ varies between ½−1∶1�.

FIG. 9. Variation ofACP as a function of δMΓN
, for θ ¼ π

4
and ϕ ¼ π

4
.

The red solid line represents the eþeþ or μþμþ channel, whereas
the black dashed line represents the eþμþ channel. For this figure,
we consider Kþ as the parent meson. For the Bþ meson the figure
is similar, and hence we do not show this explicitly.

3The mass difference δM ≠ 0; however, δM ≪ MN .
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V. RESULT FOR TWO GENERATION WITH THE
FULL 3 × 3 MIXING MATRIX KR

In the previous section, we considered a simple form of
the KR matrix, which contains only one angle and one
phase. In general, the mixing matrix KR is a 3 × 3 unitary
matrix, with more number of parameters. We consider a
special scenario where the KR matrix is identical to the

PMNS mixing matrix in the light neutrino sector. The
additional CP phases can give sizable contributions to both
the LNV and LNC meson decays; in particular, they can
give a different result in the LNC eμ mode as compared to
the previous scenario where we considered a simple form
for KR. We consider the following parametrization of KR:

KR ¼

2
664

c12c13 −c23s12 − e−iδc12s13s23 −e−iδc12c23s13 þ s12s23
e−iα1c13s12 e−iα1c12c23 − e−iðα1þδÞs12s13s23 −e−iðα1þδÞc23s12s13 − e−iα1c12s23
e−iα2s13 e−iðα2þδÞc13s23 e−iðα2þδÞc13c23

3
775; ð52Þ

where s12, s13, s23 refer to sin θ12; sin θ13; sin θ23, respec-
tively, and ðα1; α2Þ ∈ ð0; πÞ, δ ∈ ð0; 2πÞ. Considering such
a 3 × 3 matrix, the number of parameters increases and the
result is much more complicated as compared to the former
scenario.
Note that from Eq. (52), one would obtain Eq. (32) by

considering θ13, θ23 ¼ 0, α1 ¼ δ, and α2 ¼ 0. In Fig. 11 we
show the variation of the LNV branching ratio Kþ →
μþμþπ− with the variation of the Dirac CP phase δ. We
have checked that the RH neutrino contribution in the LNC
branching ratio Kþ → μþμ−πþ is independent of the Dirac
phase δ, and hence we do not show it explicitly. We consider
best-fit values of the mixing angles θ12, θ13, θ23 for an
inverted mass hierarchy [57], and vary the Majorana phases
α1 in between 0 and π. As an illustrative example, we
consider the mass splitting δM ¼ 0 and MN ¼ 0.38 GeV.
We also show the regions of δ disallowed by the T2K
neutrino oscillation experiment for an inverted mass hier-
archy. The red region represents the LNV branching ratio,

which clearly shows a nontrivial variation with respect to α1
and δ. This is true that LNC mode should be independent of
any Majorana phase.4 We further find that the decay mode
Kþ → eþeþπ− depends only on the Majorana phase α1, and
not on the Dirac phase δ. The LNC mode with the same
lepton flavor is also independent of the Dirac CP phase,
which happens due to the chosen form of KR in Eq. (52).
This can be verified by substituting the explicit form of the
KR matrix [Eq. (52)] into Eq. (45). In the right panel of
Fig. 11 we show the variation of the LNV branching ratio
Kþ → eþeþπ− with respect to the Majorana phase α1 for
different δMΓN

ratios. The RH neutrino contribution in the LNC

FIG. 11. Left: variation of the branching ratio of the Kþ → μþμþπ− decay mode with the variation of the CP-violating phase δ. The
Majorana phases α1 are varied in the denoted range. The shaded region is disallowed from the recent results from T2K. Note that the
excluded region from T2K for δ is given with the convention ½−π∶π�, which we have translated into the range ½0∶2π� to be consistent
with our convention. See text for more details. Right: variation of the branching ratio of the Kþ → eþeþπ− decay mode with the
variation of the Majorana phase α1. The red solid, blue dash-double-dotted, green dash-dotted, and black dashed lines represent four
different δM

ΓN
ratios (0, 0.5, 1, 10).

4Note that although the LNC decay modes do not depend on
the Majorana phases, they can in principle depend on the Dirac
phase δ. We have verified that with our chosen KR matrix there is
no dependency of Kþ → μþμ−πþ on the Dirac CP phase, for
δM ¼ 0.
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branching ratio Kþ → eþe−πþ is independent of the
Majorana phase, and hence we do not show it explicitly.
Finally, we elaborate on the LNC eμ channel, which we

found to be vanishing for a simple form of KR [shown in
Eq. (32)] and for degenerate RH neutrino masses. With the
approximation δM ¼ 0 and ΓN1

¼ ΓN2
≡ ΓN , Eq. (47) can

be simplified and the LNC decay rate ΓLNC
eμ is proportional

to the following expression:

Γ̃eμ ¼ jðKRÞ11j2jðKRÞ12j2 þ jðKRÞ21j2jðKRÞ22j2
þ 2Re½ðKRÞ�11ðKRÞ12ðKRÞ21ðKRÞ�22�: ð53Þ

This means that for the preceding scenario, our choice of a
2 ⊗ 2 subblock of the KR matrix (32) as a unitary matrix
leads to Γ̃eμ ¼ 0. This occurs due to the unitary properties
of KR. Hence, for this simplified scenario the ratio
ΓLNV
eμ =ΓLNC

eμ is ill defined. However, this changes if one
considers the full 3 ⊗ 3 matrix, as in this case the 2 ⊗ 2
subblock itself is not unitary. We find that for the 3 × 3 case
and using Eq. (52), for degenerate RH neutrinos,
Γ̃eμ ¼ c213s

2
13s

2
23. This certainly is nonzero for the best-fit

values of the PMNS mixing angles. We stress that in this
case it is possible to define the ratio ΓLNV

eμ =ΓLNC
eμ and the

ratio can be large as the best-fit value of s13 is small. In the
right panel of Fig. 12 we show the variation of the LNVand
LNC branching ratios Kþ → eþμþπ− and Kþ → eþμ−πþ
with respect to the Majorana phase α1 for different choices
of the Dirac CP phase δ. In the right panel we also show the
ratio of the LNV and LNC modes. We see that the LNV
mode Kþ → eþμþπ− depends on both the Majorana and
Dirac phases even for δM ¼ 0. For degenerate RH neu-
trinos, the LNC eμ mode is independent of the Dirac phase
(left panel). Contrary to the results obtained in Sec. IV B,
the LNC eμ mode in this scenario has a large branching
ratio ∼10−11. The ratio of the LNVand LNC modes in this
case is order of magnitude large (∼40–60) compared to the

earlier scenario, due to the relative suppression of the LNC
rate for a small θ13.

VI. CONCLUSION

The LRSM is one of the most appealing models that
accommodates the embedding of RH neutrinos in a natural
way. The model contains RH neutrinos, RH gauge bosons,
and other BSM states that can offer distinctive experimental
signatures. In this work, we explored the LNV and LNC
semileptonic meson decays, mediated by the RH neutrinos
and RH gauge bosons, and quantified the effect of interfer-
ence in these decays due to the presence of at least two
degenerate/quasidegenerate RH neutrino states. The RH
neutrinos with masses in the range of MeV- few GeV can
provide a resonance enhancement to these rates. We consid-
ered a few specific decay modes of the Kþ and Bþ mesons,
Kþ=Bþ → eþeþπ− and Kþ=Bþ → eþμþπ−; eþμ−πþ, and
analyzed the effect of interference in detail. We considered
two RH neutrinos to be degenerate/nearly degenerate in mass
with their masses in the rangesMN1

∼MN2
∼ 380 MeV and

MN1
∼MN2

∼ 2 GeV, relevant for the LNV and LNC Kþ-
and Bþ-meson decays. In the case of a single generation
of RH neutrinos, the LNV and LNC decay contributions are
the same, leading to the ratio of these two to be unity. We
found that in the presence of interference between the two
RH neutrino contributions in the amplitude, the contributions
of the RH neutrinos in the LNV and LNC decay rates can
differ widely, which leads to the ratio to be different
than unity.
We first considered a simplistic scenario where two RH

neutrinos contribute to meson decay, with a simple RH
neutrino mixing matrix consisting of one angle θ and one
phase ϕ. We showed that the LNV branching ratio—in
particular, the interference term—depends on both the
angle and phase. The RH neutrino contribution to the
LNC mode only depends on the angle, however, and is
insensitive to the phase. A few comments are in order:

FIG. 12. Left: variation of the branching ratio of the Kþ → eþμþπ− and Kþ → eþμ−πþ decay modes with the variation of the
Majorana phase α1 and for different Dirac phases δ ¼ π

4
(solid red), π

2
(blue dash-double-dotted), and 3π

4
(green dash-dotted). Right: the

ratio of the LNV and LNC branching ratios in the eμ mode.
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(1) The channels Kþ → eþeþπ− and Kþ → eþμþπ−
offer a complimentary nature in their predicted
branching ratios. This holds true for other meson
decays as well.

(2) We found that, overall, the LNV branching ratios
Kþ=Bþ → eþeþπ− have a large variation with
respect to the variation in θ and ϕ. The decay rates
are highly suppressed due to destructive interference
at ϕ ∼ π=2 and θ ∼ π=4. For both the processes, the
predicted branching ratios can reach maximum
Oð10−10Þ;Oð10−12Þ range with a RH gauge boson
mass 22 TeV and 5 TeV, respectively.

(3) For the different lepton flavor in the final states,
Kþ → eþμ−πþ mode, the LNC branching ratio is
Br ∼ 10−11 for nondegenerate RH neutrinos with
δM
ΓN

∼ 10. The branching ratio for the LNV decay

mode Kþ → eþμþπ− can be as high as Oð10−10Þ.
We also explored a scenario where the mixing matrix in

the RH neutrino sector has the same form as the PMNS
mixing matrix in the neutrino sector. We considered the
best-fit values of the neutrino mixing parameters and varied
the phases. We found that the Majorana and Dirac phases in
this case have a large impact on the branching ratio for the
LNV channel Kþ → μþμþπ−, as well as Kþ → eþμþπ−.
The same LNV decay mode but with eþeþ in the final state
is independent of the Dirac phase, and depends only on the
Majorana phase. For the LNC modes there is no depend-
ency on the Majorana CP phase. Choosing degenerate RH
neutrino masses, we found that the eþμ− mode is also

independent of the Dirac CP phase. We further found that
in this case the branching ratio of Kþ → eþμ−πþ can be
sizable, even for RH neutrinos with degenerate masses. The
ratio between LNVand LNC decays now takes values over
a wider range. Any future measurement of the ratio
different than unity will indicate possible interference
effects. Furthermore, observations of the LNV signature
Kþ → eþμþπ− together with the LNC signature Kþ →
eþμ−π− will indicate a nontrivial form of the KR matrix.
Hence, the LNV mode as well as the LNC mode with
different lepton flavors can serve as a smoking gun signal
for underlying new physics.
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APPENDIX A: DETAILS OF LNV AND LNC
CALCULATIONS

1. LNV

Amplitude from the Na contribution:

MLNV;a
ij ¼ 2G2

FV
CKM
M1

VCKM
M2

fM1
fM2

�
MWL

MWR

�
4

ðK�
RÞaiðK�

RÞajMNa

ūðk1Þ=p=k3PRvðk2Þ
q2 −M2

Na þ iΓNaMNa
: ðA1Þ

Amplitude for the leptonic exchange diagram:

MLNV;a
ji ¼ 2G2

FV
CKM
M1

VCKM
M2

fM1
fM2

�
MWL

MWR

�
4

ðK�
RÞajðK�

RÞaiMNa

ūðk2Þ=p=k3PRvðk1Þ
q2 −M2

Na þ iΓNaMNa
; ðA2Þ

jMLNV;a
ij j2 ¼ κM2

Na
ðK�

RÞaiðK�
RÞajðKRÞaiðKRÞaj

Tr½ð=k2 −m2Þ=k3=pPLð=k1 þm1Þ=p=k3PR�
ðq2 −M2

Na
Þ2 þ Γ2

Na
M2

Na

; ðA3Þ

jMLNV;a
ji j2 ¼ κM2

Na
ðK�

RÞajðK�
RÞaiðKRÞajðKRÞai

Tr½ð=k1 −m1Þ=k3=pPLð=k2 þm2Þ=p=k3PR�
ðq2 −M2

Na
Þ2 þ Γ2

Na
M2

Na

; ðA4Þ

where κ ¼ 4G4
FðVCKM

M1
Þ2ðVCKM

M2
Þ2f2M1

f2M2
ðMWL
MWR

Þ8. The interference terms are

ðMLNV;a
ij Þ†MLNV;b

ij ¼ κMNa
MNb

ðKRÞaiðKRÞajðK�
RÞbiðK�

RÞbj
×

Tr½ð=k2 −m2Þ=k3=pPLð=k1 þm1Þ=p=k3PR�
ðq2 −M2

Na
− iΓNa

MNa
Þðq2 −M2

Nb
þ iΓNb

MNb
Þ ; ðA5Þ

GODBOLE, MAHARATHY, MANDAL, MITRA, and SINHA PHYS. REV. D 104, 095009 (2021)

095009-16



ðMLNV;a
ji Þ†MLNV;b

ji ¼ κMNa
MNb

ðKRÞajðKRÞaiðK�
RÞbjðK�

RÞbi
×

Tr½ð=k1 −m1Þ=k3=pPLð=k2 þm2Þ=p=k3PR�
ðq2 −M2

Na
− iΓNa

MNa
Þðq2 −M2

Nb
þ iΓNb

MNb
Þ : ðA6Þ

The traces are

Tr21 ¼ Tr½ð=k2 −m2Þ=k3=pPLð=k1 þm1Þ=p=k3PR�
¼ 2k1:k2k3:k3p:p − 4k1:pk2:pk3:k3

− 4k1.k3k2:k3p:pþ 8k1:pk2:k3k3:p; ðA7Þ

Tr12 ¼ Tr½ð=k1 −m1Þ=k3=pPLð=k2 þm2Þ=p=k3PR�
¼ 2k1:k2k3:k3p:p − 4k1:pk2:pk3:k3

− 4k1:k3k2:k3p:pþ 8k1:k3k2:pk3:p: ðA8Þ

As the RH neutrinos are produced on shell and
ΓNa

≪ MNa
, in our decay width calculation we can use

the narrow-width approximation,

1

ðq2 −M2
Na
Þ2 þ Γ2

Na
M2

Na

→
π

ΓNa
MNa

δðq2 −M2
Na
Þ: ðA9Þ

Using the narrow-width approximation, the product of the
propagators in the interference term can be written as

1

½ðq2 −M2
N1
Þ2 − iΓN1

MN1
�½ðq2 −M2

N2
Þ2 þ iΓN2

MN2
�

¼ −
iðM2

N2
−M2

N1
Þπδðq2 −M2

N2
Þ

ðM2
N2

−M2
N1
Þ2 þ Γ2

N1
M2

N1

þ iðM2
N1

−M2
N2
Þπδðq2 −M2

N1
Þ

ðM2
N1

−M2
N2
Þ2 þ Γ2

N2
M2

N2

þ ΓN1
MN1

πδðq2 −M2
N2
Þ

2½ðM2
N2

−M2
N1
Þ2 þ Γ2

N1
M2

N1
�

þ ΓN2
MN2

πδðq2 −M2
N1
Þ

2½ðM2
N1

−M2
N2
Þ2 þ Γ2

N2
M2

N2
� : ðA10Þ

Finally, we can write the decay width as

dΓLNV ¼
�
1 −

δij
2

�
1

2m
κ

ð2πÞ5
π

2

π

4
d cos θ

×

�X2
a¼1

�
πMNa

ΓNa

jKRaij2jKRajj2Tr21λ1=2
�
1;
m2

i

m2
;
M2

Na

m2

�
λ1=2

�
1;

m2
j

M2
Na

;
m2

3

M2
Na

��

þ πMNRe

�
KR1iKR1jK�

R2iK
�
R2j

� 1 − 4i δM
ΓN1

ΓN1
ð1þ 4 δM2

Γ2
N1

Þ þ
1 − 4i δM

ΓN2

ΓN2
ð1þ 4 δM2

Γ2
N2

Þ

��
Tr21

× λ1=2
�
1;
m2

i

m2
;
M2

N

m2

�
λ1=2

�
1;

m2
j

M2
N
;
m2

3

M2
N

�
þ ði ↔ jÞ

�
: ðA11Þ

2. LNC

Following a similar procedure, the decay width for
opposite-sign leptons can be calculated as

MLNC;a
ij ¼ 2G2

FV
CKM
M1

VCKM
M2

fM1
fM2

�
MWL

MWR

�
4

ðKRÞaiðK�
RÞaj

×
ūðk1Þ=p=q=k3PRvðk2Þ

q2 −M2
Na

þ iΓNa
MNa

; ðA12Þ

jMLNC;a
ij j2 ¼ κðK�

RÞaiðKRÞajðKRÞaiðK�
RÞaj

×
Tr½ð=k2 −m2Þ=k3=q=pPRð=k1 þm1Þ=p=q=k3PR�

ðq2 −M2
Na
Þ2 þ Γ2

Na
M2

Na

;

ðA13Þ

where

TrLNC21 ¼ Tr½ð=k2 −m2Þ=k3=q=pPRð=k1 þm1Þ=p=q=k3PR�
¼ 4k1:qk2:qk3:k3p:p − 8k1:qk2:k3k3:qp:p

− 8k1:pk2:qk3:k3p:qþ 16k1:pk2:k3k3:qp:q

þ 4k1:pk2:pk3:k3q:q − 8k1.pk2:k3k3:pq:q

þ 4k1:k3k2:k3p:pq:q − 2k1:k2k3:k3p:pq:q:

ðA14Þ
We can write the LNC decay width as
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dΓLNC ¼ 1

2m
κ

ð2πÞ5
π

2

π

4
d cos θ

×
X2
a¼1

�
π

ΓNa
MNa

jKRaij2jK�
Rajj2TrLNC21 λ1=2

�
1;
m2

i

m2
;
M2

Na

m2

�
λ1=2

�
1;

m2
j

M2
Na

;
m2

3

M2
Na

��

þ π

MN
Re

�
K�

R1iKR1jKR2iK�
R2j

� 1 − 4i δM
ΓN1

ΓN1
ð1þ 4 δM2

Γ2
N1

Þ þ
1 − 4i δM

ΓN2

ΓN2
ð1þ 4 δM2

Γ2
N2

Þ

��
TrLNC21

× λ1=2
�
1;
m2

i

m2
;
M2

N

m2

�
λ1=2

�
1;

m2
j

M2
N
;
m2

3

M2
N

�
: ðA15Þ

APPENDIX B: Ree AND R̃eμ

Ree ¼
sin2 2θ sin α1ðsin α1 − 4x cos α1Þ

ð1þ 4x2Þð2 cos4 θ þ 2 sin4 θÞ þ sin2 2θðcos2 α1 þ 2x sin α1Þ
; ðB1Þ

R̃eμ ¼
ð1þ 4x2Þð1þ 3 cos 4θÞ þ 6 sin2 2θðcos 2αþ 4x sin 2αÞ
ð1þ 4x2Þð5 − cos 4θÞ − 2 sin2 2θðcos 2αþ 4x sin 2αÞ : ðB2Þ

APPENDIX C: TOTAL DECAY WIDTH OF
HEAVY MAJORANA NEUTRINO Nj

Here we present the analytic expression of the total
decay width of Nj for our chosen mass range
0.14 GeV ≤ MNj

≤ 6 GeV. In addition to the SM gauge
bosons WL and Z, the gauge bosons WR and Z0 will also
contribute in the decays of RH neutrinos via charged-
current and neutral-current interactions. The analytical
expressions for different two- and three-body partial
decay widths of the RH neutrinos Ni are given as follows.

1. Two-body decays of N

ΓðNj → li
−PþÞ ¼

G2
FM

3
Nj

16π
f2pjVqq̄0 j2ðjSijj2FPðxli ; xPÞ

þ jKRij
j2ξ41FPðxli ; xPÞ

þ 4Re½SijKRij
�ξ21xli x2Pλ

1
2ð1; x2li ; x2PÞÞ;

ðC1Þ

where l1 ¼ e;l2 ¼ μ;l3 ¼ τ, and Pþ ¼ πþ; Kþ; Dþ; Dþ
s .

ΓðNj → li
−VþÞ ¼

G2
FM

3
Nj

16π
f2V jVqq̄0 j2ðjSijj2FVðxli ; xVÞ

þ jKRij
j2ξ41FVðxli ; xVÞ

− 12Re½SijKRij
�ξ21xli x2Vλ

1
2ð1; x2li ; x2VÞÞ;

ðC2Þ

where l1 ¼ e;l2 ¼ μ;l3 ¼ τ, and Vþ ¼ ρþ; K�þ;
D�þ; D�þ

s .

ΓðNj → νliP
0Þ ¼

G2
FM

3
Nj

4π
f2P

X
i

jUijj2jSijj2

× ðK2
P þ K02

Pξ
4
2 − 2KPK0

Pξ
2
2ÞFPðxνl ; xPÞ; ðC3Þ

where νli are the flavor eigenstates νe, νμ, ντ and
P0 ¼ π0; η; η0; ηc.

ΓðNj → νliV
0Þ ¼

G2
FM

3
Nj

4π
f2V

X
i

jUijj2jSijj2

× ðK2
V þ K02

V ξ
4
2 − 2KVK0

Vξ
2
2ÞFVðxνl ; xPÞ; ðC4Þ

where νl ¼ νe; νμ; ντ and V0 ¼ ρ0;ω;ϕ; J=ψ . In the above,

ξ1 ¼ MWL
MWR

, ξ2 ¼ MZ
MZ0

, xi ¼ mi
MN

, with mi ¼ ml; mP0 ; mV0 ;

mPþ ; mþ
V . The kinematical functions required for two-body

decay are given by
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FPðx; yÞ ¼ ðð1þ x2Þð1þ x2 − y2Þ − 4x2Þλ1
2ð1; x2; y2Þ;

FVðx; yÞ ¼ ðð1 − x2Þ2 þ ð1þ x2Þy2 − 2y4Þλ1
2ð1; x2; y2Þ:

The neutral-current couplings of pseudoscalar mesons are
given by

Kπ0 ¼ −
1

2
ffiffiffi
2

p ; K0
π0
¼ 1ffiffiffi

2
p

�
1

2
− sin2 θw

�
;

Kη ¼ −
1

2
ffiffiffi
6

p ; K0
η ¼

1ffiffiffi
6

p
�
1

2
− sin2 θw

�
;

Kη0 ¼
1

4
ffiffiffi
3

p ; K0
η0 ¼

1ffiffiffi
3

p
�
−
1

4
þ 1

2
sin2 θw

�
;

Kηc ¼ −
1

4
; K0

ηc ¼
�
1

4
−
1

2
sin2 θw

�
:

The neutral-current couplings of vector mesons are given
by

Kρ0 ¼
1ffiffiffi
2

p
�
1

2
− sin2 θw

�
;

Kω ¼ −
1

3
ffiffiffi
2

p sin2 θw;

Kϕ ¼
�
−
1

4
þ 1

3
sin2 θw

�
;

KJ=ψ ¼
�
1

4
−
2

3
sin2 θw

�
: ðC5Þ

2. Three-body decays of N

ΓðNj → l−
i l

þ
k νlkÞ ¼

G2
FM

5
Nj

16π3

�
jSijj2

X
κ

jUkκj2I1ðxli ; xνlk ; xlkÞ þ jKRij
j2

×
X
κ

jTkκj2ξ41I1ðxli ; xνlk ; xlkÞ − 8Re

�
S�ijV

�
ij

X
κ

UkκTkκ

�
ξ21I3ðxli ; xνlk ; xlkÞ

�
; ðC6Þ

where li;lj ¼ e, μ, τ, li ≠ lj.

ΓðNj → νlil
−
i l

þ
i Þ ¼

G2
FM

5
Nj

16π3

�
jSijj2

X
k

jUikj2½I1ðxνli ; xli ; xliÞ

þ 2ððglVÞ2 þ ðglAÞ2ÞI1ðxνli ; xli ; xliÞ þ 2ððglVÞ2 − ðglAÞ2ÞI2ðxνli ; xli ; xliÞ
þ 2ððg0lV Þ2 þ ðg0lA Þ2Þξ42I1ðxνli ; xli ; xliÞ þ 2ððg0lV Þ2 − ðg0lA Þ2Þξ42I2ðxνli ; xli ; xliÞ
− 4ξ22ððglVg0lV þ glAg

0l
A ÞI1ðxνli ; xli

; xli
Þ þ ðglVg0lV − glAg

0l
A ÞI2ðxνli ; xli ; xli

ÞÞ�
þ jVijj2

X
k

jTikj2ξ41I1ðxνli ; xli ; xliÞ − 8Re½S�ijV�
ij

X
k

UikTik�ξ21I3ðxli
; xνli ; xli

Þ

þ 2Re½jSijj2
X
k

jUikj2�½ξ22ðg0lA − g0lV ÞI1ðxνli ; xli ; xliÞ − ξ22ðg0lA þ g0lV ÞI2ðxνli ; xli ; xliÞ

− ðglA − glVÞI1ðxνli ; xli ; xliÞ þ ðglA þ glVÞI2ðxνli ; xli
; xliÞ�

− 8Re½SijVij

X
k

U�
ikT

�
ik�ξ21

�
ðg0lV − g0lA Þξ22I3ðxνli ; xli ; xli

Þ þ 1

4
ðg0lV þ g0lA Þξ22

× I4ðxli ; xli ; xνli Þ þ ðglV − glAÞI3ðxνli ; xli ; xliÞ þ
1

4
ðglV þ glAÞI4ðxli ; xli ; xνli Þ

��
; ðC7Þ
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where li ¼ e, μ, τ.

ΓðNj → νlil
−
k l

þ
k Þ ¼

G2
FM

5
Nj

8π3
jSijj2

X
κ

jUiκj2½ððglVÞ2 þ ðglAÞ2ÞI1ðxνli ; xlk
; xlkÞ

þ ððglVÞ2 − ðglAÞ2ÞI2ðxνli ; xlk ; xlkÞ þ ððg0lV Þ2 þ ðg0lA Þ2Þξ42I1ðxνli ; xlk ; xlkÞ
þ ððg0lV Þ2 − ðg0lA Þ2Þξ42I2ðxνli ; xlk ; xlkÞ − 2ξ22½ðglVg0lV þ glAg

0l
A ÞI1ðxνli ; xlk

; xlkÞ
þ ðglVg0lV − glAg

0l
A ÞI2ðxνli ; xlk ; xlk

Þ��; ðC8Þ

where li;lj ¼ e, μ, τ and li ≠ lj.

ΓðNj → νli
νν̄Þ ¼

G2
FM

5
Nj

192π3
jSijj2

X
k

jUikj2ð1 − sin2 θwξ22Þ2: ðC9Þ

The kinematical functions required for three-body decay are given by

I1ðx; y; zÞ ¼
Z ð1−zÞ2

ðxþyÞ2
ds
s
ðs − x2 − y2Þð1þ z2 − sÞλ1

2ðs; x2; y2Þλ1
2ð1; s; z2Þ;

I2ðx; y; zÞ ¼ yz
Z ð1−xÞ2

ðyþzÞ2
ds
s
ð1þ x2 − sÞλ1

2ðs; y2; z2Þλ1
2ð1; s; x2Þ;

I3ðx; y; zÞ ¼ xyz
Z ð1−zÞ2

ðxþyÞ2
ds
s
λ
1
2ðs; x2; y2Þλ1

2ð1; s; z2Þ;

I4ðx; y; zÞ ¼ z
Z ð1−zÞ2

ðxþyÞ2
ds
s
λ
1
2ðs; x2; y2Þλ1

2ð1; s; z2Þ:

The neutral-current couplings of leptons are given by

glV ¼ −
1

4
þ sin2 θw; glA ¼ 1

4
;

g0lV ¼ −
1

4
þ sin2 θw; g0lA ¼ −

1

4
þ 1

2
sin2 θw:

The functions AðMNÞ and BðMNÞ, relevant for the N → lπ decay mode, are given by

AðMNÞ ¼
G2

FM
3
N

16π
f2πV2

udξ
4
1

�
FPðxe; xπÞ þ FPðxμ; xπÞ

2

�
; ðC10Þ

BðMNÞ ¼
G2

FM
3
N

16π
f2πV2

udξ
4
1

�
FPðxe; xπÞ − FPðxμ; xπÞ

2

�
: ðC11Þ
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