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We investigate the impact of Coleman-Weinberg inflation on the stochastic gravity wave background
spectrum emitted by intermediate-scale cosmic strings. The string network is partially inflated and reenters
the horizon at later times after the end of inflation, such that the short string loops are not produced. This
leads to a significant modification of the gravity wave spectrum that we explore in detail. We find that
Coleman-Weinberg inflation can help to satisfy the Parkes Pulsar Timing Array (PPTA) bound for
dimensionless string tension values in the range Gμ > 1.1 × 10−10. We also identify the modified gravity
wave spectra which, in the case of inflation, are compatible with the North American Nanohertz
Observatory for Gravitational Waves (NANOGrav) data. We then discuss the formation of monopoles and
strings at the same breaking scale and the compatibility of the Monopole, Astrophysics and Cosmic Ray
Observatory (MACRO) bound with the PPTA bound, and also with the NANOGrav data. Finally, an
example of a realistic nonsupersymmetric E6 model incorporating successful Coleman-Weinberg inflation
is presented in which monopoles and strings both survive inflation and are present at an observable level.
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I. INTRODUCTION

The existence of topologically stable cosmic strings in
grand unified theory (GUT) models such as SOð10Þ [more
precisely Spin(10)] has been known for quite some time
[1], and their role in cosmology has attracted a fair amount
of interest in recent years—see, e.g., Refs. [2–7]. The string
tension μ, i.e., the energy per unit length of the string,
depends on the symmetry-breaking pattern of the GUT
symmetry and is related to an appropriate intermediate
scale Mstr determined by various phenomenological con-
siderations including gauge coupling unification. The
primordial string loops decay by emitting stochastic gravi-
tational radiation [8], and an important constraint on Mstr
arises from the pulsar timing array experiments—see
Ref. [9] and references therein. The recently published
12.5-yr pulsar timing array data from the NANOGrav
collaboration [10] provides some provisional evidence
for the existence of a gravity wave signal at frequencies
f ∼ 1 yr−1. It has been recognized by several authors
[5,7,10] that these data appear compatible with an

interpretation in terms of a stochastic gravity wave back-
ground emitted by cosmic strings. As argued in the
NANOGrav paper [10], the apparent tension between their
results and the PPTA bound [11] is not real, but comes from
the use of the improved prior for the pulsar red noise [12].
Therefore, we either take the NANOGrav result as a true
detection of the stochastic gravity waves and abandon the
PPTA limit, or conversely, we consider the PPTA limit as a
genuine bound and discard the NANOGrav signal.
In this paper our major motivation is to explore the

impact of inflation experienced by strings on the gravity
wave spectrum. The idea is that the strings are generated in
a phase transition during primordial inflation. They are then
partially inflated and at some point after the end of
inflation, they reenter the postinflationary horizon. Their
subsequent self-interactions produce string loops which
emit gravity waves and eventually decay. Under these
circumstances, the relatively short loops are absent and,
consequently, the gravity wave spectrum at high frequen-
cies is altered. Indeed, as the reentrance time of the strings
approaches the equidensity time, the spectrum of gravity
waves at frequencies corresponding to its overall peak or
higher is gradually reduced [6]. This scenario produces a
modified spectrum which, if necessary, can help comply
with the PPTA bound for appropriate Gμ values (Gμ is the
dimensionless string tension with G being Newton’s con-
stant and μ the mass per unit length of the string). In this
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paper we assume that the gravity waves arise solely from
cosmic strings.
It is interesting to note that Gμ values of order 10−11 or

so, which are of interest here, require intermediate scales
Mstr ∼ 1014 GeV which coincide, more or less, with the
values of the Hubble parameter during primordial inflation
driven by a gauge singlet real scalar field with a Coleman-
Weinberg potential [13,14]. This fact has been exploited in
the past to show how intermediate-scale primordial mono-
poles may survive inflation and appear in the present
universe at an observable rate [6,14,15]. By the same
token, intermediate-scale cosmic strings can also survive an
inflationary epoch and contribute to the present spectrum of
stochastic gravity waves. Therefore, it is instructive to
consider this particular inflationary model and study its
impact on the gravity wave spectra in the light of the PPTA
bound or NANOGrav data.
The paper is organized as follows. In Sec. II, following

closely the discussion in Ref. [6], we summarize the salient
features of the inflationary model with a Coleman-
Weinberg potential and sketch briefly the intermediate-
scale phase transition leading to string formation. In Sec. III
we outline the evolution of the string network and the
calculation of the gravity wave spectrum that is generated.
Section IV shows how inflation with the Coleman-
Weinberg potential for a real GUT singlet modifies the
gravity wave spectra from the intermediate mass strings,
such that it can satisfy the PPTA bound on the string
tension. In Sec. V we fit the power-law approximation of
the gravity wave spectrum for various Gμ values both with
and without inflation. In the case of inflation, we find the
modified gravity wave spectra from strings which are
compatible with the NANOGrav data. In Sec. VI we
discuss the formation of monopoles and strings at the
same intermediate breaking scale and the compatibility of
the MACRO bound [16] with the PPTA bound, and also
with the NANOGrav data. We present a realistic non-
supersymmetric E6 model which incorporates successful
inflation with a Coleman-Weinberg potential. Our results
are summarized in Sec. VII.

II. INFLATION AND PHASE TRANSITION

We employ an inflationary scenario where the inflaton is
a gauge singlet real scalar field ϕwith a Coleman-Weinberg
potential [13,14],

VðϕÞ ¼ Aϕ4

�
log

�
ϕ

M

�
−
1

4

�
þ V0: ð1Þ

Here V0 ¼ AM4=4, M is the vacuum expectation value
(VEV) of ϕ, and A ¼ β4D=ð16π2Þ [3], where D is the
dimensionality of the representation to which the GUT
gauge symmetry-breaking real scalar field χ belongs, and β
determines the coupling −β2ϕ2χ2=2 between ϕ and
χ. For definiteness, we adopt the particular parameter set

V1=4
0 ¼ 1.66 × 1016 GeV, M ¼ 23.81mPl, and A ¼ 2.5 ×

10−14 from Table VI of Ref. [6] corresponding to a viable
inflationary scenario (mPl ¼ 2.4 × 1018 GeV is the reduced
Planck mass). The inflaton value at the pivot scale k� ¼
0.05 Mpc−1 and at the end of inflation is ϕ� ¼ 12.17mPl
and ϕe ¼ 22.47mPl, respectively. The termination of infla-
tion is determined by the condition maxðϵ; jηjÞ ¼ 1, where
ϵ and η are the usual slow-roll parameters (for a review
see Ref. [17]).
We assume that the cosmic strings are generated during a

phase transition associated with an intermediate step of
gauge symmetry breaking by the VEV of the real scalar
field χstr. This is the canonically normalized real compo-
nent of a scalar field belonging to a nontrivial representa-
tion of the gauge group. The χstr-dependent part of the
potential is

Vðϕ; χstrÞ ¼ −
1

2
β2strϕ

2χ2str þ
αstr
4

χ4str; ð2Þ

implying that the VEV of χstr after the end of inflation is
given by

hχstri≡Mstr ¼
βstrffiffiffiffiffiffiffi
αstr

p M: ð3Þ

During inflation, the finite temperature corrections to
the potential in Eq. (2) contribute an additional term
ð1=2ÞσχstrT2

Hχ
2
str, where σχstr is of order unity and TH ¼

H=2π is the Hawking temperature, with H being the
Hubble parameter. Two symmetric minima of the potential
appear at

χstr ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðβ2strϕ2 − σχstrT

2
HÞ=αstr

q
ð4Þ

as ϕ grows sufficiently large. The effective massmeff of χstr
at these minima is given by

m2
eff ¼ 2ðβ2strϕ2 − σχstrT

2
HÞ: ð5Þ

The phase transition during which the intermediate
gauge symmetry breaking is completed and the strings
are formed occurs when the Ginzburg criterion [18],

4π

3
ξ3ΔV ¼ TH; ð6Þ

is satisfied (for details see Ref. [6]). Here,

ΔV ¼ 1

4αstr
ðβ2strϕ2 − σχstrT

2
HÞ2 ¼

m4
eff

16αstr
ð7Þ

is the potential energy difference between the minima in
Eq. (4) and the local maximum at χstr ¼ 0, and
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ξ ¼ min ðH−1; m−1
effÞ ð8Þ

is the correlation length. Using Eqs. (6)–(8), one can show
that m−1

eff ≤ H−1 implies that αstr ≥ π2=6 and m−1
eff ≥ H−1

implies that αstr ≤ π2=6. In the former case, ξ ¼ m−1
eff and

the Ginzburg criterion in Eq. (6) takes the form

β2strϕ
2 ¼

�
72α2str
π2

þ σχstr

�
T2
H: ð9Þ

The intermediate symmetry-breaking scale can then be
expressed as

Mstr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
72α2str
π2

þ σχstr

�s
Hstr

2πϕstr

Mffiffiffiffiffiffiffi
αstr

p ; ð10Þ

where ϕstr is the inflaton field value at the phase transition,
Hstr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VðϕstrÞ=3m2

Pl

p
is the corresponding value of the

Hubble parameter, and we set σχstr ¼ 1. On the other hand,
for αstr ≤ π2=6, Eq. (6) gives

Mstr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2

ffiffiffi
6

p
πα

1
2
str þ σχstrÞ

q
Hstr

2πϕstr

Mffiffiffiffiffiffiffi
αstr

p : ð11Þ

III. COSMIC STRINGS AND GRAVITY WAVES

The dimensionless tension of the cosmic strings formed
during the symmetry breaking at the intermediate scaleMstr
is [19]

Gμ ≃
1

8
B

�
αstr
g2

��
Mstr

mPl

�
2

; ð12Þ

where g ¼ gU
ffiffiffi
2

p
is the relevant effective gauge coupling

constant, with gU ≃ 0.5 being the unified gauge coupling,
and the function

BðxÞ ¼
�
1.04x0.195 for 10−2 ≲ x≲ 102

2.4= lnð2=xÞ for x≲ 0.01:
ð13Þ

The mean interstring separation at the time of formation is
pξðϕstrÞ, where p ≃ 2 is a geometric factor [3,6]. This
distance increases by a factor expðNstrÞ during inflation
and by ðtr=τÞ2=3 during inflaton oscillations, where Nstr ¼
ð1=m2

PlÞ
R ϕstr
ϕe

Vdϕ=V 0 is the number of e-foldings experi-
enced by the strings, tr is the reheat time, and τ is the time
when inflation ends.
The mean interstring distance at cosmic time t after

reheating is given by

dstr ¼ pξðϕstrÞ expðNstrÞ
�
tr
τ

�2
3 Tr

T
; ð14Þ

with Tr being the reheat temperature, the temperature T
during radiation dominance given by

T2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
45

2π2g�

s
mPl

t
; ð15Þ

and g� accounting for the appropriate value of the effec-
tive number of massless degrees of freedom for the rele-
vant temperature range. For the numerical example
considered in Sec. II, Tr ¼ 109 GeV, tr ≃ 0.36 GeV−1≃
2.37 × 10−25 s, and τ≃1.26×10−12GeV−1≃8.3×10−37 s.
The string network reenters the postinflationary horizon at
cosmic time tF during radiation dominance if

dstrðtFÞ ¼ 2tF: ð16Þ

After horizon reentry, the strings intercommute and form
loops at any subsequent time ti. These loops of initial
length li ¼ αti decay via emission of gravity waves, and the
dominant contribution comes from the largest loops with
α ≃ 0.1 [20]. The gravitational waves can be decomposed
into normal modes, and the redshifted frequency of a mode
k, emitted at time t̃, as observed today, is given by [2]

f¼ aðt̃Þ
aðt0Þ

2k
αti −ΓGμðt̃− tiÞ

; with k¼ 1;2;3;… ð17Þ

Here Γ ∼ 50 is a numerical factor [8], aðtÞ is the scale factor
of the universe, and t0 ≃ 6.62 × 1041 GeV−1 is the present
cosmic time. We express the stochastic gravity wave
abundance with a present frequency f as

ΩGW ¼ 1

ρc

dρGW
d ln f

; ð18Þ

where ρc ¼ 3H2
0m

2
Pl is the critical density of the universe,

H0 denotes the present value of the Hubble parameter, and
ρGW is the energy density of the gravity waves. The total
gravity wave background coming from all modes is given
by [2]

ΩGWðfÞ ¼
X
k

ΩðkÞ
GWðfÞ; ð19Þ

where

ΩðkÞ
GWðfÞ ¼

1

ρc

2k
f

ð0.1ÞΓk−4=3Gμ2
ζð4=3Þαðαþ ΓGμÞ

×
Z

t0

tF

dt̃
CeffðtiÞ
ti4

�
aðt̃Þ
aðt0Þ

�
5
�
aðtiÞ
aðt̃Þ

�
3

θðti − tFÞ:

ð20Þ

Here ζð4=3Þ ¼ P∞
m¼1m

−4=3 ≃ 3.60, CeffðtiÞ is found to be
0.5 and 5.7 for the radiation and matter dominated universe,
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respectively [20], θ is the Heaviside step function, and the
time ti can be derived from Eq. (17).
We calculate the spectrum of gravity waves using

Eqs. (19) and (20). Of course, t̃ should be bigger than ti
since the loops cannot radiate before their formation at ti.
The ratios of the type aðtÞ=aðt0Þ ðt < t0Þ are replaced by
ðt=t0Þ1=2 or ðt=t0Þ2=3 if the period between t and t0 lies
entirely in the radiation or matter dominated period of the
universe, respectively. If t < teq < t0, where teq ≃ 2.25 ×
1036 GeV−1 is the equidensity time, i.e., the time at which
the radiation and matter energy densities in the universe are
equal, we split the time interval between t and t0 and
express these ratios as ðt=teqÞ1=2ðteq=t0Þ2=3. Needless to say,
the integral in Eq. (20) takes into account all the loops that
are created at ti > tF, and radiate a given mode charac-
terized by k at t̃ < t0 contributing to the gravity waves with
a given frequency f. The value of ti is found from Eq. (17).
Finally, the sum in Eq. (19) is taken over all the modes
with k ¼ 1; 2;…; 105.

IV. INFLATION, GRAVITY WAVES, AND
THE PPTA BOUND

We now return to the successful inflationary scenario
summarized in Sec. II. From Eqs. (14)–(16), we see that the
horizon reentry time tF of the string network depends on
the inflaton field value ϕstr at the phase transition during
which the strings were generated. On the other hand, Gμ
depends on ϕstr and αstr=g2, as can be deduced from
Eqs. (10)–(13) (g is fixed by the condition of gauge
coupling unification). The variation of Gμ with αstr=g2

for various values of ϕstr and Nstr is shown in Figs. 1 and 2,
respectively. Substituting ϕstr as a function of tF, we can
then find the variation of tF versus Gμ for different choices
of the ratio of the quartic coupling to the gauge coupling
squared (αstr=g2). We observe from Figs. 1 and 2 that the
contours of ϕstr and Nstr close to ϕ� and N�, respectively,
are closely spaced in the region of higher Gμ values
(≳10−10). This implies a slow variation of Gμ with ϕstr
and Nstr, and hence with tF in this region (Fig. 4). It is
important to emphasize that the new aspect of our model is
that the relation between the string formation time and the
string tension is different than in the usual scenario.
We compute the stochastic gravity wave spectrum from

the cosmic string loops as described in Sec. III. We first
take the time tF at which the formation of the string loops
starts to be very small, which would be the case without
inflation. Although the results in this case are insensitive to
the precise value of tF, we set tF ¼ 10−25 s for definiteness.
The gravity wave spectra for four representative values
of Gμ ¼ ð2.7; 4.6; 14; 40Þ × 10−11 are shown in Fig. 3 by
solid lines. We observe that without inflation, in which case
tF is very small, the PPTA bound [11] is violated for
Gμ > 4.6 × 10−11. In this case we consider higher values of
tF so that the spectrum satisfies the PPTA bound. If tF is
sufficiently large the smaller string loops will be absent.
Consequently, the spectrum will be reduced in the higher-
frequency regime which can help to satisfy the PPTA
bound. In Fig. 3, the spectra corresponding to the minimum
required value of tF so that the PPTA bound is satisfied are
represented by dashed-dotted lines.
With different choices of the ratio αstr=g2 between 0.1

and 14, we find the horizon reentry time tF of the string

FIG. 1. The dimensionless string tension Gμ vs αstr=g2 for
different inflaton values ϕstr at the phase transition during which
the strings are formed. The rainbow color code shows the
variation of ϕstr. The values of the inflaton field at horizon
crossing of the pivot scale (ϕ�) and at the end of inflation (ϕe) are
also indicated.

FIG. 2. The dimensionless string tension Gμ vs αstr=g2 for
different values of the number of e-foldings Nstr after the phase
transition during which the strings are formed. The rainbow color
code shows the variation of Nstr.
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network as a function of Gμ. The results are displayed in
Fig. 4 superimposed on top of the minimum allowed values
of tF from PPTA. In Fig. 4(a), αstr ≤ π2=6 and thus the
correlation length ξ ¼ H−1. In Fig. 4(b), on the other
hand, αstr ≥ π2=6 and thus ξ ¼ m−1

eff . We see that the strings
with Gμ ≳ 1.1 × 10−10 could suffer sufficient number of
e-foldings so that the PPTA bound is satisfied within the
GUT-inflation model with the Coleman-Weinberg poten-
tial. The number of e-foldings Nstr experienced by the
strings are also shown in Fig. 5. The allowed values of
αstr=g2 and Mstr for various Gμ values are shown in Figs. 6
and 7, respectively. These values are compatible with the
allowed values of tF which satisfy thePPTAbound. ForGμ ≤
4.6 × 10−11 very small value of tF are permitted. However,
tF cannot be made smaller than the time τ ≃ 8.3 × 10−37 s
when inflation is terminated. This corresponds to a lower

FIG. 3. Gravity wave spectra with and without inflation for
Gμ ¼ ð2.7; 4.6; 14; 40Þ × 10−11 (blue, red, brown, and green
curves, respectively). Without inflation (solid lines), the PPTA
bound is violated for Gμ > 4.6 × 10−11. A minimum horizon
reentry time tF of the strings is required so that the PPTA bound is
satisfied for any given Gμ in this range. The corresponding
spectra are denoted by dashed-dotted lines.

(b)

(a)

FIG. 4. Horizon reentry time of the strings as a function of Gμ
(brown dashed-dotted curves) for different values of the ratio
αstr=g2 as indicated. The solid blue lines depict the minimum tF
allowed by the PPTA bound. Notice that forGμ ≤ 4.6 × 10−11, tF
can be very small. Recall that in this paper we assume that the
gravity waves originate solely from strings.

FIG. 5. The number of e-foldings Nstr experienced by the
strings for various Gμ values so that the strings reenter the
horizon at the minimum tF to satisfy the PPTA bound.

FIG. 6. Allowed ranges (blue- and red shaded) of αstr=g2 vs Gμ
permitted by PPTA. Blue solid lines are for the minimum tF
permitted by PPTAwith Gμ>1.1×10−10. For Gμ ≤ 4.6 × 10−11,
the lower and upper bounds on αstr=g2 (red dashed-dotted lines)
correspond to tF ¼ τ. The strings suffer some e-foldings in the
red-shaded region between them. In the region 4.6 × 10−11 <
Gμ < 1.1 × 10−10, there exist no solutions.
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and an upper bound on αstr=g2 in this range depicted in Fig. 6
by red dashed-dotted lines. The corresponding upper and
lower bound onMstr is depicted in Fig. 7 by red dashed-dotted
lines. The strings suffer some e-foldings in the red-shaded
region.However, the horizon reentry time remains quite small
as can be seen from Fig. 4. The strings above and below this
region will be formed after the end of the inflation. Note that
Nstr can be arbitrarily small for Gμ ≤ 4.6 × 10−11, which is
consistent with the fact that inflation is not necessary for the
PPTA bound to be satisfied in this range. To summarize, we
see that Coleman-Weinberg inflation can help to satisfy the
PPTA bound for Gμ values in the range Gμ > 1.1 × 10−10.

V. POWER-LAW APPROXIMATION FOR
GRAVITY WAVES AND NANOGrav

In the NANOGrav experiment [10] the gravity wave
spectra are expressed in a power-law form with character-
istic strain:

hcðfÞ ¼ A

�
f
fyr

�
α

; ð21Þ

where fyr ¼ 1 yr−1 is the reference frequency. This gives

ΩGWðfÞ ¼
2π2

3H2
0

f2hcðfÞ2 ¼ Ω0

�
f
fyr

�
5−γ

; ð22Þ

whereΩ0 ¼ ð2π2=3H2
0ÞA2f2yr and γ ¼ 3 − 2α. We compute

the gravity wave spectrum using Eqs. (19) and (20) within
the frequency range f ∈ ½2.4; 12� × 10−9 Hz, and fit the
results to the power-law expression in Eq. (22) so as to
calculate the amplitude A of the characteristic strain and the

spectral index γ. We then compare the calculated A and γ
values with the NANOGrav 12.5-yr results [10].
In Fig. 8, we show the fitted values of A and γ for

different values of Gμ with and without inflation. We first
take the time tF at which the formation of the string loops
starts to be very small, which would be the case without
inflation. Although the results in this case are insensitive to
the precise value of tF, we set tF ¼ 10−25 s for definiteness.
We find that the NANOGrav 12.5- yr data are well satisfied
for Gμ ∈ ½4.6; 14� × 10−11 and Gμ ∈ ½2.7; 40� × 10−11

within the 1σ and 2σ limits, respectively. The correspond-
ing gravity wave spectra for Gμ ¼ ð2.7; 4.6; 14; 40Þ ×
10−11 are shown in Fig. 3 by solid lines.
We then employ the GUT inflation and computed the

gravity wave spectra in the relevant frequency range of
NANOGrav. The fitted values of A and γ are plotted in
Fig. 8 for the parameter αstr=g2 to be equal π2=ð6g2Þ, and

FIG. 7. Allowed ranges (blue- and red shaded) of Mstr vs Gμ
permitted by PPTA. Blue solid lines are for the minimum tF
permitted by PPTAwithGμ > 1.1 × 10−10. ForGμ ≤ 4.6 × 10−11,
the lower and upper bounds on Mstr (red dashed-dotted lines)
correspond to tF ¼ τ. The strings suffer some e-foldings
in the red-shaded region between them. In the region
4.6 × 10−11 < Gμ < 1.1 × 10−10, there exist no solutions forMstr.

FIG. 8. The amplitude A of the characteristic strain vs the
spectral index γ for gravity waves from string loops of different
Gμ values is displayed on top of the 1σ and 2σ contours of
NANOGrav [10]. The strings are assumed to: (1) be present in the
horizon from a very early time (taken to be tF ¼ 10−25 s without
loss of generality), and (2) undergo inflation driven by the
Coleman-Weinberg potential of a real GUT singlet with
V1=4
0 ¼ 1.66 × 1016 GeV. The plotted values of A and γ are

for the parameter αstr=g2 to be equal to π2=ð6g2Þ, and two other
choices 1 and 0.1 (6 and 14) for the case m−1

eff > H−1

(m−1
eff < H−1) in the upper (lower) panel with a rainbow color

code for the variation of Gμ. The 1σ and 2σ ranges of Gμ
satisfying NANOGrav with very low tF values are ½4.6; 14� ×
10−11 and ½2.7; 40� × 10−11, respectively.
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two other choices 1 and 0.1 (6 and 14) for the case m−1
eff >

H−1 (m−1
eff < H−1) in the upper (lower) panel with a

rainbow color code for the variation of Gμ. Needless to
mention, the gravity wave spectrum remains unaffected in
the operating frequency range of NANOGrav unless the
horizon reentry time tF is sufficiently large. This can be
seen from Fig. 8, where the fitted A and γ values with
inflation coincide with those with tF ¼ 10−25 s for the
lower values of Gμ for which tF is sufficiently small as can
be seen from Fig. 4.

VI. INTERMEDIATE MASS
MONOPOLES WITH STRINGS

In this section we will discuss the production of
monopoles and strings at the same breaking scale and
their subsequent evolution. We construct Fig. 9, where we
plot values of the string scaleMstr allowed by gravity wave
considerations versus αstr=g2. Assuming that monopoles
are generated at the same scale, we also show the bounds on
Mstr from the monopole flux. The solid blue line corre-
sponds to the minimum tF allowed by the PPTA bound for
Gμ > 1.1 × 10−10. The number of e-foldings for this line is

of the order of 54. The dashed-dotted red lines at the bottom
correspond to the strings appearing at the end of inflation.
The green dashed line represents the upper bound on the
magnetic monopole flux from the MACRO experiment
[16] corresponding to a monopole abundance YM ¼ 10−27

[6,21]. The orange dashed line, on the other hand, repre-
sents the adopted threshold for observability of the monop-
ole flux (YM ¼ 10−35) [6]. The monopole abundance YM is
calculated using Eq. (7.1) of Ref. [6], wherem−1

eff is replaced
by the correlation length ξ.
If we consider the PPTA bound along with the monopole

flux, we see that the strings with Gμ > 1.1 × 10−10, which
satisfy the PPTA bound, clearly satisfy the MACRO bound
too. However, the predicted monopole flux is too low
to be observable. The strings with 2.7 × 10−11 ≲ Gμ <
4.6 × 10−11 that satisfy the PPTA bound can also satisfy the
MACRO bound and we can have a measurable monopole
flux for some parameter space.
The number of e-foldings required to satisfy the

MACRO bound is around 12, and that for the threshold
for observability is of the order of 18. In this range the
horizon reentry time of the strings will be sufficiently small
and the NANOGrav data will be satisfied by the strings
with 2.7 × 10−11 ≤ Gμ ≤ 40 × 10−11. Therefore we can
have a potentially measurable monopole flux.
As an example with one intermediate step of symmetry

breaking, we consider E6 broken via the intermediate trini-
fication symmetry G3L3R3C

≡SUð3ÞL×SUð3ÞR×SUð3ÞC.
The VEV of a scalar 650-plet along the D-parity [22]
breaking and G3L3R3C

-singlet direction breaks E6 at a scale
MX. At this level, a scalar multiplet ð3̄; 3; 1Þ from a 27-plet
and another ð6; 6̄; 1Þ ⊂ 3510 remain massless. The former
contains the electroweak Higgs doublet, and the VEVof the
latter breaks the trinification symmetry to the standard
model. This symmetry breaking produces topologically
stable triply charged monopoles and cosmic strings at the
same intermediate breaking scale MI [3,23]. The β coef-
ficients at the two-loop level that govern the running of the
three gauge couplings gi (i ¼ 3L; 3R; 3C) from MI to MX
are given as

bi ¼

0
B@

1
2

1
2

−5

1
CA; bij ¼

0
B@

253 220 12

220 253 12

12 12 12

1
CA

with i ¼ 3L; 3R; 3C:

We have chosen the heavy gauge boson masses to be
equal to the respective breaking scales, and the ratio R of
the heavy scalar and fermion masses to the gauge boson
masses to vary from 1=4 to 4. The solutions for successful
unification and inflation with a Coleman-Weinberg poten-
tial are shown in Fig. 10 (green area). As we can see,
the intermediate scale MI has solutions in the range

FIG. 9. Mstr vs αstr=g2 for Coleman-Weinberg inflation with
V1=4
0 ¼ 1.66 × 1016 GeV. The solid blue line corresponds to the

minimum tF allowed by the PPTA bound for Gμ > 1.1 × 10−10.
The green dashed line depicts the lower bound on Mstr corre-
sponding to the upper bound on the monopole flux from the
MACRO experiment (YM ¼ 10−27), and the orange dashed line
shows the adopted threshold for observability of the monopole
flux (YM ¼ 10−35). The dashed-dotted red lines correspond to the
strings that are created at the end of inflation. The brown dotted
lines depict the contours for Gμ ¼ ð2.7; 4.6; 40Þ × 10−11. Gμ ¼
ð2.7; 40Þ × 10−11 correspond to the minimum and maximum
string tensions for very small tF (≃10−25 s) allowed by the
NANOGrav 2σ limit. The minimum allowed Gμ corresponding
to the MACRO bound is also about 2.7 × 10−11. The maximum
Gμ value that satisfies the PPTA bound without inflation is
4.6 × 10−11, which coincidentally lies on the 1σ contour of
NANOGrav.
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1013–1014 GeV which can be compatible with the PPTA
bound, the MACRO bound, and the NANOGrav data.

VII. CONCLUSIONS

We show how the gravity wave spectrum emitted by
intermediate-scale cosmic strings is affected by primordial
inflation. The string network is partially inflated and
reenters the horizon at later times after the termination
of inflation. Consequently, the relatively short string loops

are not produced, which leads to a significant reduction
of the gravity wave spectrum at higher frequencies. We
consider an inflationary model with a Coleman-Weinberg
potential and show how inflation can help to satisfy the
PPTA bound for Gμ values in the range Gμ > 1.1 × 10−10.
We discuss the modification of the gravity wave spectra in
the case of Coleman-Weinberg inflation, and identify the
spectra which are compatible with the NANOGrav signal.
The formation of monopoles and strings at the same
intermediate-breaking scale is also considered and the
compatibility of the MACRO bound on the monopole flux
with the PPTA bound or the NANOGrav data is analyzed.
Finally, we present a realistic nonsupersymmetric E6 GUT
model with successful Coleman-Weinberg inflation and
one intermediate step of symmetry breaking where both
monopoles and cosmic strings are produced. We show that
there exists a range of parameters where both monopoles
and strings survive inflation and may be present at an
observable level.
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