
Kondo effect with Wilson fermions

Tsutomu Ishikawa ,1,2,3,* Katsumasa Nakayama ,4,† and Kei Suzuki 5,‡

1The Graduate University for Advanced Studies (SOKENDAI), Tsukuba 305-0801, Japan
2KEK Theory Center, Institute of Particle and Nuclear Studies,

High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801, Japan
3RIKEN Center for Computational Science, Kobe 650-0047, Japan
4NIC, DESY Zeuthen, Platanenallee 6, 15738 Zeuthen, Germany

5Advanced Science Research Center, Japan Atomic Energy Agency (JAEA), Tokai 319-1195, Japan

(Received 16 July 2021; accepted 13 October 2021; published 29 November 2021)

We investigate the Kondo effect with Wilson fermions. This is based on a mean-field approach for the
chiral Gross-Neveu model including four-point interactions between a light Wilson fermion and a heavy
fermion. For massless Wilson fermions, we demonstrate the appearance of the Kondo effect. We point out
that there is a coexistence phase with both the light-fermion scalar condensate and Kondo condensate, and
the critical chemical potentials of the scalar condensate are shifted by the Kondo effect. For negative-mass
Wilson fermions, we find that the Kondo effect is favored near the parameter region realizing the Aoki
phase. Our findings will be useful for understanding the roles of heavy impurities in Dirac semimetals,
topological insulators, and lattice simulations.
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I. INTRODUCTION

The Kondo effect has a long history in solid-state physics
[1–5]. It was observed as an enhancement of electric
resistance of a metal, and it is induced by a strong correlation
between nonrelativistic itinerant electrons and localized spin
impurities. Kondo effects can be also realized for relativistic
fermions such as Dirac/Weyl/Majorana fermions. Such
relativistic Kondo effects can occur in relativistic-fermion
systems including impurities, such as graphene (see Ref. [6]
for a review), Dirac/Weyl semimetals [7–23], dense nuclear
matter [24–27], and dense quark matter [13,24,28–44].
Among them, the “QCD Kondo effect” [24,28] is induced
by the color exchange interaction between a light quark and
an impurity quark, which is based on quantum chromody-
namics (QCD). To determine the parameter region (or phase
diagram) realizing the QCD Kondo effect is one of the
challenging problems in QCD.
In this paper, we focus on the Kondo effect for the Wilson

fermion. The Wilson fermion is one of the formulations
realizing Dirac-like lattice fermions, which was first proposed
in the viewpoint of construction of lattice gauge field theories

[45,46]. It has been very useful to implement quark degrees
of freedom in lattice QCD simulations, and also approximate
Wilson fermions can be realized in Dirac semimetals.
In particular, the negative-mass region of the Wilson

fermion is physically interesting because a part of this region
corresponds to the bulk mode of topological insulators. In
addition to the negative mass, an interaction between
fermions, such as four-point or gauge interaction, can induce
a new phase with spontaneous parity symmetry breaking
for Nf ¼ 1 (Nf is the number of flavors) or parity-flavor
symmetry breaking for Nf ¼ 2, which is the so-called Aoki
phase [47]. The Aoki phase for the Wilson fermion was
discussed by mean-field theories [47–54].1,2 For QCD
in continuum space, the Aoki phase is regarded as an artifact
due to the discretization of the spacetime, but in solid-state
physics, similar phase structures were pointed out by an
interacting Su-Schrieffer-Heeger model [66], an interacting
Kane-Mele model [67], and a Fu-Kane-Mele-Hubbard
model [68]. Such parity-broken materials are also closely
related to axion insulators (see Ref. [69] for a review). In this
work, we investigate the interplay between the Aoki phase
and the Kondo effect. Our studies will be useful for
elucidating impurity effects in strongly correlated lattice
fermion systems.
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1See Refs. [55–58] for arguments about an additional flavor-
singlet condensate for Nf ¼ 2.

2The Aoki phase can appear in other lattice-fermionic systems
such as the domain-wall fermion [59–61], a naive or staggered
fermion with a taste-splitting mass term [62], staggered-Wilson
fermions [63], and minimal doubling fermions [64,65].
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This paper is organized as follows. In Sec. II, we
construct our model. In Sec. III, we show our numerical
results and discuss properties of the Kondo effect with the
Wilson fermion. Section IV is devoted to our conclusion
and outlook.

II. FORMULATION

The Kondo effect for high-momentum particles can be
described as a perturbative scattering problem between a
light fermion and a heavy impurity. On the other hand, for
the low-momentum region, the perturbative expansion does
not converge, so that a nonperturbative approach is needed.
In order to investigate the nonperturbative Kondo effect and
its competition with other nonperturbative effects, we
employ a mean-field approach. Mean-field approaches have
been successfully applied to the conventional Kondo effect
[70,71], and similar approaches should be also used for
relativistic fermions (for a model with Nambu–Jona-Lasinio
(NJL)-type four-point interactions, see Refs. [30,33]).
For the light-fermion sectors, we use the “chiral Gross-

Neveu (χGN) model” in the 1þ 1 dimensions [72] (namely,
the NJL2 model), which includes not only the scalar-type
four-point interaction but also the pseudoscalar-type one.
This model is used as a toy model for QCD. After replacing
the (Dirac-type) continuous fermion by the Wilson fermion,
we call this model the “Wilson-chiral-Gross-Neveu (WχGN)
model.” This model was first studied in Ref. [73], and, for
early studies about the Aoki phase, see Refs. [47,48] at zero
chemical potential and Ref. [52] at nonzero chemical
potential.
For the sectors including heavy-fermion fields, we intro-

duce a heavy-fermion field based on the heavy-quark
effective theory (HQET) [74–77]. Although this field is
regarded as a heavy-mass limit of the original massive Dirac
field, it should be valid as long as its mass scale is sufficiently
larger than its other typical scales. Furthermore, we use a
four-point interaction between light and heavy fermions.
Even if such a heavy-light four-point interaction may be
regarded as an approximate form of the underlying inter-
action, it can be applied to nonperturbative physics such as
strongly coupled heavy-light bound states (namely, mesons)
[78–81] and the Kondo effect [30,33].
By combining the light- and heavy-fermion

sectors, we can construct a “Wilson-chiral-Gross-Neveu-
Kondo (WχGNK) model”.3 The Lagrangian in the 1þ 1-
dimensional continuous spacetime is given as

L ¼ LχGN þ LK; ð1Þ

LχGN ¼ ψ̄ði=∂ −mlÞψ þ μψ̄γ0ψ

þ Gll

2N
½ðψ̄ψÞ2 þ ðψ̄iγ5ψÞ2�; ð2Þ

LK ¼ Ψ̄vivμ∂μΨv − λðΨ̄vΨv − nhÞ

þGhl

N
½ðψ̄ΨvÞðΨ̄vψÞ þ ðψ̄γ1ΨvÞðΨ̄vγ

1ψÞ�; ð3Þ

where ψ ≡ ðψT
1 ;…;ψT

NÞ is a light Dirac fermion field withN
components, and the bilinear operators are defined as, e.g.,
ψ̄ψ ≡P

N
k¼1 ψ̄kψk.N ≥ 2 can be regarded as the degeneracy

factor from an SUðNÞ-symmetric interaction. ml and μ are
the mass and chemical potential of the light fermion,
respectively. Gll is the coupling constant between light
fermions, which characterizes condensates composed of only
light fermions.4 Ghl is the coupling constant between a light
fermion and a heavy fermion, which induces the Kondo effect
(or the Kondo condensates). Note that a non-Abelian
interaction between a light fermion and a heavy fermion is
the necessary condition for the Kondo effect. For example,
we can consider a Kondo effect with N ¼ 2 mediated
by spin, isospin, pseudospin, or SUð2Þ-color exchange
and N ¼ 3 by SUð3Þ-color exchange as in the usual
QCD. The heavy-fermion field in the HQET is defined as

Ψv ≡ 1þvμγμ
2

eimhvxΨðxÞ. In this form, the original N-compo-
nent Dirac field ΨðxÞ at xμ ≡ ðt; x1Þ in real space has a mass
mh. The heavy-fermion velocity vμ is set as vμ ¼ ð1; 0Þ,
which is the so-called rest frame, and then the phase factor
becomes eimht. The original mass term is canceled by this
phase factor in the kinetic term, so that it does not appear in
the effective Lagrangian. ΨðxÞ is projected into its particle
component by the particle projection operator 1þγ0

2
. λ is the

Lagrange multiplier for a constraint condition characterizing
the heavy-fermion number density with N components
defined as nh ¼ Ψ̄vΨv, and we set λ ¼ 0.
Next, using the Fourier transformation, we get the

Lagrangian in momentum space. In order to get the
Lagrangian on the lattice, we replace the spatial momentum
p1 in the kinetic term as follows:

=p ¼ γ0p0 − γ1p1

→ γ0p0 −
1

a
γ1 sin ap1 −

r
a
ð1 − cos ap1Þ; ð4Þ

where a and r are the lattice spacing and the Wilson
parameter, respectively. The fermion at r ¼ 0 is called the

3Precisely speaking, this model is analogous to the Coqblin-
Schrieffer model [82] rather than the Kondo model [1], but we
simply denote this model by “K.”

4The χGN model at ml ¼ 0 satisfies the continuous chiral
symmetry, but even atml ¼ 0 the Wilson fermion breaks the chiral
symmetry. If we are interested in the chiral symmetry in the
continuum limit (a → 0) of the WχGN model, two independent
couplings for the scalar and pseudoscalar interactions are required
[48]. The WχGNK model with two light-light couplings is also
straightforward, but in this work we use the same coupling for
simplicity.
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naive fermion, and r ≠ 0 is the Wilson fermion. In what
follows, we set r ¼ 1 and regard that the dimensional
quantities are in the lattice unit (a ¼ 1).
Note that, in our setup, the temporal direction related to

p0 is not on the lattice: the space is discretized, but the time
is continuous. This situation corresponds to the usual lattice
materials considered in solid-state physics. On the other
hand, for a lattice simulation, the time is also discretized. In
such a case, one can just replace p0 by the similar form.
Also, in the kinetic term of the heavy fermion, the spatial
momentum is zero by taking the rest frame. Therefore, the
heavy-fermion field depends on only p0, so that we need
not to replace p1.
Here, we replace the four-point interactions by terms

with three types of mean fields: the scalar condensate σ,
pseudoscalar condensate Π, and Kondo condensates with a
gap Δ. By analogy to the Kondo condensates for the Dirac
fermion (the forms without M [30,33] or with M [34]), we
assume the following forms:

hψ̄ψi≡ −
N
Gll

σ; ð5Þ

hψ̄iγ5ψi≡ −
N
Gll

Π; ð6Þ

hψ̄Ψvi≡ N
Ghl

Δ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ep þM

Ep

s
; ð7Þ

hψ̄γ1Ψvi≡ N
Ghl

Δ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ep þM

Ep

s
− sinp1 þ iΠ

Ep þM
; ð8Þ

where Ep and M are defined as

Ep ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 p1 þM2 þ Π2

q
; ð9Þ

M ≡ 1 − cosp1 þml þ σ: ð10Þ

The requirement of the two types (scalar and vector types)
of Kondo condensates [30,33] reflects the particle-compo-
nent projection for the light Dirac field. We keep the terms
with the condensates, such as ψ̄ψhψ̄ψi, and neglect the
second-order fluctuation terms. This procedure is equiv-
alent to the large-N limit neglecting fluctuations of aux-
iliary boson fields.
The resulting mean-field Lagrangian is

LMF ¼ ϕ̄G−1ðp0; p1Þϕ −
N
2Gll

ðσ2 þ Π2Þ − 2N
Ghl

Δ2 þ λnh;

ð11Þ

where the inverse propagator of three-component quasi-
particle ϕ≡ ðψT;ΨT

v Þ in spinor space, composed of the
two-component light fermion and the one-component
heavy fermion, is

G−1ðp0; p1Þ ¼

0
BBBBBB@

p0 þ μ −M sinp1 − iΠ Δ�
ffiffiffiffiffiffiffiffiffiffi
EpþM
Ep

q
− sinp1 − iΠ −ðp0 þ μÞ −M −Δ�

ffiffiffiffiffiffiffiffiffiffi
EpþM
Ep

q
− sinp1−iΠ

EpþM

Δ
ffiffiffiffiffiffiffiffiffiffi
EpþM
Ep

q
Δ

ffiffiffiffiffiffiffiffiffiffi
EpþM
Ep

q
− sinp1þiΠ

EpþM p0 − λ

1
CCCCCCA
: ð12Þ

Here, we used the gamma matrices: γ0 ¼ γ0 ¼ σ3, γ1 ¼
−γ1 ¼ iσ2, and γ5 ¼ −γ5 ¼ σ1. By the diagonalization of
the inverse propagator, we obtain the three dispersion
relations of the quasiparticles,

E�ðp1Þ≡ 1

2

�
Ep þ λ − μ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEp − λ − μÞ2 þ 8jΔj2

q �
;

ð13Þ

Ẽðp1Þ≡ −Ep − μ; ð14Þ

where E� includes the effect of the Kondo condensate Δ,
and Ẽ is not affected by the Kondo condensate.

After summing up the Matsubara modes from the p0

integral, the thermodynamic potential at inverse temper-
ature β ¼ 1=T is written as

Vðσ;Π;ΔÞ ¼ N
2Gll

ðσ2 þ Π2Þ þ 2N
Ghl

Δ2 − λnh

− N
Z

π

−π

dp1

2π

�
1

2
ðẼþ Eþ þ E−Þ

þ 1

β
ln½ð1þ e−βẼÞð1þ e−βEþÞð1þ e−βE−Þ�

�
:

ð15Þ

Byminimizing this potential as a function of ðσ;Π;ΔÞ,we can
estimate thevalues of σ,Π, andΔ.Note that, in this form, since
all the terms are proportional toN, thevalues of σ,Π, andΔ, as
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plotted in the next section, do not depend on N. At zero
temperature β → ∞ and λ ¼ 0, the effective potential is as
follows:

Vðσ;Π;Δ;T → 0; λ ¼ 0Þ ¼

×
N
2Gll

ðσ2 þΠ2Þ þ 2N
Ghl

Δ2 −N
Z

π

−π

dp1

2π
ð−μ− Ẽ− E−Þ:

ð16Þ

III. NUMERICAL RESULTS

A. Massless Wilson fermion

First we focus on the Kondo effect for the massless
(ml ¼ 0) Wilson fermion. In Fig. 1, we show the μ
dependence of σ and Δ at Gll ¼ 1. As shown in Fig. 1(a),
when the heavy-light coupling Ghl is weak enough, the
Kondo effect does not occur, where the phase diagram for σ
is the same as that in the WχGN model (without the Kondo
effect): we get σ ≈ 0.929 at μ ¼ 0. From the figure, we find
that there are two “critical” chemical potentials (or transition
points), μc1 ≈ 0.91 and μc2 ≈ 2.07. μc1 is the effect from the

Fermi level, which is caused by a mechanism similar to the
chiral symmetry restoration as in the χGN model. μc2 is
the effect from the lattice cutoff (or ultraviolet energy cutoff)
for the Wilson fermion, as interpreted in terms of its
dispersion relations (see later discussion).
When the heavy-light coupling Ghl is strong enough, the

Kondo effect occurs, as shown in Fig. 1(b). In the small-μ
region at Ghl ¼ 0.8, only the scalar condensate σ is realized.
In the intermediate-μ region, the Kondo condensate Δ
appears, and σ and Δ coexist. Here, as μ increases, σ is
gradually reduced, and Δ increases. μc1 for σ is shifted to
lower μ0c1 ≈ 0.72 by the appearance of Δ. Thus, the
transitions of both condensates occur at the same time.
Intuitively, some of light fermions in this region start to form
the Kondo condensate, and then they do not participate in the
formation of the scalar condensate. As a result, μc1 is shifted
to lower μ0c1 by the appearance of the Kondo condensate.
In the large-μ region with μ ≳ 2.39, we find that both the
condensates disappear. We also point out that μc2 for σ is
shifted to higher μ0c2 ≈ 2.39: the scalar condensate near μc2
seems to be slightly enhanced by the Kondo effect. Thus, the
shifts of critical chemical potentials, μc1 and μc2, would be
useful as evidence of the Kondo effect.
In order to interpret our results, in Fig. 2, we show the

dispersion relations of the three particles at zero and
nonzero μ at Ghl ¼ 0.8 within the first Brillouin zone,
where the explicit forms are given as Eqs. (13) and (14).
The discussion from the dispersion relations is as follows:
(1) Small μ: If σ ¼ Δ ¼ 0, as plotted as the black dashed

and dotted curves in Fig. 2(a), then there is a band
crossing point at p1 ¼ 0, which is the so-called Dirac
point in the Wilson fermion. On the other hand, when
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FIG. 1. μ dependences of σ and Δ for the massless Wilson
fermion at (a) a weak heavy-light coupling Ghl ¼ 0.01 and (b) a
strong coupling Ghl ¼ 0.8.

(a) (b)

(c) (d)

FIG. 2. Dispersion relations of particles at finite μ andGhl ¼ 0.8:
Eþ,E−, and Ẽ. (a) μ ¼ 0, (b) μ ¼ 0.8, (c) μ ¼ 2.0, and (d) μ ¼ 2.3.
The black dashed and dotted curves are the Wilson fermions at
σ ¼ Δ ¼ 0. The colored region means the Dirac or Fermi sea.
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σ ≠ 0 in the small-μ region, the scalar condensate
opens a gap between the two dispersions, Eþ and Ẽ,
as shown in Fig. 2(a). The dispersion relation Ẽ of the
negative-energy band is inside the Dirac sea (equiv-
alently, the Fermi sea at μ ¼ 0) and stabilizes the
system by the reduction of the free energy. Note that,
in this region, E− is equivalent to the flat band
corresponding to the heavy fermion. Here, the Kondo
effect is not realized (unless Ghl is large enough).

(2) Intermediate μ: If Δ ¼ 0, with increasing μ, the
value of σ decreases. This is because the light-
particle dispersion under the Fermi level is occupied,
and σ ≠ 0 leads to an enhancement of the free
energy, compared to a dispersion with σ ¼ 0.
When the Kondo effect occurs (Δ ≠ 0), the light
particle and the flat band are mixed by the Kondo
condensate. As a result, E− inside the Fermi sea
stabilizes the system by the reduction of the free
energy, as shown in Fig. 2(b) and 2(c).

(3) Large μ: In the large-μ region, the whole dispersion
relation of the Wilson fermion is inside the Fermi sea,
and the form of the dispersion is not affected by the
condensates, as shown in Fig. 2(d). Note that when μ
is large enough, Eþ closely resembles the flat band.
Here, the Kondo effect is not realized, and the heavy
fermion on the Fermi level and the massless Wilson
fermion inside the Fermi sea are decoupled.

Next, we discuss the dependence on the coupling constant
between the light fermions,Gll. In Fig. 3, we show the phase
structure on the μ-Gll plane at Ghl ¼ 0.8, where the gray
region represents the plane at σ ¼ Δ ¼ 0. When Gll is small
enough, there is the coexistence phase of the scalar and
Kondo condensates. In the region at large Gll and small μ,
the Kondo effect is excluded, and then a pure scalar-
condensate phase is realized. On the other hand, the region

at large Gll and large μ becomes the coexistence phase
(within the plotted region). Note that, in the large-chemical-
potential region with μ ≳ 2.39, neither of the two conden-
sates can be realized because of the lattice cutoff effect as
shown in Fig. 2(d). Such a second critical chemical potential
does not depend on Gll.
In the Appendix, we show the results for Kondo effects

with the Dirac fermion and naive lattice fermions.

B. Negative-mass Wilson fermion

Here, we investigate the interplay between the Aoki phase
and the Kondo effect. In the region with a positive mass
ml > 0 for the Wilson fermion, the Aoki phase does not
appear (Π ¼ 0). When a negative mass ml < 0 is switched
on, the Aoki phase (Π ≠ 0) can be realized in a parameter
region.
In Fig. 4, we show the negative-mass dependence of the

condensates, where we fixed Gll ¼ 1.5 to focus on the
Aoki phase with a sufficiently large value of the pseudo-
scalar condensate. Also, in this figure, we fix μ ¼ 0 and
change only Ghl as a parameter tuning the Kondo effect.
As in Fig. 4(a), when the heavy-light coupling is weak

FIG. 3. Phase structure of σ and Δ on the μ-Gll plane at ml ¼ 0
and Ghl ¼ 0.8.
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FIG. 4. ml dependences of condensates for the negative-mass
Wilson fermion at (a) a weak heavy-light coupling Ghl ¼ 0.01
and (b) a strong coupling Ghl ¼ 2.0.
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enough (Ghl ¼ 0.01), the Kondo effect does not occur, and
only the scalar and pseudoscalar condensates are realized.
These behaviors are well known as the conventional Aoki
phase scenario in the WχGN model.
In Fig. 4(b) we show the results at Ghl ¼ 2.0. Here, the

heavy-light coupling is large enough, so that the Kondo
effect is realized and modifies the other condensates. From
this figure, our findings are as follows:
(1) We find nonzero values of the Kondo condensate

around ml ¼ −1, and it coexists with the Aoki
phase. In particular, the Kondo effect is most favored
at ml ¼ −1. This behavior is similar to the Aoki
phase in the strong-coupling region.

(2) We find that the Kondo effect suppresses both the
absolute values of the scalar and pseudoscalar
condensates. Intuitively, this is because light fer-
mions form the Kondo condensate, and then they do
not participate in the scalar or pseudoscalar con-
densate. Therefore, in experiments or lattice simu-
lations, if one observes such a suppression of the
scalar or pseudoscalar condensate, it will be evi-
dence of the Kondo effect.

In Fig. 5, we show the phase structure of σ, Π, and Δ on
theml −Gll plane at μ ¼ 0 andGhl ¼ 0.8 or 2.0. Note that,
to improve the visibility, we plot σ þml instead of σ. From
this figure, we find that Δ is favored in the weak Gll region.
In particular, at Ghl ¼ 0.8, the Kondo condensate appears
only in the parameter regions that should have been the Aoki
phase atGhl ¼ 0 (the so-called Aoki fingers or cusp region).
This is because the dispersion relation atml ¼ 0 orml ¼ −2
is gapless at p1 ¼ 0 or p1 ¼ π, and such a gapless band is
closer to the flat band of the heavy fermion. On the other
hand, the dispersion relation at 0 < ml < −2 is gapped at
any momentum, which is away from the heavy-fermion
band. In the region with the Kondo condensate, the value of
the pseudoscalar condensate is suppressed, and the original
Aoki phase can be excluded by the Kondo effect. In other
words, the Aoki fingers are covered by “fingernails” of the
Kondo condensate phase. Furthermore, at stronger heavy-
light coupling (Ghl ¼ 2.0), we find a wide region of the
Kondo condensate, which expands to larger-Gll region.
Thus, our results indicate that the effects from heavy
impurities (via Ghl) can be significant in weakly coupling
region for Gll.
In order to discuss the μ dependence, in Fig. 6, we show

the phase structure on the μ-Gll plane at Ghl ¼ 0.8 and
ml ¼ −1.1.5 As μ increases, the pseudoscalar condensate
decreases, while the Kondo condensate increases. Around
the transition point of μ, the scalar condensate is also
modified. Similar to Fig. 3 at ml ¼ 0, when the chemical

potential is large enough, all condensates are zero by the
lattice cutoff effect.
We emphasize that the negative-mass region of the Wilson

fermion can be regarded as an effective model for the bulk of
topological insulators.6The twoparameters in theHamiltonian
of the Wilson fermion, the mass ml < 0 and the Wilson
parameter r, can be related to the band structure of a material,
which isdeterminedby theoriginal bandand the strengthof the
spin-orbit interaction. An intrinsic spin-orbit interaction may
be roughly tuned by changing the chemical composition of the
material (e.g., for BiTlðS1−δSeδÞ2, see Ref. [85]). In this sense,
one can experimentally examine the negative-mass depend-
ence. As in Fig. 5(a), we have found that the phase transitions
(namely, appearance or disappearance) of the Kondo con-
densate Δ significantly depend on the negative mass ml.

FIG. 5. Phase structure of σ, Δ, and Π on the ml-Gll plane at
μ ¼ 0 and (a) Ghl ¼ 0.8 or (b) Ghl ¼ 2.0.

5Note that ml ¼ −1 is a special parameter because the
dispersion relations become two flat bands (for light fermions).
Such a situation is interesting as physics of the flat band (e.g., see
Refs. [83,84]), but we focus on the Wilson fermion at ml ¼ −1.1
in the main text.

6In particular, the weak-coupling region in 1þ 1 dimensions
for odd N is a topological insulator belonging to the symmetry
class BDI [53], where a topological invariant is characterized by
the Zak phase defined as the integral of the Berry connection.
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Therefore, experimentally, one could capture such a phase
transition by tuning the spin-orbit interaction.
On the other hand, for topological insulators, the coupling

constant (corresponding to Gll) between electrons is usually
small, so that the parameter region with the Aoki phase may
be narrow. Instead of topological insulators in the strong-
coupling region, the axion insulators (see, e.g., Ref. [69]) are
other candidates to study the interplay between a parity-
symmetry breaking ground state and the Kondo effect. In
order to build an effective model to describe axion insulators,
we have to introduce a pseudoscalar-mass term such as
im5ψ̄γ5ψ . Investigation of Kondo effects based on such an
effective model will be straightforward. From our results
shown in this paper, we can expect impurity effects in axion
insulators by regarding the pseudoscalar condensate Π as
the pseudoscalar mass m5. For example, we can expect
the appearance of the Kondo effect at a small m5 and
the suppression of the Kondo effect by a large m5.

IV. CONCLUSION AND OUTLOOK

In this paper, we have investigated the Kondo effect for
the Wilson fermion with the four-point interaction, which
is based on the discretization (4) of the χGNK model (1).
From our model, we have found (i) a coexistence phase of
the Kondo condensate and other condensates such as
the scalar and pseudoscalar condensates, (ii) a shift
of the critical chemical potential of the scalar condensate
by the Kondo effect, and (iii) an interplay between the
Kondo effect and Aoki phase (particularly, the Kondo
fingernails structure).
It should be noted that our WχGNK model is a choice of

models describing the Kondo effect for the Wilson fermion,

and other types of WχGNKmodels may be also constructed.
For example, we have used the heavy-fermion field based on
the leading order of HQET, but the building of WχGNK
models based on its higher orders or heavy Dirac fermions
will be also interesting. Furthermore, the mean-field assump-
tions might be improved. We have assumed the condensates
(5)–(8), but other types of light-fermion condensates and
Kondo condensates, e.g., including spatially inhomogeneous
condensates, might be possible. Such a detailed examination
is left for future studies. Also, it will be interesting to extend
our model to higher spatial dimensions, such as the NJL3 and
NJL4 models, or to replace the four-point interactions by
other interactions, such as non-Abelian gauge interactions.
In this work, we have focused only on the situations with a

single light flavor (the number of flavors is not N but Nf),
which will be examined by Nf ¼ 1 lattice simulations.
We comment on the extension to the Nf ¼ 2 case. In this
case, additional flavor degrees of freedom may lead to
“overscreening” of the Kondo effect, and non-Fermi-liquid
behavior can appear, which is the so-called multichannel
Kondo effect [86] (see Refs. [13,32] for expectations for the
QCD Kondo effect). In such a situation, the standard mean-
field approximation may be useless, and then one has to use
an alternative approach, such as Nf ¼ 2 lattice simulations.
As a direct measurement for the Kondo effect in lattice
simulations, one may measure the vacuum expectation value
of a heavy-light bilinear operator, such as hψ̄Ψvi defined in
this paper. Also, the values of light-fermion condensates
hψ̄ψi and hψ̄iγ5ψi are modified by the Kondo effect, and
they will be indirect evidence of the Kondo effect.
Furthermore, heavy-light mesonic two-point correlators also
could be influenced by the Kondo effect.
Monte Carlo simulations of the WχGN model at finite

chemical potential may suffer from the sign problem. In
this case, one can expect the realization of the Kondo effect
by tuning the heavy-light coupling constant. Also, even at
finite chemical potential, sign-problem-free approaches,
such as the tensor renormalization group [87], the
matrix product state [53], and the projected-entangled-pair
state [54], will be useful.
In addition, cold-atom simulations may be also prom-

ising candidates for examining both the interacting
Wilson fermion [88–91] and the Kondo effect, e.g.,
[92–100], where tuning the coupling constants rather
than the chemical potential will be useful for elucidating
the Kondo effect.
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FIG. 6. Phase structure of σ, Δ, and Π on the μ-Gll plane at
ml ¼ −1.1 and Ghl ¼ 0.8.
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APPENDIX: KONDO EFFECTS FOR DIRAC
AND NAIVE FERMIONS

In this Appendix, we qualitatively compare Kondo effects
for other fermions with that for the Wilson fermion. Here we
focus on the Dirac fermion and naive lattice fermion in 1þ 1
dimensions: we investigate the phase structures of the
“Dirac-chiral-Gross-Neveu-Kondo model,” defined as the
Lagrangian (1), and the “naive-chiral-Gross-Neveu-Kondo
model,” defined using the discretization (4) at r ¼ 0.
In Fig. 7, we show the results for the Dirac fermion,

where the momentum integral interval in the effective
potential is −Λ ≤ p1 ≤ Λ with a cutoff Λ.7 In the inter-
mediate-μ region, the coexistence phase of σ and Δ
appears, which is similar to that of the Wilson fermion.
In the large-μ region, σ becomes zero, whereas Δ survives.
Such behavior is distinct from the case of the Wilson
fermion in which σ and Δ becomes zero at the same time
because of the lattice cutoff.
In Fig. 8, we also show the results for the naive fermion.

The behavior in the intermediate-μ region is similar to
the Wilson and Dirac fermions. In the large-μ region, σ
becomes zero. At higher μ, Δ also becomes zero by the
lattice cutoff effect. Thus, the critical chemical potentials
for σ andΔ, μcσ and μcΔ, are different. This is different from
theWilson fermion, where μcσ and μcΔ are almost the same.
Note that, for both the Dirac and naive fermions, the

phase transition of σ at finite μ without the Kondo effect is
first order, where the order parameter σ discontinuously
drops to zero. On the other hand, when the Kondo effect is
switched on, its order is smeared.
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