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With advances in quantum computing, new opportunities arise to tackle challenging calculations in
quantum field theory. We show that trotterized time-evolution operators can be related by analytic
continuation to the Euclidean transfer matrix on an anisotropic lattice. In turn, trotterization entails
renormalization of the temporal and spatial lattice spacings. Based on the tools of Euclidean lattice field
theory, we propose two schemes to determine Minkowski lattice spacings, using Euclidean data and
thereby overcoming the demands on quantum resources for scale setting. In addition, we advocate using a
fixed-anisotropy approach to the continuum to reduce both circuit depth and number of independent
simulations. We demonstrate these methods with qiskit noiseless simulators for a 2þ 1D discrete non-
Abelian D4 gauge theory with two spatial plaquettes.
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I. INTRODUCTION

Inherent obstacles to classically simulating quantum
field theories motivate developing quantum computer
[1–3]. For lattice-regulated theories, the exponential
Hilbert space limits deterministic methods while stochastic
methods grapple with sign problems. These sign pro-
blems hamper calculations at finite-density [4–7] and
in Minkowski spacetime [8,9]. While large-scale, fault-
tolerant quantum computers will revolutionize our under-
standing of nature, for the foreseeable future, quantum
computers will be limited to hundreds of nonerror-
corrected qubits with circuit depths less than 1000
gates–the so-called noisy intermediate-scale quantum
(NISQ) era. Despite this, toy calculations in high energy
physics [10–18] and nuclear physics [19–21] have been
performed using existing quantum computers, representing
the first step toward quantum simulating field theories.
Alongside the necessary hardware improvements, theo-

retical questions must be resolved to fully utilize a digital
quantum computer. Due to the finite resources, one must
regulate the quantum field theory. This regularization

occurs in multiple steps: discretization, digitization, state
preparation, propagation, and evaluation. Each can intro-
duce new operators and potentially break symmetries. In
addition, quantum noise can be interpreted as additional
terms in the Hamiltonian. In order to recover the physical
theory, the resulting effects from regularization and quan-
tum noises must be renormalized.
Following classical lattice field theory (LFT), it seems

natural to first regularize the theory by discretizing space-
time. Then one could represent the (Minkowski or
Euclidean) spacetime lattice in the qubits. This allows
direct access to the entire path integral. The authors of
[22,23] suggest this is useful for finite-density field theory.
Alas, the number of qubits scales with the spacetime
volume V which improves the scaling of eV in classical
computations. For time-dependent field theories, the pre-
ferred method is to use the Hamiltonian formalism. In this
case, the number of qubits scales with a spatial lattice.
Discretization reduces spacetime symmetries and introduce
new operators into the LFT which are not present in the
continuum theory that modifies the nonperturbative
renormalization.
For efficient digital simulations, truncation of the local

lattice degrees of freedom is also necessary. Digitization
represents the task of formulating, representing, and encod-
ing QFTs for digital quantum computers. Some natural
encodings exist for fermionic degrees of freedom [24–26].
Further proposals discuss how to map lattice fermions (e.g.
Wilson and staggered) onto these encodings [27] or use
gauge symmetry to eliminate the fermions [28,29]. The
relative merits of each are only starting to be understood.
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The question of gauge boson digitization is murkier,
with complicated tradeoffs [30–38]. Digitizing reduces
symmetries—either explicitly or through finite-truncations
]39 ]. Care must be taken, as the regulated theory may not

have the original theory as its continuum limit [40–45].
A particularly illustrative example of the complications
between truncations and renormalization can be found in
[46]. Prominent proposals for digitization can be broadly
classified [47] into: Casimir dynamics [15,39,48–53]
potentially with auxiliary fields [54], conformal trunca-
tion [55], discrete groups [30,31,38,56,57], dual variables
[58–62], light-front kinematics [18,63] loop-string-hadron
formulation [34,64,65], quantum link models [66–69], and
qubit regularization [32,33,70].
Given a digitization, the next obstacle is initializing

strongly-coupled quantum states in terms of fundamental
fields. Much of the literature emphasized ground state
preparation [11,71–77] but thermal and particle states
have been investigated [2,13,16,17,23,78–90]. For methods
which construct states using regulated theories, careful
study of the renormalization to properly match onto the
physical limit is required [91,92].
Propagating for a time t requires the unitary operator

of UðtÞ ¼ e−iHt—a generically dense matrix—which can-
not be efficiently constructed on a quantum computer.
Instead, it must be approximated. A common method is
trotterization, whereby UðtÞ ≈ ðe−iH0 t

NÞN with an approxi-
mate Hamiltonian H0. For some H, this allows for efficient
simulations [2,54,79–83,93–95]. Most gauge theory stud-
ies consider the Kogut-Susskind Hamiltonian [96], but
Hamiltonians with reduced lattice artifacts also exist
[97,98] and deserve study. Other approximations of UðtÞ
exist: QDRIFT [99], variational approaches [100–102],
Taylor series [103], and qubitization [104]. Initial resource
comparisons have been performed for the Schwinger model
[105]. Approximating UðtÞ can be understood as introduc-
ing t-translation violating operators into H0.
There is little difficulty in evaluating the expectation

values of instantaneous hermitian operators. Observables
dependent on time-separated operators (e.g. parton distri-
bution functions [63,106,107], particle decays [108], and
viscosity [109]) are more complicated. Naively, the first
measurement collapses the state, preventing further evolu-
tion. Ways to overcome this include ancillary probe-and-
control qubits [85,106,110–112] and phase estimation
[20,72]. For time-separated matrix elements, it is yet
unknown how to do nonperturbative renormalization like
RI/SMOM [113–115] on quantum computers.
Noisy quantum devices can also be viewed as introduc-

ing new operators. The best-studied examples of this are
related to gauge-violating operators [116–127]. Which
operators are introduced and which symmetries are broken
are both hardware and digitization dependent.
In this paper we investigate the renormalization of LFT

in Minkoswki spacetime due to trotterizing UðtÞ. The
consequence of this will be shown to be the introduction

of a temporal lattice spacing, and new operators depending
upon it which vanish in the Hamiltonian limit.
In the continuum limit, Minkowski and Euclidean results

are the analytic continuation of each other [128–130].
At finite at and finite statistics, this exact relation is com-
plicated, but approximate relations remain [9,131–134].
While analytic continuation of lattice observables suffer
from signal-to-noise problems [92,134–141], observables
suitable for scale setting have been studied [142,143]. Since
knowledge of a; at is required for any continuum extrapo-
lation, performing scale setting with classical computations
would significantly improve the common error budget of
quantum computations as the uncertainties for scale setting
could be reduced using Euclidean data. Wewill explore two
different schemes for performing analytic continuation of
the renormalized lattice spacings, and demonstrate its
capabilities for reliable Minkowski scale setting through
classical Euclidean computations.
A crucial part of our study is to explore howMinokowski

lattice observables computed with quantum circuits can be
extrapolated to the continuum in an efficient manner. We
will show that trotterized time-evolution can be understood
as a Minkowski path integral on an anisotropic lattice.1

We present a toy model, aD4 gauge group in 2þ 1D with a
two spatial plaquettes, to exemplify the power of a fixed
anisotropy trajectory to extrapolate quantities to the con-
tinuum limit. This requires as a first step to establish the
scale setting for the lattice spacings, a; at, that can profit
from our analytic continuation schemes.
This paper is organized as follows. In Sec. II we briefly

review the Euclidean action lattice formalism and its con-
nection through the transfer matrix to the Hamiltonian
formalism. In Sec. III we derive the trotterized real-time
evolution operator and relate it to the transfer matrix. Based
on this, we propose two schemes to obtain Minkowski
lattice spacings via analytic continuation and advocate the
use of a fixed-anisotropy approach to the continuum. In
Sec. IV, we discuss the systematic errors from computing
a; at via analytic continuation. Further, in Sec. V we
present numerical results in our toy model for these
techniques. Finally, we conclude in Sec. VI.

II. LATTICE BASICS

To understand how renormalization arises in quantum
simulations, it is useful to review the connection between
the Kogut-Susskind Hamiltonian [96] and the Euclidean
Wilson action. We summarize the derivation of [145] that
begins with the anisotropic Wilson action in Euclidean time
τ ¼ it defined on a spacetime lattice:

SE ¼ −βt
X
t

ReTrUt − βs
X
s

ReTrUs; ð1Þ

1This point was first mentioned in [144].
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where i ¼ t, s refers to temporal and spatial plaquettes Ui
formed from gauge links given by elements of the group.
The anisotropy comes from using different couplings for
spatial and temporal plaquettes, that can be written as

βtða; a0Þ ¼
a

g2t ða; a0Þa0
; βsða; a0Þ ¼

a0
g2sða; a0Þa

ð2Þ

with βiða; a0Þ; giða; a0Þ depending nonperturbatively on
the temporal and spatial lattice spacings, a0; a.
The first step in the process of computing physical

observables from LFT is the determination of the lattice
spacings through scale setting. For simplicity we will
consider the isotropic case via βE ≡ βt ¼ βs, a ¼ a0 and
in analogy with Eq. (2), define βE ¼ 2Ng−2E for SUðNÞ
group. The anisotropic case merely requires performing the
procedure for both a; a0 independently. One scale sets by
computing a lattice quantity amðβEÞ where m has a known
physical valuemphys (e.g. the pion mass). Any latticemðβEÞ
differs from the true mphys by a dependent errors, but for
this one specific observable we setmðβEÞ ¼ mphys to obtain
a dimensionful value for a

a ¼ ½amðβEÞ�
mphys ð3Þ

With this, βE is removed from our theory and we can speak
only in terms of a. All other lattice masses can then be
written as amkðaÞ and their continuum values can be
predicted by computing them at multiple lattice spacings
and extrapolating to a → 0 via

mphys
k

mphys ¼
amkðaÞ
amðaÞ þOðanÞ: ð4Þ

When working with continuous gauge theories, there is
no theoretical issue with computing at arbitrarily small a,
but one is limited by computing resources due to topo-
logical freezing and critical slowing down. On quantum
devices, the current resources require dramatic approxima-
tions of the continuous group. Here, we will consider the
discrete gauge theories. Certain discrete subgroups of
continuous groups are effective field theories for the
continuous groups [146,147] which break down below a
minimum lattice spacing [30,31,38]. Therefore one cannot
take a of a discrete group arbitrarily close to zero.
Lattice quantities like amðβEÞ are obtained from correla-

tion functions, e.g. the temporal correlator hOiðna0ÞOjð0Þi.
In the limit where the temporal length of the lattice goes
to infinity, this correlator becomes a vacuum expectation
value

hOiðna0ÞOjð0Þi ¼
X
k

h0jOijkihkjOjj0ie−na0mk ð5Þ

From these correlators, one extracts a0mk which correspond
to the lattice eigenenergies. For scale setting, one usually
wants the lowest energy statea0m1 of a specific sector, which
can be extracted from the sum by taking n large:

hOiðna0ÞOjð0Þi ¼ h0jOij1ih1jOjj0ie−na0m1 þOðe−na0ΔEÞ:
ð6Þ

withΔE the energy gap between the lowest energy state and
the next lowest energy state.
An equivalent way of expressing the renormalized

parameters is by defining the anisotropic parameter ξ≡
a=a0 and considering ξ and a as independent parameters.
By allowing ξ ≠ 1 and especially ξ ≫ 1, lattice practi-
tioners have achieved great success with probing glueballs
[148,149], high temperature thermodynamics [150], etc. As
we approach the Hamiltonian limit (a0 → 0), another
couplings, g2H ¼ gsgt, and the speed of light, c ¼ gsg−1t ,
become useful. These bare couplings are related to each
other in the weak coupling limit by [151,152]

g−2s ða; a0Þ ¼ g−2E ðaÞ þ csðξÞ þOðg2EÞ
g−2t ða; a0Þ ¼ g−2E ðaÞ þ ctðξÞ þOðg2EÞ

g−2H ða; a0Þ ¼ g−2E ðaÞ þ ctðξÞ þ csðξÞ
2

þOðg2EÞ

cða; a0Þ ¼ 1þ ctðξÞ − csðξÞ
2

g2EðaÞ þOðg4EÞ. ð7Þ

The ciðξÞ were computed perturbatively for SUðNÞ at
ξ ¼ ∞ forD ¼ 4 in [151]. This was generalized in [152] to
arbitrary ξ and to arbitrary dimensions in [153].
For typical values ofβi considered in simulations, there are

large corrections to these weak coupling results and thus
nonperturbative determination of a, ξ is required [154–156].
In pure gauge theory, onemethod for the determination of ξ is
made by comparing ratios of spatial-spatial Wilson loops
to spatial-temporal Wilson loops [157]. Once ξ is measured,
a could be determined using standard methods such as
the Sommer scale r0 [148,149,158] or the Wilson flow
[159,160].
Euclidean lattice theories satisfying the reflection pos-

itivity have a well-defined Hamiltonian with real eigen-
values [128,161]. To the derive this Hamiltonian, we first
define a transfer matrix, Tða; a0Þwhich takes a state at time
τ, jτi, to jτ þ 1i. T is related to the action through the
partition function Z:

Z ¼
Z

DUe−SE ¼ TrTða0ÞN; ð8Þ

where N is the number of temporal lattice sites. It follows
that the matrix elements of Tða0Þ are [145]
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hτ þ 1jTða0Þjτi ¼ e
βs
2

P
s
ReTrUseβt

P
fτ;τþ1g ReTrUte

βs
2

P
s
ReTrUs

≡ hτ þ 1jT1=2
V TKT

1=2
V jτi; ð9Þ

where we have symmetrically split the potential term. In
order to extract a Hamiltonian from Tða0Þ, it is convenient
to have Tða0Þ only in terms of a single time slice. While for
Us this presents no issues, Ut couples the same link at two
times UijðτÞ; Uijðτ þ 1Þ via two timelike links which we
fix to the identity by considering the temporal gauge. This
yields for the kinetic term in the action

SK ¼ −βt
X

fτ;τþ1g
ReTrUijðτÞU†

ijðτ þ 1Þ: ð10Þ

To proceed, we need to remove the dependence on
U†

ijðτ þ 1Þ and express Tða0Þ in terms of operators. The

link operator is easy to define Ûijjτi ¼ Uijjτi. Therefore

T1=2
V ¼ e

βs
2

P
s
ReTrÛs : ð11Þ

For TK, we need an operator that changes a given link,

RijðgÞjτi ¼ jτ0i; where Uij → gUij ð12Þ

this operator has the group property of RijðgÞRijðhÞ ¼
RijðghÞ. This gauge link translation can be used to define a
conjugate momentum to Ûij by performing a rotation on
UijðτÞ to transform it into Uijðτ þ 1Þ. With this, we write

TK ¼
Y
fijg

TK;ij ¼
Y
fijg

�Z
DgRijðgÞeβtReTrg

�
; ð13Þ

where the product is over all spatial linksUijðτÞ. Any group
element can be written as g ¼ eiω·λ where λi are the adjoint
generators, and RijðgÞ ¼ eiω·l̂ij can be written in terms of
the generators l̂ij for that representation. DefiningQ

αðDωαÞJðωÞ as the invariant group measure with a
Jacobian J, it is possible to rewrite TKða0Þ as

TK;ij ¼
Z Y

α

ðDωαÞJðωÞeiω·l̂ijeβtTr cosðω·λÞ. ð14Þ

This transfer matrix is exact for any a0. At the cost of a sum
over all character functions of the group, it can be
performed analytically. This is done in [112] and appears
practical for discrete groups. But for continuous group, the
summation is over infinite terms which is undesirable.
As a0 → 0 for unitary continuous group, Eq. (14) can be

expanded to Oðω2Þ:

TK;ij ¼
Z Y

α

ðDωαÞð1þOðω2ÞÞeiω·l̂ijþβt½Tr1−1
4
ω2þOðω4Þ�

ð15Þ
leaving Gaussian integrals. Integrating yields

TK ¼ N e−β
−1
t

P
fijg l̂

2
ij ; ð16Þ

where N is an overall normalization. For discrete groups,
the contribution to TK is also dominated by group elements
close to 1 when a0 → 0. However, since for discrete group
g cannot be arbitrarily close to 1, a naive limit of taking
a0 → 0 leads to degenerate spectrum for TK. Special care
has to be taken [162] to avoid this degeneracy as we also
show for the DN group in Appendix A.
Neglecting the normalization factor N , the final transfer

matrix Tða0Þ is given by

Tða0Þ ¼ e
βs
2

P
s
ReTrÛse−β

−1
t

P
fijg l̂

2
ije

βs
2

P
s
ReTrÛs : ð17Þ

Since Tða0Þ corresponds to the translation from τ to τ þ 1,
it can be used to define a HamiltonianHða0; aÞ These steps
form the link between SE and Tða0Þ in Fig. 1.

Tða0Þ≡ e−a0Hða;a0Þ: ð18Þ
However, because l̂ij and Ûij are noncommuting operators,
writing Eq. (17) as a single exponential requires application
of the Baker-Campbell-Hausdorff (BCH) formula:

etXetYetX ¼ etð2XþYÞ−t2
6
ð½X;½X;Y��−½Y;½X;Y��Þþ���: ð19Þ

FIG. 1. Schematic of the relations between the various lattice and continuum functions discussed in this work.
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Using this, we obtain for Hða; a0Þ:

Hða; a0Þ ¼
1

cða; a0Þa
�
g2Hða; a0Þ

X
fijg

l̂2ij − g−2H ða; a0Þ
X
s

ReTrÛs

−
1

24

1

c2ða; a0Þξ2
X
fijg;s

ðg2Hða; a0Þ½2l̂2ij; ½l̂2ij;ReTrÛs�� − g−2H ða; a0Þ½ReTrÛs; ½l̂2ij;ReTrÛs��Þ þ � � �
�

ð20Þ

For conciseness, we define certain Hamiltonian terms

HKða; a0Þ ¼
g2Hða; a0Þ
cða; a0Þa

X
fijg

l̂2ij

HVða; a0Þ ¼ −
1

g2Hða; a0Þcða; a0Þa
X
s

ReTrÛs ð21Þ

It is important to emphasize that varying either a0 or a
requires an adjustment to cða; a0Þ and gHða; a0Þ to preserve
the scale setting condition. Taking the continuous-time
limit of the transfer matrix:

T ðτÞ≡ lim
a0→0;N→∞

Tða0ÞN; ð22Þ

the BCH terms in Hða; a0Þ vanish and we obtain the
Kogut-Susskind Hamiltonian [96], HKS ≡ − 1

τ logðT ðτÞÞ
(See Fig. 1):

HKS ¼
1

cðaÞa
�
g2HðaÞ

X
fijg

l̂2ij −
1

g2HðaÞ
X
s

ReTrUs

�
: ð23Þ

Besides the ξ-dependent terms, another difference between
HKS and Hða; a0Þ is that c; gH only depend upon a in
Eq. (23), while in Eq. (20) they also depend on a0.
Historically, the Hamiltonian formalism with limited

success was used to evaluate lattice theory by computing
results analytically [163–166], variationally [167–170], and
with exact diagonalization [171]. In such cases, there was
no benefit to keeping a0 finite and therefore all were done
in the Hamiltonian limit. In contrast, quantum simulations
have good reasons to considering the Hamiltonian at finite
a0 as we demonstrate in the next section.

III. TROTTERIZATION AND TIME-EVOLUTION

The starting point for real-time evolution on quantum
computers is to define UðtÞ ¼ e−iHt. For gauge theories,
one typically takes the lattice Hamiltonian to be HKS in
Eq. (23). This UðtÞ cannot be implemented easily on
quantum computers and must be approximated, resulting
in effects that have to be renormalized. Trotterization
discretizes the evolution into N ¼ t=at steps formed of
products of eixiHj where different choices of xi ∝ at lead to

errors at different order of at and Hi are a decomposition
of H into mutually noncommuting terms. In the case of
HKS, there are two Hi ¼ HK;HV , in which case UðtÞ is
approximated by

UðtÞ ¼ e−iHKSt

≈ ½eix1HVeix2HKeix3HVeix4HK � � ��N þOðapt Þ: ð24Þ

The number of terms and xi for a given Oðapt Þ error can be
derived by repeated applications of the BCH relation,
Eq. (19). In the case of Oða2t Þ, this corresponds to

UðatÞ ≈ e−iatHV=2e−iatHKe−iatHV=2: ð25Þ

Following Fig. 1, we see that we have essentially reversed the
path taken to derive HKS from Tða0Þ. With this approxima-
tion, we can ask, what Hamiltonian are we actually evolving
with respect to? Analogous to the Euclidean derivation of
Eq. (20) from Eq. (17), we can define

UðatÞ ¼ e−iatHðatÞ; ð26Þ

finding

HðatÞ ¼ HK þHV

−
a2t
24

ð½2HK; ½HK;HV �� þ ½HV; ½HK;HV ��Þ þ � � �
ð27Þ

By trotterizating UðtÞ, we have introduced a temporal
lattice spacing at. One might be tempted to believe that the
renormalized at is a parameter that can be directly tuned,
but this is incorrect. This can be seen by inserting Eq. (21)
into Eq. (27), from which one observes that in the same
way as the Euclidean results, at is always multiplied by
½cða; atÞa�−1. Thus, changes in at are compensated by
modifying the bare speed of light. It therefore natural to
define a lattice bare parameter which we can control in
simulations:

δt ≡ at
cða; atÞa

: ð28Þ

Thus we find that at must be determined nonperturbatively
by scale setting. Naively, at; a would be obtained by
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performing a quantum simulation, which on near-term
hardware is likely to be noisy, and therefore the lattice
spacings will have large uncertainties. Since all other lattice
observables depend upon the scale-setting, minimizing the
uncertainties of a; at is crucial to the overall program of
quantum simulations of LFT. In practice, keeping these
uncertainties small require high statistics of very deep
circuits with error mitigation. Instead of computing at; a on
the quantum device, it is possible to utilize classical
Euclidean computations of a; a0 to scale setting in a
quantum computer.
If the Minkowski and Euclidean lattice Hamiltonians

were the same, we could trivially set a; a0 to a and at—
establishing a link between the lattice results in each metric
(See Fig. 1). However, the Hamiltonians only match when
at; a0 → 0, when they both reduce toHKS. Instead, at finite
at; a0 they differ as we show explicitly in the following. In
analogy to Eq. (28), we define the quantity δτ ≡ a0

cða;a0Þa on
the Euclidean side. With this, we can recast Tða0Þ in
Eq. (17):

Tðδτ; g2HÞ ¼ e−δτH̄V=2e−δτH̄Ke−δτH̄V=2 ð29Þ

with the following Hamiltonian terms:

H̄K ¼ g2H
X
fijg

l̂2ij; H̄V ¼ −g−2H
X
s

ReTrÛs: ð30Þ

Taking δτ → iδt in Eq. (29), we analytically continue
Tðδτ; g2HÞ, obtaining

Uðδt; g2HÞ ¼ e−iδtH̄V=2e−iδtH̄Ke−iδtH̄V=2 ð31Þ

which we recognize as Eq. (25) written in terms of bare
parameters. From these, we can define the dimensionless
Hamiltonians using only bare parameters:

H̄ðδ; g2HÞ ¼ H̄K þ H̄V

þ δ2

24
ð½2H̄K; ½H̄K; H̄V �� þ ½H̄V; ½H̄K; H̄V ��Þ þ � � �

ð32Þ

where δ ¼ δτ; iδt depending on the metric signature. From
this we see that there are differing signs for the BCH terms
in real and imaginary time. Given that the Hamiltonians
differ, correlation functions and the scale setting observ-
ables atm and a0m must also differ even if we take δt ¼ δτ.
But, these differences arise at Oðδ2t ; δ2τÞ and vanish in the
continuous time limit, δt ¼ δτ ¼ 0.
One possible scheme for using a; a0 to determine a; at

would be to simply neglect these Oðδ2t ; δ2τÞ errors and
assume the two sets of scales are equal for the same gH and
δτ ¼ δt:

SchemeA∶ aðδτ; g2HÞ → aðδt; g2HÞ
a0ðδτ; g2HÞ → atðδt; g2HÞ ð33Þ

A benefit of this scheme is that only one set of Euclidean
couplings is simulated. While this scheme introduces an
Oðδ2t ; δ2τÞ systematic error into the scale setting, one could
easily imagine it being tolerable compared to errors from
near-term quantum computers.
In principle, this systematic error can be reduced by

observing that if one takes δτ → iδt, then the two
Hamiltonians agree. Formally, this means that the
eigenvalues mkðδt; g2HÞ are the analytic continuation
of mkðδτ; g2HÞ.
While the spatial correlators in Minkowski behave

exactly like the Euclidean ones of Eq. (5) with the
replacement of mkðδt; g2HÞ, the temporal correlators require
a0 → iat

hOiðnatÞOjð0Þi ¼
X
k

h0jOijkihkjOjj0ie−inatmk ; ð34Þ

where jki are the Minkowski eigenstates. While the excited
state contributions do not decrease with nat → ∞, provided
that we can isolate a single scale setting parameter m then
the lattice results atmða; atÞ are the analytic continuation of
a0mða; a0Þ. This suggest that a scale setting scheme with
reduced systematic error is through analytical continuation:

SchemeB∶ aðδτ → iδt; g2HÞ → aðδt; g2HÞ
a0ðδτ → iδt; g2HÞ → atðδt; g2HÞ. ð35Þ

In contrast to Scheme A, this procedure requires the
determination of the lattice spacings at multiple values of
gH, δτ in the region around the desired lattice spacings.
With this set of values, one derives a fit function for
aðδτ; g2HÞ; a0ðδτ; g2HÞ. This function can then be analytically
continued to Minkowski space, reducing the nonperturba-
tive BCH errors. The effectiveness of this method, like all
analytic continuations of lattice results, depends sensitively
on the statistics and fitting function, as we will discuss later.
In the preceding discussion, the relation between the

lattice spacings depending upon the Hamiltonians being
analytical continuations of each other. Traditionally,
Euclidean calculations are performed with an action like
Eq. (1). Different actions correspond to different lattice
Hamiltonians. For the Wilson action, we observe that
Hða; a0Þ of Eq. (20) is not the exact lattice Hamiltonian
being computed, but arises only when we expand TK to
Oðω2Þ. Thus, a systematic mismatch occurs if one tries to
scale set a; at with Wilson action results. Furthermore,
including the higher order ω terms from Eq. (1) leads to a
nontrivial dependence on δτ. This causes a non-Hermitian
Hamiltonian upon analytic continuation [172] although this
behavior may prove manageable [130]. In contrast, using
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an action with a heat-kernel kinetic term (the Laplace-
Beltrami operator) [173] with a Wilson single plaquette
potential term, the higher order ω terms vanish and the
mapping is exact. Another approach to obtain a Hermitian
lattice Hamiltonian useful in Minkowski space is obtained
by analytic continuing the character expansion of TKðδτ ¼
δt; g2HÞ term-by-term [9,172].
With observables computed at multiple at; a, one

can perform continuum extrapolations analogous to
the Euclidean calculations. Influenced by nonrelativistic
results, the literature has emphasized first approaching the
Hamiltonian limitat → 0, then takinga → 0. This procedure
introduces two inefficiencies. First, taking a continuum limit
as a two-step procedure requiresm × n separate simulations
at m values of at for n values of a in the ða; atÞ plane,
extrapolating each fixed-a set to the at → 0, and then
extrapolating the remaining a-dependent results to a → 0.
Secondly, because uncertainty in the a → 0 extrapolation is
controlled by how well each at → 0 extrapolation is, one
desires smaller at. This increases gate costs ∝ δ−1t .
Instead of first approaching the Hamiltonian limit, a

more efficient trajectory is to compute a set of points
a; at → 0 at fixed ξt. This clearly reduces the total number
of quantum simulations required. Additionally, since only
one extrapolation is performed lattice errors are easier to
control. This would allow larger at. We thus expect the
fixed-ξt trajectory to avoid deep quantum circuits and suffer
less from noise.

IV. THE ERRORS OF SCALE-SETTING IN
MINKOWSKI METRIC

Although the analytic continuation between Euclidean
and Minkowski scales proposed in Scheme B is formally
exact, in practice one can only perform the analytic
continuation from fits to discrete, noisy Euclidean data
aðδτ; g2HÞ; a0ðδτ; g2HÞ. This leads to a signal-to-noise prob-
lem when performing the analytic continuation [138].
Indeed, to achieve a certain precision the Euclidean data
has to be exponentially more accurate: intuitively, this is
because excitations caused by BCH operators decay
exponentially in τ but oscillate in t. As a result, low-energy
observables in Euclidean lattices tend to be less sensitive to
the variation of δ than their Minkowski counterparts. Hence

the analytic continuation is ill-posed [174]. Fortunately, at
small δ, the calculations with lower-energy states are less
influenced by the higher order BCH operators, and hence
one can reasonably tame the errors intrinsic to the
Euclidean data. This observation is of crucial relevance
for our scale-setting procedure.
On the other hand, the difference betweenMinkowski and

Euclidean renormalized lattice scales must be smaller for
smaller trotter steps δt;τ as both H̄ðδτ; g2HÞ and H̄ðiδt; g2HÞ are
closer to the same Hamiltonian limit. This implies that there
might be a parameter space where Scheme A yields more
accurate results for Minkowski scale-setting, leading to
question the feasibility of Scheme B. In this section, we
give upper bounds for the scale-setting error of both schemes
and discuss if the advantage of analytic continuation of a
given scheme is balanced out by its errors.
Consider the bare eigenvalue λðδτ; g2HÞ≡

a0ðδτ; g2HÞmphys=δτ of H̄ðδτ; g2HÞ. In real time, the
equivalent eigenvalue of H̄ðiδt; g2HÞ is λðiδt; g2HÞ≡
atðδt; g2HÞmphys=δt. Let λmðδτ; g2HÞ be the measured
values of λðδτ; g2HÞ on Euclidean lattices, with a deviation
from the theoretical value ϵA ¼ jλmðδτ; g2HÞ − λðδτ; g2HÞj
from statistical errors of the measurement.
For δτ ¼ δt, Scheme A approximates λðiδt; g2HÞ as

λmðδτ; g2HÞ such that the error is given by

jλðiδt; g2HÞ − λmðδτ; g2HÞj
≤ jλðiδt; g2HÞ − λð0; g2HÞj þ jλðδτ; g2HÞ − λð0; g2HÞj
þ jλðδτ; g2HÞ − λmðδτ; g2HÞj; ð36Þ

where λð0; g2HÞ is the corresponding energy gap evaluated
in the continuous time limit δ ¼ 0. The first two terms on
the right-hand side (rhs) of Eq. (36) quantify the errors from
the BCH contributions. The last term is ϵA, the statistical
error of the Euclidean temporal scale at δτ. We obtain the
following constraint on the trotterization error according to
the Bauer-Fike theorem [175],

jλðδ; g2HÞ − λð0; g2HÞj ≤ 2kH̄ðδ; g2HÞ − H̄ð0; g2HÞk. ð37Þ

At small δ, kH̄ðδ; g2HÞ − H̄ð0; g2HÞk is dominated by the
leading order BCH commutators of order jδj2.

kH̄ðδ; g2HÞ − H̄ð0; g2HÞk≲ jδj2
24

ð2k½½H̄V; H̄K�; H̄K�k þ k½½H̄V; H̄K�; H̄V �kÞ

≤
jδj2
3

N linkðd − 1ÞdUkl̂2kðg2H8kl̂2k þ g−2H 2ðd − 1ÞdUÞ ≤
jδj2

4ðmax δÞ2M; ð38Þ

where d is the number of spacial dimensions, dU is the
dimension of the representation of the group element U in
HV , N link is the number of links in the spacial lattice,

and kl̂2k is the spectral norm of a single link operator l̂2ij.
We have introduced additional definitions into the second
line,
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max δ≡min

�
g2H

4ðd − 1ÞdU
;

1

g2H8kl̂2k

�
ð39Þ

M ≡ 2N linkðd − 1ÞdUkl̂2kmax δ. ð40Þ

The inequality of Eq. (38) is only guaranteed within the
range jδj < max δ because next to leading order commu-
tators are only negligible within such range, as shown in
Appendix B. Thus, Eq. (37) is bounded by M=2 for
jδj ≤ max δ. Combining all the above definitions and
inequalities, the upper bound of temporal scale-setting
errors for Scheme A is

jλðiδt; g2HÞ − λmðδτ; g2HÞj ≲
�

δ2t
max δ2

þ ϵA
M

�
M; ð41Þ

which is bounded by M þ ϵA for δ ≤ max δ. As M
quantifies the upper limit of the trotterization error in
Eq. (37) and also the error of Scheme A, we refer to M as
the error bound parameter from the BCH expansion.
As Scheme B requires the knowledge of the functional

dependence of the scales on gH and δτ, we assume that the
theoretical λðδ; g2HÞ is both analytic and even in power of δ
within the radius jδj ≤ max δ, i.e. λðδ; g2HÞ ¼ λð−δ; g2HÞ.
This is based on the following perturbative argument: for
small jδj, the BCH commutators H̄ðδ; g2HÞ − H̄ð0; g2HÞ can
be treated as perturbations to the Hamiltonian limit
H̄ð0; g2HÞ. With the second-order trotterization, all the
nonvanishing BCH commutators depend on even orders
of δ. Therefore, perturbatively, the difference in the spectra
of H̄ðδ; g2HÞ and H̄ð0; g2HÞ should be analytic and even
in powers of δ order by order. One thus fits the functional
form λfðδτ; g2HÞ for Euclidean temporal scales in even
powers of δτ. This guarantees that the analytic continuation
λfðiδt; g2HÞ is real, thus avoiding nonunitarity in the
Minkowski metric.
Define ϵB as the maximum deviation of λfðδτ; g2HÞ from

the theoretical λðδτ; g2HÞ across the Euclidean region, such
that jλfðδτ; g2HÞ − λðδτ; g2HÞj ≤ ϵB for all 0 < δτ ≤ max δ. ϵB
is affected by both the precision of the measurements on the
Euclidean data and the fitting procedure. Since the com-
putational resources required grow with decreasing δτ,
jλfð0; g2HÞ − λð0; g2HÞj is likely to be the largest deviation.
The region δ ≤ max δ is defined such that Oðδ4Þ terms are
at most equal to the Oðδ2Þ terms. Therefore within this
region, a quartic λfðδτ; g2HÞ should reasonably approximate
λðδτ; g2HÞ. By performing calculations at three or more δτ
each with ϵA, one would expect the value of jλfð0; g2HÞ −
λð0; g2HÞj and therefore ϵB to be larger than ϵA only by an
order-one factor. In addition, we will require the condition
in Eq. (C2): jλfðδ; g2HÞ − λðδ; g2HÞj ≤ M þ ϵB in the whole
complex plane satisfying jδj < max δ. As shown in
Appendix C, we derive an upper bound on the error of
the temporal scale-setting for Scheme B:

jλðiδt; g2HÞ − λfðiδt; g2HÞj ≲ ϵB

�
M þ ϵB

ϵB

�
ωðδtÞ ð42Þ

with 0 < ωðδtÞ ¼ 4
π arctan

δt
max δ < 1 following the Lemma 1

in [174].
The advantage of using Scheme B could be seen from

comparing the ratio of Eq. (42) to Eq. (41) when setting
ϵA ¼ ϵB ¼ ϵ. The error in Scheme A has a quadratic
dependence on δt. When ϵ=M ≪ 1, the growth of the
errors in Scheme B is delayed with respect to that in
Scheme A, until δt is very close to max δ, as shown in
Fig. 2. It results that such advantage of Scheme B over
Scheme A requires ϵ=M < 0.053, where around ϵ=M ¼
0.053, the derivatives of the two prefactors respective to δt
are the same at δt ¼ max δ. Ultimately, the overall accuracy
of the scale setting in both schemes is controlled by the
magnitude of the error bound parameter M. All the above
holds, unless the error bound parameterM is too large such
that simulations at very small δt values are necessary to
have the overall accuracy under control, which are com-
putationally very expensive.
The result that Scheme B performs better at small ϵ=M

ratio has clear physical interpretations. Correcting BCH
errors as Scheme B does via analytic continuation becomes
more important when the error bound parameter M is
larger. On the other hand, in the Scheme B, the analytic
continuation is sensitive to the Euclidean precision ϵ as
seen from Eq. (42), while Scheme A is less affected. For
Scheme B to yield a smaller error, certain accuracy of the
functional form λfðδτ; g2HÞ has to be achieved. This leads to
the practical concern that a large amount of resources on the
Euclidean calculation might be required at small couplings
as the signals become weaker. In addition, for the low
energy states involved in the scale-setting procedure, the
error bound parameter M could be smaller than the
estimation using Eq. (39). Therefore, we expect both
Eq. (41) and Eq. (42) to be conservative bounds, as one
can confirm by comparing Table I and Fig. 7. In such cases,

FIG. 2. Ratio of the error bounds of Scheme B in Eq. (42) to
that of Scheme A in Eq. (41). The black line indicates when the
bounds are equal.
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a smaller error ϵ would be required to obtain the same
values of ϵ=M that govern the suppression of the errors in
Scheme B.
In Table I we estimate forD4 models with 2 and 3 spatial

dimensions and different number of plaquettes/number
of links/different values of the bare coupling gH, the lar-
gest possible trotter step compatible with 0.1 errors on
the temporal-scale-setting for Scheme A and Scheme B,
assuming ϵ ¼ 0.02. We observe that as expected, the
advantage of Scheme B to allow the use of relative large
trotter step at a given systematic error level is remarkable
for larger systems and stronger couplings, that in turn
corresponds to larger values of M.

V. NUMERICAL RESULTS

In this section we present a concrete demonstration of
some of the theoretical perspectives discussed above by
using a two-plaquette theory with the discrete, non-Abelian
gauge group D4. We perform classical simulations of a
quantum computer using qiskit [176,177]. These cal-
culations are performed without modeling of realistic noise
sources, corresponding to a perfect, error-free quantum
computer.
We simulate the D4 gauge field on the two-dimensional

lattice shown in Fig. 3. This lattice represents the smallest
two-dimensional lattice which cannot be reduced to a one-
dimensional theory. The simulations requires a five D4

registers, and uses a total of 17 qubits: 12 for physical
degrees of freedom, 3 for an ancillary group register, and 2
ancillary qubits. Note that, for brevity, we have broken with
the notation of previous sections, in referring to a link not
by the source and sink sites, but instead with a single direct
index i ¼ 0…3.

We define a trace on D4 (not uniquely specified by the
group structure) by embedding D4 into Uð2Þ, and defining
the trace via the fundamental representation of that Lie
group. The embedding of D4 < Uð2Þ is generated by the
elements σx and iσz. The Hamiltonian terms are

HV ¼ −
1

δt
logTV

¼ −
1

g2H
ðReTr½U†

2ðtÞU†
0ðtÞU3ðtÞU0ðtÞ�

þ ReTr½U†
3ðtÞU†

1ðtÞU2ðtÞU1ðtÞ�Þ

HK ¼ −
1

δt

X
i¼0::3

logTðiÞ
K ; ð43Þ

where logTðiÞ
K is the one-link kinetic term for the i-th link,

determined as discussed in Appendix (A2).2 In total,
the quantum simulations entailed ∼200 entangling gates
per δ [112]. This is roughly the resources recently used in
[178–180], suggesting that a single step of time evolution
may be possible on current quantum devices.
Stochastic state preparation has been demonstrated for

thermal states in D4 [84] and particlelike states in Z2 [85].
While these results are promising, the initial states are found
to have contamination from excited states that complicates
the analysis. Therefore, to simplify the study of trotterization
and the continuum limit, we use exact diagonalization of the
Kogut-Susskind Hamiltonian to compute the eigenvalues
and then construct our initial state as

jψð0Þi ¼ 1ffiffiffi
2

p jψ0i þ
1ffiffiffi
2

p jψ ii; ð44Þ

TABLE I. Benchmark values for D4 models in 2þ 1D and 3þ
1D with periodic conditions. Assuming ϵ ¼ 0.02 and demanding
the errors in Eqs. (41) and (42) to be below 0.1, δAt ; δBt are largest
possible δt for SchemeA and SchemeB. When g2H ¼ 0.1,M < 0.1
and we take δAt ¼ δBt ¼ max δ. The first three rows use the same
parameters as in Fig. 7. The absolute error in Tab. I can be
converted to the relative error in Fig. 7 by use of a factor
δt=atm1×1 ≈ 1 from Tab. II.

d N plaquette N link g2H max δ M δAt δBt

2 2 4 0.33 0.041 0.23 0.024 0.022
0.71 0.089 2.1 0.017 0.025
1.0 0.059 2.0 0.012 0.017

2 42 32 0.1 0.013 5.8 × 10−4 0.013 0.013
0.5 0.063 7.2 0.0066 0.014
1.0 0.059 16 0.0042 0.011

3 43 192 0.1 0.0063 3.5 × 10−3 0.0063 0.0063
0.5 0.032 43 0.0013 0.0052
1.0 0.059 192 0.0012 0.0082

FIG. 3. The lattice geometry used for the D4 gauge simulation.
The plaquettes are given by U†

2U
†
0U3U0 and U†

3U
†
1U2U1. Dash

lines are used to indicate repeated links due to the periodic
boundary conditions.

2For the numerical calculations, we take δt ¼ 1 in HK
specifically for the discrete group, such that the eigenvalues of
the kinetic Hamiltonian are sufficiently differentiated when the
system is evolved with small trotterization step. This trajectory is
adequate since, using the character expansion for the kinetic part
of the transfer matrix in Appendix A, one can show that this
construction captures the kinetic energy in the continuous time
limit taken for a discrete group.
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where jψ ii correspond to the ith excited state which is
nondegenerate. By preparing such initial states, the corre-
sponding time-dependent state should be

jψðtÞiKS ¼
eiE0tffiffiffi

2
p jψ0i þ

eiEitffiffiffi
2

p jψ ii: ð45Þ

As pointed out in [85] at finite at, trotterization mixes
Kogut-Susskind eigenstates through nonzero transition
matrix elements hψkjHða; atÞjψð0Þi:

jψðtÞi ¼ eiHða;atÞtjψð0Þi
¼

X
k

eiEkðatÞtjψkðatÞihψkðatÞjψð0Þi

¼
X
k

λkeiEkðatÞtjψkðatÞi. ð46Þ

As at → 0, one can show that the time-dependent state in
Eq. (46) reduces to Eq. (45). Performing measurements of
the operatorO on this state with a quantum computer yields

hOðtÞi≡ hψðtÞjOjψðtÞi
¼ c0 þ

X
k≠j

½ck;j cosðatðEj − EkÞlÞ

þ sk;j sinðatðEj − EkÞlÞ�; ð47Þ

where l ¼ ½0; N� is the integer trotter step. ck;j; sk;j incor-
porate both the mixing effects entailed in λk and the matrix
elements of O. The Ek here and in the following are
eigenvalues of Hða; atÞ and have explicit dependence on
at. This expression, analogous to Euclidean LFT operators,
can be used to fit the energies of states atmi ≡ atðEi − E0Þ
where E0 is the ground state energy, corresponding to a
nondegenerate ground state. As we decrease δt, the
coefficients of excited states which can only be nonzero
due to contamination, should vanish. Therefore, by per-
forming the fit in Eq. (47) for multiple values of δt and
comparing the results for the coefficients, it is possible to
distinguish the physical gap from the other gaps appearing
due to contamination.
It is useful here to compare the fitting procedure to that

of Euclidean LFT. In Euclidean space, hOðτÞi ∼P
i αie

−Eiτ

and thus taking τ → ∞ acts as a low-pass filter which
removes higher energy states. In this way, for sufficiently
large τ, hOðτÞi should be exponentially dominated by a
single state E1 and one can extract a0E1. In contrast,
hOðtÞi ∼P

i βie
−iEit and thus the excited-state contribution

to the lattice matrix element doesn’t decrease as t → ∞.
This lack of a natural low-pass filter is why real-time
evolution can access matrix elements that could be inac-
cessibly to Euclidean LFT; it also means that the excited-
state contamination from imprecise state preparation and
trotterization cannot be trivially removed. In this sense, the
sampling advantage of quantum computers could be

jeopardized by errors induced from excited state
contamination.
In this work, we will use two different spatial

Wilson loops as our operators O, which have different
quantum numbers, and therefore are sensitive to different
eigenstates. The first is the left plaquette, O1×1 ¼
ReTrU0U3U

†
0U

†
2, and by following the construction of

[112] it can be measured without any ancillary qubit.
The second is the Wilson loop over the entire lattice,
O2×1 ∼ ReTrU0U1U2U

†
1U

†
0U

†
2, which requires an ancillary

group register to be computed [181]. For each of these
operators, we construct different initial states from Eq. (44).
The computations are done for multiple values of

g2Hða; atÞ ¼ ½0.71; 1.25� and δt ¼ ½0.01; 0.7� for Nδt ¼
½10; 20�. The circuits used are detailed in [112]. The
BCH contributions vanish for g2Hða; atÞ → 0, and as a
result, the matrix elements ck;j; sk;j in Eq. (47) vanish with
only ci;0 and si;0 surviving. Further, the statistical errors
required to resolve oscillations in hOðtÞimust be decreased
accordingly, calling for increased number of shots. An
additional complication from the continuum limit approach
is that the gaps atmj − atmi → 0 as g2H → 0 and thus
contamination due to trotterization errors grow unless δt is
decreased as well. Together, these amount to the cost of the
approach to the continuum to scale poorly. For our model,
we find that for g2Hða; atÞ > 1, the required number of shots
for the qiskit noiseless simulator qasm ranged from
1600 to 64000 as we decreased δt; g2H. For this reason, we
utilized state_vector simulator—which reports exact
probability distributions—for g2Hða; atÞ ≤ 1 in order to
investigate the continuum limit at reduced computational
cost. This just emphasizes the importance of being able to
perform calculations at large a; at on reducing the quantum
resources required. For the D4 theory, the eigenvalues of
HV [Eq. (43)] are 1=g2H × f−4;−2; 0; 2; 4g. States evolved
under one-step time evolution operator eiδtHV=2 built from
HV will obtain phases in the range δt=2g2H × ½−4; 4�. For
the δt and g2H chosen, the phase differences are smaller than
2π so that one can resolve states with different potential
energies.

A. Scale setting in Minkowski spacetime

We evaluate hO1×1ðtÞi to investigate the effect of the
renormalization of the temporal scale in Minkowski cal-
culation, by performing fits to Eq. (47) and extracting the
lowest energy gap atm1×1 from hO1×1ðtÞi. The initial state
is constructed from Eq. (44) with excited state i ¼ 2. An
example of these calculations is found in Fig. 4 for fixed
g2Hða; a0Þ ¼ 1.11 and three different δt ¼ f0.5; 0.25; 0.1g.
Comparing the trotterized results to the continuous-time
one calculated using classical computations, the state
contamination can be clearly observed and decreases for
smaller values of δt. The results for atm1×1, for the whole
range of g2H and δt are found in Table II. We observe that the
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bare mass atm1×1=δt is changed by only 3% when δt
increases from 0.1 to 0.5 for g2H ¼ 1.11, while the mixing
effect could be changed by around 20% from comparing
the ck;j; sk;j amplitudes in Fig. 4.
In the Euclidean lattice calculation, using the relation in

Eq. (7) obtained in the weak coupling limit [151–153], the
perturbative renormalized anisotropy is

ξ−1 ¼ cða; a0Þδτ ∼
"

1 − csðξÞg2H
1 − ctðξÞþcsðξÞ

2
g2H

#
δτ

≈
�
1þ ctðξÞ − csðξÞ

2
g2Hða; a0Þ þOðg4HÞ

�
δτ: ð48Þ

Even without a functional form for ciðξÞ, one can see
that solving Eq. (48) self-consistently for ξ will break
a0 ∝ δτ. For SUðNÞ in 3 and 4 dimensions, cþðξÞ≡
ctðξÞ þ csðξÞ ≈Oð10−2Þ and c−ðξÞ≡ ctðξÞ − csðξÞ ≈
Oð10−1Þ [151–153]—suggesting that the nonlinear
renormalization is generically small. While the exact
functions g2Hða; a0Þ; ciðξÞ, depend upon the metric, the
form of Eq. (48) should remain unchanged. It is possible
to investigate Eq. (48) in Minkowski space by rewriting it
as at ¼ cða; atÞaδt. For the case of g2H ¼ 1.25 plotted in
Fig. 5, one sees that at has a clear δ2t dependence.
Furthermore, Fig. 6 shows that the linear dependence of
at upon δt is a g2H dependent function. Together, these
demonstrate the renormalization of at with respect to the
bare coupling gH and the trotter step δt. Although for our
toy model with two spatial plaquettes we cannot extract the
spatial scale a from numerical results, we can relate a to the
running of g using the perturbative results [182]

aΛ ¼ exp

�
−

1

2b0g2

�
ðb0g2Þ−

b1
2b0ð1þOðg2ÞÞ: ð49Þ

In the above, b0, b1 are the standard g3, g5 coefficients in
the perturbative β function. Altogether, to extract physical

properties from quantum simulations, we must first deter-
mine both scales explicitly.

B. Comparison of schemes for scale setting

To reduce the quantum resources for lattice calculation,
we determine the scale using the Euclidean data following
the procedure proposed in Sec. III. As a demonstration, we
will focus on the temporal lattice spacing and show its
determination using Scheme A and Scheme B.
We solve the eigenvalues of the Euclidean transfer

matrix built from HK and HV in Eq. (43). By taking the
logarithm of these eigenvalues, we could extract the
energies of the spectra on a Euclidean space-time, with
the ground state energy normalized to zero. The observable
a0m1×1 is the energy corresponding to the 2nd excited
state. With the set of bare couplings 1=g2H ¼ ½0.8; 3.0� and
δτ ¼ ½0.5; 0.01�, we obtain a0m1×1 and in addition we apply

FIG. 4. Expectation value of the plaquette hO1×1ðNδtÞi vs Nδt for different δt with fixed g2H ¼ 1.11. The green line indicated the
δt → 0 exact results.

FIG. 5. atm1×1 vs δt for g2H ¼ 1.25. The dashed (solid) lines
indicate a linear (quadratic) fit to the data. The poor linear fit
(χ2=d:o:f ¼ 40.2) demonstrates that at is not proportional to δt as
might be naively expected. χ2=d:o:f ¼ 1.1 for the quadratic fit.
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an error of 1% to a0m1×1 for any bare coupling and a0 used,
in order to mimic the measurement error using classical
Monte Carlo simulations. Then we do a 2D fit to get the
functional dependence of a0m1×1 on both δτ; g2H as:

a0m1×1ðδτ; g2HÞ ¼ δτðf1ðg2HÞ þ f2ðg2HÞδ2τÞ. ð50Þ
Given that spatial lattice spacing a is related to g2H via the
relation in Eq. (49) and fi functions should be power-law
expansions of a, we use the following functional form for
the 2D fitting of a0m1×1

fiðg2HÞ ¼
X
n

ai;n

�
expð−κ0=g2HÞ

1

g2κ1H

�
n
: ð51Þ

The fitted a0m1×1 (χ2=d:o:f ¼ 1.3) is at most 3% away
from their truth value at 68% C.L., with n taken to be 3 for

f1 and 2 for f2 to achieve the aforementioned χ2=d:o:f:
With this, we can then analytically continue with either
scheme. In Fig. 7, the percent systematic error for both
schemes compared to atm1×1 computed by diagonalizing
UðatÞ in Sec. VA (which agree with Table II). The colored
region shows the errors from the 1σ band in the Euclidean
fitting. For the three g2H used in Fig. 7, the errors ϵ ≤ 2% at
68% C.L., with a weak dependence on δτ.
As expected, Schemes A, B give precise evaluations of

atm1×1 at small δt. When δt gets larger, the BCH errors of
Scheme A should increase as δ2t . BCH errors get smaller for
smaller g2H, as which lowers the error bound parameter M.
As shown in Fig. 7, for g2H ≤ 0.33ðϵ ∼MÞ, Scheme A
provides a better estimation of the lattice scales for the
whole region of δt < 0.5. The errors from the analytical
continuation of Scheme B barely increase for larger values
of δt, and are in principle less sensitive to g2H as expected.
For the assumed precision in the Euclidean data and the
fitting procedure, the error, ϵ, is slightly larger for the small
g2H region and altogether a delayed growth in the errors is
maintained for g2H ≥ 0.71. One can conclude that if g2H is
not particularly small, Scheme B is more likely to render
the lowest errors in the scale determination. In both cases,
the observed 2% errors are well within Eq. (41) and

Eq. (42), which predict a 10% error bound for δt ≤ δAðBÞt
shown in Table I.
Once the measurement of the renormalized spatial lattice

spacing is allowed when considering sufficiently large
systems, one can obtain the renormalized spatial lattice
spacing similarly using only Euclidean data.

C. Approaching the continuum

In Euclidean LFT, one uses a; a0 for extrapolating to the
continuum limit. This is because performing extrapolations
in terms of the bare parameters requires either very higher

FIG. 7. Errors with respect to the truth scale in a Minkowski calculation using Scheme A (left) and Scheme B (right), with the band
showing the error from the 1σ region in the Euclidean fitting. We have assumed that the measurement precision in Euclidean spacetime
could reach 1%. Together with fitting errors, we have ϵ ≤ 2% at 68% C.L. for the g2H and δτ ¼ δt used in this figure. For Scheme Awe
use Δatm1×1 from the fit, as ϵ is barely affected by the fitting procedure.

FIG. 6. atm1×1 vs δt for different g2H . Notice that renormaliza-
tion of at is clearly g2H dependent.
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order fit functions (and therefore many calculations) or
calculations with very small gH and δτ (at large computa-
tional cost). Instead, using a; a0 is an extrapolation in
nonperturbative variables, so the bare couplings can be
much larger and the fit functions simpler. The same should
be true in Minkowski spacetime. In principle, one can
approach the continuum along any trajectory as a function
of a; at, but experience from Euclidean LFT [157,160],
suggests that taking a trajectory of fixed-ξt would smoothly
and efficiently extrapolate to the continuum limit for
Minkowski LFT. In approximations to UðtÞ other than
trotterization [99–102], definitions for a nonperturbative
scale like at are currently unknown, making the extrapo-
lation to the continuum nontrivial.
In the continuum limit a; at → 0 and thus atmi vanishes.

One must instead explore finite physical quantities such as
atmi=atm1×1. Due to the smallness of our lattice, the only
states which mix with jψ2i are from cutoff effects which

have atmi=atm1×1 → ∞. Therefore, we perform another fit
to hO2×1ðtÞi from which we extract a second physical mass,
atm2×1. The initial state for this purpose is constructed with
i ¼ 13. With these, we can study different approaches to
the continuum limit. As the scales set from real-time
evolution are already available (Table II) and Scheme B
gives comparable precision, in the following, we use at
from Table II. Observe that, since the difference between
Schemes A and B are polynomials of the lattice spacing, it
is reasonable to expect that formulating Scheme A with
some assumptions on the extrapolation function would lead
to the same continuum limit as the one we are considering
here. We point out that the precision of the spacings
extracted from real-time evolution would be much worse
when noise is included.
Numerically, the first trajectory to approach the con-

tinuum is to first take at → 0 (the Hamiltonian limit) then
take a → 0. Since the lattice spacing errors of Hða; atÞ are
Oða2; a2t Þ, we fit the mass ratio to

atm2×1

atm1×1
¼ κ0 þ κ2ðatm1×1Þ2: ð52Þ

In Figs. 8 and 9, we show these best fit lines of Eq. (52) to
the data points extracted from qasm and state_vector.
The values of κ0 correspond to the Hamiltonian limit value
of the mass ratio, and we tabulate them in Table III. We find
good agreement between the κ0 in Table III and those
calculated by direct diagonalization of the Hamiltonian
with δt ¼ 0 for different g2H.
From Fig. 8, we could see that the difference for

atm2×1=atm1×1 is only 8% between its value at δt ¼ 0.5
and the Hamiltonian limit for g2H ¼ 1.11, while from Fig. 4,
for the same value of g2H and δt, the hO1×1ðtÞi could differ
from the Hamiltonian limit by up to 20%. The deviation in
atm2×1=atm1×1 represents BCH corrections to the eigen-
values and the latter one is the correction to wave function.
Thus less resources (larger trotterization step) could be

FIG. 8. atm2×1=atm1×1 as a function of atm1×1 for a variety of
g2Hða; atÞ. The data points are extracted from fixed δt results from
a qasm calculation. For each g2H , we have δt ¼ f0.1; 0.25; 0.5g
from left to right. The solid lines reflect the best fit for a fixed
g2Hða; atÞ. The colored bands are the 1σ uncertainties on the fits.

TABLE II. Numerical results for lattice masses atm1×1 and
atm2×1 for the bare couplings g2H and δt studied here. Rows above
(below) the line indicate qasm (state_vector) results.

g2H δt atm1×1 atm2×1

1.25 0.70 0.6663(11) � � �
1.25 0.65 0.606(17) � � �
1.25 0.60 0.554(16) � � �
1.25 0.50 0.442(6) 1.120(15)
1.25 0.40 0.349(7) � � �
1.25 0.25 0.211(4) 0.575(5)
1.25 0.10 0.0821(11) 0.2332(11)
1.25 0.05 0.0414(5) � � �
1.25 0.01 0.00819(11) � � �
1.18 0.5 0.446(13) 1.12(4)
1.18 0.25 0.207(3) 0.557(9)
1.18 0.1 0.0838(19) 0.223(3)
1.11 0.5 0.429(11) 1.016(11)
1.11 0.25 0.206(10) 0.518(11)
1.11 0.1 0.0832(7) 0.208(4)
1.05 0.5 0.404(14) 0.918(11)
1.05 0.25 0.1987(4) 0.478(5)
1.05 0.1 0.08103(14) 0.189(3)

1 0.1 0.07580(8) 0.1749(7)
1 0.05 0.037855(14) 0.0883(4)
1 0.01 0.007584(4) 0.017572(6)
0.91 0.1 0.06699(9) 0.1474(4)
0.91 0.05 0.03348(3) 0.07402(9)
0.91 0.01 0.0066953(14) 0.014835(4)
0.83 0.1 0.0575(4) 0.1250(6)
0.83 0.05 0.02889(10) 0.06266(16)
0.83 0.01 0.005791(8) 0.012493(14)
0.77 0.1 0.0488(8) 0.1051(8)
0.77 0.05 0.02462(19) 0.05230(15)
0.77 0.01 0.004948(8) 0.01049(3)
0.71 0.1 0.0424(3) 0.0885(3)
0.71 0.05 0.02102(9) 0.04387(7)
0.71 0.01 0.004191(9) 0.008753(7)
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needed to control the error of atm2×1=atm1×1 below certain
threshold.
Assuming errors scaling asOða2Þ and using Eq. (49), we

can fit the κ0 in Table III to the continuum limit using

atm2×1

atm1×1

				
at→0

¼ λ0 þ λ1e−λ2=g
2
HðgHÞλ3 : ð53Þ

In contrast to extrapolating in at, the reliability of this
extrapolation depends much more sensitively on being in
the perturbative regime, otherwise Eq. (49) receives large
corrections and our functional form will be inadequate.
So from Eq. (53), we must perform the nonlinear fit in g2H
which introduces complicated correlations between the
fitting parameters. Despite these limitations, we find that
the continuum limit result of λ0 ¼ 2.03ð4Þ agrees with the
continuum valuem2×1=m1×1 ¼ 2 computed from the direct
diagonalization of the Hamiltonian with g2H ∼ 0 and δt ¼ 0.
The mass ratio in the continuous time limit, κ0 in Table III

(black points), and the best fit line using Eq. (53) are found
in Fig. 10 (black line and grey shaded region for 68% C.L.).
The number of trotter steps N (and therefore gate costs)

is proportional to δ−1t . Clearly therefore, it is an undesirable
feature to first take the Hamiltonian limit at → 0 (δt → 0)
and then the continuum limit a → 0. Instead of working at
fixed a, while decreasing δt, one can work at fixed ξt ¼ a

at
and then one could directly approach the continuum limit
a; at → 0 through this trajectory. Up to a2 order, the
extrapolation in terms of the bare coupling, would be of
analogous functional form as that on the right-hand of
Eq. (53), with the finite-ξt effects entering the fitting
parameters. It is thus important to explore how to define
the finite ξt trajectory. One could perform this tuning on
the quantum computer. This would proceed by computing
both at; a or ξt using some physical observables (e.g.
Wilson loops or dispersion relations) and then adjust
the bare parameters until one has a fixed ξt trajectory.
This procedure requires multiple quantum simulations to be
performed—albeit at larger δt then an extrapolation to the
Hamiltonian limit requires and only the scale-setting
observable needs to be computed. But, as demonstrated,
we can reliably extract the dependence of the scales a; at on
δt and g2H by analytical continuation using Scheme B. We
can then directly invert these relations to find the δt and g2H
for a fixed ξt avoiding the quantum computer entirely for
scale-setting.
Given the smallness of our system, we are unable to

extract a or the corresponding ξt to determine a set of δt and
g2H. This forces us to consider some approximations. While
the previous discussions demonstrate renormalization, as
the nonperturbative renormalization effects partially cancel
out [152], we expect that the renormalization of ξt is milder
than that of a; at individually. Therefore, we can approxi-
mate the fixed ξt trajectory as fixed δt. In Fig. 10, we show
altogether the extrapolation to the continuum limit through
the Hamiltonian limit (gray line and black dots), as well as
two fixed values of ξt ≈ f10; 2g to highlights the power of
fixed ξt trajectories in achieving the continuum limit
results. Indeed, following the trajectory of ξt ≈ 10 (red
circle), we can successfully reach the correct continuum
limit with clear advantages over the Hamiltonian extrapo-
lation method. For ξt ≈ 10, the needed number of data point
simulations is reduced by 67% when comparing to the
Hamiltonian limit procedure that requires all the measure-
ments shown in Figs. 8 and 9. In addition, the circuit depth
is greatly reduced through avoiding small trotterization
steps, e.g. δt < 0.1. In Fig. 10, we further investigate using
an even smaller ξt ≈ 2, hence δt ¼ 0.5 (blue triangles),
which implies a further improvement on the circuits depth
demands. Due to the large uncertainties from quantum
simulations as represented by the large error bars from
Fig. 10, we calculate the atm2×1

atm1×1
through explicit dia-

gonalization of the time evolution operator at fixed
ξt ≈ 1=δt ¼ 2. We find that the continuum limit is also

TABLE III. Numerical results for the dimensionless ratio of
lattice masses atm2×1=atm1×1 after extrapolating for fixed g2H to
the Hamiltonian limit, in comparison with the same quantities
calculated using direct diagonalization of HV þHK . Rows above
(below) the line indicate qasm (state_vector) results.

g2H
atm2×1
atm1×1

jat→0
m2×1
m1×1

jat¼0

1.25 2.83(4) 2.81
1.18 2.70(4) 2.68
1.11 2.511(13) 2.51
1.05 2.37(6) 2.40

1.00 2.321(9) 2.32
0.91 2.2159(3) 2.22
0.83 2.158(3) 2.15
0.77 2.1191(15) 2.11
0.71 2.0882(5) 2.09

FIG. 9. atm2×1=atm1×1 as a function of atm1×1 for a variety of
g2Hða; atÞ. The data points are extracted from fixed δt results from
a state_vector calculation. For each g2H , we have δt ¼
f0.01; 0.05; 0.1g from left to right. The solid lines reflect the best
fit for a fixed g2Hða; atÞ. The colored bands are the 1σ un-
certainties on the fits.
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successfully reached for this large value of trotter step.
Although multiple simulations are needed to control the
measurement uncertainties on a quantum computer, this
highlights the advantages of fixed-ξ calculations in avoid-
ing larger errors from enhanced circuit depth.

VI. CONCLUSIONS

The natural construction of quantum field theories on
quantum computers is as a lattice-regularized theory. Any
meaningful calculation must therefore be renormalized and
taken to the continuum limit before comparison to experi-
ments can be made. As we have discussed, this involves
many hurdles and it will not be easy. Typically quantum
simulations are constructed within the Hamiltonian for-
malism where a spatial lattice with spacing a is time-
evolved. Further approximations are required, as the time
evolution operator UðtÞ built from the Hamiltonian usually
cannot be efficiently implemented.
In this article, we have tackled three important issues

related to the simulations of Minkowksi lattice field
theories on quantum computers. Firstly, we discussed
how renormalization in the form of a temporal lattice
spacing at arises from trotterizating UðtÞ. Secondly,
by relating this trotterized time evolution operator to
the Euclidean transfer matrix, we propose two different
schemes using analytical continuation to set the Minkowski
lattice spacings. The most straightforward scheme is to
simply equate the Euclidean lattice spacings to those in the
real-time calculation (Scheme A). This scheme introduces
Oðδ2t Þ errors in addition to the statistical errors in the
Euclidean calculations. Our second method (Scheme B)
can correct the Oðδ2t Þ errors of Scheme A by analytically
continuing the best-fit function of the Euclidean spacings.
We have derived conservative bounds on the systematic
errors for these schemes for small δt, and a loose constraint
on the error of the fit to take advantage of Scheme B.
This enables us to reduce the requirements for quantum

resources in the scale setting procedure. Thirdly, we show
that by taking a fixed anisotropic-ξt approach to the
continuum limit, one can further reduce the number of
simulations with the added benefit of shallower circuits and
lower required gate fidelities. We demonstrated these ideas
for a 2þ 1D, discrete non-Abelian D4 model using
qiskit noiseless simulators.
The results of this work suggest a number of followups.

In particular, these procedures could be tested in the near-
term for Z2 gauge theories in 2þ 1 dimensions on multiple
lattice sizes, allowing for the incorporation of finite-volume
effects and the explicit calculation of a. Additionally, since
the quantum resources increase as at; a → 0, improved
Hamiltonians that account for both lattice effects and
quantum noise could accelerate extrapolation to the con-
tinuum approach while reducing the quantum resources
required. Finally, extending the error bounds on our scale-
setting schemes to larger δt would be well motivated to
ensure that the systematic errors introduced are under
control.
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APPENDIX A: CONTINUOUS LIMIT FOR
DISCRETE GROUP WITH WILSON ACTION

In this appendix, we will show the subtleties in taking the
Hamiltonian limit a0 → 0 constructed from the Wilson
action of a discrete gauge group, relying on the spectra of

FIG. 10. am2×1=am1×1 vs g2Hða; atÞ for three continuum trajectories where ξt is approximately fixed. Closed and open symbols
indicate qasm and state_vector results respectively. The black line is a best fit to (▪, □) with a 1σ
uncertainty band.
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the kinetic part of the transfer matrix, which could be
solved using the character expansion–Fourier transforma-
tion to the character basis. Taking Dn group as an example
(with n even), its irreducible representations ρr are as
follow:

ρ1;1ðj; mÞ∶1 ρ1;2
ðj; mÞ∶ð−1Þm

ρ1;3ðj; mÞ∶ð−1Þj ρ1;4
ðj; mÞ∶ð−1Þmþj

ρ2;kðj; mÞ∶ exp
�
i
2πj
n

kσz

�
σmx ðA1Þ

with j ∈ ½0;…; n − 1�; m ∈ f0; 1g defining the elements of
the group and k ∈ f1; 2;… n

2
− 1g indexing the different

dimension-2 irreducible representations.
The kinetic part of transfer matrix is constructed in the

faithful irreducible representation ofDn: ρ2;1ðj; mÞ, to ensure
its positivity [112]. Consider a single link, say the first link
U1, it takes values of ρ2;1ðgiÞ≡ ρ2;1ðj; mÞ, with i ¼ 1

representing the identity group element of j ¼ m ¼ 0.
Using character expansion, the kinetic part of the transfer
matrix for the first link T1

K can be explicitly written as:

T1
Kði; i0Þ ¼ expðβtReTr½ρ†2;1ðgiÞρ2;1ðgi0 Þ�Þ

¼
X
r

drcrTr½ρ†2;1ðgiÞρ2;1ðgi0 Þ�; ðA2Þ

with dr the dimension of the r representation. The coef-
ficients for the modes in the irreducible representation r are
given by cr ¼

P
2n
i¼1

1
dr
Tr½ρrðg†i Þ�T1

Kði;1Þ, explicitly as:

c1;1 ¼
Xn−1
j¼0

ðe2βt cosð2jπn Þ þ 1Þ

c1;2 ¼
Xn−1
j¼0

ðe2βt cosð2jπn Þ − 1Þ

c1;3 ¼
Xn−1
j¼0

ð−1Þjðe2βt cosð2jπn Þ þ 1Þ

c1;4 ¼
Xn−1
j¼0

ð−1Þjðe2βt cosð2jπn Þ − 1Þ

c2;k ¼
Xn−1
j¼0

cos

�
2jπ
n

k

�
e2βt cosð

2jπ
n Þ ðA3Þ

and is inherently positive from the positivity of T1
K when

βt > 0 for finite n. Notice that in Eq. (A3), the group
elements with m ¼ 1 contribute only to the second piece
in each summation of cr for dr ¼ 1 and do not contribute to
c2;k. For the D4 group considered in Sec. V, we have

c1;1 ¼ 6þ e2βt þ e−2βt ; c2;1 ¼ e2βt − e−2βt

c1;2 ¼ c1;3 ¼ c1;4 ¼ −2þ e2βt þ e−2βt : ðA4Þ

The corresponding HK after normalizing the ground state
energy to zero in the character basis jr; li is written as:

HK ¼ 1

a0

X
r

Xd2r
l¼1

log

�
c1;1
cr

�
jr; lihr; lj; ðA5Þ

where l represents the degree of degeneracy of the d2r modes
in the r irreducible representation. The trotterization errorwe
discussed in Sec. IV would be proportional to the maximal
eigenvalues of HK .
Recall that βt ¼ a=ðg2t a0Þ ¼ 1=ðg2HδτÞ. In the small a0

region, the contribution to the cr in Eq. (A4) are all
dominated by the e2βt terms, which quantify the contribu-
tion from the identity group element (j ¼ m ¼ 0). Taking
the limit a0 → 0 for discrete groups would result in
degenerate spectra:

lim
a0→0

1

a0
log

c1;1
cr

∼ lim
a0→0

fðrÞ
a0

e−2βt ¼ 0 ðA6Þ

with fðr¼f1;2g;f1;3g;f1;4gÞ¼8 and fðr¼ f2;1gÞ ¼ 6.
However, related to the observable atm2×1

atm1×1
in our study of

Sec. V, one should consider the energy ratios, say:

lim
a0→0

1

a0
log

c1;1
c1;2

=

�
1

a0
log

c1;1
c2;1

�
¼ 4

3
ðA7Þ

which instead approach a finite value in the a0 → 0 limit.
To obtain nondegenerate spectra and have the above energy
ratios fixed, one need to view βt and βs as parameters,
without referring to their dependence on a and a0 in
Eq. (2). The continuous time limit should be taken while
keeping [162]:

lim
a0→0

1

βs
expð−βtÞ ¼ g2dðaÞg2s ; ðA8Þ

where g2dðaÞ is some finite constant for a given spatial
lattice spacing. It then follows that:

lim
a0→0

1

a0
log

c1;1
cr

∼ lim
a0→0

fðrÞ
a0

e−2βt ¼ fðrÞ g
2
dð2aÞ
2a

. ðA9Þ

For the numerical part of our simulation in Sec. V, we fix
δt ¼ δτ ¼ 1 and the corresponding dimensional spectra in
the small g2H limit is given by:

1

ca
log

�
c1;1
cr

�
∼
fðrÞ
ca

exp

�
−

2

g2H

�
ðA10Þ

which is the spectra in the above Hamiltonian limit by
identifying expð− 2

g2HðaÞ
Þ=c ¼ g2dð2aÞ=2. This relation also

indicates that for the same spatial lattice spacing measured,
the bare coupling for the discrete group should be
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exponentially suppressed than the bare coupling for a
continuous group.

APPENDIX B: THE APPROXIMATION OF
TRUNCATING AT LEADING ORDER

COMMUTATORS IN EQ. (38)

In this appendix, we will justify that within the region of
Eq. (39), the BCH operators beyond the leading order are
negligible and therefore Eq. (38) holds.
Define Hðk; vÞ as a commutator with k powers of H̄K

and v powers of H̄V . There are at most 4v links in H̄K and
2ðd − 1Þk plaquettes in H̄V that can contribute to
½H̄K;V; Hðk; vÞ�. Therefore,

k½H̄K;Hðk; vÞ�k ≤ 8vg2Hkl̂2kkHðk; vÞk ðB1Þ

k½H̄V; Hðk; vÞ�k ≤ 4ðd − 1Þkg−2H dUkHðk; vÞk ðB2Þ

With r ¼ s ¼ 1, one has ½HK;HV � which can be bounded
with k½A; B�k ≤ 2kAkkBk,

k½H̄K; H̄V �k ≤ 2kH̄Kk2ðd − 1ÞdUg−2H
¼ N link4ðd − 1ÞdUkl̂2k. ðB3Þ

When trotterizing UðtÞ to second order, the leading order
(LO) BCH terms in H0 are given by kþ v ¼ 3, with the
next-to-leading (NLO) order having kþ v ¼ 5. While each
NLO term has a slightly different bound, they all satisfy

kHðkþ v ¼ 5Þk ≤ 4max f4ðd − 1Þg−2H dU; 8g2Hkl̂2kg2
× kHðkþ v ¼ 3Þk. ðB4Þ

The coefficients ck of HNLO ≡ δ4
P

k ckkHðk; 5 − kÞk are
of Oð10−2Þ, with the largest being 1=180 [183]. Therefore
the ratio of HNLO to HLO is

HNLO

HLO
≲Oð1Þ jδj2

ðmax δÞ2 ; ðB5Þ

where max δ ¼ 1=max f4ðd − 1Þg−2H dU; 8g2Hkl̂2kg. When
jδj ≤ max δ then Eq. (B5) is smaller than Oð1Þ. Thus, the
NLO contribution is negligible and the approximation of
Eq. (38) is valid.

APPENDIX C: THE PROOF OF THE ERROR
BOUND FOR SCHEME B

For any δ within the radius jδj ≤ max δ, one can
decompose the analytic continuation error:

jλfðδ; g2HÞ − λðδ; g2HÞj ≤ jλfðδ; g2HÞ − λfð0; g2HÞj
þ jλðδ; g2HÞ − λð0; g2HÞj
þ jλfð0; g2HÞ − λð0; g2HÞj. ðC1Þ

The term jλðδ; g2HÞ − λð0; g2HÞj is simply the trotter error,
bounded by jλðδ; g2HÞ − λð0; g2HÞj ≲M=2. We further
impose a constraint jλfðδ; g2HÞ − λfð0; g2HÞj ≤ M=2 on the
fitting function λfðδ; g2HÞ.
The last term in Eq. (C1) is bounded by the Euclidean

precision, jλfð0; g2HÞ − λð0; g2HÞj ≤ ϵB ≪ M. Then there is a
loose bound on jλfðδ; g2HÞ − λðδ; g2HÞj:

jλfðδ; g2HÞ − λðδ; g2HÞj ≲M þ ϵB. ðC2Þ
We finish the proof with the following lemma, which is a
specific case of Lemma 1 in [174].
Lemma C.1. Let λðδÞ; λfðδÞ be analytic in the half-disk

region Ω ¼ fδ∶Imδ ≥ 0; jδj ≤ max δg with the bounds
jλ − λfj ≤ A for any δ ∈ Ω and jλ − λfj ≤ ϵ on the lower
boundary Imδ ¼ 0. Then for any δ ∈ Ω,

jλðδÞ − λfðδÞj ≤ ϵ

�
A
ϵ

�
Re4π arctan

δ
i max δ

. ðC3Þ

Proof.—Define

wðδÞ≡ 4

π
arctan

δ

imax δ
. ðC4Þ

With δ ∈ Ω, the range of w is the infinite strip
S ¼ fw∶0 ≤ Rew ≤ 1g. Define v and h as follows

v≡ ln
A
ϵ

ðC5Þ

hðδÞ≡ e−vwðδÞ

A
½λðδÞ − λfðδÞ�. ðC6Þ

The function hðδÞ is analytic in the half-disk region Ω.
According to the maximum modulus principle, the maxi-
mum jhðδÞj can only be on the boundary of Ω, which
consists of two parts Imδ ¼ 0 where jλf − λj ≤ ϵ and jδj ¼
max δ where RewðδÞ ¼ 1.

jhðδÞjImδ¼0 ¼
1

A
jλðδÞ − λfðδÞjImδ¼0 ≤

ϵ

A
ðC7Þ

jhðδÞjjδj¼max δ ≤ je−vwðδÞjjδj¼max δ

¼
�
ϵ

A

�
RewðδÞjδj¼max δ ¼ ϵ

A
: ðC8Þ

Therefore, jhðδÞj ≤ ϵ
A for any δ ∈ Ω. Using the definition

(C6), we obtain the following upper bound.

jλðδÞ − λfðδÞj ¼ AjhðδÞjevRewðδÞ ≤ ϵ

�
A
ϵ

�
RewðδÞ

: ðC9Þ

For δ ¼ iδt, we have RewðiδtÞ ¼ 4
π arctan

δt
max δ. In Eq. (C3),

replace ϵ with ϵB and the loose upper bound A with
ðM þ ϵBÞ, as Eq. (C2) suggests, and one gets the result
of Eq. (42).
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