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The finite temperature phase diagram of QCD with two massless quark flavors is not yet understood
because of the subtle effects of anomalous UAð1Þ symmetry. In this work we address this issue by studying
the fate of the anomalous UAð1Þ symmetry in 2þ 1 flavor QCD just above the chiral crossover transition
temperature Tc, lowering the light quark mass toward the chiral limit along the line of constant physical
strange quark mass. We use the gauge configurations generated using the highly improved staggered quark
discretization on lattice volumes 323 × 8 and 563 × 8 to study the renormalized eigenvalue spectrum of
QCD with a valence overlap Dirac operator. We implement new numerical techniques that allow us to
measure about 100–200 eigenvalues of the gauge ensembles with light quark masses ≳0.6 MeV. From a
detailed analysis of the dependence of the renormalized eigenvalue spectrum and UAð1Þ breaking
observables on the light quark mass, our study suggests UAð1Þ is broken at T ≳ Tc even when the chiral
limit is approached.
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I. INTRODUCTION

Understanding the phase diagram of strongly interacting
matter described by quantum chromodynamics (QCD) is
one of the most challenging areas of contemporary
research. Apart from a theoretical understanding of how
matter was formed in the early Universe, it also gives a
glimpse of how strong interactions control the nature and
universality class of chiral phase transitions. For two
massless flavors of quarks, the QCD Lagrangian has a
ULð2Þ ×URð2Þ chiral symmetry. The subgroup SUVð2Þ ×
SUAð2Þ × UVð1Þ is spontaneously broken to SUVð2Þ ×
UVð1Þ in the hadron phase giving rise to pions which are
much lighter than the nucleons. The axial UAð1Þ subgroup
is not an exact symmetry in QCD with two massless quark
flavors but broken due to quantum effects [1,2]. This is
essentially a nonperturbative feature of massless QCD
which arises due to strong color interactions.

Though an anomalous symmetry, the UAð1Þ can influ-
ence the nature of the chiral phase transition of QCD with
two degenerate light quark flavors. From the renormaliza-
tion group studies of model quantum field theories with the
same symmetries as Nf ¼ 2 QCD, it is known that the
existence of a critical point at vanishingly small baryon
density depends crucially on the magnitude of the UAð1Þ
anomaly breaking near the chiral symmetry restoration
temperature [3]. If the UAð1Þ is effectively restored as the
chiral symmetry restoration occurs, then the phase tran-
sition from the hadron to the quark-gluon plasma phase is
expected to be either of first order [3,4] or second order of
the ULð2Þ ×URð2Þ=UVð2Þ universality class [5,6]. On the
other hand, if the magnitude of the UAð1Þ breaking term is
comparable to its zero temperature value even at Tc, then
the phase transition is of second order with Oð4Þ critical
exponents [3–5,7].
In such model quantum field theories however, the

coefficient of the UAð1Þ breaking term is a parameter
whose magnitude can only be estimated from nonpertur-
bative studies of QCD. Currently lattice regularization is
the most practical method which can provide a reliable
answer to such a question. Lattice studies in the recent
years have provided some interesting initial insights about
the fate of the anomalous Uð1Þ subgroup of the chiral
symmetry in 2þ 1 flavor QCDwith physical quark masses.
Using the eigenvalue spectra of the 2þ 1 flavor QCD Dirac
operator using domain-wall fermions [8–10], highly
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improved staggered quark (HISQ) discretization [11–13]
and more recently using the twisted mass Wilson fermion
discretization [14,15] and related renormalized observ-
ables, several studies have reported substantial UAð1Þ
breaking near and above the chiral crossover region.
However many recent studies for two-flavor QCD, with
physical and heavier than physical light quarks (in this limit
the strange quark is infinitely massive) using overlap
fermions [16], reweighted spectra of the domain-wall
fermions [17–20], improved domain-wall fermions [21],
as well as from nonperturbatively OðaÞ improved Wilson
fermions [22] have reported effective restoration of the
UAð1Þ near Tc. Whereas the typical volume of the lattice
box reported in the later set of studies which observe an
effective UAð1Þ restoration near Tc may still not be large
enough to contain enough topological fluctuations respon-
sible for the UAð1Þ breaking, there can be discretization
effects in the QCD eigenvalue spectrum due to finite lattice
spacing even when using improved versions of Wilson and
staggered quarks. A more detailed understanding of the
near-zero mode spectrum of the staggered fermion (HISQ)
configurations was achieved using valence overlap fer-
mions [23] which show remarkable similarity to the pure
staggered spectrum on finer lattices, closer to the con-
tinuum [24]. The near-zero modes contribute dominantly
toward the UAð1Þ breaking [10,23]. Since neither of these
studies have performed infinite volume and the continuum
limit extrapolations yet, these apparent conflicting results
are not surprising.
Due to a finite light quark mass ml, the singular part of

the free energy which carries information about the
universal critical behavior gets overwhelmed by the regular
part which is an analytic function in m2

l [25]. Thus there is
no phase transition characterizing chiral symmetry restora-
tion in QCD with physical light quark masses but is rather a
smooth crossover [26–33] which should go over to an exact
phase transition only in the chiral limit. However, recent
lattice studies have revealed remarkable signatures of Oð4Þ
scaling in chiral observables as one lowers the light quark
masses toward the chiral limit along the line of constant
physical strange quark mass [34]. Within the current
precision, it is possible to rule out Zð2Þ scaling [34],
although to establish these results one ultimately needs to
perform a continuum extrapolation.
Though this study indirectly hints toward a scenario

where UAð1Þ may not be effectively restored in the chiral
limit, what happens to it in the chiral limit is not yet well
addressed using lattice studies. Recent results on the
topological susceptibility, which quantifies the UAð1Þ
breaking in the chiral symmetry restored phase, shows a
surprising trend for two-flavor QCD as a function of the
quark mass. It vanishes at some critical value of the light
quark mass [35,36]. This result however needs to be
confirmed in the infinite volume and in the continuum
limit since it is not consistent with the other related results

in the context of the Nf ¼ 2 phase transition within the so-
called Columbia plot [37]. It is thus essential to look again
into the fate ofUAð1Þ breaking when the light quark masses
are lowered toward the chiral limit, preferably along a
different line of constant physics within the Columbia plot.
This is the main aim of this work, in which we keep the
strange quark mass fixed to its physical value and succes-
sively lower the light quark mass to effectively approach
the massless two-flavor limit of QCD. Depending on the
effective breaking or restoration of UAð1Þ, we would either
approach an Oð4Þ or a Zð2Þ [maybe even ULð2Þ×
URð2Þ=UVð2Þ] second order line respectively.
The paper is organized as follows. In the first section we

describe the numerical setup and the novel techniques we
will use to measure the QCD Dirac spectrum when
approaching the chiral limit. In the subsequent section,
we study the eigenvalue spectrum for QCD with HISQ
fermions near Tc with a valence overlap Dirac operator and
observe the dependence of the renormalized spectrum on
light quark massml toward the chiral limit. In particular, we
look at the quark mass dependence of the coefficient of the
leading OðλÞ term of the renormalized eigenvalue density
in the bulk of the spectrum. In the chiral symmetry restored
phase, from the chiral Ward identities it is expected [38]
that this coefficient varies as m2

l in the leading order in
quark mass. We find however that the coefficient has an
ml-independent contribution at T > Tc and its conse-
quences for the UAð1Þ breaking are discussed. We next
show our results for a renormalized observable
m2

l ðχπ − χδÞ=T4 which is sensitive to UAð1Þ, by appropri-
ately tuning the valence and sea-quark masses in order to
ameliorate the discretization effects of the mixed-action
setup. By performing a chiral extrapolation, we find a
nonzero value of this observable, which is responsible for
the UAð1Þ breaking. We conclude by discussing the
implications and a future outlook of our present work.

II. NUMERICAL SETUP

The gauge configurations with 2þ 1 flavors of HISQ
action used in this work were generated by the HotQCD
Collaboration [33,34]. We chose three different sets of
gauge ensembles taken from Ref. [34] where the strange
quark mass is set to its physical value and the two light
quark flavors are degenerate with their mass varied such
that ms=ml ¼ 27, 40, 80. The Goldstone pion masses
corresponding to these choices of the light quark mass
are ∼135, 110, 80 MeV, respectively. The temperature
range which we focus on is between Tc–1.1 Tc, which has
been determined by representing the lattice spacing in
terms of a physical scale, the kaon decay constant fK, for
which we use the most recent parametrization from [13]. Tc
is the pseudo-critical temperature for the chiral crossover
transition and is also sensitive to the pion mass. The values
of Tc for pion masses 135, 110, 80 MeVare Tc ∼ 158, 157,
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154MeV respectively, which are extracted from the peak of
the chiral susceptibility as a function of temperature [34].
We have chosen the lattice box with a temporal
extent Nτ ¼ 8. The aspect ratios are chosen such that ζ¼
Ns=Nτ¼4 for thems=ml¼27, 40 configurations and ζ ¼ 7
for thems=ml ¼ 80 gauge configurations. This ensures that
the corresponding lattice extent along the spatial directions
is large enough mπL ∼ 2.7–3.5 to minimize the finite
volume effects. The typical number of configurations
analyzed at each temperature were obtained by removing
the first 500–1000 configurations for thermalization and
then choosing those which were separated by at least 50
hybrid Monte Carlo time steps to ensure minimal auto-
correlation. The details of the configurations are given in
Table I.
We use the overlap Dirac operator Dov [39] to measure

the eigenvalues of the HISQ sea configurations since it has
an exact index theorem on the lattice [40] and hence can
resolve the small eigenvalues efficiently. Resolving the
infrared eigenvalue spectrum of the HISQ configurations
with a HISQ operator on relatively coarser lattices may be
tricky due to the breaking of continuum flavor symmetries
[12]; however on finer lattices closer to the continuum, a
peak of near-zero modes is observed [24]. This infrared
peak can be very efficiently resolved using the overlap
operator on the HISQ sea configurations even on coarser
lattices [24]. We perform a proper tuning of the valence
overlap quark mass to the sea HISQ quark mass in Sec. IV
and then measure appropriately renormalized eigenvalue
spectrum and observables sensitive to the UAð1Þ breaking
to ameliorate any effects of the mixed Dirac operator setup
used here. The overlap operator for a massless quark is
defined as

Dov ¼ 1þ γ5εðγ5DWÞ ¼ 1þ DWffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D†

WDW

q ; ð1Þ

where DW is the standard massless Wilson Dirac operator
but including a constant term −M which is the defect or the
domain-wall height. The overlap operator was realized by
calculating the sign function ε exactly in the subspace
consisting of the first 50 eigenvectors of the operator

D†
WDW and then representing the contribution of the higher

eigenvalues through a Zolotarev rational function with 25
terms. The resultant norm of the square of sign function ε2

deviated from unity on average by about 10−10. The overlap
operator satisfied the Ginsparg-Wilson [41] relation to a
numerical precision of magnitude 10−9 or even lower. We
have performed a detailed study of the Ginsparg-Wilson
relation violation and the appearance of near-zero modes
are discussed in the Appendix. The domain-wall height
appearing in the overlap operator was chosen to be M ¼
1.8 since it gave the minimal violation of the Ginsparg-
Wilson relation and approximated the sign function to the
best numerical precision on the majority of the gauge
configurations studied.
We then calculate the lowest eigenvalues of the overlap

operator on the HISQ sea ensembles using the Kalkreuter-
Simma Ritz algorithm [42]. For gauge ensembles with pion
masses 135,110 MeV we have measured the first 100
eigenvalues but increased the number of eigenvalues to 200
for configurations with pion mass of 80 MeV, because of
the increasing density of the low-lying eigenvalues. The
diagonalization of the Dirac operator becomes numerically
quite expensive for the gauge ensembles with lighter sea-
quark masses. This is due to the fact that the number of zero
modes increases and they need to be calculated with very
high precision. We have implemented a novel procedure to
circumvent this problem which we describe in the follow-
ing section.

A. Accelerating the overlap Dirac matrix
diagonalization toward the chiral limit

Since the overlap Dirac matrix Dov is a normal matrix,
the standard procedure is to diagonalize the Hermitian
operator D†

ovDov. The nonzero eigenvalues of this
Hermitian operator come in degenerate pairs having oppo-
site chiralities. The zero modes however are nondegenerate
with distinct chirality and their number and the chirality
depend on the topological charge of the gauge configura-
tions. We remind here that a significant time of the
diagonalization routine is spent measuring the zero modes
with a reasonable precision. We therefore projected our
D†

ovDov to measure only those eigenmodes which have a
chirality opposite those of the zero modes. The correspond-
ing eigenspace has no zero modes and, leaving them out,
accelerates the diagonalization routine significantly. The
zero modes do not contribute to the physical observables in
the thermodynamic limit; thus measuring the eigenspec-
trum without zero modes allows for a significant speed-up
of our calculations. This is especially so for the gauge
ensembles with sea-quark masses in the chiral limit when
the probability of occurrence of zero modes increases. We
have explicitly checked on a few configurations, that for the
lattice volumes we have considered, the contribution from
the zero modes to the renormalized observables is

TABLE I. The details of the HISQ configurations analyzed in
this work.

T=Tc ms=ml β N Nτ Nconfigs

0.97 27 6.390 32 8 45
1.05 27 6.445 32 8 108
1.09 27 6.500 32 8 69

0.99 40 6.390 32 8 28
1.03 40 6.423 32 8 52
1.05 40 6.445 32 8 154

1.05 80 6.423 56 8 60
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negligibly small. However, in order to project D†
ovDov onto

a vector space which is devoid of its zero modes, we need to
know precisely the chirality these zero modes. We esti-
mated the chirality from the sign of the topological charge
Q measured using its gluonic definition,

Q ¼
Z

d4xqðxÞ; qðxÞ ¼ g2

32π2
ϵμνρσTr½FμνðxÞFρσðxÞ�;

where ϵμνρσ is the totally antisymmetric tensor and Fμν is
the non-Abelian field strength tensor. We have used an
Oða2Þ-improved lattice definition of the field strength
tensor [43], which greatly improves the precision of the
measurement of topological charge. Before measuring the
topological charge we have systematically smoothened
the ultraviolet fluctuations of the gauge fields using the
gradient flow [44,45]. This involves introducing a fictitious
time direction denoted by t along which the five-dimen-
sional gauge fields Bμ evolve according to the following
flow equations and initial conditions:

∂Bμ

∂t ¼ DB
νGB

νμ; Bμðt ¼ 0; xÞ ¼ AμðxÞ:

The flow smoothens the fields over a region of radius
ffiffiffiffi
8t

p
.

With increasing flow time, ultraviolet noise of the non-
Abelian fields gets increasingly suppressed leaving behind
the contribution of the topological modes. We have
implemented the Zeuthen discretization [47] for numeri-
cally implementing the covariant (gauge) derivative, which
involves an Oða2Þ Symanzik improvement [46]. The equa-
tion of motion is integrated using a third order Runge-Kutta
algorithm with an adaptive step size. The topological charge
for all gauge ensembles has been measured at a flow timeffiffiffiffi
8t

p
T ¼ 0.45, the results of which are shown in Fig. 1. We

observe a optimal variation of the topological charge in all
configurations that we have considered for different choices
of the pion mass, without getting stuck in one topological
sector. This provides evidence that we have chosen sta-
tistically independent configurations for our study, whereQ
is ergodically sampled.
When calculating the overlap eigenvalues for the

ms=ml ¼ 80 ensemble, we have observed a significant
slowing-down of the algorithm to converge to the desired
precision. This was due to the fact that the HISQ gauge
configurations tend to have significantly more small
eigenvalues, some of which are localized on the scale of
the lattice spacing. In order to improve the convergence, we
systematically removed these ultraviolet defects by
smoothing the ms=ml ¼ 80 configurations using the
Zeuthen flow technique up to a flow time of t ¼ 0.32a2

before measuring their eigenvalue spectrum with overlap
fermions. The smoothing of the gauge fields has been used
earlier in the context of measuring the topological charge

[48] and the hadron spectrum using valence overlap
fermions [49,50].

III. EIGENVALUE SPECTRUM OF QCD WITH
HISQ FERMIONS TOWARD THE CHIRAL LIMIT

In this section we discuss the general features of the
eigenvalue spectrum of the QCD Dirac operator, near and
above the chiral crossover transition. The eigenvalue density
ρðλÞ of the massless overlap Dirac operator measured on the
HISQ configurations is shown as a function of the imaginary
part of the eigenvalue of the overlap operator denoted as λ in
Fig. 2 for different temperatures near Tc and physical quark
masses. The exact zeromodes are not shown in this plot. The
general features are similar to that observed for the HISQ
ensembles using the overlap operator [23] with heavier than
physical quark masses ms=ml ¼ 20. As a comparison we
also plot the eigenvalue density for lower than physical quark
masses ml ¼ ms=40 for temperatures above Tc in Fig. 3.
Qualitatively the features of the eigenvalue spectrum that we
observe for lighter quark masses are similar to physical or
heavier than physical quark mass. We have earlier published
some preliminary results on this comparison in Ref. [51].
The eigenvalue density ρðλÞ of the QCD Dirac operator

can be characterized by a peak of near-zero modes which

FIG. 1. The Monte Carlo time history of the topological charge
Q as measured on the gauge configurations used in this work. The
Q is measured using a purely gluonic operator at a flow timeffiffiffiffi
8t

p
T ¼ 0.45. The x axis shows the configuration number. The

configurations are typically separated by 50 hybrid Monte Carlo
time steps. Different streams have been concatenated.
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leads to a nonanalytic dependence in the thermodynamic
and continuum limits, followed by a regular dependence on
λ which is called the bulk spectrum [23]. The presence of
the near-zero peak is easily distinguishable from the bulk
modes in the chiral crossover region. Remarkably this peak
becomes more prominent as the temperature is increased
gradually from Tc since it is less contaminated by the bulk
modes, whose density shifts further toward the larger
eigenvalues. In this context we should remind that though
the HISQ spectrum on coarser Nτ ¼ 8 lattices does not
show any peak in the infrared [11], such a peak appears
when one chooses finerNτ ¼ 16 lattices [24]. The use of an
overlap Dirac matrix as the valence or probe operator on the
HISQ sea ensembles corrects for this lack of an exact index
theorem for the HISQ operator, extracting out the peak even
on the coarser Nτ ¼ 8 lattices. This peak appearing in the
eigenvalue spectrum is thus not a lattice artifact, as
discussed earlier in the context of domain-wall fermions
on relatively smaller lattice volumes [18,19]. In fact such a
peak can appear just above Tc due to an interacting

ensemble of topological clusters [52] or in the high-
temperature phase due to a dilute gas of instantons
[9,23,53–56]. It has been recently argued that the existence
of such localized near-zero modes in the chiral symmetry
broken phase of QCD with massless quarks can lead to the
disappearance of Goldstone excitations at finite temper-
ature [57].
We will study in detail how the slope of the bulk modes

as well as the overlap between the near-zero and the bulk
modes are sensitive to the change in temperature. Assuming
correlations of up to four-point functions in the pseudo-
scalar and scalar meson channels to be analytic functions of
m2

l , it was earlier derived that the Dirac eigenvalue density
for two-flavor QCD is ρðλÞ ∼Oðm2

l ÞλþOðm2
l Þλ2 þ

Oðm0
l Þλ3 þ :: [38]. The crucial assumptions that goes into

this calculation are that the SUð2ÞL × SUð2ÞR is restored
(hence a part of the chiral Ward identities are used) and that
the eigenvalue density ρðλÞ is an analytic function of λ. This
would imply that in the chiral limit the leading order
behavior of the eigenvalue density is ρðλÞ ∼ λ3. With this
constraint it was shown explicitly that UAð1Þ breaking is
absent in at least six-point correlation functions in the same
scalar and pseudo-scalar sectors [38]. It is therefore
important to investigate the bulk part of the eigenvalue
spectrum as a function of the sea-quark mass nonperturba-
tively to understand the fate of UAð1Þ just above Tc.
Motivated from Ref. [23], we fit the eigenvalue density at
different temperatures to the fit ansatz,

ρðλÞ ¼ ρ0A
A2 þ λ2

þ cðmlÞΘðλ − λ0ÞλγðmlÞ; ð2Þ

where γðmlÞ characterizes the leading order dependence of
the bulk eigenvalue density on λ and can be in general a
function of ml. To extract the exponent γ, we choose a
threshold λ0 in the eigenvalues, beyond which the sensi-
tivity to the infrared peak of near-zero eigenvalues is
minimum. We have implemented this through a
Heaviside step function Θ in the second term of the fit
ansatz in Eq. (2). We have Oð100Þ eigenvalues per
configuration; therefore we can measure only the leading
behavior of the bulk eigenvalues. The results of the fit,
including the values of the cutoff λ0, the exponent γ for
different quark masses and temperatures and the corre-
sponding goodness of fits are summarized in Table II.
For the temperature range we studied so far, the exponent

γ ∼ 1 is consistent with the predictions from the chiral
perturbation theory [58,59]. We do not observe any depend-
ence of γ on the sea-quark mass at Tc ≤ T ≤ 1.1 Tc,
consistent with the values obtained previously on HISQ
fermions [23] with heavier than physical quark masses. In
this context we would like to remind that in Ref. [38], it was
argued that the coefficient cðmlÞ in Eq. (2) goes asm2

l in the
chiral limit for two-flavor QCD. This in turn implies that one
would not observe any linear dependence on λ in ρðλÞ of

 0
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FIG. 2. The eigenvalue density of the massless valence overlap
Dirac operator measured on HISQ sea configurations with
ms=ml ¼ 27, as a function of temperature, near and just
above Tc.
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FIG. 3. The eigenvalue density of the valence massless overlap
Dirac operator measured on the HISQ sea configurations with
ms=ml ¼ 40.
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QCDwhen chiral symmetry is restored. In the context of the
Columbia plot, the chiral limit in two-flavor QCD is simply
approached along the ms ¼ ∞ line.
In order to check this prediction we chose to instead

approach the two-flavor chiral limit along the line of
constant physical value of ms and study the dependence
of cðmlÞ on the light quark mass ml. Since the line of first
order transitions for three degenerate quark flavors is very
tiny and survives for quark masses which are much smaller
than the physical masses, the physics along these two lines
of constantms should not be much different. We neglect the
lowest β values for light sea-quark masses ms=27; ms=40
respectively since we want to be in the temperature regime
where chiral symmetry is restored. For the dimensionless

ratio ρðλÞ
T3 ¼ cðmlÞ

T2 · λT, if cðmlÞ indeed goes as m2
l to leading

order in the sea-quark mass, then a fit to cðmlÞ=T2 as a
function ofm2

l =T
2 should not have a nonzero intercept. The

quantity cðmlÞ=T2 extracted from the eigenvalue densities
for T ≳ Tc and different light quark masses are shown in
Fig. 4. Clearly it has a constant intercept c0 ¼ 0.82ð17Þ
which survives when chiral extrapolation is performed
and even dominates over the usual Oðm2

l =T
2Þ term.

The contribution of such a term in the eigenvalue density
ρðλÞ ¼ c0λT2 to the chiral condensate hψ̄ψi ¼ R

dλ 2mlρðλÞ
λ2þm2

l

goes as 2mlT2c0 lnðΛ=mlÞ; Λ being the ultraviolet cutoff to
the eigenvalues clearly vanishes in the chiral (ml → 0) limit.
To summarize, this ml-independent part of the bulk eigen-
value density does not break chiral symmetrybut insteadmay
contribute toUAð1Þ breaking. From this fit analysis it also is
evident that the bulk eigenvalue density to the leadingorder is
OðλÞ rather thanOðλ3Þ just above Tc, even in the chiral limit.
This is in addition to the contribution to theUAð1Þ breaking
that comes due to the peak of small eigenvalues in the
infrared.Moreover since this peak does not disappear andwe
do not observe any gap opening up in the infrared part of the
eigenspectrum, we can conclude thatUAð1Þ remains broken
as we approach the chiral limit. In the next section we will
provide a more quantitative estimate of the UAð1Þ breaking
toward the chiral limit.

IV. QUANTIFYING UAð1Þ BREAKING IN THE
CHIRAL LIMIT

Having observed little sensitivity of the exponent γ of the
bulk eigenvalue density to the sea-quark mass, it is
interesting to compare the spectra at different quark masses
and also with the earlier results obtained with overlap
fermions on HISQ configurations [23] for heavier than
physical quark masses. Since the eigenvalue density is not a
renormalization group invariant quantity, one has to
renormalize the eigenvalue spectra for such a comparison
[9,60,61]. The renormalized eigenvalue density is defined
by scaling it with the valence strange quark mass. In order
to do so one has to precisely estimate the valence quark
masses. There is another advantage in precisely measuring
the valence quark masses. The physics of the sea quarks can
then be equivalently represented only in terms of the
valence quarks or more specifically, in terms of the
eigenvalues of the valence overlap Dirac matrix containing
the exactly tuned valence quark masses. The tuning of the
valence and sea-quark masses can be numerically quite
challenging. We have proposed to construct renormalized
observables in terms of the valence and sea quarks
respectively and match them in order to extract the valence
quark masses, for given sea-quark masses [23]. This is
allowed because the renormalized observables describe the
same physics. In this work, we measure the valence overlap
strange quark mass by matching the renormalized quantity
Δ for the valence and the sea quarks which is defined as

Δ ¼ mshψ̄ψiðmlÞ −mlhψ̄ψiðmsÞ
T4

: ð3Þ

The chiral condensates hψ̄ψiðms;lÞ appearing in this
observable are first calculated for the valence overlap
Dirac matrix by using its first Oð100Þ eigenvalues. Using
the definition hψ̄ψiðmÞ ¼ T

V htrðD−1
m

∂Dm∂m Þi, where Dm ¼
Dovð1 − am=2MÞ þ am is the overlap Dirac operator with
a (valence) quark massm, the condensates can be calculated
from the overlap eigenvalues,

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0.0001  0.0002  0.0003  0.0004

c(
m

l)/
T

2

ml
2/T2

163(534)ml
2/T2+0.82(17)

FIG. 4. The coefficient cðmlÞ of the linear in λ term of the
eigenvalue density shown as a function of light sea-quark mass
squared m2

l . Both axes are normalized by appropriate powers of
the temperature. The χ2 per degree of freedom of the fit is 0.95.

TABLE II. The temperature (T), the exponent γ characterizing
the leading order λγ rise of the bulk eigenvalues λ and the
goodness of fits performed on eigenvalue densities for different
choices of the light sea quarks and physical value of strange sea
quarks.

ms=ml β T=Tc λ0=T γ χ2=d:o:f:

40 6.390 0.99 0.45 1.09(22) 0.70
40 6.423 1.03 0.5 0.94(23) 0.99
40 6.445 1.05 0.5 1.08(15) 0.66
27 6.390 0.97 0.4 1.03(18) 0.66
27 6.445 1.05 0.5 1.09(11) 0.90
27 6.500 1.09 0.5 1.03(12) 0.94
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a3hψ̄ψiðmÞ¼ 1

N3
σNτ

�hjQji
am

þ
�X

λ̃≠0

2amð4M2− jλ̃j2Þ
jλ̃j2ð4M2− ðamÞ2Þþ4ðamÞ2M2

��
;

ð4Þ

whereQ is the topological charge, and λ̃ is the eigenvalue of
Dov which is scaled by the defect height parameter M. We
specifically neglect the first termon the right-hand side of this
expression which arises due to the zero modes, since it is a
finite volume artifact to the above observable. We have
checked explicitly, that in all our gauge ensembles this term
due to the zeromodes provides negligibly small correction to
Δ, implying that the finite volume effects are under control in
our tuning procedure. We then measure the Δ for the HISQ
sea by the exact calculation of the trace of the inverse of the
HISQ operator using stochastic sources on the HISQ
ensembles. Finally we compare the values of Δ obtained
for thevalence overlap and theHISQ sea, and further tune the
valencems keeping the ratioml=ms fixed for both thevalence
and sea quarks, until a perfect match of these two values
of Δ is obtained. This gives a matching valence overlap
quark mass.
Once the valence ms is tuned to its sea value, we can

equivalently describe the physics of the underlying sea
quarks using only the valence overlap fermions with the
tuned valence quark masses. The results for the tuned
strange quark masses for different ensembles are tabulated
in Table III.
Subsequently, the comparison of the renormalized eigen-

value density msρðλÞ=T4 as a function of λ=ms is shown in
Fig. 5. While calculating the renormalized density, the total
number of bins in λ=ms for different ensembles was kept
fixed. We observe that the near-zero peak of the renor-
malized spectrum shows very little sensitivity to the change
in the quark mass. The bulk modes again show a linear rise.
As mentioned earlier the spectrum for light quark mass
ml ¼ ms=80 has increasing density of these small eigenm-
odes; hence the spectrum is shown only till λ=ms ∼ 2.5with
the first 200 eigenvalues we have measured.

With the tuned ms we next proceed to estimate whether
the UAð1Þ is effectively restored above the crossover
transition and its sensitivity to the light quark mass.
However since UAð1Þ is not a symmetry there is no unique
observable that is sensitive to its restoration. One can
construct meson two-point correlators integrated over the
spacetime volume and look for degeneracy between spe-
cific quantum number channels. For QCD with two light
quark flavors, the difference of the integrated two-point
correlators of isospin-triplet pion (iψ̄τ2γ5ψ ) and delta
(ψ̄τ2ψ) mesons, ω ¼ χπ − χδ is one such observable that
was proposed as a measure of UAð1Þ breaking [62]. This is
because ðπ; δÞ transform as a doublet under UAð1Þ; hence
their correlators should be degenerate when UAð1Þ is
restored. In fact one needs to further look at the degeneracy
between higher point correlation functions for different
meson quantum number channels [38,63,64]. As a first test,
we focus on this specific two-point correlation function.
Due to chiral Ward identities χπ ¼ hψ̄ψiðmlÞ=ml; hence the
expression for the light quark chiral condensate can be used
to measure it. Similarly χδ is just the connected part of the
scalar correlator defined as T

V h ∂
∂m trðD−1

m
∂Dm∂m Þi. The trace

and inverses can be expressed in terms of the eigenvalues of
the valence overlap Dirac matrix. The observable ω in
terms of the eigenvalues of the overlap Dirac matrix is
defined as

a2ωðmÞ ¼ 1

N3
σNτ

� hjQji
ðamÞ2

þ
�X

λ̃≠0

2ðamÞ2ð4M2 − jλ̃j2Þ2
½jλ̃j2ð4M2 − ðamÞ2Þ þ 4ðamÞ2M2�2

��
:

ð5Þ

We have measured this quantity in terms of the first
Oð100Þ eigenvalues of the overlap Dirac operator at the
tuned values of the valence quark masses. Chiral Ward

TABLE III. The valence strange quark masses obtained by
matching the observable Δ measured using valence overlap
eigenvalues to that measured by inversion of the sea HISQ Dirac
operator.

ms=ml β ms
sea ms

valðΔÞ
80 6.423 0.0670 0.025
40 6.390 0.0694 0.090
40 6.423 0.0670 0.058
40 6.445 0.0652 0.038
27 6.390 0.0694 0.098
27 6.445 0.0652 0.051
27 6.500 0.0614 0.032

 0
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FIG. 5. The renormalized eigenvalue density of the QCD
ensembles at T ¼ 1.05Tc generated using HISQ discretization,
and measured using a valence overlap operator with a suitably
tuned valence ms. These are shown for three different choices for
the masses of the light quarks.
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identities ensure that χπ − χδ ¼ χdisc, where χdisc is the
disconnected part of the integrated isosinglet scalar meson
correlator [65]. In order to verify the quality of our quark
mass tuning we check whether this Ward identity is
satisfied. We use the previously measured data for χdisc
for physical quark masses from Ref. [33] obtained by the
inversion of the HISQ Dirac operator using stochastic
sources onNτ ¼ 8, 12, 16 lattices and perform a continuum
extrapolation of this observable. We then compare our
continuum estimate of m2

l χdisc=T
4 to the observable

m2
lω=T

4 that we have calculated using the eigenvalues
of the valence overlap Dirac operator on the same HISQ
ensembles using the tuned valence quark masses. The
results for this comparative study are shown in Fig. 6. A
reasonably good agreement of these renormalized quan-
tities is observed giving us further confidence in our quark
mass tuning procedure.
Next we study the quark mass dependence of the

appropriately renormalized UAð1Þ breaking observable
m2

lω=T
4. It is important to note here that we have

calculated only the first Oð100Þ of the total millions of
eigenvalues of the QCD Dirac operator; nonetheless these
infrared eigenvalues contribute significantly to the UAð1Þ
breaking. If ω ∼m2

l , i.e., as expected for a free quark gas
and also in the perturbative regime, then UAð1Þ is restored
in the chiral limit. On the other hand if the leading order
behavior of ω ∼Oðm0

l Þ, then UAð1Þ is broken and its
effective magnitude can be estimated. When chiral sym-
metry is effectively restored, we can use the following fit
ansatz for our data on m2

lω=T
4 corresponding to these two

scenarios:

m2
l ðχπ − χδÞ

T4
¼ m2

lω

T4
¼ a1

m2
l

T2
þ a2

m4
l

T4
; ð6Þ

¼ b1
m4

l

T4
þ b2

m6
l

T6
; ð7Þ

where the former denotes UAð1Þ breaking whereas the
latter is valid on its effective restoration. We have calculated
them2

lω=T
4 at 1.05Tc for three different tuned light valence

quark masses, the results of which are shown in Fig. 7. The
data fit quite well to the first fit ansatz from Eq. (6) shown
as a red band in the same figure, with the largest
contribution to the uncertainty coming from the value
corresponding to the lowest quark mass. Our data disfavor
the second ansatz in Eq. (6) since the corresponding χ2 per
degree of freedom of the fit is about 5, which is almost a
factor 2.5 larger than that corresponding to the first ansatz.
The magnitude of ðχπ − χδÞ=T2 in the chiral limit is
a1 ¼ 156� 13, which is clearly finite and nonzero within
the current uncertainties. Thus we conclude that for the
large volume Nτ ¼ 8 lattices we have studied so far, the
UAð1Þ is broken above the chiral crossover temperature,
even when we approach the chiral limit along the line of
constant physical value of ms.
Noting again that in the chiral symmetry restored phase

the topological susceptibility in QCD is related to m2
lω

[9,65,66], it is evident that the former observable does not
vanish when approaching the chiral limit (for finite values
ofml) along the line of constantms. In contrast, for the two-
flavor case and comparatively smaller volume lattices
2.4 fm3, the topological susceptibility is observed to vanish
at a critical value of the light quark mass, which is lower but
close to the physical quark mass [36]. It needs to be
checked whether this observation survives in the larger and
finer lattices.

V. CONCLUSIONS AND OUTLOOK

In this work we report on the eigenvalue spectrum and
the fate of anomalous UAð1Þ symmetry in the chiral
symmetry restored phase of QCD on large volume Nτ ¼
8 lattices as we approach the chiral limit along the line of
constant physical strange quark mass. In order to correctly
measure the number and density of the near-zero eigenm-
odes of the QCD ensembles using the HISQ discretization
on the lattice, we use the overlap Dirac matrix as the

0.01
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0.05

0.06

 0.96  1  1.04  1.08  1.12  1.16
T/Tc

ml
2( - )/T4

Cont. ml
2

disc/T
4

FIG. 6. Comparison of χπ − χδ measured using the overlap
eigenvalues to the continuum estimates of χdisc using data from
Ref. [33] shown for physical quark masses.
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m
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FIG. 7. The renormalizedUAð1Þ breaking parameter shown as a
function of light quark mass at 1.05 Tc.
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valence or probe operator. This is done as the HISQ
operator does not realize all the continuum flavor and
anomalous symmetries on a finite lattice. In order to obtain
physical and renormalized results even with different
valence and sea-quark actions, we report a fairly easy
procedure to tune the valence quark masses to the sea-quark
mass using the eigenvalue spectrum as the input.
Comparing the appropriately renormalized eigenvalue

density of the QCDDirac operator, we observe that the bulk
eigenvalue density at 1.05Tc can be represented as ρðλÞ ∼ λ
in the chiral limit. This is unlike the expectations in the
chiral limit [38] where the leading order behavior of the
eigenvalue spectrum of QCD was derived to be ρðλÞ ∼ λ3,
based on a part of chiral Ward identities and an assump-
tion that the eigenvalue density is analytic in λ. This results
in a nonzero value of the renormalized observable
m2

l ðχπ − χδÞ=T4, which leads us to conclude that UAð1Þ
is broken when one approaches the chiral limit along the
line of constant physical ms.
For final conclusive evidence, we need to revisit this

study at several choices of lattice spacing and perform a
continuum extrapolation of our observables, which is
computationally expensive and would require several years
of dedicated efforts. Furthermore as one approaches the
chiral limit, the lattice volumes have to be chosen large
enough so that the spatial extent is a few times larger than
the corresponding pion Compton wavelength. In the
present study we choose the lattice volumes keeping this
criterion in mind and the mπL ∼ 3.5 for the lightest quark
mass ensembles. However, there are already quite a few
remarkable implications of our preliminary results. First of
all, this is one of the first studies investigating the fate
UAð1Þ anomalous symmetry, just above the chiral cross-
over for light quark masses as low as ∼0.6 MeV. We find
that the qualitative features of the (renormalized) QCD
Dirac eigenvalue spectrum is similar to the one for the
physical values of the quark masses. There are no dis-
continuities in the infrared part of the eigenvalue spectrum.
Second, when approaching the chiral limit along the line of
constant physical strange quark mass, our study would
suggest that one would eventually encounter the Oð4Þ
second order line of phase transitions.

All data from our calculations, presented in the figures of
this paper, can be found in [67].
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APPENDIX: NEAR-ZERO MODES AND
GINSPARG-WILSON RELATION

In this section we provide a detailed analysis of the
violation of the Ginsparg-Wilson relation due to the
numerical implementation of the overlap Dirac operator
and whether it leads to the appearance of spurious near-zero
modes in its eigenvalue spectrum. We will discuss here the
results of our study for different sea-quark masses at
T ¼ 1.05 Tc, for which we have measured the renormal-
ized Dirac eigenvalue spectra shown in Fig. 5. It is evident
from the eigenvalue spectrum that we observe a peak
comprised of small eigenvalues which seem to survive even
when the quark masses are successively reduced toward the
chiral limit. For the lattice volumes we have studied, the
small eigenvalues did not appear sporadically for a few
gauge configurations, rather all of them contributed to a
near-zero peak of eigenvalues. Thus for a meaningful
analysis we instead chose to count the number of
small eigenvalues i.e., λ < λ0 appearing for each configu-
ration and correlate it with the magnitude of Ginsparg-
Wilson relation violation suffered by the overlap
Dirac operator implemented on the corresponding gauge
configurations.
For ms=ml ¼ 27, 40, we counted all overlap Dirac

eigenvalues for each configuration that are lower than
λ0 ¼ 0.4T. For ms=ml ¼ 80 ensembles, we chose λ0 ¼
0.1T instead, since these have a more dense eigenspectrum
in the infrared. The magnitude of the Ginsparg-Wilson
relation violation due to the numerical implementation of
the overlap Dirac matrix on the same configurations was
simultaneously measured and compared to the probability
of occurrence of small eigenvalues. The results of this
analysis are shown in Fig. 8. For the ms=ml ¼ 80 ensem-
bles, we have divided the number of small eigenvalues
appearing for each configuration by a factor of 2 to fit in the
scale of the figure. We do not find any obvious correlation
between the violation of the Ginsparg-Wilson relation and
the proliferation of the number of small eigenvalues of the
overlap Dirac operator.
In fact, it is evident from Fig. 8 that the overlap Dirac

matrix which had a larger count of small eigenvalues for
particular HISQ configurations satisfied the Ginsparg-
Wilson relation to a relatively higher precision. We have
also performed a similar comparison to check if there is any
correlation between the appearance of many small eigen-
values to the numerical precision of the sign function
appearing in the overlap Dirac matrix defined in Eq. (1).
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The result of this analysis is shown in Fig. 9. Here again we
do not observe any such correlation that is obvious. In fact,
the overlap Dirac matrix has a higher count of small
eigenvalues on HISQ gauge configurations on which the
sign function is implemented to a comparatively better
numerical precision. Both these analyses again reconfirm

the fact that the appearance of very small eigenvalues of the
overlap matrix is not related to its numerical imprecision in
this mixed-action setup. This gives us a quite robust check
that the small QCD Dirac eigenvalues that contribute to the
UAð1Þ breaking above Tc are not unphysical lattice
artifacts.
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