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We calculate thermodynamic potentials and their derivatives for the three-dimensional Oð2Þ model
using tensor-network methods to investigate the well-known second-order phase transition. We also
consider the model at nonzero chemical potential to study the Silver Blaze phenomenon, which is
related to the particle number density at zero temperature. Furthermore, the temperature dependence of
the number density is explored using asymmetric lattices. Our results for both zero and nonzero
magnetic field, temperature, and chemical potential are consistent with those obtained using other
methods.
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I. INTRODUCTION

Our understanding of quantum many-body systems has
considerably improved in the past two decades mainly
due to the refined understanding of the entangled ground
state structure of systems with local Hamiltonians.
Successful methods using these entanglement properties
are based on the idea of tensor-network states such as
matrix product states (MPS) [1–4]. They provide an
efficient description of the ground states of local, gapped
Hamiltonians, which exhibit an area-law behavior. MPS
have been applied to a wide range of problems in different
fields. These ideas have also been extended to two spatial
dimensions (i.e., 2þ 1-dimensional quantum systems)
using the generalization of MPS known as projected
entangled pair states (PEPS), but the success has been
limited.
In addition to these methods for the continuous-time

approach, an alternate method based on the idea of the
tensor renormalization group (TRG) in discretized
Euclidean space has also been very successful. This
started with the pioneering work of Levin and Nave in
two dimensions [5].

Both approaches have resulted in a better understanding
of spin systems and some simple gauge theories [6–10]
and have been a fruitful avenue where good progress has
been made. Though this success is impressive, it has
mostly been restricted to two-dimensional classical or
1þ 1-dimensional quantum systems.
However, the higher-order tensor renormalization

group (HOTRG) method [11], a Euclidean-space coarse-
graining tensor method based on the higher-order
singular value decomposition (HOSVD) [12], is also
applicable to higher-dimensional models. It was success-
fully employed to determine the critical temperature of
the three-dimensional Ising model on a cubic lattice.
Recently this method was used to investigate the critical
behavior of the four-dimensional Ising model [13]. The
HOTRG method was also applied to study spin models
with larger discrete symmetry groups such as the q-state
Potts models and those with continuous global sym-
metries, like the classical Oð2Þ model in two dimensions
[14], the 1þ 1-dimensional Oð2Þ model with chemical
potential [15,16], and even gauge theories [17–19]. For a
review of the tensor approach to spin systems and field
theory, we refer the reader to [20].
A major drawback of the HOTRG approach is that it is

very expensive in dimensions d ≥ 3 as the computational
cost naively scales as OðD4d−1Þ with memory complexity
of OðD2dÞ for a bond dimension D. In order to overcome
this problem, new higher-dimensional tensor coarse-
graining schemes, like the anisotropic TRG (ATRG)
[21] and the triad TRG (TTRG) [22], were recently
developed. For the ATRG the computational and storage
complexity is OðD2dþ1Þ and OðDdþ1Þ, respectively. In
this work we will use the triad method, for which the
computational cost scales like OðDdþ3Þ and the memory
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consumption like OðDdþ2Þ.1 Note that the improved
scaling behavior comes at the cost of making additional
approximations, which has to be compensated for by
using larger values of D.
The basic idea of the triad method is to factorize the

initial and subsequent coarse-grained local tensors, which
are of order 2d in the HOTRG, into smaller tensors of order
three, referred to as “triads,” by applying additional
singular value decompositions (SVDs). For example, in
d dimensions, the initial fundamental tensor of order 2d
would decompose into (2d − 2) triads. Using this factori-
zation, all manipulations in the coarse-graining procedure
can be performed at a much lower cost.
However, in this work we observed that the standard

three-dimensional HOTRG algorithm can be competitive,
when enhanced with some modifications. This will be
illustrated in the computation of the specific heat and also
in the nonzero temperature studies with chemical potential
performed using asymmetric lattices. Although the bond
dimension is restricted due to the high computational cost,
the improved computations of observables and the modi-
fied coarse-graining procedure for anisotropic tensors can
still lead to valuable results.
Due to the ferromagnetic interaction, the Oð2Þ model in

three dimensions has a continuous phase transition that
separates a large-coupling phase with nonzero magnetization
from a disordered phase with vanishing magnetization. This
phase transition has been interpreted as condensation of spin
waves and as unbinding of vortices. For β > βc, linear
vortices are suppressed while they are favored for β < βc.
This is similar to the behavior seen in the two-dimensional
version of the model. However, there is a crucial difference
between the phase transition, which occurs in the two-
dimensional model, and the one in three dimensions. The
former is the well-known Berezinskii-Kosterlitz-Thouless
phase transition of infinite order, where all the derivatives of
the free energy are continuous. However, in three dimen-
sions, the transition is of second order, and the critical
coupling can be located by looking at the derivatives of the
free energy, which is a natural observable in any tensor-
network calculation.
The three-dimensional Oð2Þ model has been extensively

studied using bootstrap methods and Monte Carlo (MC)
methods, and critical exponents have been determined
directly in the conformal field theory (CFT) limit of the
model. This three-dimensional model is of special importance
for many physical purposes. The λ transition in superfluid
helium is supposed to belong to the same universality class as
this Oð2Þ model. There is a well-known tension between
theoretical/numerical predictions for the critical exponent α

and the experimental values. This can be understood as
follows: In the CFT limit, the scaling dimension Δs of a
charge-zero scalar was determined to be 1.51136(22) using
bootstrap methods [23]. From this one can compute ν ¼
1=ð3 − ΔsÞ ¼ 0.67175ð10Þ and the critical exponent
α ¼ 2 − dν ¼ −0.01526ð30Þ. These results are consistent
with a recent MC study [24] which computed Δs ¼
1.51122ð15Þ. On the other hand, the most precise exper-
imental result obtained in Earth’s orbit aboard Space
Transportation System-52 determined α ¼ −0.0127ð3Þ
[25], corresponding to ν ¼ 0.6709ð1Þ, and is in tension with
the numerical estimates. The critical coupling for the cubic
lattice Oð2Þ model has been determined using several
methods over the past three decades, and we refer the reader
to Table 2 of [26] for a complete list. For example, two recent
works computed βc ¼ 0.45416474ð10Þ [24] and βc ¼
0.45416466ð10Þ [26], respectively. Almost all of these
numerical results have been obtained using MC methods.
Since tensor-network methods have been successfully used to
study the Oð2Þ model in two dimensions [14,27,28], it is
natural to apply these new tools also to the three-dimensional
case. Our motivation here is to carry out the first tensor
study of the three-dimensional Oð2Þ model (in fact, to the
best of our knowledge, the first tensor study of any three-
dimensional spin model with continuous symmetry).
The outline of the paper is as follows: In Sec. II, we present

the tensor formulation of the model using an expansion in
dual variables. In Sec. III, we present our results for the pure
Oð2Þ model both with and without an external magnetic
field. Furthermore, we consider a nonzero chemical potential
and compute the number density at zero and nonzero
temperature and discuss the Silver Blaze phenomenon. We
conclude the paper with a brief summary and discussion. In
the Appendix we briefly discuss the convergence of the
tensor results as a function of the bond dimension.

II. TENSOR-NETWORK FORMULATION

We start by considering the Euclidean action of the Oð2Þ
model in the presence of an external field and chemical
potential in three dimensions,

S¼−β
XV
j¼1

X2
ν¼0

cosðθj−θjþν̂− iμδν;0Þ−βh
XV
j¼1

cosθj; ð1Þ

where j is a linear index defined on the cubicNx × Ny × Nt
lattice with volume V ¼ NxNyNt, ν̂ denotes a unit step in
direction ν, β is the coupling, h is the external magnetic
field, and the chemical potential μ only couples in the
temporal direction. The partition function,

Z ¼
Z

dΘe−S; ð2Þ

is obtained by integrating over all spins Θ ¼ ðθ1;…; θVÞ
with

1The complexities correspond to the original triad proposal,
which uses randomized SVD (RSVD). In our implementation, we
used regular SVD, which makes the time complexity somewhat
worse, but we noted that our results are still consistent with
OðD6Þ, within errors.
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Z
dΘfðΘÞ ¼

Z
2π

0

dθ1
2π

…

Z
2π

0

dθV
2π

fðθ1;…; θVÞ: ð3Þ

Explicitly, the partition function is

Z ¼
Z

dΘ
Y
j

eβh cos θj
Y2
ν¼0

eβ cosðθj−θjþν̂−iμδν;0Þ: ð4Þ

We now proceed to the dualization, which results in a discrete
formulation required for the tensor-network representation.
This is done using the Jacobi-Anger expansion,

eβ cos θ ¼
X∞
n¼−∞

InðβÞeinθ; ð5Þ

where InðβÞ are the modified Bessel functions of the first
kind. After expanding each of the exponential factors, one
can integrate out all the spin degrees of freedom Θ to obtain
an expression for the partition function in terms of dual
variables defined on the links of the lattice. The partition
function can then be written as a complete contraction or
tensor trace (symbolically written as tTr) of a tensor network,

Z ¼ tTr

�YV
j¼1

TðjÞ
lrudfb

�
≡ tTrðTVÞ; ð6Þ

where the local tensor TðjÞ
lrudfb is the same on all lattice sites,

and its indices are the dual variables. In the contraction, two
adjacent tensors TðjÞ and Tðjþν̂Þ share exactly one index,
corresponding to the dual variable on their connecting link.
For the three-dimensional Oð2Þ model the initial local tensor
is

Tlrudfb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IlðβÞIrðβÞIuðβÞIdðβÞIfðβÞIbðβÞeðuþdÞμ

q

× Ilþuþf−r−d−bðβhÞ: ð7Þ

In principle, each index runs from −∞ to ∞, but for
numerical purposes, we truncate their ranges to size D at
the start and keep this size fixed during the coarse-graining
procedure.2

For h ¼ 0, the tensor enforces a Kronecker delta on the
backward and forward indices,

lim
h→0

Ilþuþf−r−d−bðβhÞ ¼ δrþdþb
lþuþf ; ð8Þ

corresponding to the global Oð2Þ symmetry of the action,
which ensures that the total directed flux that enters any site
vanishes.
The basic principle of the HOTRG algorithm is to

perform successive coarse-graining operations in order to
evaluate the partition function (6). Each of these coarse-
graining contractions squares the dimension of the indices
perpendicular to the contraction direction, as indices with
dimensionD from two adjacent tensors are combined into a
“fat” index of dimension D2. To avoid a blow up of the
dimension of the coarse-grained local tensor, the algorithm
then applies an HOSVD approximation [11,12] after each
coarse-graining step, which truncates the dimension of each
fat index back fromD2 toD. Consequently, the local tensor
remains of dimension D2d, and coarse graining is per-
formed until only one single tensor remains. Finally, this
remaining tensor is contracted over its corresponding
backward and forward indices to yield the partition
function Z. Thermodynamic observables are computed
either by taking finite-difference numerical derivatives of
the partition function (6) or by using an impurity method,
where the derivative of lnZ is directly applied to the tensor
network, see (14). Our computations were performed using
both the triad method and the standard HOTRG method.
The approximate decomposition of the local tensor in
triads, which is used both for the initial and coarse-grained
tensor, is shown in Fig. 1.

III. RESULTS

A. μ= 0, h= 0

In this subsection, we will discuss the Oð2Þ model
without chemical potential or magnetic field. For μ ¼ 0
and h ¼ 0 the initial local tensor (7) simplifies to

Tlrudfb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IlðβÞIrðβÞIuðβÞIdðβÞIfðβÞIbðβÞ

q
δrþdþb
lþuþf : ð9Þ

In this case, all the external triad legs carry the same
weights. One of the observables we compute is the “internal
energy,”3

FIG. 1. Representation of the initial tensor and its decompo-
sition into triads for a three-dimensional system. The contracted
indices are shown by red dashed lines.

2For the initial tensor, the range of each index is chosen to
include the D largest weights in each direction (for h ¼ 0). For
μ ¼ 0, each index range is symmetric around zero, as the weights
InðβÞ have their maximum for n ¼ 0 and fall off symmetrically
for positive and negative n. For μ ≠ 0, the maximum of the
temporal weights InðβÞenμ is shifted, and the index range is
adapted such that it still covers the D largest weights.

3A name we use for the average action density (up to a factor
of β) in analogy to classical statistical systems.
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E ¼ −
1

V
∂ lnZ
∂β : ð10Þ

We show that the results obtained using the triad tensor
method agree with those from the MC approach, as
illustrated in Fig. 2.
In order to determine the critical coupling, we compute

the second β derivative of the logarithm of the partition
function to determine the “specific heat,”

Cv ¼
β2

V
∂2 lnZ
∂β2 : ð11Þ

Our results shown in Fig. 3 clearly indicate that there is a
peak in the specific heat corresponding to the second-order
phase transition in this model. The location of the peak is
consistent with high-precision results of earlier studies. The
triad data are computed with D ¼ 72 using second-order
finite differences with step size Δβ ¼ 0.01. Decreasing
the step size to reduce discretization errors is problematic
as the systematic errors on lnZ cause large fluctuations on
the standard finite-difference derivatives, and one would
require a larger bond dimension D or more sophisticated
numerical derivative computations to achieve a precise
determination of the peak. The results of such an improve-
ment for the original HOTRG method can be seen in Fig. 3
forD ¼ 15, where we get a smooth behavior for the specific
heat, including the steep phase-transition region. These data
were obtained using a stabilized second-order finite-differ-
ence scheme with step size reduced to Δβ ¼ 10−6. The
stabilized finite-difference scheme was developed to avoid
jumps between values of lnZ computed on close-by
parameter values required for the evaluation of finite
differences. Typically such jumps are caused by degenerate
singular values, or level crossings of singular values, leading
to discontinuous changes of the vector subspaces used to
truncate the coarse-graining tensors. The stabilization uses a
heuristic approach that operates on the singular vectors of the

HOTRG to maximize the overlap between the adjacent
vector subspaces (adjacent under a small change of β in this
case). These stabilized subspaces then improve the smooth-
ness of lnZ for adjacent parameter values used to compute
finite-difference derivatives. The application of stabilized
finite differences to triads is more subtle and left for future
work. Note that observables can also be computed using the
impurity method (e.g., first order for the energy, second
order for the specific heat). Although this method yields
smoother data (which does not necessarily mean more
accurate) than the finite-difference method, it has its own
systematic error because the same singular vectors are used
to truncate the pure and impure tensors.

B. μ= 0, h ≠ 0

In this subsection, we study the model in the presence of a
small symmetry-breaking external field h. The global Oð2Þ
symmetry is broken and the partition function is given by

Z ¼
Z

dΘ
Y
i

eβh cos θi
Y2
ν¼0

eβ cosðθi−θiþν̂Þ: ð12Þ

One can compute the magnetization by either taking a
numerical derivative of lnZ with respect to h or by inserting
an impurity tensor in the tensor network. Here we use the
latter method with the impurity tensor given by

T̃lrudfb ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IlðβÞIrðβÞIuðβÞIdðβÞIfðβÞIbðβÞ

q

× ðIlþuþf−r−d−bþ1ðβhÞ þ Ilþuþf−r−d−b−1ðβhÞÞ:
ð13Þ

FIG. 2. The internal energy obtained using triad TRG with
D ¼ 50, and finite differences with Δβ ¼ 0.02, agrees with the
MC results on a lattice volume of 323.

FIG. 3. Specific heat capacity as a function of β for a 323 lattice
volume. The triad data (orange) are computed withD ¼ 72 using a
second-order finite difference of lnZ with step size Δβ ¼ 0.01.
The HOTRG data (blue) used D ¼ 15 and are computed with a
stabilized second-order finite-difference scheme with Δβ ¼ 10−6.
The peak of Cv suggests that the critical coupling is between β ¼
0.45 and β ¼ 0.46. For reference, we show the infinite-volume
MC result βc ¼ 0.454165 from [26] by the black dashed line.
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From T̃lrudfb and Tlrudfb, we can then compute the
magnetization density as

M ¼ 1

V

X
i

hcos θii ¼
1

βV
∂ lnZ
∂h ¼ tTrðT̃TV−1Þ

tTrðTVÞ : ð14Þ

The results we obtained for the average magnetization
density are shown in Fig. 4. For β < βc, the spins are
randomly distributed and average to zero, while for β > βc
they prefer to align, resulting in a nonzero net magnetization.
As we explore smaller h, we see that the change of behavior
is consistent with the critical coupling obtained from the
peak of the specific heat.

C. μ ≠ 0, h= 0

In this subsection, we consider the Oð2Þ model in the
presence of a chemical potential, for which the action was
already given in (1). This generalization is a problem for
standard MCmethods because the probability distribution in
the partition function becomes complex, and the sign
problem is encountered (like for QCD at nonzero baryon
density). Some numerical methods devised to circumvent the
sign problem are reweighting, complex Langevin, thimbles,
density of states, and dual variables. Reweighting enables the
use of importance sampling MC, but only at an exponential
cost, which makes it unusable for any practical purpose.
The complex Langevin method uses a complexification of
the spin degrees of freedom, however, measurements on the
enhanced partition function are only equivalent to those on
the original one if specific conditions concerning the
probability distribution of the drift term in the complex
plane are met [29,30]. For the three-dimensional Oð2Þ
model, the method does not satisfy these conditions in
the disordered phase (β ≤ βc), and the method produces
erroneous results [31].

The method of choice to tackle the sign problem in the
three-dimensional Oð2Þ model is to introduce dual varia-
bles, as discussed in Sec. II, and integrate out the original
spin degrees of freedom. The ensuing partition function is
free of a sign problem, even in the presence of a chemical
potential. Once rewritten in this way the partition function
can be simulated by the worm algorithm [32], as was done
successfully in [33,34].
Once reformulated in terms of dual variables, it turns out

that the partition function can also be interpreted as a tensor
network (6), and tensor-network methods can be applied in
a straightforward way, as discussed in Sec. II. The only
effect of the chemical potential is to modify the tensor
entries depending on the value of their temporal indices,

Tlrudfb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IlðβÞIrðβÞIuðβÞIdðβÞIfðβÞIbðβÞeðuþdÞμ

q

× δrþdþb
lþuþf : ð15Þ

Note that even if a sign problem would remain after
dualization, which would require reweighting in the worm
algorithm, this would not be an issue for the tensor-network
method, which is deterministic in its construction and
remains unaffected by such inconveniences, at least con-
cerning the methodology.
One of the interesting observables at nonzero chemical

potential is the particle number density (or charge density)
defined as

ρ ¼ 1

V
∂ lnZ
∂μ : ð16Þ

In this subsection, we will investigate two important aspects
of the Oð2Þ model at nonzero chemical potential: the Silver
Blaze phenomenon at zero temperature and the temperature
dependence of ρ, which is studied using asymmetric lattices.
As will be detailed below, we observe that for symmetric

lattices the number density remains zero up to some thresh-
old μ ¼ μc and then becomes nonzero, confirming the
results of Ref. [34]. This is a phenomenon occurring at
strictly zero temperature since there the thermodynamic
quantities are independent of μ when μ < μc, i.e., as long as
μ is below the mass of the lightest excitation (or mass gap).
In this case, no particle excitations can be generated and the
particle number density is independent of μ. This has been
dubbed as the Silver Blaze phenomenon4 in studies of
various lattice theories [35].

FIG. 4. Magnetization of the Oð2Þ model for different external
magnetic fields. We see that for a sufficiently small symmetry-
breaking field, the magnetization rises sharply around βc. These
results are obtained on a lattice of volume ð213Þ3 with D ¼ 30.

4The name is inspired from “The Adventure of Silver Blaze,”
one of Sherlock Holmes short stories written by Sir Arthur Conan
Doyle and first published in December 1892. In this story,
Holmes used the “curious incident” of a dog doing nothing in
the nighttime as a key clue to solve the mystery of a missing horse
named “Silver Blaze” and the death of its trainer. In this context,
the issue is to understand the μ-independence of physical
quantities, i.e., why the chemical potential does nothing for
μ < μc even when it is in the action.
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The Silver Blaze phenomenon is especially hard to
reproduce numerically as it is closely related to the
cancellations in the original partition function, which also
lead to the sign problem. This is seen in MC simulations
when reweighting from the phase quenched to the full
theory. In the phase quenched theory the complex action is
replaced by its real part, i.e., the weights in the original
partition function are replaced by their magnitude. The
phase quenched theory has no Silver Blaze, i.e., the particle
number steadily increases with μ. In this case, the Silver
Blaze property of the full theory should emerge from large
cancellations of the phase, however, only at an exponential
cost [36]. Such reweighting simulations of the Oð2Þ model
clearly show that the Silver Blaze is beyond reach using
such methods.
However, as can be seen in Fig. 5, the Silver Blaze can be

nicely reproduced, both by the worm algorithm and by the
tensor method used in this work, and the results from both
methods are in good agreement. In our tensor-network
calculations, ρ is computed using finite differences of lnZ.
We used a relatively small lattice size of 643, which is
primarily due to the large cost of the worm algorithm, as the
volume increases. For the range of β values considered in
the figure, this does not affect the results as the correlation
lengths are small compared to the box size. This was also
verified using tensor computations with volumes up to
10243, which gave results similar to 643. In Fig. 5, we show
how the threshold μc varies with the coupling β as we
approach the continuum limit, i.e., β → βc where the lattice
spacing a → 0. As expected, we see that in the bare theory
the threshold tends to zero as β → βc. If we were to
renormalize the lattice quantum field theory (see [34]) and

set the lattice spacing in physical units, then the physical
chemical potential, μph ¼ μ=a, would have a threshold
ðμcÞph corresponding to the particle mass, independently of
the value of β in the vicinity of βc (up to discretization
errors).
We can also use the tensor methods to study the Oð2Þ

model at nonzero temperature. For this we note that the
extent of the Euclidean time axis is inversely proportional
to the physical temperature, i.e., T ¼ 1=ðNtaÞ. The temper-
ature can be set by varying the number of temporal sites Nt
and can be further fine-tuned by changing the coupling β,
which determines the lattice spacing.
In the standard HOTRG, the iterative coarse-graining

procedure alternates between the different directions, here
t, x, y, until the complete network has been reduced to a
single tensor. This is a natural (although not necessarily
best) coarse-graining order for an isotropic tensor on a
symmetric lattice (Nt ¼ Nx;y).
In the case of asymmetric lattices (Nt ≠ Nx;y), a different

strategy is often employed to compute results for varying
values of Nt, i.e., temperatures, in an efficient way. The
procedure consists of performing all spatial contractions on a
single time slice to produce a time transfer matrix [15]. This
time transfer matrix is then multiplied to itself to attain the
required number of time slices. Unfortunately, it turns out
that such a procedure only converges to the correct result,
obtained using the worm algorithm, for large Nt (zero
temperature) and often yields substantial deviations for
nonzero temperatures. An alternative procedure is used in
Ref. [18] where finite temperature results are obtained in
2þ 1-dimensional Z2 gauge theory for small Nt by com-
pletely contracting the temporal direction first and then
coarse-graining the remaining spatial directions.
For anisotropic tensors, e.g., caused by a chemical

potential, special care has to be taken to the coarse-
graining order, i.e., the order in which the directions get
contracted, to avoid large truncation errors. We therefore
developed a method that implements an improved con-
traction order (ICO). This new method dynamically
selects the next contraction direction to minimize the
local truncation error. Its flexibility also makes it very
useful for the treatment of asymmetric lattices, and the
method performs well for both small and large Nt.

5

The ICO method was implemented as an enhancement
of the standard HOTRG method. It was not yet imple-
mented for the TTRG method because of the peculiar
anisotropy of the triad factorization.

FIG. 5. We compare the results obtained using triad TRG
(symbols) with D ¼ 50 and worm algorithm (smooth lines) for
the dependence of ρ on μ for some values of the coupling β on
both sides (phases) of the critical coupling on a lattice of size 643.
We mark the threshold value μc, which is related to the mass gap.
It is clear that the mass gap decreases (and correlation length
increases) as we go from β ¼ 0.42 to β ¼ 0.45 and would go to
the CFT limit as β → βc ≈ 0.45417.

5For small anisotropy (small chemical potential) and Nt < Nx;y
the ICO procedure typically alternates the coarse graining between
all directions until the time direction is completely contracted.
Then the tensor is reduced to an effective two-dimensional spatial
tensor, and the remaining spatial contractions are performed,
alternating over x and y like in the standard two-dimensional
HOTRG. This specific procedure can also be ported to the triads.
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To validate the nonzero temperature tensor results, we
used the worm algorithm [32] at nonzero μ and found good
agreement. This is illustrated in Fig. 6 where we show the
temperature dependence of the three-dimensional Oð2Þ
model by studying the system on a 642 × Nt lattice for
Nt ¼ 2, 4, 8, 16. The tensor results were obtained using the
ICO enhanced HOTRG method with D ¼ 13. The particle
number density was computed using a stabilized finite-
difference scheme (see Sec. III A), and tensor manipulations
were performed using the TBLIS library [37].

IV. SUMMARY AND DISCUSSION

In this work, we have carried out the first tensor-network
study of the three-dimensional classicalOð2Þmodel at both
zero and nonzero magnetic field, chemical potential, and
temperature. The results obtained for the internal energy
and the specific heat are consistent with MC data. However,
our determination of the critical coupling is several orders
of magnitude less precise than state-of-the-art MC results.
We calculated the magnetization in the presence of a small
magnetic field by inserting an impure tensor. At nonzero
chemical potential, we were able to reproduce the Silver
Blaze phenomenon at zero temperature. We considered
nonzero temperature by varying the temporal extent of the
lattice and computed the particle density at nonzero
chemical potential. Our results agree with those obtained
with the worm algorithm.
In the Appendix, we discuss the convergence of lnZ=V

with the bond dimension D. We expect that this conver-
gence will play a key role in a more precise determination
of βc and in exploring the corresponding field-theory limit
in the future. To this end, improved coarse-graining
schemes will have to be developed. Such improvements

will also be useful to explore other interesting spin models
in the future.
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APPENDIX: CONVERGENCE OF lnðZÞ WITH D

It is a known problem that the truncations used in
tensor-network methods sometimes lead to drastic mod-
ifications of the properties of the model whose thermo-
dynamic behavior one intends to study. In this appendix,
we investigate the convergence of lnZ=V with the local
bond dimension D in the triad approximation of the
HOTRG method, in the large-volume limit for the
three-dimensional cubic Ising and Oð2Þ models. We tune
the couplings close to their critical values to make the
dependence on D prominent. This is illustrated in Figs. 7
and 8. The shaded areas enclose the various fits to the data
(corresponding to various fit ranges and different fit
formulas, including the ansatz aþ bD−c). The extrapo-
lation to D → ∞ can be read off from the intercept with
the vertical axis. The convergence for the Ising model is
faster than for the Oð2Þ model, which may hint to a
different efficiency of tensor methods for systems with

FIG. 6. We use the HOTRG with D ¼ 13, improved contrac-
tion order, and stabilized finite differences to compute the particle
density ρ for a 642 × Nt lattice with Nt ¼ 2, 4, 8, 16 (symbols) at
β ¼ 0.44 and compare to the results obtained using the worm
algorithm (smooth lines). There is clear indication that as we
move towards zero temperature, the behavior we see in Fig. 5
starts to emerge.

FIG. 7. Dependence of lnZ=V on the bond dimension D on a
lattice of volume ð215Þ3 at β ¼ 0.45417 for the three-dimensional
Oð2Þ model obtained using the triad method. The red line shows
the result of a linear fit using all data points.
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discrete and continuous symmetries. In order to explore
the field-theory limit and for the determination of the
critical exponents, the infinite-D value of lnZ=V is
required to good accuracy. It seems that the current tensor
computations are still somewhat far away from that
desired limit. An advance in constructing better algo-
rithms that converge faster without increasing time or
memory complexity would be desirable in the future.
The numerical computations were mostly performed on

a 2.4 GHz machine with about 180 GB of memory on a
single core using the highly optimized opt_einsum
PYTHON module for tensor contractions [39]. We explored
a maximum of D ¼ 82 for the Oð2Þ model, which took
about 62 hours for a lattice of volume ð215Þ3 and about
18 hours for a lattice volume ð25Þ3. We found that the
computation time for the triad method scaled as D6 within
errors, even though our implementation of the algorithm
asymptotically scales as D7.

[1] G. Vidal, Efficient Classical Simulation of Slightly En-
tangled Quantum Computations, Phys. Rev. Lett. 91,
147902 (2003).

[2] F. Verstraete and J. I. Cirac, Renormalization algorithms for
quantum-many body systems in two and higher dimensions,
arXiv:cond-mat/0407066.

[3] F. Verstraete and J. I. Cirac, Matrix product states represent
ground states faithfully, Phys. Rev. B 73, 094423 (2006).

[4] A. Weichselbaum, F. Verstraete, U. Schollwöck, J. I. Cirac,
and J. von Delft, Variational matrix-product-state approach
to quantum impurity models, Phys. Rev. B 80, 165117
(2009).

[5] M. Levin and C. P. Nave, Tensor Renormalization Group
Approach to Two-Dimensional Classical Lattice Models,
Phys. Rev. Lett. 99, 120601 (2007).

[6] M. C. Bañuls and K. Cichy, Review on novel methods for
lattice gauge theories, Rep. Prog. Phys. 83, 024401 (2020).

[7] J. F. Unmuth-Yockey, Gauge-invariant rotor Hamiltonian
from dual variables of 3D Uð1Þ gauge theory, Phys. Rev. D
99, 074502 (2019).

[8] A. Bazavov, S. Catterall, R. G. Jha, and J. Unmuth-Yockey,
Tensor renormalization group study of the non-Abelian
Higgs model in two dimensions, Phys. Rev. D 99, 114507
(2019).

[9] N. Klco, J. R. Stryker, and M. J. Savage, SU(2) non-Abelian
gauge field theory in one dimension on digital quantum
computers, Phys. Rev. D 101, 074512 (2020).

[10] A. Franco-Rubio and G. Vidal, Entanglement renormaliza-
tion for gauge invariant quantum fields, Phys. Rev. D 103,
025013 (2021).

[11] Z. Y. Xie, J. Chen, M. P. Qin, J. W. Zhu, L. P. Yang, and
T. Xiang, Coarse-graining renormalization by higher-order
singular value decomposition, Phys. Rev. B 86, 045139
(2012).

[12] L. De Lathauwer, B. De Moor, and J. Vandewalle, A
multilinear singular value decomposition, SIAM J. Matrix
Anal. Appl. 21, 1253 (2000).

[13] S. Akiyama, Y. Kuramashi, T. Yamashita, and Y. Yoshimura,
Phase transition of four-dimensional Ising model with
higher-order tensor renormalization group, Phys. Rev. D
100, 054510 (2019).

[14] J. F. Yu, Z. Y. Xie, Y. Meurice, Y. Liu, A. Denbleyker,
H. Zou, M. P. Qin, and J. Chen, Tensor renormalization
group study of classical XY model on the square lattice,
Phys. Rev. E 89, 013308 (2014).

[15] H. Zou, Y. Liu, C.-Y. Lai, J. Unmuth-Yockey, A. Bazavov,
Z. Y. Xie, T. Xiang, S. Chandrasekharan, S. W. Tsai, and Y.
Meurice, Progress towards quantum simulating the classical
O(2) model, Phys. Rev. A 90, 063603 (2014).

[16] L.-P. Yang, Y. Liu, H. Zou, Z. Y. Xie, and Y. Meurice, Fine
structure of the entanglement entropy in the O(2) model,
Phys. Rev. E 93, 012138 (2016).

[17] A. Bazavov, Y. Meurice, S.-W. Tsai, J. Unmuth-Yockey, and
J. Zhang, Gauge-invariant implementation of the Abelian-
Higgs model on optical lattices, Phys. Rev. D 92, 076003
(2015).

[18] Y. Kuramashi and Y. Yoshimura, Three-dimensional finite
temperature Z2 gauge theory with tensor network scheme,
J. High Energy Phys. 08 (2019) 023.

[19] Y. Kuramashi and Y. Yoshimura, Tensor renormalization
group study of two-dimensional U(1) lattice gauge theory
with a θ term, J. High Energy Phys. 04 (2020) 089.

[20] Y. Meurice, R. Sakai, and J. Unmuth-Yockey, Tensor
field theory with applications to quantum computing,
arXiv:2010.06539.

[21] D. Adachi, T. Okubo, and S. Todo, Anisotropic tensor
renormalization group, Phys. Rev. B 102, 054432
(2020).

FIG. 8. Dependence of lnZ=V on D on a ð215Þ3 lattice at T ¼
4.5115 for the three-dimensional classical Ising model using
triads. The red line shows the result of a quadratic fit using all
data points. The current best estimate of Tc is 4.5115247 [38].

BLOCH, JHA, LOHMAYER, and MEISTER PHYS. REV. D 104, 094517 (2021)

094517-8

https://doi.org/10.1103/PhysRevLett.91.147902
https://doi.org/10.1103/PhysRevLett.91.147902
https://arXiv.org/abs/cond-mat/0407066
https://doi.org/10.1103/PhysRevB.73.094423
https://doi.org/10.1103/PhysRevB.80.165117
https://doi.org/10.1103/PhysRevB.80.165117
https://doi.org/10.1103/PhysRevLett.99.120601
https://doi.org/10.1088/1361-6633/ab6311
https://doi.org/10.1103/PhysRevD.99.074502
https://doi.org/10.1103/PhysRevD.99.074502
https://doi.org/10.1103/PhysRevD.99.114507
https://doi.org/10.1103/PhysRevD.99.114507
https://doi.org/10.1103/PhysRevD.101.074512
https://doi.org/10.1103/PhysRevD.103.025013
https://doi.org/10.1103/PhysRevD.103.025013
https://doi.org/10.1103/PhysRevB.86.045139
https://doi.org/10.1103/PhysRevB.86.045139
https://doi.org/10.1137/S0895479896305696
https://doi.org/10.1137/S0895479896305696
https://doi.org/10.1103/PhysRevD.100.054510
https://doi.org/10.1103/PhysRevD.100.054510
https://doi.org/10.1103/PhysRevE.89.013308
https://doi.org/10.1103/PhysRevA.90.063603
https://doi.org/10.1103/PhysRevE.93.012138
https://doi.org/10.1103/PhysRevD.92.076003
https://doi.org/10.1103/PhysRevD.92.076003
https://doi.org/10.1007/JHEP08(2019)023
https://doi.org/10.1007/JHEP04(2020)089
https://arXiv.org/abs/2010.06539
https://doi.org/10.1103/PhysRevB.102.054432
https://doi.org/10.1103/PhysRevB.102.054432


[22] D. Kadoh and K. Nakayama, Renormalization group on a
triad network, arXiv:1912.02414.

[23] S. M. Chester, W. Landry, J. Liu, D. Poland, D. Simmons-
Duffin, N. Su, and A. Vichi, Carving out OPE space and
preciseOð2Þmodel critical exponents, J. High Energy Phys.
06 (2020) 142.

[24] M. Hasenbusch, Monte Carlo study of an improved clock
model in three dimensions, Phys. Rev. B 100, 224517 (2019).

[25] J. A. Lipa, J. A. Nissen, D. A. Stricker, D. R. Swanson, and
T. C. P. Chui, Specific heat of liquid helium in zero gravity
very near the lambda point, Phys. Rev. B 68, 174518 (2003).

[26] W. Xu, Y. Sun, J.-P. Lv, and Y. Deng, High-precision
Monte Carlo study of several models in the three-dimensional
U(1) universality class, Phys. Rev. B 100, 064525 (2019).

[27] L. Vanderstraeten, B. Vanhecke, A. M. Läuchli, and F.
Verstraete, Approaching the Kosterlitz-Thouless transition
for the classical XY model with tensor networks, Phys. Rev.
E 100, 062136 (2019).

[28] R. G. Jha, Critical analysis of two-dimensional classical XY
model, J. Stat. Mech. (2020) 083203.

[29] G. Aarts, F. A. James, E. Seiler, and I.-O. Stamatescu,
Complex Langevin: etiology and diagnostics of its main
problem, Eur. Phys. J. C 71, 1756 (2011).

[30] K. Nagata, J. Nishimura, and S. Shimasaki, Argument for
justification of the complex Langevin method and the
condition for correct convergence, Phys. Rev. D 94,
114515 (2016).

[31] G. Aarts and F. A. James, On the convergence of complex
Langevin dynamics: the three-dimensional XY model at
finite chemical potential, J. High Energy Phys. 08 (2010)
020.

[32] N. Prokof’ev and B. Svistunov, Worm Algorithms for
Classical Statistical Models, Phys. Rev. Lett. 87, 160601
(2001).

[33] D. Banerjee and S. Chandrasekharan, Finite size effects in
the presence of a chemical potential: A study in the classical
non-linear O(2) sigma-model, Phys. Rev. D 81, 125007
(2010).

[34] K. Langfeld, Phase diagram of the quantum O(2)-model in
2þ 1 dimensions, Phys. Rev. D 87, 114504 (2013).

[35] T. D. Cohen, Functional Integrals for QCD at Nonzero
Chemical Potential and Zero Density, Phys. Rev. Lett. 91,
222001 (2003).

[36] G. Aarts, Complex Langevin dynamics and other approaches
at finite chemical potential, Proc. Sci., LATTICE2012 (2012)
017 [arXiv:1302.3028].

[37] D. A. Matthews, High-performance tensor contraction with-
out transposition, arXiv:1607.00291.

[38] J. Xu, A. M. Ferrenberg, and D. P. Landau, 92 Years of the
Ising Model: A high resolution Monte Carlo study, J. Phys.
Conf. Ser. 1012, 012002 (2018).

[39] D. Smith and J. Gray, opt_einsum—A PYTHON package
for optimizing contraction order for einsum-like expres-
sions, J. Open Source Software 3, 753 (2018).

TENSOR RENORMALIZATION GROUP STUDY OF THE THREE- … PHYS. REV. D 104, 094517 (2021)

094517-9

https://arXiv.org/abs/1912.02414
https://doi.org/10.1007/JHEP06(2020)142
https://doi.org/10.1007/JHEP06(2020)142
https://doi.org/10.1103/PhysRevB.100.224517
https://doi.org/10.1103/PhysRevB.68.174518
https://doi.org/10.1103/PhysRevB.100.064525
https://doi.org/10.1103/PhysRevE.100.062136
https://doi.org/10.1103/PhysRevE.100.062136
https://doi.org/10.1088/1742-5468/aba686
https://doi.org/10.1140/epjc/s10052-011-1756-5
https://doi.org/10.1103/PhysRevD.94.114515
https://doi.org/10.1103/PhysRevD.94.114515
https://doi.org/10.1007/JHEP08(2010)020
https://doi.org/10.1007/JHEP08(2010)020
https://doi.org/10.1103/PhysRevLett.87.160601
https://doi.org/10.1103/PhysRevLett.87.160601
https://doi.org/10.1103/PhysRevD.81.125007
https://doi.org/10.1103/PhysRevD.81.125007
https://doi.org/10.1103/PhysRevD.87.114504
https://doi.org/10.1103/PhysRevLett.91.222001
https://doi.org/10.1103/PhysRevLett.91.222001
https://arXiv.org/abs/1302.3028
https://arXiv.org/abs/1607.00291
https://doi.org/10.1088/1742-6596/1012/1/012002
https://doi.org/10.1088/1742-6596/1012/1/012002
https://doi.org/10.21105/joss.00753

