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In the future, ab initio quantum simulations of heavy ion collisions may become possible with large-
scale fault-tolerant quantum computers. We propose a quantum algorithm for studying these collisions by
looking at a class of observables requiring dramatically smaller volumes: transport coefficients. These form
nonperturbative inputs into theoretical models of heavy ions; thus, their calculation reduces theoretical
uncertainties without the need for a full-scale simulation of the collision. We derive the necessary lattice
operators in the Hamiltonian formulation and describe how to obtain them on quantum computers.
Additionally, we discuss ways to efficiently prepare the relevant thermal state of a gauge theory.
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I. INTRODUCTION

The ultimate promise of quantum computers is that
physical properties effectively uncalculable by classical
algorithms can be obtained [1]. Within high-energy phys-
ics, it is believed that quantum algorithms will shed light
upon topics where nonperturbative nonequilibrium dynam-
ics play a role [2]. The limitations of current classical
methods are particularly acute in heavy-ion collisions.
The standard picture of heavy-ion collisions is that two

nuclei collide at high energy, and through multiple scatter-
ings form an expanding fireball of quark-gluon plasma
(QGP). As the plasma cools, the quarks and gluons
rehadronize into mesons and baryons that are then mea-
sured in the detector. The current theoretical framework
divides the collision into overlapping steps which can each
be approximated by a semiclassical model [3]. In particular,
the incredible effectiveness of hydrodynamics to model the
QGP is notable [4,5]. While these calculations can account
for some of the nonperturbative and nonequilibrium
dynamics of quantum chromodynamics (QCD) at the

LHC and RHIC [6–15], the large number of free parameters
and uncontrolled systematics used in theoretical modeling
are unpalatable [16–19]. Of interest to this work are the
transport coefficients: diffusivity [20–22], conductivity
[21–23], and viscosity [19,24–30].
In principle, a complete nonperturbative calculation

would be possible from lattice field theory (LFT).
Unfortunately, all known formulations of LFT suitable for
classical computations use the Euclidean metric in order to
allow stochastic methods to sample the path integral. While
this allows for a broad range of observables to be computed,
its capabilities at finite-density or for Minkowksi observ-
ables are practically limited by sign problems [31] or the ill-
posedness of analytic continuation [32]. Despite these
issues, efforts have been undertaken to extract nonpertur-
bative inputs [29]—e.g. parton distrubtion functions (PDFs)
[33–38], phase diagrams [39–42], transport coefficients
[43–48]—for the models from lattice QCD, albeit with
large uncertainties.
Quantum computers provide a natural facility for study-

ing real-time dynamics of quantum systems. With suffi-
ciently large quantum resources, one should be able to
access arbitrary Minkowski matrix elements in LFT; how-
ever, such calculations are forbiddingly expensive. For
example, consider the task of simulating heavy ion colli-
sions [49]. This corresponds to an extension of the
scattering calculations considered in Refs. [50–52]. To
prepare well separated wave packets for the ions, the spatial
lattice must be many times the diameter of a heavy nucleus,
which is ∼10 fm. To simulate the internal dynamics of each
nucleus, a resolution smaller than the nuclear radius is
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required, thus the lattice spacing should be ∼0.1 fm.
Together, these two scales imply that ≳106 lattice sites
are required, and so are at least that many qubits. To
estimate the circuit depth, one should evolve the calculation
for sufficient time that the two nuclei can collide and the
final states become sufficiently separated, again ∼10 fm
[53]. In order to keep the trotterization errors small, one
must use a small time step, again ∼0.1 fm. This suggests
∼102 time steps, ignoring the circuits required for state
preparation and measurement. These estimates are certainly
beyond near-term prospects. From this example, we can see
that the need to represent multiple scales accurately drives
the large resource requirements.
The authors of Ref. [54] pointed out that by decompos-

ing scattering simulations into a nonpertubative input (in
that case the hadronic tensor) convolved with perturbative
expressions, one reduces the resource requirements. In that
example, instead of preparing two well-separated protons,
one prepares a single proton in a L ∼ 1 fm box. This
reduces qubit costs by a factor of ∼103.
Heavy-ion collisions allow for a similar decomposition.

In particular, the transport coefficients of the QGP should
require L ∼ 1 fm. Since the transport coefficients represent
the hydrodynamics of the theory, they should require
reduced resolution compared to partonic observables.
Using thermodynamic observables of QCD as a guide
[55], one might anticipate a required lattice spacing (for
studying ∼200 MeV matter) of a ∼ 0.1 fm. Further, theo-
retical models [56,57] and experimental data [58–60]
suggest that thermalization happens rapidly—on the scale
of 1 fm—which would reduce the circuit depth. One must
further emphasize that the current theoretical uncertainties
on the transport coefficients of the QGP plasma are Oð1Þ.
Together, these arguments strongly suggest that the
transport coefficients of gauge theories represent serious
targets for practical quantum advantage in particle
physics [2].
There is another point that weights heavily in favor of

focusing upon transport coefficients. For many problems, it
is not a priori obvious that factoring the physical system
into separate regimes is valid. In the case of PDFs, for
instance, factorization theorems have been proven only in
specific kinematic regimes [61]. It is well known that using
PDFs outside of these regimes leads to issues [62,63]. In
heavy-ion collisions, the validity of the hydrodynamic
approximation has been studied at length (see [4] for a
review) and the transport coefficients can be nonperturba-
tively defined on the lattice [44].
Past work has extensively discussed real-time evolution

in a gauge theory via digital quantum simulation. Here, we
detail novel aspects of quantum simulation in the hydro-
dynamic regime of gauge theories. In particular, we
construct implementations of the stress-energy tensor in
the Hamiltonian formulation, allowing hydrodynamic cor-
relators to be measured.

The most involved part of a quantum simulation is
typically the preparation of the initial state [64–71]. For
transport coefficients, the desired initial state is in thermal
equilibrium. When studying Yang-Mills or QCD, the most
interesting temperatures are ∼200 MeV. The fact that we
are interested in relatively high-temperature states is a key
advantage to studying QGP transport over lower temper-
ature processes like scattering: thermal states are markedly
easier to prepare. In addition to descriptions of appropriate
lattice measurements, this paper details several viable
methods for thermal state preparation.
This paper is organized as follows. Section II is devoted

to describing different methods of extracting transport
coefficients from a quantum simulation—these approaches
are largely independent of the simulation scheme and the
construction of lattice observables. Since hydrodynamic
transport coefficients are derived from correlators of the
energy-momentum tensor Tμν (EMT), in Sec. III we derive
lattice operators for the energy-momentum tensor within
the Hamiltonian formalism. Methods for preparing quan-
tum thermal states are elucidated in Sec. IV. We conclude in
Sec. V with some general points and discuss where future
theoretical work is required.

II. ESTIMATING TRANSPORT

Dissipative processes cannot be seen in perfect thermal
equilibrium, and so are not accessible to Euclidean lattice
calculations. Near equilibrium (and in the limit of small
gradients), these processes are characterized by a small
number of low-energy constants, termed transport coeffi-
cients. The rate of diffusion of a conserved quantity φ, for
instance, is governed by Fick’s law:

J⃗ ¼ −D
dφ
dx⃗

; ð1Þ

where J is the diffusive flux, and D, the diffusion constant,
is the low-energy constant of interest. In this section, we
will describe how to determine such transport coefficients
in a quantum simulation.
Many other transport coefficients can be defined, typ-

ically related to the behavior of locally conserved quan-
tities. In the case of hydrodynamics, the most interesting
are the shear and bulk viscosities η and ζ, which are defined
by their role in the Navier-Stokes equations:

ρ

�∂ui
∂t þ uj∇jui

�
þ∇p ¼ η∂jð∂iuj þ ∂juiÞ

þ
�
ζ −

2

3
η

�
∂i∂juj; ð2Þ

where the mass density ρ and velocity u are functions of
both space and time, and the pressure p is, in equilibrium,
determined from the energy density by the equation of
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state. Strictly speaking, in the case of field theory we should
use the relativistic Navier-Stokes equations [4], but up to a
substitution of the energy density ϵ for the mass density ρ,
the nonrelativistic Eq. (2) yields the same results with easier
intuition. In actual heavy ion simulations, it is necessary to
include higher-order terms in the gradient expansion,
introducing new transport coefficients [72–74]. We do
not discuss the determination of these second-order coef-
ficients here.
For these transport coefficients, more or less the same set

of methods are available for their computation. For con-
creteness, in this section we will focus on the shear
viscosity. The methods described below generalize easily
to bulk viscosity, diffusion, and other transport properties.
Several well-established methods exist for computing the

shear viscosity η of fluids in molecular dynamics simu-
lations [75]. Three are worth summarizing here; of these,
two have natural analogues in quantum simulation of gauge
theories.
In the periodic perturbation method [75,76], one imposes

a shearing force F on the system. The shear viscosity acts
to resist this force, so that, in equilibrium, a small shear
wave is created. In the limit of small F and small wave
numbers k, the equilibrium “displacement” is

V ¼ F
ρ

ηk2
: ð3Þ

This method works well in molecular dynamics simula-
tions. Unfortunately, it intrinsically involves the imposition
of a nonconservative force. Such a force, by definition,
cannot be imposed by the addition of any term to the
Hamiltonian; equivalently, any simulation of this system
must be nonunitary. This renders it inapplicable for
calculations of quantum systems.
The transverse current autocorrelation function (TCAF)

method [75,76] proceeds from the observation that a shear
wave, once created, decays exponentially with a decay
constant proportional to η. To see this, consider the
linearization of Eq. (2) about the equilibrium solution
ρ ¼ ρ0, ui ¼ 0. The mode U cosðkxÞ obeys

ρ0
∂U
∂t ¼ −ηðk⃗ · k⃗U þ k⃗ðk⃗ · UÞÞ −

�
ζ −

2

3
η

�
k⃗ðk⃗ · UÞ: ð4Þ

Thus a shear wave u1ðx⃗Þ ∝ cosðkx2Þ is seen to decay as

e−
ηk2

ρ t. Fitting this exponential decay gives the shear
viscosity. Conveniently, the fact that the shear viscosity
is encoded in the decay constant means that the normali-
zation of the Tμν need not be correct. (In fact, any operator
that couples to the appropriate shear mode is likely to show
the correct exponential decay.)
In principle, then, we imagine creating a small shear

wave in an equilibrated fluid and watching it decay. This
requires carefully taking the limit of a small perturbative

force. Instead, we can allow “Maxwell’s angels,” i.e.
thermodynamic and quantum fluctuations, to create the
shear wave. The shear viscosity is now provided by fitting
the TCAF at long1 times:

CðtÞ ¼
Z

dx dy sinðkyÞ sinðkxÞhT01ðx; tÞT01ðy; 0Þi

∝ e−
ηk2

ρ t: ð5Þ
In the context of a classical molecular dynamics
simulation, the calculation of CðtÞ is straightforward:R
dx sinðkxÞT01ðxÞ is measured at various times, and the

autocorrelations appear in the resulting stochastic time
series. At first blush, the appropriate procedure on a
quantum computer is rather different. In particular, because
measurements cannot be performed without altering the
wave function, one might expect to be required to perform
one set of measurements for each time at which one wants
to measure CðtÞ. This is an expensive prospect.
Happily, we are explicitly interested in the behavior of

hydrodynamic fluctuations, whose apparent behavior is
classical. The measurement of the amplitude of the shear
wave contains very little information relative to the whole
wave function. This measurement therefore constitutes a
sort of “weak measurement,” which can be made without
unduly disturbing the quantum state.2 Therefore, we can
measure the amplitude of the shear wave at one time,
continue evolving, and subsequently measure the ampli-
tude at many later times.
Similarly, the energy density may be measured in the

simulated system prior to any time evolution is done,
without significantly disturbing the wave function. In fact,
as long as the simulated system can be kept coherent, the
TCAF can be determined to arbitrary precision with one
long time evolution—in the large-volume limit. Away from
the large-volume limit, the number of measurements that
can be made can be heuristically expected to be linear in the
volume of the system.
The third method follows from the Green-Kubo relation

[80] connecting shear viscosity to the ω; k → 0 limit of the
two-point correlator of T12:

η ¼ V
T

Z
∞

0

hT12ðtÞT12ð0Þi: ð6Þ

This method is reported to converge slowly in molecular
dynamics simulations [75], but it has nevertheless proven

1We assume the quantum fluid is described at long wave-
lengths and times by pure Navier-Stokes, and therefore neglect
the phenomenon of long-time tails [77,78]. For realistic fluids,
the exponential decay will eventually be cut off by a power law.
This power-law decay can be extracted just as η can.

2The notion of a weak measurement—see e.g. [79]—is here
simply used to denote a measurement from which very little
information is obtained about the state.
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useful in practice, e.g. [81]. Note that this method, unlike
the TCAF method, does require the operator for the stress
tensor to be correct, including the normalization.
These methods for computing η have natural analogs for

most other transport coefficients. However, in the case of
bulk viscosity, which is the next-most relevant hydro-
dynamic property, there is no simple analog of the
TCAF method. Instead, molecular dynamics calculations
of the ζ typically proceed from the Green-Kubo relation,
which is in terms of the diagonal components of the
Tμν [82]:

ζ ¼ V
9T

Z
∞

0

dthTiiðtÞTjjð0Þi: ð7Þ

III. ENERGY-MOMENTUM TENSOR

Transport coefficients in quantum field theory are
defined in terms of the n-point correlators of Tμν. Thus,
in order to extract them from lattice calculations, one must
define a lattice Tμν. Here, we derive such operators in the
lattice Hamiltonian formalism natural for use in quantum
simulations. In Sec. III A, we summarize the discretization
of the EMT on a spacetime lattice (as distinct from the
spatial-only Hamiltonian lattice). In Sec. III B we review
the derivation of Kogut-Susskind Hamiltonian from the
transfer matrix [83] which provides a framework for
deriving the Hamiltonian formulation of the EMT. In the
rest of the section, we derive the necessary components of
Tμν for quantum simulation: diagonal components in
Sec. III C, spatial components Tij in Sec. III D, and
timelike components T0i in Sec. III E.
We provide both naïve operators [which have OðaÞ

corrections] and tree-level improved operators analogous to
the “clover” of the spacetime lattice [these have Oða2Þ
corrections]. The operators derived are summarized in
Table I. They are constructed from link operators Û and
their conjugate momenta π̂, defined in Sec. III B below. The
plaquette P̂ and clover Ĉ are defined in Sec. III A.

A. Energy-momentum tensor on a lattice

The energy-momentum tensor is the Noether’s current of
spacetime translational symmetry. In LFT, this symmetry is
explicitly broken to a discrete subgroup and thus naive
lattice currents may not be conserved. We expect to restore
the symmetry (i.e. theWard identity) in the continuum limit,
albeit renormalization is required. Another tactic instead
constructs combinations of the low-dimension operators that
mix under the discrete rotations and translations [84–86]
such that a lattice Ward identity is satisfied. A final method
extracts a UV-finite version of the EMT from gradient flow
[87,88]. In this work, we study two lattice EMTs: the naïve
EMT accurate to OðaÞ and the clover EMT with Oða2Þ
errors. There exists an Oða4Þ EMT [89], but it is left for
future work, as it likely first requires developing an
appropriately improved Hamiltonian [90–92].
In the continuum, the EMT of a gauge theory is

Tμν ¼
1

4
gμνTr½FαβFαβ� − Tr½FμαFα

ν �; ð8Þ

where the mostly minus convention is used. Following the
notation of [83], we normalize the group generators λa to

Tr½λaλb� ¼ δab ð9Þ

and functions such as Fμν are defined with this normali-
zation. Before we discretize Eq. (8), we must establish
some lattice notation. Links are denoted as Un;μ where n is
the site the link starts at, and μ is the direction of the link.
The fundamental gauge-invariant object, the plaquette, is
defined as the product of four links around a closed loop as
in Fig. 1:

PμνðnÞ ¼ Un;μUnþμ̂;νU
†
nþν̂;μU

†
n;ν: ð10Þ

On a spacetime lattice, the terms in the EMT are
polynomials of plaquettes. Note that, as terms in Eq. (8)

TABLE I. Gauge-invariant lattice operators in the Hamiltonian formalism in 3þ 1D dimensions: naïve operators
with OðaÞ errors and improved operators with errors that are Oða2Þ. Components of the energy-momentum tensor
Tμν are constructed as linear combinations of these operators according to Eq. (8). The plaquette P̂ and clover Ĉ are
defined in Eqs. (10) and (15), respectively. Spatial indices are i ≠ j ≠ k.

Operator OðaÞ Oða2Þ
TrF0iF0iðnÞ g2s

a4 Tr½π2n;i�
P

x¼0;1
g2s
2a4 Tr½π2n−xî;i�

TrF0iF0jðnÞ g2s
a4 Tr½πn;iπn;j� g2s

4a4 ðTr½π̂n;iπ̂n;j� þ Tr½π̂n;iÛ†
n−ĵ;jπ̂n−ĵ;jÛn−ĵ;j� þ Tr½Û†

n−î;iπ̂n−îÛn−î;iπ̂n;j�
þTr½Û†

n−î;iπ̂n−î;iÛn−î;iÛ
†
n−ĵ;jπ̂n−ĵ;jÛn−ĵ;j�Þ

TrF0jFijðnÞ − 1
a4 Tr½π̂n;jImP̂ijðnÞ� − 1

2a4 ðTr½π̂n;jImĈijðnÞ� þ Tr½Û†
n−ĵ;jπ̂n−ĵ;jÛn−ĵ;jImĈijðnÞ�Þ

TrFijFijðnÞ 2
g2sa4

ReTr½1 − P̂ijðnÞ�
P

x¼0;1

P
y¼0;1

1
2g2sa4

ReTr½1 − P̂ijðn − xî − yĵÞ�
TrFijFkjðnÞ Tr½F̂N

ijðnÞF̂N
kjðnÞ� Tr½F̂C

ijðnÞF̂C
kjðnÞ�
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contain products of Fμν in different directions, they are
most sensibly computed either at lattice sites or at the center
of spacetime volumes. For the sake of simplicity, we will
focus on discretizing the EMT on lattice sites.
The first term in Eq. (8) is the Lagrangian. On the lattice,

it can be written

Tr½FμνðnÞ2� ¼
2

g2sa2μa2ν
ReTr½1 − PμνðnÞ� þOðaÞ; ð11Þ

where gs is the coupling constant. Here aμ are the lattice
spacings in the μ direction. We denote the temporal spacing
a0, and assume all other spacings to be the same and denote
them as a. When working in the Hamiltonian formalism,
we take a0 → 0 before performing continuum extrapola-
tions. If instead we considered Tr½Fμνðnþ 1=2½μ̂þ ν̂�Þ2�
located at the center of the plaquette, we would find
Eq. (11) is accurate to Oða2Þ.
To improve the discretization on a site up to Oða2Þ, we

can simply average over the rhs of Eq. (11) for four
plaquettes around the site n in μν plane:

Tr½FμνðnÞ2�¼
X
x¼0;1

X
y¼0;1

1

2g2sa2μa2ν
ReTr½1−Pμνðn−xμ̂−yν̂Þ�

þOða2Þ: ð12Þ

In cases of F0i, the Oða0Þ error induced in the time
direction is acceptable as we take the limit a0 ≪ a in
the Hamiltonian formalism. This implies that we do not
need to average over four plaquettes in both direction t̂ and
î. Instead, we need to average over only two plaquettes in î
direction around the site:

Tr½FoiðnÞ2� ¼
X
x¼0;1

1

g2sa2μa2ν
ReTr½1 − Pμνðn − xîÞ�

þOða2; a0Þ: ð13Þ

The second term of Eq. (8), FμαFνα, requires us to
construct a discretization for Fμν itself. The naïve discre-
tization for the field strength tensor is

FN
μνðnÞ ¼ −

i
2gsaμaν

ðPμνðnÞ − P†
μνðnÞÞ þOðaÞ: ð14Þ

Note again that FN
μνðnÞ is evaluated on a lattice site. The rhs

of Eq. (14) approximates the value at the center of the
plaquette up toOða2Þ. To improve the on site discretization
scheme up to Oða2Þ, one can use so-called clover operators
as shown in Fig. 1:

CμνðnÞ ¼
1

4
½Pμ;ν þ Pν;−μ þ P−μ;−ν þ P−ν;μ�ðnÞ: ð15Þ

From these clover operators we construct the improved
clover discretization of the field strength:

FC
μνðnÞ ¼ −

i
2gsaμaν

ðCμνðnÞ − C†
μνðnÞÞ þOða2Þ: ð16Þ

Here we have used P−μ;νðnÞ, for instance, to denote the
plaquette in which the first link begins at site n and ends at
site n − μ̂. In an Abelian theory, we of course have
P−μ;νðnÞ ¼ Pμ;νðn − μÞ†, as the starting site does not
matter. This is not the case in general.
The clover improvement ensures that the leading dis-

cretization errors are Oða2; a20Þ regardless of orientation.
However, as mentioned, working in the Hamiltonian
formalism implies a0 ≪ a. As a result, Oða0Þ corrections
are acceptable while OðaÞ are not. This, combined with the
difficulty of implementing time-nonlocal operators, moti-
vates the “half-clover” operator—analogous to Eq. (13)—
averaged over two plaquettes as in Fig. 1:

Bi0ðnÞ ¼
1

2
ðPi0ðnÞ þ P0ð−iÞðnÞÞ: ð17Þ

This is enough to implement Tμν correctly up to Oða2; a0Þ:

FB
i0ðnÞ ¼

−i
2gsa0a

ðBi0ðnÞ − B†
i0ðnÞÞ: ð18Þ

B. Transfer matrix

With a choice of discretization of Fμν and F2
μν, one can

compute a lattice Tμν in the action formulation. In the
Hamiltonian formulation, Tμν (which are functions of the
space of field configurations) must be replaced by operators
T̂μν which act on the Hilbert space of gauge links on a
spatial lattice. A few options exist for performing this
transformation. One is to use the Legendre transform;
however, this is complicated by gauge invariance. The
transfer matrix formalism has the advantage of being
manifestly gauge invariant.
Given a path integral, we can construct a Hilbert space

and a transfer matrix such that the transfer matrix com-
pletely characterizes the path integral. Taking the logarithm

FIG. 1. Schematic view of the plaquette, the clover, and the
half-clover.
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of the transfer matrix (in our case, in the a0 → 0 limit)
yields a Hamiltonian usable for quantum simulations.
Now, consider a perturbation to that action by a term

proportional to O. The free energy, differentiated with
respect to the perturbation, yields the hOi. Connecting the
perturbed system to one in the Hamiltonian formalism via
the transfer matrix, we obtain a perturbed Hamiltonian,
revealing what operator Ô to use on a quantum computer.
The Hamiltonian which gives the same dynamics as

the Wilson action is derived in Ref. [83]; this is the
unperturbed case of the above procedure. In this section,
we first summarize the derivation of the Kogut-Susskind
Hamiltonian HKS [93] via the transfer matrix, and then
discuss the perturbed case which yields specific operators
of interest. Our starting point is the Minkowski path
integral corresponding to the Wilson action3:

SW ¼
XNt

t¼1

KðtÞ þ VðtÞ; ð19Þ

KðtÞ ¼
X
n

X
i

a
g2sa0

ReTr½1 − P0iðn; tÞ�; ð20Þ

VðtÞ ¼
X
n

X
i<j

a0
g2sa

ReTr½Pijðn; tÞ�: ð21Þ

Here n denotes a spatial site and i, j denote spatial
directions. The corresponding path integral is of course
the integral over all field configurations of eiS. Given a
Hamiltonian H, we could also construct a path integral by
splitting the time evolution operator e−iHt into a product of
many nearly identity pieces T̂ ¼ e−iHa0 (this is the transfer
matrix) and inserting a complete set of states:

Z ¼
Z

DUhUtjP̂ T̂ jUt−a0i � � � hUa0 jP̂ T̂ jU0i

¼
Z

DU eiS: ð22Þ

Here jUi is a basis state in “position basis”: an element of the
gauge group is specified at each link. The gauge projection
operator P has been inserted between every pair of states in
order to obtain a time-translation-invariant action.
As a result, we see that for the HamiltonianH to give the

same dynamics as the action of Eq. (19), the matrix
elements of the transfer matrix T̂ ¼ e−ia0Ĥ should be
given by

hU0jT̂jUi
¼ eiðKðtÞþVðtÞÞ

¼ e
i
P

n
ð a
g2s a0

P
i
ReTr½1−Un;iU

0†
n;i�þ

a0
g2s a

P
i;j
ReTr½Un;iUnþî;jU

†
nþĵ;i

U†
n;j�Þ:

ð23Þ

We are working in temporal gauge: Un;0 ¼ 1 for all n.
For our derivations this is an irrelevant technicality, but see
[83,95] for detailed expositions of the relationship between
timelike links and the gauge projection operator.
Equation (23) suffices to define the transfer matrix, but

we would like to express it in terms of more natural objects
in the Hamiltonian formulation: in particular, the Û that are
diagonal in the position basis, and their conjugate operators
π̂ defined below. As spatial plaquettes are already written
only with Us, they remain in the same form and all
arguments U become operators Û. On the other hand K
results in operators not diagonal in this basis, and so one
cannot read off the kinetic part of H from Eq. (23) directly.
To find an operator which satisfies Eq. (23), we introduce
unitary operators defined on each link,

R̂n;iðgÞjUm;ji ¼
� jgUm;ji when m ¼ n and i ¼ j

jUm;ji otherwise
; ð24Þ

which can be written with Hermitian operators π̂ as

R̂n;iðgÞ ¼ eix
aπ̂an;i : ð25Þ

In short, π̂ generate rotations R̂ of each link. Here, in the
case of SUðNÞ, the xa are N2 − 1 real parameters para-
metrizing the group element g ∈ SUðNÞ, and π̂an;i are eight
Hermitian operators [differential operators on the group
SUðNÞ] associated to xa defined on each link. Using these
operators, we rewrite the transfer matrix

T̂ ¼
Z
g∈G

Y
n;i

½dgn;iR̂n;iðgn;iÞ�e
i a
g2s a0

P
n;i
ReTr½1−g†n;i�þiV̂

: ð26Þ

Exchanging g for real parameters xa, one obtains

T̂ ¼
Z

π

−π

Y
n;i;a

½dxan;ieix
a
n;iπ̂

a
n;i �ei

a
g2s a0

P
n;i
ReTr½1−eix

a
n;i

λa �þiV̂
: ð27Þ

In the limit a0 → 0, the integral can be evaluated via the
saddle point method. The saddle point in this case is
degenerate, being the gauge orbit of the point x ¼ 0. As the
whole expression of T̂ is gauge invariant, we take the
saddle-point approximation around x ¼ 0 to obtain

T̂ ∼
Z

dx e
ixρπ̂ρþ ia

2g2s a0
xρxρþiV̂ ¼ Ne−ia0

g2s
2aπ̂ρπ̂ρþiV̂ : ð28Þ

3Strictly speaking, the Wilson action is in Euclidean space,
with the sign of the second term of Eq. (19) flipped. This section
can be formulated in either metric with no difference provided the
Hamiltonian limit is taken [94]; we have chosen Minkowski to
preserve a more straightforward correspondence with the quan-
tum simulation.
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For brevity we have written combined three indices into
ρ≡ ðn; i; aÞ. Together with the spatial plaquette terms from
V, the Hamiltonian is

ĤKS ¼
g2s
2a

X
n;i;a

π̂an;iπ̂
a
n;i −

1

g2sa

X
n
i<j

ReTr½P̂ijðnÞ�: ð29Þ

The first term in the Hamiltonian can also be written as
Tr½π̂2n;i� by defining the N × N matrix π̂n;i ¼ π̂an;iλ

a. Under
gauge transformations, we have

π̂n;i → g−1n π̂n;ign; ð30Þ

and this implicitly defines the transformation law for the
operators π̂an;i as well. Note that the Hamiltonian in either
form is Hermitian and manifestly gauge invariant.
In the rest of the section, we repeat this procedure in the

presence of a perturbation O—in the sections below this
perturbation will be Tμν. In the action formulation, one way
to measure the expectation value ofO at time t0 in a system
governed by the action S is to perturb the action by the
function OðUÞ and define

Zϵ ¼
Z

DU eiðS0þϵOðt0ÞÞ: ð31Þ

Differentiating Zϵ—or rather its logarithm, the free
energy—with respect to ϵ yields

ihOðt0Þi ¼ Z−1
0

�∂Zϵ

∂ϵ
�

ϵ→0

: ð32Þ

A perturbed Hamiltonian Hϵ, yet to be determined,
corresponds to this perturbed path integral. The corre-
sponding transfer matrix has matrix elements given by

hU0je−ia0Hϵ jUi ¼ eiðSþϵOÞ: ð33Þ

Differentiating the transfer matrix with respect to ϵ yields i
times the desired operator; therefore we see the
Hamiltonian should be perturbed to

Ĥϵ ¼ Ĥ0 − ϵÔ=a0: ð34Þ

So, by perturbing the Lagrangian with a component of Tμν

and finding the corresponding perturbed Hamiltonian Ĥϵ,
one can read off the operators T̂μν. To be precise, if the
perturbing parameter is ϵ, then the corresponding operator
in the Hamiltonian formalism is the coefficient of (ϵ).

C. Tμμ in the Hamiltonian formulation

The diagonal components of the EMT consist of two
kinds of terms: F0iF0i and FijFij. Without loss of general-
ity, let us consider T11 in two spatial dimensions.

Perturbing the action by terms proportional to F01ðn0Þ2
and F12ðn0Þ2, we have

Sϵ ¼ SW þ ϵa0a3Tr½F01ðn0Þ2 þ F12ðn0Þ2�: ð35Þ

To simplify notation, Sϵ, Hϵ, and Tϵ will have different
meanings in this and each subsequent subsection, corre-
sponding to the different types of perturbations being
considered.
The perturbing terms are defined on the spacetime lattice

via Eq. (11). For Hϵ to give the same dynamics as by the
action Sϵ, they should be connected via transfer matrix
Tϵ ¼ e−ia0Hϵ as

hU0jTϵjUi ¼ eiSϵ ¼ eiðKϵþVϵÞ; ð36Þ

with

KϵðU0; UÞ ¼ K þ ϵ
2a
g2sa0

ReTr½1 −Un0;1U
0†
n0;1

�; ð37Þ

VϵðU0; UÞ ¼ V þ ϵ
2a0
g2sa

ReTr½1 − P12ðn0Þ�: ð38Þ

The spatial plaquettes in Eq. (38) correspond to diagonal
operators; it is only for Eq. (37) that the transfer matrix
formalism is useful. A little algebra verifies that this
Lagrangian corresponds to the transfer matrix

T̂ϵ ¼
Z

Dg e
iKðgÞþiϵ 2a

g2s a0
ReTr½1−g†n0 ;1�þiV̂ϵ

; ð39Þ

where we have introduced shorthand

Z
Dg≡

Z
g∈G

Y
n;i

dgn;iR̂n;iðgn;iÞ; ð40Þ

KðgÞ≡ a
g2sa0

X
n;i

Re½1 − g†n;i�: ð41Þ

Performing the saddle point approximation gives

T̂ϵ ∼
Z

dx eixρπ̂ρ−xρMρσxσþiV̂ϵ

with Mρσ ¼
−ia
2g2sa0

δρσ − ϵ
ia
g2sa0

δnn0δmn0δi1δj1δab: ð42Þ

Here we have abbreviated ρ≡ ðn; i; aÞ and σ ≡ ðm; j; bÞ.
The integral gives to OðϵÞ,

Ĥϵ¼ĤKS−ϵ

�
g2s
a
Tr½π̂2n0;1�þ

2

g2sa
ReTr½1−P̂12ðn0Þ�

�
: ð43Þ

We read off the operators for FμνFμν:
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Tr½F̂0iðn0Þ2� ¼
g2s
a4

Tr½π̂2n0;i�; ð44Þ

Tr½F̂ijðn0Þ2� ¼
2

g2sa4
ReTr½1 − P̂ijðn0Þ�: ð45Þ

Finally, we can construct Tμμ from these operators:

T̂00ðn0Þ ¼
g2s
2a4

X
i

Tr½π̂2n0;i�

þ 1

g2sa4
X
i<j

ReTr½1 − P̂ijðn0Þ�; ð46Þ

T̂iiðn0Þ ¼
g2s
2a4

Tr½−π̂2n0;i þ π̂2n0;j þ π̂2n0;k�

þ 1

g2sa4
ReTr½1 − P̂ijðn0Þ − P̂ikðn0Þ þ P̂jkðn0Þ�:

ð47Þ

Note that T00ðnÞ is the density of the Kogut-Susskind
Hamiltonian HKS up to a constant term. Because we have
worked only at tree level, the trace of the EMT operator
vanishes as is the case in Eq. (8).
Equation (46) gives T̂μμ up to OðaÞ. To improve the T̂μμ

operators up to Oða2Þ, we use Eqs. (12) and (13) and take
the average around the site n0:

Tr½F̂0iðn0Þ2� ¼
X
x¼0;1

g2s
2a4

Tr½π̂2
n0−xî;i

�; ð48Þ

Tr½F̂ijðn0Þ2� ¼
X
x¼0;1

X
y¼0;1

1

2g2sa4

× ReTr½1 − P̂ijðn0 − xî − yĵÞ�: ð49Þ

These operators enable us to construct T̂μμ up to discre-
tization errors that are Oða2; a0Þ.

D. Tij in the Hamiltonian formulation

Let us now move to deriving the operators T̂ij, that is, the
off diagonal spatial parts of the EMT:

Tij ¼ Tr½−Fi0Fj0 þ FikFjk�: ð50Þ
This definition holds both on the spacetime lattice and as an
operator equation on the Hamiltonian lattice. We first work
with the naïve discretization, and then with the clover
discretization. Without loss of generality, let us take T12 as
an example and perturb the Wilson action with terms in
Eq. (50). We find that T̂ϵ is given by Eq. (36) with

Kϵ ¼ K þ ϵa0a3Tr½FN
10F

N
20�; ð51Þ

Vϵ ¼ V þ ϵa0a3Tr½FN
13F

N
23�: ð52Þ

As before, the spatial plaquettes in Eq. (52) can be directly
converted to operators. The timelike plaquettes in Eq. (51)
will ultimately appear as various π̂. Using R̂ðgÞ operators,
T̂ϵ can be written

T̂ϵ ¼
Z

Dg e
iKðgÞ−iϵ a

4g2s a0
Tr½ðg†n0 ;1−gn0 ;1Þðg

†
n0 ;2

−gn0 ;2Þ�þiV̂ϵ
: ð53Þ

Evaluating the integral via the saddle point x ¼ 0 (exact in
the limit a0 → 0) gives

T̂ϵ ∼
Z

dx eixρπ̂ρ−xρMρσxσþiV̂ϵ ¼ Ae−
1
4
π̂ρM−1

ρσ π̂σþiV̂ϵ

Mρσ ¼
−ia
2g2sa0

δρσ þ ϵ
ia
g4sa0

δnn0δmn0δi1δj2δab; ð54Þ

which at OðϵÞ yields Ĥϵ:

Ĥϵ ¼ ĤKS − ϵ
g2s
a
Tr½π̂n0;1π̂n0;2�

− ϵa3Tr½F̂N
ikðn0ÞF̂N

jkðn0Þ�; ð55Þ

where the second term on the rhs corresponds to
a0a3F10F20. More generally, operators for Fi0Fj0 are

Tr½F̂N
i0F̂

N
j0ðn0Þ� ¼

g2s
a4

Tr½π̂n0;iπ̂n0;j�. ð56Þ

Thus the naïve T̂ijðn0Þ in the Hamiltonian formulation is

T̂N
ijðn0Þ ¼ −

g2s
a4

Tr½π̂n0;iπ̂n0;j� þ Tr½F̂N
ikðn0ÞF̂N

jkðn0Þ�: ð57Þ

The clover approximations are obtained from FC
ij in

Eq. (16) and FB
i0 in Eq. (18). As before, the transition from

the action formalism to the Hamiltonian is straightforward
for Fij, so we focus only on the F10F20 term. For these,

KϵðU0; UÞ ¼ K þ ϵa0a3Tr½FB
10ðn0ÞFB

20ðn0Þ�: ð58Þ

We use the definitions of Fig. 2 for the links around n0. For
the example of Un0;1, we denote operators and functions on

them as U1; Û1; π̂1, and g1 ¼ eix
a
1
λ2 . Then T̂ϵ is

T̂ϵ ¼
Z

Dg e
iKðgÞ−i ϵa

16g2s a0
Tr½ðg†

1
−g1þÛ†

0
ðg†

0
−g0ÞÛ0Þðg†3−g3þÛ†

2
ðg†

2
−g2ÞÛ2Þ�þiV̂

: ð59Þ
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After the saddle point approximation around x ¼ 0, T̂ϵ

simplifies and becomes

T̂ϵ ∼
Z

dx eixρπ̂ρ−xρMρσxσþiV̂ ¼ Ae−
1
4
π̂ρM−1

ρσ π̂σþiV̂

with Mρσ ¼ −
ia

2g2sa0
δρσ −

iϵa
4g2sa0

ðM1Þρσ: ð60Þ

Matrix elements of ðM1Þρσ are zero other than

ðM1Þðn0;1;aÞðn0;2;bÞ ¼ δab;

ðM1Þðn0;1;aÞðn2;2;bÞ ¼ Tr½λaÛ†
2λ

bÛ2�;
ðM1Þðn1;1;aÞðn0;2;bÞ ¼ Tr½Û†

0λ
aÛ0λ

b�;
ðM1Þðn1;1;aÞðn2;2;bÞ ¼ Tr½Û†

0λ
aÛ0Û

†
2λ

bÛ2�; ð61Þ

where sites n1, n2 are as labeled in Fig. 2. Now by
expanding Eq. (60) to linear order in ϵ, we obtain the
perturbed Hamiltonian

Hϵ ¼ HK;S − ϵ
g2s
4a

ðTr½π̂1π̂3� þ Tr½π̂1Û†
2π̂2Û2�

þ Tr½Û†
0π̂0U0π̂3� þ Tr½Û†

0π̂0Û0Û
†
2π̂2Û2�Þ: ð62Þ

Thus Fi0Fj0 is generally implemented as

Tr½F̂B
i0F̂

B
j0ðn0Þ�

¼ g2s
4a4

ðTr½π̂n0;iπ̂n0;j�þTr½π̂n0;iÛ†
n0−ĵ;j

π̂n0−ĵ;jÛn0−ĵ;j�
þTr½Û†

n0−î;i
π̂n0−îÛn0−î;iπ̂n0;j�

þTr½Û†
n0−î;i

π̂n0−î;iÛn0−î;iÛ
†
n0−ĵ;j

π̂n0−ĵ;jÛn0−ĵ;j�Þ: ð63Þ

The spatial FikFik via clovers can be directly converted to
operators. With these operators, operators for measuring
the spatial off-diagonal components of Tμν are fully
constructed following Eq. (50).

E. T0i in the Hamiltonian formulation

In this subsection we derive Hermitian operators for T0i,
whose all terms contain timelike plaquettes and thus need
to be appropriately converted for quantum simulations. As
an example, T01, via naïve discretization, is written as

T01 ¼ Tr½F02F12 þ F03F13�; ð64Þ

¼ Tr½FN
02F

N
12 þ FN

03F
N
13� þOðaÞ: ð65Þ

To find operators for T01, As two terms are in the same form
FN
0jF

N
ij, let us perturb the Wilson action with only FN

02F
N
12 at

particular site n0 to obtain

KϵðU0; UÞ ¼ K þ ϵa3a0Tr½FN
02F

N
12�; ð66Þ

from which we find the following T̂ϵ:

T̂ϵ ¼
Z

Dg e
iKðgÞ− iϵ

4g2s
Tr½ðgn0 ;2−g

†
n0 ;2

ÞðP̂12ðn0Þ−P̂†
12
ðn0ÞÞ�þiV̂

: ð67Þ

In the limit of a0 → 0, one can approximate the integral via
saddle point approximation around x ¼ 0:

T̂ϵ ∼
Z

dx e
ia

2g2s a0
xρδρσxσþixρπ̂0ρþiV̂

where π̂0ρ ¼ π̂ρ þ
ϵ

g2s
δnn0δi2Tr½λbImP̂12ðn0Þ�: ð68Þ

Evaluating the Gaussian integral gives, at OðϵÞ,

Ĥϵ ¼ ĤKS þ ϵ
1

a
Tr½π̂n0;2ImP̂12ðn0Þ�: ð69Þ

From the perturbed Hamiltonian, we read off

Tr½F̂N
02F̂

N
12ðn0Þ� ¼ −

1

a4
Tr½π̂n0;2ImP̂12ðn0Þ�: ð70Þ

Therefore, the operator to give T0i with naïve discretiza-
tion is

T̂0iðn0Þ ¼ −
X
j≠i

1

a4
Tr½π̂n0;jImP̂ijðn0Þ�: ð71Þ

The naïve discretization induces OðaÞ error in T0i. To
improve up to Oða2Þ, we use the clovers, FC

ij in Eq. (16)
and FB

i0 in Eq. (18) instead. Again as an example, we add
F02F12 to the Wilson action to derive the transfer matrix
from a perturbation given via

KϵðU0; UÞ ¼ K þ ϵa3a0Tr½FB
02ðn0ÞFC

12ðn0Þ�: ð72Þ

In the following we introduce notation for links around the
site n0 as in Fig. 3. The transfer matrix is then

FIG. 2. Half-clovers B10ðn0Þ and B20ðn0Þ at site n0.
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T̂ϵ ¼
Z

Dg e
iKðgÞ−i ϵ

8g2s
Tr½ðg1−g†1þÛ†

0
ðg0−g†0ÞÛ0ÞðĈ12ðn0Þ−Ĉ†

12
ðn0ÞÞ�þiV̂

;

ð73Þ

where Ĉ is the clover operator. In the limit of a0 → 0, one
can evaluate the integral via the saddle point around x ¼ 0:

T̂ϵ ∼
Z

dx e
ia

2g2a0
xρδρσxσþixρπ̂0ρþiV̂

; ð74Þ

π̂0ρ ¼ π̂ρ þ
ϵ

2g2s
δnn0δi2ðTr½λaImĈ12ðn0Þ�

þ Tr½Û†
0λ

aÛ0ImĈ12ðn0Þ�Þ; ð75Þ

which yields to OðϵÞ,

Ĥϵ ¼ ĤKS þ ϵ
1

2a
ðTr½π̂1ImĈ12ðn0Þ�

þ Tr½Û†
0π̂0Û0ImĈ12ðn0Þ�Þ: ð76Þ

From Ĥϵ, we read off, for general F0jFijðn0Þ,

Tr½F̂B
0jF̂

C
ijðn0Þ� ¼ −

1

2a4
ðTr½π̂n0;jImĈijðn0Þ�

þ Tr½Û†
n0−ĵ;j

π̂n0−ĵ;jÛn0−ĵ;jImĈijðn0Þ�Þ:
ð77Þ

From this operator, T0iðnÞ can be fully constructed.

IV. QGP STATE PREPARATION

We have described the operators, acting on the
Hamiltonian lattice, that provide the shear viscosity trans-
port coefficients. In order to evaluate these expectation
values, we need circuits corresponding to time evolution
under the physical Hamiltonian; such circuits are described
for a general gauge theory in Ref. [95]. In addition we need
to prepare states for them to act on which will enable one to
reproduce the appropriate thermal expectation values. The
purpose of this section is to describe several practical
methods for this thermal state preparation.

Before describing the methods, it is worth examining
whether there are in principle difficulties preparing a
thermal state, such that the preparation necessarily requires
time exponential in the volume. This is famously the case
for certain frustrated spin systems [96] at low temperatures.
If a similar barrier exists for thermal state preparation in
gauge theories, our methods will be of no practical use.
To see there is unlikely to be a problem with the

preparation of a QCD (or Yang-Mills) thermal state, it is
useful to appeal to experiment. A key feature of heavy-ion
phenomenology is that after the initial hard interactions, the
system rapidly equilibrates into a system that is well
described by hydrodynamics. The equilibration time is
believed to be ∼1 fm, which is comparable to the character-
istic scale of QCD. It is highly plausible that such rapid
equilibration is a generic feature of strongly coupled
theories [12,97]. Accordingly, one expects that if an out-
of-equilibrium state is prepared, it equilibrates on roughly
the natural timescales of the theory. Thus, it seems
implausible that preparing a thermal state would take an
exponentially long time.
It is particularly convenient that the thermal states of

interest to us have T ∼ 200 MeV. Very cold temperatures,
near the true ground state, may be difficult to prepare due to
frustration. Very high temperature states (T ≫ ΛQCD) likely
have difficulty thermalizing, as the fluid is closer to a free
gas. At T ∼ 200 MeV, the strongly interacting fluid is at a
temperature comparable to other physical scales. Even
without experimental evidence, we might expect such
systems to equilibrate quickly.
Given this discussion it is natural to assume that

polynomial-time thermal state preparation is possible—
even lacking a formal proof. With this assumption, we now
turn to the task of finding a practical way to construct such
a state.
In this section several approaches are explored to prepare

thermal states.Weexploremultiple paths sinceat this stage the
relative merits with respect to future quantum devices is
unknown. One general note applies to all methods discussed
here. Common digitization schemes result in many possible
states on thequantumcomputer that correspond tonophysical
state. An important example is gauge invariance: the physical
states are those that are unchanged by any gauge trans-
formation. Naïvely, this is a serious difficulty, as we need to
ensure that the prepared state is one of the raregauge-invariant
ones. However, as discussed in Refs. [95,98,99] and else-
where, because time-evolution (even under a Suzuki-Trotter
approximation) commutes with gauge transformations, any
state preparation method that builds a gauge-invariant state
and then performs time-evolution will automatically respect
the gauge symmetry up to quantum noise.

A. Thermal states

Before looking at detailed schemes, it behooves us to
first consider what we mean by a thermal state. Ideally,

FIG. 3. Clover C12ðn0Þ and half-clover B02ðn0Þ at site n0.
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we want a single quantum state in which expectation
values match those given by the canonical ensemble
hOi ¼ Z−1Tre−βHO. In such a state the physical system
—in this case of the appropriately truncated version of the
lattice gauge theory—is modeled by a subspace of a larger
system. We can define a thermal state as

jTi ¼
X
k

ckjψkisys ⊗ jψkicomp; ð78Þ

where a subscript of sys denotes a state of the physical
system being studied, and one of comp denotes the state of
the complementary system. The coefficients ck are fixed by
considering what happens when we trace out the comple-
mentary system; in particular, we require

ρsysT ≡ Trcomp½jTihTj� ¼
P

ke
−βEk jψkisys syshψkjP

je
−βEj

. ð79Þ

so that for an operator Osys that acts entirely in the system
subspace, the quantum expectation values match the
desired thermal ones. Thus, the density matrix appears
as the classically uncertain state of a quantum system once
the complementary system has been traced out.
Obtaining a true thermal state is difficult but generally

unnecessary: a good approximation is sufficient. In fact,
there are a wide variety of possible ensembles, all of which
agree in the thermodynamic limit—see Ref. [100] for an
elegant example. By exploiting the equivalence between
microcanonical and canonical descriptions4 in the thermo-
dynamic limit, we should be able to learn about systems
even when we cannot obtain a distribution of energies with
probabilities given by Boltzmann weights.
In the microcanonical approach to statistical mechanics,

one computes properties at a fixed energy rather than at a
fixed temperature. Given the standard assumptions relating
statistical mechanics to thermodynamics, in the thermody-
namic limit of large systems, quantities computed in the
microcanonical and canonical descriptions will agree [101].
For “typical” quantum field theories (presumably including
both Yang-Mills and QCD), given an eigenstate jΨi of the
system Hamiltonian Hsys sampled from the set of all
eigenstates with energy density is near ϵ, expectation
values hΨjOjΨi will agree in the thermodynamic limit
with the canonical values.
This suggests a cheap approach to obtain thermody-

namic expectation values. Rather than preparing a mixed
state that exactly reproduces the canonical ensemble, we
prepare a typical pure state with the desired energy density.
This can be done, in practice, by preparing any pure state
with the desired energy density, and then time evolving to
allow the state to thermalize.

B. The heat bath approach

While there is no practical way of constructing a perfect
thermal state jTi, it is quite straightforward to find an
algorithm to create a reasonable approximation. Themethod
exploits the physical principle of a heat bath. The key idea is
that one considers a very large total system—much larger
than the system subspace—with the complementary sub-
space serving as heat bath. The heat bath is subject to
dynamics under theHamiltonianHHB, which allows explicit
construction of its eigenstates.
One starts with initial conditions in which the heat bath

and the system are decoupled; the heat bath is prepared in a
known initial state of low energy and the system is in some
high-energy state. This physical state is chosen primarily
for simplicity—the details of the state will not matter
provided that the heat bath is sufficiently large. The heat
bath and the system of interest are dynamically coupled in a
gauge invariant way via a Hamiltonian, Hcouple, which is
initially switched off. The coupling Hamiltonian satisfies

½Hcouple; Hsys� ≠ 0; ½Hcouple; HHB� ≠ 0; ð80Þ

so that when it is switched on the coupling allows energy to
flow between the system and the heat bath. If one waits
sufficiently long, then one might reasonably expect the
system to approximately thermalize. The Hcouple must be
small in the sense that at all stages in the evolution the
absolute value of its expectation value:

hHcouplei ≪ hHsysi − hHsysivac; ð81Þ

where hHsysivac is the expectation value of the vacuum
state. This condition ensures that the details of the coupling
between the heat bath and the system has a negligible effect
on the final result.
Once the system has thermalized, one can switch off

Hcouple. This is essentially modeling the physical process by
which physical systems thermalize; the basic assumption
underlying statistical mechanics is that the details of how
the system thermalizes should not matter. By choosing
various initial configurations of the heat bath, one can
evolve the system into (approximately) thermalized sys-
tems at various temperatures.
While this method should work as a matter of principle,

it has a strong practical disadvantage: it requires a very
large number of qubits to encode the heat bath. Of course,
the general notion of a heat bath in thermodynamics is that
it should be large. Moreover, in the present context there are
some particular challenges requiring this.
Equations (78) and (79) require that jTi formally

requires a heat bath at least as large as the system, otherwise
the condition HBhψ 0

kjψkiHB ¼ δk0;k, which is implied by
them cannot be met. However as a practical matter the heat
bath is coupled to the system in an passive way; it does not
couple system states to heat bath states in a manner that

4Here, we are not considering other conserved quantities in the
system so that the grand canonical ensemble is not relevant.
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naturally pushes the system towards configurations satisfy-
ing HBhψ 0

kjψkiHB ¼ δk0;k. Rather to achieve some approxi-
mation to that condition, one requires a large heat bath
subspace in which approximate orthogonality is likely to
emerge naturally.
There is a second practical issue that suggests the need

for large heat baths. For a generic interacting theory, the
only states we know how to write explicitly in a practical
way are states with energies at the scale of the lattice
spacing. Thus, to cool the system to a temperatures of
physical interest one needs to transfer a substantial energy
from the system to the heat bath. This in turn means that the
heat capacity of the heat bath must be large.
While heat bath must be large, it is clear that its size

scales polynomially in the physical size and lattice spacing
of the system. Thus, the heat bath is a useful demonstration
of an explicit method with polynomial scaling. However,
given the large size of heat bath that the approach requires,
it is unlikely to be the optimal way to pursue thermal
physics on quantum computers.

C. Active cooling

A principal problem with the heat bath approach is that it
is essentially passive. The only active step is the connecting
the system with the heat bath through Hcouple. One reason
the heat bath needs to be large in such a passive scheme is
that it must absorb all of the excess energy of the system,
which will start at an energy density of lattice scales.
Let us consider a slight variation on the heat bath

approach. Suppose that instead of a single large heat bath
one had N smaller heat baths each starting in its ground
state configuration. Moreover, let the system begin in a
state with hHsysi ¼ E0. We connect the system to the first
heat bath alone, via a small coupling Hamiltonian. The
coupled system evolves dynamically for some time after
which this coupling is switched off. Assuming that the
coupling Hamiltonian is small in sense of Eq. (81), the
dynamics must reduce the energy of the system: the energy
of the coupled system is conserved and the energy of the
complementary system can only increase since it starts in
the ground state. Thus at the end of the time which the first
heat bath is coupled to the system hHsysi ¼ E1 with
E1 < E0.
At that stage, the system is decoupled from the first heat

bath and coupled to the second. We perform more time
evolution such that hHsysi ¼ E2, with E2 < E1. Continuing
the process, we see that the energy is monotonically
decreasing:

EN < EN−1 � � � < E2 < E1 < E0: ð82Þ

Including enough smaller heat bath allows the system to
lose as much energy as one wishes provided the coupling
Hamiltonian is sufficiently small.

Superficially, this approach—like the heat bath
approach—is essentially passive. The only active step
appears to be the coupling and decoupling of the system
with the various heat baths. This is misleading, however,
there was another active step: preparing the various heat
baths to be in their ground state. If one was not able to do
that, the approach would not be viable. However, if one can
initialize these into their ground states, there is no need to
use multiple different “heat baths”; rather the same “heat
bath” can be reused and reinitialized to its ground state
between cycles. The system will yield precisely the same
the results as it would have had one used multiple “heat
bath.” The virtue of this is that qubit costs needed obtain a
typical energy density for the system is greatly reduced
compared to the heat bath method.
In what follows, we refer not to a “heat bath” but

suggestively to a “pump” since it does not keep the system
in thermal equilibrium. The pump can be of similar size to
the physical system—or smaller—and the key point is that
it absorbs energy from the system, moves the energy into
the environment and is reinitialized to its ground state. This
step of reintitalizing the complementary system is an active
one. In effect the pump is acting as quantum heat pump or
refrigerator [102] (for a review of quantum refrigerators see
Ref. [103]), thus the name.
Of course, there is no way for such a device to act

entirely via unitary evolution within the Hilbert space of
qubits. The act of the pump dropping back into its ground
state is clearly not unitary. It is worth recalling that quantum
computing requires more than just control of the unitary
behavior of qubits: one of the DiVincenzo criteria [104] is
the ability to initialize the qubits to some fiducial state. This
initialization is not unitary and necessarily involves entan-
gling the states of the Hilbert space of the quantum
computer with the environment. This method requires that
one can separately initialize the system and the pump, and
that the initialization (which as we will see requires
measuring the pump qubits) of the pump can be done
much faster than the physical system can decohere—a
nontrival device specification.
It is useful to have a concrete model in mind for the

purposes of modeling. Conceptually, if not practically, the
simplest way to think of this is to choose the fiducial state
of the pump as jgipump ¼ j0; 0; 0;…0; 0; 0i and then to
choose Hpump so its ground state is the fiducial state. One
can reinitialize by simply measuring the qubits using σz to
determine if the qubit is in j1i or j0i and if the result is j1i
act on it with the unitary operator σx. In effect, this can be
viewed as a qubit version of Maxwell’s demon, and a cycle
that employed such a device might be referred to as a
quantum demon refrigerator.
Let us provide a simple model of a cycle which will

lower the system energy which started from a state with a
lattice-scale energy density. The Hilbert space is spanned
by outer product states of a space characterizing the system
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and the pump, which we will now assume to be comparable
in size. Again we have three Hamiltonians,Hsys that acts on
the system, Hpump, that acts in the pump space, and Hcouple

that couples the two. The coupling dynamics is constructed
to be gauge invariant, Hcouple must have nonzero commu-
tators withHsys andHpump and must be small in the sense of
satisfying inequality (81).
A schematic description of an active cooling cycle is

given in Fig. 4. In step I the time evolution has been
switched off, the system begins in some pure or mixed state
with hHsysi ¼ EI relative to its ground state, the pump
subspace is then initialized to its ground state, with
hHpumpi ¼ 0. Since Hcouple satisfies inequality (81), the
total energy (relative to the ground state) of the combined
system hHsys þHpump þHcouplei, is also EI up to a small
correction. In step II, the time evolution associated with the
combined Hamiltonian is switched on suddenly, since this
is sudden hHsys þHpump þHcouplei remains at EI . In step
III the combined system undergoes time evolution under
Hsys þHpump þHcouple for a fixed time. During this time
evolution, the total energy is conserved and any net energy
flow goes from the system to the pump. After some time,
hHsysi reaches some value EIII where EIII < EI . The
time evolution then is switched off suddenly leaving
hHsysi ¼ EIII < EI. At that point, the cycle repeats.
Thus each time through the cycle, hHsysi drops. One could
continue iterating the cycle and lowering hHsysi until the
inequality (81) ceases to hold.

Consider the reduced density matrix of Eq. (79) for the
system as after tracing over the pump. By construction step
I preserves ρsysT . This is obvious since during there is no
coupling between the system and the pump.
Suppose at step I the full density matrix, ρ̂I is given by

ρ̂I ¼
X

a;a0;b;b0
ja0isysjb0ipumpρ̂a;b;a0b0

pumphbjsyshaj; ð83Þ

where the states jaisys and jbipump are states in an
orthonormal basis for the system space and complementary
space, respectively. Thus matrix elements of the reduced
matrix elements are given by

ρ̂I sysa;a0 ¼
X
b;b0;b00

pumphb00jjbipumpρ̂a;b;a0b0
pumphb00jjbipump: ð84Þ

Thus the full density matrix at step II is given by

ρ̂II ¼
X
a;a0

ja0isysjgipump

� X
b;b0;b00

pumphb00jjbipumpρ̂Ia;b;a0b0
pumphb00jjbipump

�
pumphgjsyshaj; ð85Þ

where jgipump is the ground state of the pump. In the
remainder of the cycle ρ̂ evolves to ρ̂III ¼ U†

IIIρIIUIII with
UIII ¼ expð−iðHsys þHpump þHcoupleÞτ3Þ where τ3 is the
time the system evolves for in step III.
In the active cycle, energy is pumped out of the

combined system (system plus pump) and into the envi-
ronment by the act of initializing the pump. In the process
the entropy of the pump drops and thus the entropy of the
environment increases. For that reason we label this
approach an active cooling cycle. One might quibble that
this is a bit of a misnomer since the system is not thermally
equilibrated and thus, it is not clear that the energy pumped
out can be accurately described as heat. But the essence of
this active cycle is very much the same as the cooling in a
quantum refrigerator. Moreover as described below one can
use a variation on this approach to achieve a good
approximation to a true thermal equilibrium.
Clearly, this active cycle approach is rather general and

variations on this theme can be developed. As formulated,
the approach requires explicit choices for the size of the

pump as well as for the form and strength of Hcouple, and
Hpump, and τ3. It is clear that to get high performance with
this method one must choose these well. It is an open
question as to what optimal choices are for these.
One obvious approach is to tailor the overall strength of

Hcouple to the iteration. There is a trade-off: strong coupling
leads to rapid transmission of energy from the system to the
pump and reduces the overall time for reducing the energy.
However, this comes at cost; large coupling limits the
lowest energy density of the system one can achieve. The
cycle can only be shown to remove energy from the system
when the energy in Hcouple is negligible. Thus a sensible
approach would be to make Hcouple large during early
cycles in order to facilitate rapid energy transfer and in later
cycles reduce it to allow reduction to lower energy
densities.
A similar approach might be taken with regard to the

pump. There is a freedom to set the overall energy scale of
Hpump. It is straightforward to see that Ncycles, the number
of cycles needed to go from hHsysi ¼ Ei (presumably with

FIG. 4. An active cooling cycle.
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energy density at the lattice scale) to a final configuration
with hHsysi ¼ Ef scales logarithmically with the ratio of Ei

to Ef:

Ncycles ¼ A log

�
Ei

Ef

�
; ð86Þ

where A is a numerical coefficient of order unity, provided
that one tailors the value of the overall strength of the cycle
to the cycle in an appropriate way.
To see how this comes about, consider the trade-offs

involved in setting the scale of Hpump. If it is set too large,
then it is difficult to induce transition in the pump and this
energy flow will be very slow. On the other hand if it is too
small, then the maximum amount of energy that can be
absorbed in a cycle is limited. This is clearly true since the
system is finite. Moreover, at some point the energy flow
from the system of interest to the pump becomes negligibly
small (either because the system and pump are equilibrating
towards zero net flow). The amount of energy transferred
before the energy flow becomes negligible will clearly
depend sensitively on Hpump.
A simple compromise would be to choose the overall

strength of Hcomp to be large enough so that some modest
fixed fraction, f of the system energy at the beginning of
the cycle is transferred before the energy flow becomes
negligible. However, the exact value depends on the initial
configuration of system with the strength increasing with
hHsysi. Thus one might change the strength of each cycle to
keep f approximately the same in each cycle. It would be
natural to end each cycle well before the fraction of the
energy, f, is transferred, since to the extent the system
equilibrates the energy transfer slows down as the fraction
approaches f. For simplicity, let us assume that each cycle
stops when the fraction of energy transferred is fc × f with
1 > fc > 0. One might, for example, take fc ¼ 1

2
. Thus

each cycle reduces by a factor of 1 − fcf and the number of
cycles it takes to go from a configuration with Hsys ¼ Ei to
one with hHsysi ¼ Ef is thus given by Eq. (86) with

A ¼ −
1

logð1 − ffcÞ
: ð87Þ

Of course, the method outlined above is undoubtedly not
the optimal way to reduce the energy of system of interest
from Ei to Ef given various resource constraints. But it
clearly demonstrates that the minimum number of cycles
needed can be quite modest since the optimal choice will
scale no worse than logarithmically in Ei=Ef.
As given so far this approach can produce density

matrices with hHsysi at energy densities of interest and
this should allow for a microcanonical extraction of trans-
port coefficients. While this is sufficient for our purposes it
is useful to note that a variation on this method is likely to

produce density matrices ρsys which, to good approxima-
tion, are thermal.
The basic approach is to start from preceding approach

and produce ρsys with hHsysi that is at the correct general
scale for the energy of the thermal ensemble at temperature
T that we wish to study. This can be done in comparatively
few cycles.
Next one continues to cycle but instead of reinitializing

the pump to its ground state, each time reinitialize the pump
to some well-defined state with Epump. This can be done by
initializing to the ground state and then making unitary
transformations to bring the pump to that state. By
hypothesis, the dynamics of the pump is simple enough
to do so. The value of Epump to be match the expectation
value of Hpump in thermal equilibrium with a heat bath at
temperature T.

Epump ¼ −T2
Z0ðTÞ
ZðTÞ with ZðTÞ ¼

X
i

e−iEi=T: ð88Þ

If in each cycle step III is allowed to last long enough for
the system and the pump to equilibrate, then after multiple
cycles one would expect that ρsys to become approximately
thermal with temperature T.

D. Adiabatic state preparation

An entirely different approach to preparing a low-
temperature thermal state begins from the adiabatic theo-
rem [105]. Adiabatic state preparation is a method for
obtaining the ground state of a Hamiltonian. Given the
ground state of the physical Hamiltonian, it is an easy
matter to add energy. Allowing the resulting system to
thermalize, we can obtain a thermal state at any desired
energy density. A great benefit to adiabatic methods is that
they require no ancillary qubits to perform the preparation.
The primary difficulty is in obtaining the ground state.
Adiabatic state preparation begins with a Hamiltonian

whose ground state is known, and can be prepared
directly on the quantum computer. One allows quantum
time evolution to progress while slowly changing the
Hamiltonian from the initial one to the Hamiltonian of
interest. In principle, such a scheme is guaranteed to yield
the ground state of the system of interest to good approxi-
mation provided that the Hamiltonian is varied slowly. For
gauge theories there is an additional constraint. One wishes
to find the ground state in the physical subspace. As a
result, it is natural to restrict all Hamiltonians in the path
from the initial one to the final one to be invariant under
spatial gauge transformations.
There is a generic, practical issue for any approach of this

sort: it requires a slow evolution and hence long times.
These constraints are polynomial in all parameters, but
nevertheless may result in significant hurdles for the
foreseeable future. Quantifying the time evolution needed
is model dependent and remains for future work.

COHEN, LAMM, LAWRENCE, and YAMAUCHI PHYS. REV. D 104, 094514 (2021)

094514-14



Anobvious state to start with is theweak-coupling limit of
the lattice gauge theory. In the case of pure Yang-Mills
theory, the ground state is the gauge-invariant projection of
the ground state ofN2 − 1 free vector fields. The preparation
of this state is described in Ref. [106]. However, several
difficultiesmay prevent this limit frombeing practical. In the
weak coupling limit, the spatial volume being simulated is
much smaller than the confinement scale. In order to reach
the physical regime, this boundary must be crossed, and it is
likely that a phase transition (associated with an exponen-
tially small or even vanishing gap) is encountered. Even if
there is no phase transition along the path to the desired
coupling, the weak-coupling limit is inaccessible to
many proposed truncation schemes for the gluon fields,
including approximation by a finite subgroup [107,108] and
momentum-space truncation [109].
The ground state of the strong-coupling limit is simpler

to prepare [106] and is natural in both the subgroup
approximation and the character expansion. Furthermore,
the strong-coupling limit is connected to realistic physical
couplings without a phase transition in the infinite volume
limit; therefore, the desired coupling can be reached with-
out encountering a small gap, even one polynomially small
in lattice units.
Other possible adiabatic paths may exist. One tempting

possibility is to add a Higgs field, allowing a gap to be
created in the weak coupling limit and avoiding the
confinement transition.

V. DISCUSSION

The simulation of heavy ion collisions requires large
volumes ∼10 fm with fine resolutions ∼0.1 fm evolved for
long times ∼10 fm—corresponding to enormous quantum
resource requirements. In contrast, the transport coeffi-
cients can be extracted from the hydrodynamic limit of

thermal states. Thus, such observables allow for simplified
state preparation and fewer resources. In this work, we
propose an algorithm for extracting the transport coeffi-
cients in lattice gauge theory from thermal states. In order
to implement this, it was necessary to derive a lattice
version of the stress-energy tensor in the Hamiltonian
formalism. Further, this algorithm requires the preparation
of a thermal state. Here, multiple viable methods have been
suggested. Future work should investigate the relative
merits of each state preparation method in specific theories.
The number of qubits required to perform a calculation is

determined from the lattice size and local Hilbert space
dimension. Simulating SUð3Þ gauge theory in 3þ 1
dimensions via its Valentiner approximation [107,108]
requires ∼30 qubits per site. Simulation of a 2 fm box
with a side length of 20 lattice spacing yields an estimate of
∼105 qubits for a rough calculation of the viscosity of
(3þ 1)-dimensional pure glue SUð3Þ. In the near term,
(2þ 1)-dimensional Z2 [70,110] gauge theory—equivalent
to the Ising model—requires only one qubit per lattice site,
and could be computed with a more modest ∼102 qubits.
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