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We study decoherence effects in neutrino flavor oscillations in curved spacetime with particular
emphasis on the lensing in a Schwarzschild geometry. Assuming Gaussian wave packets for neutrinos, we
argue that the decoherence length derived from the exponential suppression of the flavor transition
amplitude depends on the proper time of the geodesic connecting the events of the production and detection
in general gravitational setting. In the weak gravity limit, the proper time between two events of given
proper distance is smaller than that in the flat spacetime. Therefore, in presence of a Schwarzschild object,
the neutrino wave packets have to travel relatively more physical distance in space to lapse the same amount
of proper time before they decoher. For nonradial propagation applicable to the lensing phenomena, we
show that the decoherence, in general, is sensitive to the absolute values of neutrino masses as well as the
classical trajectories taken by neutrinos between the source and detector along with the spatial widths of
neutrino wave packets. At distances beyond the decoherence length, the probability of neutrino flavor
transition due to lensing attains a value which depends only on the leptonic mixing parameters. Hence, the
observability of neutrino lensing significantly depends on these parameters and in-turn the lensing can
provide useful information about them.
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I. INTRODUCTION

Neutrino oscillations, in curved spacetime has gained
attention in recent times [1,2], for the reason that such
analysis is not only sensitive to the background geometry and
hence the gravity theory at work [3–11] but they also reveal
some salient features of the neutrino sector which are not
present in flat spacetime [12,13]. Apart from increasing the
oscillation length of neutrinos, effects such as spin-flip or
helicity transitions [12,13] and possible violation of equiv-
alence principle [14,15] have been investigated in the
gravitational settings. Gravitational lensing where different
trajectories of neutrinos around a massive astrophysical body
get focused on a point of detection and its effects on flavor
oscillations are studied in the context of Schwarzschild
geometry in [2,16–20]. In our previous work [21], we studied
weak gravitational lensing of neutrino by a Schwarzschild

mass and showed that the resulting flavor oscillations become
sensitive to the individual masses of the neutrinos, paving a
potential way of measurement of individual masses of
different neutrino species.
Interesting as these results may appear, like in the flat

space, the neutrino oscillations in most of such consid-
erations, have been studied using plane wave approxima-
tion. In a realistic generic scenario though a wave packet
approach is more practical as the neutrinos are produced
and detected as localized wave packets of finite width in
position space. Introduction of wave packet in such studies,
introduces a new length scale beyond which the neutrino
oscillations cease [22–28]. Owing to the nontrivial leptonic
mixing, a wave packet of neutrino created in a particular
flavor in a weak interaction process can be decomposed in
terms of wave packets of different mass eigenstates. Under
the time evolution these wave packets travel with different
group velocities due to the different masses. Eventually,
they get separated and the overlap between them drops
off to an insignificant value such that the probability of
transition among the different flavors saturates to a value
which depends only on the parameters of leptonic mixing, a
phenomena known as decoherence.
While the decoherence effects have been widely studied

for neutrino oscillations in flat spacetime, it has attracted
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relatively less attention for neutrino propagation in the
curved geometry. Recently, these effects have been inves-
tigated in [29,30] for neutrinos traveling radially inward or
outward in the background of the Schwarzschild metric. In
this paper, we study the impact of decoherence on neutrino
oscillation when the neutrinos get lensed by a gravitating
object located in between the source and detector. It is seen
that the spatial distances neutrinos cover before the onset
of decoherence is larger than that for the flat spacetime. We
find that, from a perspective of an observer at infinity, the
decoherence coordinate distance does not explicitly depend
on the mass of the gravitating body in case of the radial
propagation of the neutrino wave packets while such a
distance explicitly depends on the Schwarzschild mass in
the case of the nonradial propagation. Further, we observe
that the decoherence in the gravitating scenario is sensitive
to the individual masses of the neutrinos and not only on
their squared mass differences. Therefore, monitoring of
the decoherence provides an avenue for the mass estimates
of the individual neutrino species contributing into the
decoherence process.
In Sec. II, we discuss the wave packet formalism for

neutrino lensing and formulate the condition for decoherence.
In Sec. III, we use the formalism for the Schwarzschild
geometry and discuss decoherence for the radial and non-
radial propagation of the wave packets and compare it with
the flat space case. We explicitly study nonradial propagation
relevant for lensing scenario in Sec. IV and obtain the
decoherence condition. Finally, we summarize the main
results in Sec. VI.

II. NEUTRINO WAVE PACKET AND
DECOHERENCE IN CURVED SPACETIME

Consider a neutrino in flavor eigenstate, να, produced
in some weak interaction process occurring during a
spacetime interval centered at the source coordinate
ðt; x⃗Þ ¼ ðtS; x⃗SÞ. The state can be expressed in terms of
wave packet as [27]

jναðt; x⃗Þi ¼
X
i

U�
αiψ

S
i ðt; x⃗Þjνii; ð1Þ

where U is the lepton mixing matrix and index i corresponds
to the neutrino mass eigenstate. In flat spacetime, a wave
packet can be expanded unambiguously in the momentum
basis. This advantage is somewhat lost in curved spacetime
because the definition of the momentum depends on the
location of observer. Nevertheless, it is possible to define
local Fourier transform by using a noncoordinate basis
following the tetrad formalism [31]. This allows one to write
a spacetime evolved wave packet (at t > tS) as

ψS
i ðt; X⃗ðxÞÞ ¼

Z
d3p
ð2πÞ3 f

S
i ðp⃗; p⃗S

i ÞeipaXa
e−iΦ

m
i ; ð2Þ

where pa and Xa are the momentum and position
coordinates in the tetrad basis of the tangent space around
each spacetime point xμ. The parameter a runs from 1 to
3, and fSi ðp⃗; p⃗S

i Þ is the momentum distribution function of
neutrino produced at the source while p⃗S

i is the average
momentum. The phase in the second exponent accounts
for the propagation of the neutrino wave packet. In the
curved spacetime, it is given by [1]

Φm
i ¼

Z
D

S
pðiÞ
μ dxμ; ð3Þ

with pðiÞ
μ ¼ migμνdxν=ds and ds is the line element along

the neutrino trajectory. Note that when there are more than
one trajectories allowed in between the production and
detection, the evolved phase in the Eikonal approximation
depends on the particular path taken by the propogating
neutrino mass eigenstate [21]. Therefore, we denote this path
dependency by a superscript m. Finally, the detected
neutrino flavor state νβ can be described by a wave packet
centered at x⃗ ¼ x⃗D and therefore

jνβðx⃗Þi ¼
X
i

U�
βiψ

D
i ðt; x⃗Þjνii; ð4Þ

with

ψD
i ðX⃗ðxÞÞ ¼

Z
d3p
ð2πÞ3 f

D
i;x⃗ðp⃗; p⃗D

i Þ eipaXa
: ð5Þ

Note that Eqs. (4) and (5) do not explicitly depend on time as
the process of detection is assumed to be time indepen-
dent [27].
The amplitude of flavor transition after the neutrino has

traveled from the source to the detector on a classical
trajectory denoted by m can then be obtained using
Eqs. (1), (4) as [27,28]

Am
αβ ≡ hνβðx⃗DÞjναðt; x⃗Þi

¼
X
i

UβiU�
αi

Z
d3p
ð2πÞ3 f

D�
i;x⃗ ðp⃗; p⃗D

i ÞfSi;x⃗ðp⃗; p⃗S
i Þe−iΦm

i :

ð6Þ

The amplitude, in general, depends on the overlap of
spacetime evolved momentum distribution functions which
in turn depends on the neutrino trajectories. The probability
of transition να → νβ can be computed from the amplitude
using

Pαβ ¼
jPmA

m
αβj2P

βj
P

mA
m
αβj2

: ð7Þ

In this way of deriving the transition probability, the
normalization is enforced through the conservation of prob-
ability and it depends on the paths as noted earlier in [21].
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Further simplification of amplitude can be achieved if the
momentum distribution functions of the source and detec-
tor are known. Assuming that fSi;x⃗ is a function which has a
sharp peak around p⃗S

i , we substitute Φm
i with its series

expansion at p⃗ ¼ p⃗S
i :

Φm
i ðp⃗Þ ¼ Φm

i ðp⃗S
i Þ þ X⃗m

i · ðp⃗ − p⃗S
i Þ þOðp2Þ; ð8Þ

with X⃗m
i ¼ ∂p⃗Φm

i ðp⃗ ¼ p⃗S
i Þ, evaluated with respect to the

momentum description corresponding to any chosen point
in the spacetime. This replacement in Eq. (6) leads to

Am
αβ ¼

X
i

UβiU�
αi e

−iΦm
i

×
Z

d3p
ð2πÞ3 f

D�
i;x⃗ ðp⃗; p⃗D

i ÞfSi;x⃗ðp⃗; p⃗S
i Þe−iX⃗

m
i ·ðp⃗−p⃗S

i Þ; ð9Þ

where now onwards Φm
i denotes the phase evaluated at

p⃗ ¼ p⃗S
i and we do not show p⃗ dependence of Φm

i for
simplicity.
We further assume that the momentum distribution

functions at the source and detector are Gaussians.
Explicitly,

fS;Di;x⃗ ðp⃗; p⃗S;D
i Þ ¼

�
2

ffiffiffi
π

p
σiS;D

�3
2

e
−
ðp⃗−p⃗S;D

i
Þ2

2σ2
iS;D ; ð10Þ

such that Z
d3p
ð2πÞ3 jf

S;D
i ðp⃗; p⃗S;D

i Þj2 ¼ 1: ð11Þ

In the following, we take equal mean momentum limit
and take p⃗D;S

i ¼ p⃗D;S and σiD;S ¼ σD;S for simple estima-
tions. Together with this, the substitution of Eq. (10) in
Eq. (9) after some straightforward algebraic manipula-
tions gives

Am
αβ ¼ 2

ffiffiffi
2

p �
σDσS

σ2D þ σ2S

�
3=2

×
X
i

UβiU�
αie

−iðΦm
i −

σ2
S

σ2
D
þσ2

S

X⃗m
i ·ðp⃗D−p⃗SÞÞ

e
−
σ2
D
σ2
S
jX⃗m
i
j2þðp⃗D−p⃗SÞ2

2ðσ2
D
þσ2

S
Þ :

ð12Þ

The first exponential gives rise to the neutrino oscillations
while the second is responsible for the damping of the
amplitude due to wave packet separation. Even if one
chooses the mean local momentum of the detector wave
packet to match exactly with that of the source, i.e.,
p⃗D
i ¼ p⃗S

i , the amplitude damps eventually due to propa-
gation as long as both of σS;D are non-vanishing. Using
Eq. (7) and the amplitude obtained in Eq. (12), the
probability is evaluated as

Pαβ ¼
P

i;jU
�
βiUαiUβjU�

αj

P
m;ne

−iΦmn
ij e−X

mn
ijP

iUαiU�
αi

P
m;ne

−iΦmn
ii e−X

mn
ii

; ð13Þ

where

Φmn
ij ≡ ðΦm

i −Φn
j Þ −

σ̄2

σ2D
ðp⃗D − p⃗SÞ · ðX⃗m

i − X⃗n
j Þ; ð14Þ

Xmn
ij ≡ 1

2
σ̄2ðjX⃗m

i j2 þ jX⃗n
j j2Þ; ð15Þ

and σ̄2 ¼ σ2Dσ
2
S=ðσ2D þ σ2SÞ. Equation (13) along with the

definitions given in Eqs. (14), (15) can be used to
quantify the oscillations as well as decoherence for the
neutrinos with Gaussian wave packets at the source and
detector and traveling in the weak gravity regime.
Several interesting aspects of Eqs. (13)–(15) can be

discussed at this stage.
(i) The oscillation phase obtained in Eq. (14) is, in

general, different from the one obtained assuming
neutrinos as plane waves. In the case of the latter,
Φmn

ij ¼ Φm
i −Φn

j [21]. The difference becomes neg-
ligible if the neutrino wave packets at production
and detection follow p⃗D ¼ p⃗S.

(ii) By definition all the damping factors are non-
negative, i.e., Xmn

ij ≥ 0. Further, they are symmetric
under the operation ði; mÞ⇌ðj; nÞ.

(iii) As the neutrinos move along their trajectories, all
Xmn

ij increase because of their dependence on the
traveled distance. Clearly, the smaller a particular
Xmn

ij is, the later in time the corresponding expo-
nential term will be decaying in Eq. (13). However, a
particular Xm̂ n̂

î î
can be chosen, as the one with the

smallest magnitude among all Xmn
ii , and it is easy to

see that the probability expression, Eq. (13), does
not depend onXm̂ n̂

î î
. Note that to utilize this freedom

to choose the index î effectively, we require that the
correspondingUαî are nonvanishing. Otherwise, Pαβ

is already independent of Xm̂ n̂
î î

. The effective damp-
ing factor can, therefore, be parametrized as

Dmn
ij ¼ Xmn

ij −Xm̂ n̂
î î

; ð16Þ

such that Xm̂ n̂
î î

is the smallest among Xmn
ij and

corresponding Uαî ≠ 0. The same expression of
probability holds with Xmn

ij are now replaced by
Dmn

ij in Eq. (13).
(iv) For decoherence, it is necessary that σD; σS ≠ 0. If

any of the two vanish, σ̄ vanishes too. Since σD;S → 0

also marks the perfect production or detection mecha-
nism, a precision information of the production
process of neutrinos at the source end or precision
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in identification of a transition at the detector end
allows less room for decoherence.

(v) When neutrino travels large enough distance, one
eventually finds all e−D

mn
ij → 0, except for i ¼ j ¼ î

and m ¼ m̂, n ¼ n̂ for which e−D
m̂ n̂
î î ¼ 1. In this

limit, one finds

Pαβ → jUβîj2; ð17Þ

provided Uαî ≠ 0 as discussed earlier. The value of
saturated probability, therefore, depends only on the
neutrino mixing parameters.

In order to illustrate the last point with more clarity, consider
a three flavor case with Uα1 ≠ 0. As the neutrinos travel
more the parameter Dmn

ij keep increasing. The largest Dmn
ij

will cross some specified value of irrelevance (say 1) first,
will lead its corresponding term to insignificant values the
earliest with increasing distance. Gradually various terms
will keep dropping off as neutrinos move forward from S to
D. Equation (13) can be written in the form

Pαβ ¼
P

i;m;nU
�
βiUαiUβiU�

αie
−ιΦmn

ii −Dmn
iiP

i;m;nUαiU�
αie

−ιΦmn
ii −Dmn

ii|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
I

þ
P

i≠j;m;nU
�
βiUαiUβjU�

αje
−ιΦmn

ij −Dmn
ijP

i;m;nUαiU�
αie

−ιΦmn
ii −Dmn

ii|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
II

; ð18Þ

such that the terms are arranged as: I which involves the
same mass on various path interference and II which
involves different mass species on various path interference.
Given the hierarchical structure set up, the term II starts
with D11

12 (which is the smallest in II). Therefore, all other
Dmn

ij carrying exponentials will decay before the decay of
the first term in II. So at the stage when D11

12 carrying
exponential is the only significant term in II, all other terms
in I apart from smallest mass term i ¼ 1, also become
irrelevant (as they are all larger than D11

12). Thus, in an n
flavor case, the last few nontrivial relevant terms in the
probability of transitions after travelling sufficiently far from
the source are those withDmn

11 andD11
12. Now interestingly, as

soon as the last remaining exponential in II turns insig-
nificant, the probability of transition already saturates, as
when II → 0, we have

Pαβ → I →

P
m;nU

�
β1Uα1Uβ1U�

α1e
−ιΦmn

11
−Dmn

11P
m;nUα1U�

α1e
−ιΦmn

11
−Dmn

11

¼ U�
β1Uβ1 ¼ jUβ1j2: ð19Þ

Therefore, the decoherence is decided by the decay of same
(larger) path interference term between two smallest mass
species wave packets, i.e., through D11

12 → 1. In the case

when the Uαi ¼ 0 for all i < î the decoherence condition
gets modified to D11

î;îþ1
→ 1.

As it may be apparent, the number of flavors had no
explicit role to play the condition for decoherence is general
and applicable to neutrinos traveling in flat as well as
curved spacetime as far as gravity is weak. It also holds for
n number of flavors and multiple classical path neutrinos
may take to reach to the detector from a given source. Thus,
it will work for cases where we have only one path
connecting the detector and the source (as in case of radial
propagation or for particle with nonzero angular momen-
tum when the source and detector are on the same side) as
well as multi-path consideration (nonradial propagation,
i.e., lensing).

III. DECOHERENCE IN THE SCHWARZSCHILD
METRIC

We now discuss the decoherence in the presence
of Schwarzschild background in order to quantify the
effects that arise due to the curvature of spacetime. The
Schwarzschild metric quantifying the gravitational field
of a spherically symmetric body is written as

ds2 ¼BðrÞdt2−B−1ðrÞdr2− r2 dθ2− r2 sin2 θdϕ2; ð20Þ

where BðrÞ ¼ ð1 − RS=rÞ and RS is Schwarzschild radius.
As is the general practice, neutrinos are assumed to travel on
null geodesics of this metric. The spherical symmetry of the
system confines these geodesics on a plane which can be
chosen as θ ¼ π=2without loss of generality. The phaseΦm

i ,
defined in Eq. (3), can then be evaluated for classical
trajectories between the source and detector. The justification
for considering such classical trajectories and details of
evaluation of the phase have been described in detail in our
previous work [21]. The evaluation of phase depends on
two qualitatively different cases corresponding to radial and
non-radial trajectories. In the radial case, there is only one
trajectory available for the neutrinos, whereas for the non-
radial case the number of trajectories (in a plane of constant
θ) may be 1 or 2 depending upon whether the source and the
detector are on the same side of Schwarzschild mass or
different respectively. We will discuss all such cases now.

A. Radial propagation

In order to remain in the regime of weak gravity limit,
one has to consider both the source and detector on the
same side of the Schwarzschild body. There exists only one
classical trajectory for neutrinos in this case and therefore
we drop the path indices from the phase and other relevant
quantities. The evaluation of phase in this case gives [2]

Φj ¼
Z

rD

rS

�
Ej

�
dt
dr

�
− pj

�
dr ≃� m2

j

2E0

ðrD − rSÞ ð21Þ
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at the leading order, where rD and rS are radial coordinate
distance defined in the Schwarzschild coordinate system. In
the evaluation of the above, we have used dt=dr ¼
�1=BðrÞ for null trajectories. Also, Ej and pj are constants
of motion and are related by

pjðrÞ ¼ � 1

BðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
j − BðrÞm2

j

q

≃� 1

BðrÞ
�
Ej − BðrÞ m

2
j

2E0

�
: ð22Þ

The positive (negative) sign in the above expressions stands
for neutrino traveling outward (inward). E0 is the energy as
measured by an observer at the infinity and it is constant
along the null trajectory [2]. Taking the momentum dis-
tribution defined at the source location (i.e., the maxima of
the distribution as well as Xij is defined at the location of
the source) and following the definitions Eqs. (8), (15)
along with Eqs. (21), (22), we evaluate the decay factor as

Xij ≃ σ̄2
m4

i þm4
j

8E4
0

BðrSÞjrD − rSj2

¼ σ̄2
m4

i þm4
j

8E4
locBðrSÞ

jrD − rSj2; ð23Þ

at the leading order in mi=E0, see Appendix A. Here,

Eloc ≡ ElocðrSÞ ¼
E0ffiffiffiffiffiffiffiffiffiffiffi
BðrSÞ

p ; ð24Þ

is the energy of neutrinos (in the equal energy approxi-
mation) as measured by a local observed situated at the
source. Identifying the lightest mass eigenstate as m1 and
the second lightest as m2, it is straightforward to see from
Eq. (16) that the smallest nonzero Dij corresponds to

D12 ≃ σ̄2
m4

2 −m4
1

8E4
locBðrSÞ

jrD − rSj2: ð25Þ

The decoherence distance, i.e., the distance at which the
oscillation probability gets depleted by at least a factor of
e−1, is then quantified by setting D12 ¼ 1. In other words,
the neutrinos will decohere while traveling radially inward
or outward if

jrD − rSjffiffiffiffiffiffiffiffiffiffiffi
BðrSÞ

p ≥ 2
ffiffiffi
2

p E2
loc

σ̄
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m4

2 −m4
1

p : ð26Þ

For given Eloc, m1, m2, σ̄ and rS, one can obtain the location
rD where the decoherence will set in Equivalently, one can
infer about the absolute neutrino mass scale from
decoherence length if the other parameters and squared
difference of masses are known.

In the derivation of Eq. (26), we have used a source wave
function, Eq. (2), expanded in terms of momentum dis-
tribution function as seen by an observer located at the
source. One can also perform similar analysis in terms of a
momentum distribution function specified for an observer
at infinity. Assuming again a Gaussian distribution in this
case, the condition equivalent to Eq. (26) is obtained as

jrD − rSj ≥ 2
ffiffiffi
2

p E2
0

σ̄
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m4

2 −m4
1

p : ð27Þ

The above differs from Eq. (26) by an extra factor offfiffiffiffiffiffiffiffiffiffiffi
BðrsÞ

p
. The decoherence as perceived by different observ-

ers is not identical in curved spacetime as the momentum
distributions are defined differently in different frames. The
result in Eq. (27) is in a qualitative agreement with the ones
derived in [29,30]. However, we get a different combination
of neutrino masses in Eq. (27) in comparison to the results
obtained in [29,30].
A few important points can be noted in the context of the

above results. The energies appearing in the oscillation phase
and damping factor are different in general. Moreover, as can
be seen from Eq. (27), the decoherence coordinate rD is
insensitive to the Schwarzschild parameter RS at the leading
order in mj=Eloc from a perspective of an asymptotic
observer. Note that it is the only radial coordinate determi-
nation which is independent of RS in this case. The physical
spatial distance neutrinos travel radially before their wave
packet separates depends on RS. Such distance can be
obtained as

Lp ¼
Z

rD

rS

1ffiffiffiffiffiffiffiffiffi
BðrÞp dr ≃ rD − rS þ

RS

2
ln

�
rD
rS

�
: ð28Þ

Consequently, the spatial distance Lp travelled by the
neutrino turns out to be greater than that in the Schwarzs-
child background. Hence, the coherence is maintained for
relatively greater spatial distance in curved geometry.

B. Nonradial propagation with a single trajectory

This case corresponds to the situation that the source and
the detector are on the same side of the gravitating mass
with rS < rD and the neutrinos are created with nonzero
angular momentum. In this case, the proper time taken in
moving from rS to rD

τi ≈
Z

D

S
dr

m
E0

�
1þ m2

2E2
0

þ L2

2E2
0r

2
−
rS
r

�
m2

2E2
0

þ L2

2E2
0r

2

��
:

ð29Þ

Now using L ¼ E0bv∞ ¼ E0bð1 − m2

2E2
0

Þ, up to first order in
m=E0 we get,
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τi ¼
m
E0

�
ðrD − rSÞ þ

b2

2

�
1

rS
−

1

rD

��

− rS
m
E0

�
b2

4

�
1

r2S
−

1

r2D

��
: ð30Þ

Further, in case of single path (m ¼ 1), the exponents D11
ij

can be evaluated for the Schwarzschild geometrical back-
ground in the weak gravity case as

D11
ij ¼X11

ij −X11
11¼

σ̄2

2
ðjX⃗ij2− jX⃗1j2þjX⃗jj2− jX⃗1j2Þ ð31Þ

with

jX⃗ij2 ≡m4
i BðrSÞ
4E4

0

R2

�
1 −

b2

2rSrD
þ rS

R

�
2

≈
m4

i BðrSÞ
4E4

0

R2

�
1 −

b2

rSrD
þ 2rS

R

�
: ð32Þ

Since, X⃗m
i ¼ ∂p⃗ϕijp⃗S

i
, for the Gaussian wave packet we

have

Xmn
ij ¼ σ̃2

8g00E2
0

ððmiτiÞ2 þ ðmjτjÞ2Þ; ð33Þ

since jX⃗m
i j2 ≡P

3
a¼1 X

m;a
i Xm

i;a ¼ ðmiτ
m
i Þ2=4g00, where Xm;a

i

is the projection of X⃗m
i in terms of local tetrad basis. Thus,

the decoherence controlling parameter

D11
12 ¼

σ̃2BðrSÞ
8E2

0

½ðm2τ2Þ2 − ðm1τ1Þ2�: ð34Þ

In order to cause appreciable decoherence one has to attain
particular D11

12 → 1 value. It can be shown that in order to
traverse a particular amount of proper time, one has to travel
more in terms of physical distance in the Schwarzschild
spacetime compared to the flat space. Therefore, it follows
that for nonzero b1 (nonradial case) one has to travel more in
radial coordinate equivalently lapsing more physical distance
spatially, see Appendix B.

IV. LENSING

We now discuss the nonradial propagation with the
source and detector located on the opposite sides of
gravitating object which is essentially the case for neutrino
lensing phenomena. The geometrical configuration of this
case and derivation of phase Φm

i are discussed in our
previous work [21] in detail. It is evaluated as

Φm
i ¼

Z
rD

rS

�
Ei

�
dt
dr

�
− pi − Ji

�
dϕ
dr

��
dr

≃
m2

i

2E0

ðrS þ rDÞ
�
1 −

b2m
2rSrD

þ RS

rS þ rD

�
; ð35Þ

where the angular momentum Ji has been conveniently
parametrized in terms of impact parameter bm. The second
equality in the above equation is obtained in the weak
gravity limit rS;D ≫ RS as well as rS;D ≫ bm. A straight-

forward evaluation of X⃗m
i then gives

jX⃗m
i j2 ≃

m4
i

4E4
locBðrSÞ

ðrSþ rDÞ2
�
1−

b2m
2rSrD

þ RS

rSþ rD

�
2

≈
m4

i

4E4
locBðrSÞ

ðrSþ rDÞ2
�
1−

b2m
rSrD

þ 2RS

rSþ rD

�
ð36Þ

at the leading order in mi=Eloc.
Let us now quantify the decoherence in terms of the

effective damping factor Dmn
ij . Given source and detector on

the opposite sides of the gravitating object, there are two
classical trajectories on which neutrinos can travel in this
case. These trajectories are distinguished by their impact
factor b1 and b2. Identifying x-axis with the line connecting
neutrino source and Schwarzschild body, one can choose the
impact parameters such that b1 ≤ b2 for y ≥ 0. Further, we
can arrange neutrino masses such thatm1 < m2 < … < mn.
Therefore, an appropriate damping factor, as defined in
Eq. (16), for y ≥ 0 is determined as

Dmn
ij ¼ Xmn

ij −X11
11 ≈

σ̄2ðrS þ rDÞ2
8E4

locBðrSÞ
�
1þ 2RS

rS þ rD

�

×

�
m4

i

�
1 −

b2m
rSrD

�
þm4

j

�
1 −

b2n
rSrD

�

− 2m4
1

�
1 −

b21
rSrD

��
: ð37Þ

It can be seen that decoherence can arise in two qualitatively
different ways: (a) due to mass difference between the
lightest and the second lightest neutrino mass eigenstate, i.e.,
when i or j ≠ 1 and, (b) because of path difference even
when i ¼ j ¼ 1. Clearly, the second effect is negligible as it
arises at subleading order. It is noteworthy that the con-
tribution that arise through (b) actually decreases (recall that
b1 < b2 in the region of our interest) the effective damping
factor and therefore implies relatively increased length of
coherence. However, in case of weak lensing these mod-
ifications are extremely tiny and seem irrelevant from the
practical point of view.
Even in the non-radial propagation case, the decohe-

rence is dominantly governed by mass difference between
the lightest and the second lightest neutrino and, there-
fore, the relevant damping factor is D11

12. We find that the
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coordinate distance at which the lensing probabilities get
diluted by at least a factor of e−1 is given by a condition

ðrD þ rSÞffiffiffiffiffiffiffiffiffiffiffi
BðrSÞ

p
�
1 −

b21
2rSrD

þ RS

rD þ rS

�
≥ 2

ffiffiffi
2

p E2
loc

σ̄
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m4

2 −m4
1

p :

ð38Þ

Equation (38) can readily be applied to the neutrino
lensing case in order to estimate the distance till which
the coherent oscillations will last.
For a momentum distribution function specified in the

frame of an asymptotic observer, the condition equivalent
to Eq. (38) is obtained as

ðrD þ rSÞ
�
1 −

b21
2rSrD

þ RS

rD þ rS

�
≥ 2

ffiffiffi
2

p E2
0

σ̄
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m4

2 −m4
1

p :

ð39Þ

Unlike the decoherence condition obtained in the radial case,
Eq. (27), the above explicitly depends on the Schwarzschild
mass. A naive estimation of decoherence length was already
given in our previous work, see Eq. (32) in [21]. The result
we obtain here through a more careful and explicit treatment
is in a qualitative agreement. However, there is an important
difference. The decoherence length given in Eqs. (38), (39)
depends not only on the difference of squared neutrino
masses but also on the sum of them. Apart from this, there is
also a difference of factor 2 between the two results.

V. PHENOMENOLOGICAL IMPLICATIONS

The main result Eqs. (38), (39), obtained assuming
neutrinos as Gaussian wave packets, reveals some phe-
nomenologically useful aspects of lensing which comple-
ments our previous study of the same but with neutrinos
as plane waves [21]. The noteworthy features are the
following.

(i) In comparison to the plane wave approach, the
neutrino lensing probabilities in the present case
eventually saturate to some particular values and
the oscillation seizes. The distance at which these
effects become sizeable is given by Eqs. (38), (39).
This distance depends not only on the energy and
the width of neutrino wave packets but also on
absolute neutrino mass scale. For example, for
fixed σ̄, E0 and Δm2

21 ¼ m2
2 −m2

1, neutrinos main-
tain coherent oscillation for relatively longer dis-
tance if they are hierarchical (i.e., m1 ≪ m2). For
less hierarchical neutrinos (i.e., m1 ≃m2), the
decoherence occur at relatively shorter distance.
This feature is not only restricted to lensing
phenomena but also holds for radial propagation
as it can be seen from Eqs. (26), (27).

(ii) Distances within which the coherent oscillations
occur, the dependency of flavor transition proba-
bility on absolute neutrino mass scale arises only
through path differences between neutrino trajecto-
ries as discussed in [21]. Hence, lensing is essential
in that case.

(iii) For the neutrino lensing, depending on the locations
of source, gravitating object and detector and for
given energy and widths of neutrino wave packets,
the system can be found in coherent or decoherent
regime. One sees qualitatively very different pattern
of neutrino lensing probabilities in these regimes as
can be seen from our present and previous stud-
ies [21].

To make the above points more clear, we now estimate the
decoherence length for an example of Sun-Earth based
lensing system discussed earlier in detail in [21] using the
condition, Eq. (38). We consider RS ¼ 3 km, Eloc ¼
10 MeV and rS ¼ 105rD as taken earlier. For simplicity,
we consider collinear case in which the source of neutrino,
the detector and gravitating body lie on the same line. As
discussed before, deviation from this alignment does not lead
to significantly different results for decoherence. We then
compute the damping factor of interest, D11

12, for given wave
packet width in the momentum space and for different values
of detector location. At rD where D11

12 ¼ 1, the deviation
from the saturation value of the transition probability is
damped by a factor of 1=e. For D11

12 ¼ n, this deviation
further weakens roughly by a factor of 1=en. We also
compute correlations between σ̄ and rD for a fixed D11

12

value, which we choose to be unity (one can take any
reference value, with larger value indicating more effective
saturation). The estimation is done for two different values of
the lightest neutrino mass m1 but keeping m2

2 −m2
1 ¼

10−3 eV2 fixed. The results are displayed in Fig. 1. It can
be seen that for a given finite width of the wave packet,
decoherence occurs relatively at larger distance for hierar-
chical neutrino masses.
As discussed above, as D11

12 increases the transition
probability more and more effectively saturates to a value
determined by the mixing angle α. To demonstrate this effect
more clearly, we compute the transition probability Pαβ in
the two flavor case (with α, β marking either of electron (e)
or muon type (μ) neutrino flavor), taking the mixing angle
α ¼ π=4 and show the dependency of Pαβ on rD near the
decoherence distance. This is displayed in Fig. 2. Note that
the probability oscillates very rapidly at large distance
nearby the decoherence length. Thus to suppress these
effects, we plot the probability envelop made from maxi-
mum andminimum of the probability distribution rather than
the value of probability itself. To generate this envelop, we
select the maxima and the minima of probability over a
certain range ΔrD nearby particular value of rD and
associate these values to averaged rD. For the given plot
rD ranges from 108 km to 5 × 109 km and we choose
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ΔrD ¼ 2.45 × 106 km for determining the maxima and the
minima of the transition probability. This window corre-
sponds to a total of 4000 data points on the plot. The
minimum and maximum values of the transition probability
are then used to generate the envelopes displayed in Fig. 2.
It can be seen that amplitude of the probability gradually

decreases and the probability settles to a value determined
by mixing matrix element which in this case is
Peμ → sin2 α ¼ 1=2. From Fig. 1 and 2 we see the prob-
ability saturates at a radial distance rD where the
decoherence factor D11

12 becomes greater or equal to 2 for
both the cases m1 ¼ 0 eV and m1 ¼ 0.1 eV. We see in the
m1 ¼ 0.1 eV case neutrino achieves probability saturation
faster as compared withm1 ¼ 0 eV case. This demonstrates
neutrino decoherence sensitivity to the absolute neutrino
masses as discussed before. Beyond the decoherence length,

the interference caused by lensing of neutrinos gets dimin-
ished and the probability saturates to the value as discussed
in Eq. (17).

VI. SUMMARY

Gravitational lensing of neutrinos can reveal some inter-
esting features of neutrino flavor oscillations which cannot
be seen in usual oscillations in flat spacetime. For example, it
has been shown that the transition probability obtained
through lensing depends not only on the squared mass
difference of the neutrinos but it is also sensitive to the
absolute neutrino masses [21]. Since lensing involves
propagation of neutrinos over huge distances, a realistic
study of this phenomena must include understanding of
decoherence in the presence of gravitational background,
which we carry out in this paper. Assuming neutrino wave
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/ E
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c

FIG. 1. Left panel: the damping factor D11
12 as function of rD for σ̄=Eloc ¼ 10−13. Right panel: contours corresponding to D11

12 ¼ 1. In
both the panels, the solid (dashed) line corresponds to m1 ¼ 0 (m1 ¼ 0.1) eV. The other parameters are rS ¼ 105rD, RS ¼ 3 km,
m2

2 −m2
1 ¼ 10−3 eV2 and Eloc ¼ 10 MeV.
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FIG. 2. Maximum and minimum transition probability envelop as a function of rD for two flavor case. The solid (dashed) line
corresponds to m1 ¼ 0 (m1 ¼ 0.1) eV. The mixing angle is α ¼ π=4 and all the other parameters are as given in the caption of Fig. 1.
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functions as Gaussian wave packets of finite width for both
the source and the detector, we first derive a general
expression of transition probability in the wave packet
formalism. It is seen that the wave packet approach not
only gives rise to decoherence but also modifies the
oscillation phase if the mean values of momentum involved
in the production and detection mechanisms are different.
Interestingly, the efficiency of decoherence depends cru-
cially not only on the detector variance in the distribution but
also on that of the source.
We apply this general treatment to the radial and

nonradial propagations of neutrinos in the background
of Schwarzschild geometry. In a general spacetime, the
amount of decoherence a wave packet suffers, gets
decided by the proper time spent by an observer cotrav-
eling with its maxima while propagating between the
source and the detector location. Since for a given spatial
distance between two points on a spatial hypersurface, the
proper time elapsed along a geodesic connecting them is
shorter in the Schwarzschild background, somewhat
counter intuitively the wave packets have to travel more
(spatially) in presence of gravity when compared to the
flat spacetime, in order to achieve the same level of
decoherence.
Further, the nonradial propagation is studied viz-a-viz

the gravitational lensing phenomenon. It is seen that the
separation of neutrino wave packets in case of lensing
depends on both the Schwarzschild mass and the classical
path taken between the source and detector although at
subleading order, see Eq. (38). It is also seen that the
decoherence lengths in both the cases are sensitive to
absolute neutrino mass scale through explicit dependence
on both the sum and difference of the squared masses.
Therefore, observing gravitational effects on neutrino
oscillations even with presence of decoherence effect
remains a viable avenue for obtaining mass hierarchy
information of neutrinos. A realistic study of neutrino
fluxes from astrophysical sources can be used to estimate
the precision required in astrophysical or ground based
neutrino observations to reveal such aspects.
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APPENDIX A: DECOHERENCE PARAMETER

Since the wave packet is assumed to have a sharp
distribution around p⃗S, we include up to first order
expansion around it.

Φm
i ðp⃗Þ ¼ Φm

i ðp⃗SÞ þ ðp⃗ − p⃗SÞ · ∇Φm
i ðp⃗SÞ: ðA1Þ

We define X⃗m
i ¼ ∇Φm

i ðp⃗SÞ as a gradient of the phase with
respect to momentum defined at location r. Further, along
path m the expression of phase

Φm
i ðp⃗Þ ¼

Z
ðpiÞμdxμ ðA2Þ

For a radial trajectory (with a diagonal metric)
pμ ¼ ðp0; pr; 0; 0Þ. Further, for a timelike Killing vector
kμ ¼ ð1; 0; 0; 0Þ, pμkμ is a conserved quantity along
the geodesic whose tangent is pμ. For asympototic region
this conserved quantity pμkμ → p0 ≡ E0. Further since

the vector X⃗m
i is obtained from the spacelike gradient of

the phase, we go to the local Lorentz (tetrad) basis (just
for the convenience of rectilinear coordinate system),
defining pa ¼ eμapμ. Further, owing to the diagonal metric

structure we can select eμ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η00=g00

p
δμ0, leading to

E0 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g00½

P
3
j¼1ðpjÞ2�=η00

q
. Using the null geodesic

approximation, we write

Φm
i ðp⃗Þ ¼

Z
½ðpiÞ0dtþ ðpiÞrdr� ≈

m2
i

2E0i
R; ðA3Þ

leading to

jX⃗m
i j2 ¼

X
j

ðXm
i ÞjðXm

i Þj ¼ BðrÞ m4
i

4E4
0i
R2: ðA4Þ

If the analysis is done with respect to the momentum
distribution defined at the source location, then

jX⃗m
i j2 ¼ BðrSÞ

m4
i

4E4
0i
R2: ðA5Þ

APPENDIX B: DECOHERENCE IN FLAT
SPACETIME VS SCHWARZSCHILD SPACETIME

In this section, we compare the probability saturation
rate between the flat spacetime and the Schwarzschild
spacetime when the source and the detector located at a
fixed proper distance apart. We do this by comparing
decoherence factors of these spacetimes, using the follow-
ing equation

Δmn
ijSF ≡DmnS

ij −DmnF
ij ¼ Xmn

ij −X11
11 − ðXmnF

ij −X11F
11 Þ;

ðB1Þ
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whereDFmnS
ij andDFmnF

ij are the decoherence factor for the
Schwarzschild and flat spacetime respectively. Here m:n in
DFmnF

ij indicates that we are choosing the same proper
distances in the flat spacetime corresponding to the spatial
path length taken by the neutrino in the Schwarzschild
spacetime. Note that Δmn

ijSF < 0 will correspond to faster
neutrino decoherence in the flat spacetime as compared to
the Schwarzschild spacetime. We can write Eq. (B1)
explicitly as

Δmn
ijSF ¼ σ2Dσ

2
S

8E2
0ðσ2D þ σ2SÞ

ðBðrÞðmiτ
m
i Þ2 − ðmiτ

mF
i Þ2

þ BðrÞðmjτ
n
j Þ2 − ðmjτ

nF
j Þ2 þ 2BðrÞðm1τ

1
1Þ2

− 2ðm1τ
1F
1 Þ2Þ: ðB2Þ

Through some algebraic manipulations, the above expres-
sion can be rewritten as

Δmn
ijSF ¼ σ̃2

8E2
0

�
m2

iΔτmiSF
X

τmiSF þm2
jΔτnjSF

X
τnjSF

−
Rsðmiτ

m
i Þ2

r
−
Rsðmjτ

n
j Þ2

r
þ 2m2

1Δτ11SF
X

τ11SF

−
2Rsðm1τ

1
1Þ2

r

�
; ðB3Þ

whereΔτmiSF ¼ τmi − τmF
i and

P
τmiSF ¼ τmi þ τmF

i . Now the
proper time elapsed by the particle (having asymptotic
energy E0) in the flat spacetime ðdτFÞ and in the
Schwarzschild spacetime ðdτÞ, after traveling a proper
spatial distance dl, has the following relation

dτF ¼ 1ffiffiffiffiffiffiffiffiffi
BðrÞp dτ þO

�
m2

E2
0

�
: ðB4Þ

Ignoring Oðm2

E2
0

Þ, we get

dτF
dτ

≃
1ffiffiffiffiffiffiffiffiffi
BðrÞp > 1; ðB5Þ

which under weak field limit can be written as

Z
ðdτF − dτÞ ¼ τF − τ ¼ Rs

2

Z
1

r
dτ > 0: ðB6Þ

We see that irrespective of the path taken by the particle,
proper time taken in the flat space is more.
Therefore,ΔτmiSF is always negative because each term in

Eq. (B6) turns negative. Hence we see for the same spatial
distance between the neutrino source and the detector, the
neutrino transition probability in flat spacetimewill saturate
faster in comparison to the Schwarzschild spacetime.
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