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The lattice compact Abelian Higgs model is a nonperturbative regularized formulation of low-energy
scalar quantum electrodynamics. In 1þ 1 dimensions, this model can be quantum simulated using a ladder-
shaped optical lattice with Rydberg-dressed atoms [J. Zhanget al., Phys. Rev. Lett. 121, 223201 (2018)]. In
this setup, one spatial dimension is used to carry the angular momentum of the quantum rotors. One can use
truncations corresponding to spin-2 and spin-1 to build local Hilbert spaces associated with the links of the
lattice. We argue that ladder-shaped configurable arrays of Rydberg atoms can be used for the same
purpose. We make concrete proposals involving two and three Rydberg atoms to build one local spin-1
space (a qutrit). We show that the building blocks of the Hamiltonian calculations are models with one and
two spins. We compare target and simulators using perturbative and numerical methods. The two-atom
setup provides an easily controllable simulator of the one-spin model while the three-atom setup involves
solving nonlinear equations. We discuss approximate methods to couple two spin-1 spaces. The article
provides analytical and numerical tools necessary to design and build the proposed simulators with current
technology.

DOI: 10.1103/PhysRevD.104.094513

I. INTRODUCTION

There has been recent interest in using quantum simu-
lations and quantum computations to address problems with
real-time and finite density in high-energy physics [1–10].
One initial step is the simulation of Abelian gauge theories
[11,12]. The Schwinger model introduces fermions and can
be studied with methods developed in many-body physics
[13–16]. Quantum simulations [17,18] and quantum com-
putations [19,20] have been performed for this model.
A bosonic variant is the compact Abelian Higgs model.

The compactness allows discrete character expansions
formulations [21–23] which are gauge-invariant and solve
[24] the questions of gauge redundancy and the imple-
mentation of Gauss’s law [25,26]. The truncations do not
break symmetries [23,24,27] but can affect the nature of
phase transitions [28,29]. The noncompact Brout-Englert-
Higgs mode is assumed to be decoupled hereafter. For a
recent discussion of its effects in the context of quantum
simulations see Ref. [30]. An optical lattice implementation
with spin-2 has been proposed [31] in 1þ 1 dimensions. It
is based on a ladder-shaped optical lattice with Rydberg-
dressed atoms. In this setup, one spatial dimension carries
the angular momentum of quantum rotors. Truncations
corresponding to local Hilbert spaces with various spin
truncations associated with the links of the lattice have been
discussed [21,22,28,31].
In the following, we argue that ladder-shaped con-

figurable arrays of Rydberg atoms [32–36], abbreviated

CARA, can be used for the same purpose. This platform
has been used for other lattice gauge theory models [37–
39]. See Ref. [40] for a review of the use of Rydberg atoms.
We make concrete proposals involving two and three
Rydberg atoms to build one local spin-1 space (a qutrit).
We show that the building blocks of the Hamiltonian
calculations are simple models with one and two spins.
We compare target and simulators for these simple models
using perturbative and numerical methods. The two-atom
setup provides an easily controllable simulator of the one-
spin model while the three-atom setup involves nonlinear
matching which could be tested with current technology.
We argue that near-term technology could be used to
quantum simulate models with two or more spins. More
generally, programming with CARA amounts to a geo-
metrical assembling allowing a broad range of applications.
The idea of providing qutrits is very timely [41,42].
The article is organized as follows. In Sec. II, we review

the Lagrangian and Hamiltonian formulation of the com-
pact Abelian Higgs model with emphasis on the meaning of
the signs of the couplings. The general idea of ladder-
shaped CARA is introduced in Sec. III. The two and three
atoms CARA for a single spin-1 are discussed in Sec. IV.
The coupling of two spins with an operator that is the
product of their respective angular momentum Lz’s is
discussed in Sec. V. We argue that the single spin-1
simulators can be tested with current technology and that
near-term technology could be used to quantum simulate
models with two or more spins. Implementations with
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universal quantum computers are discussed in Sec. VI, and
the conclusions are provided in Sec. VII.

II. THE LATTICE MODEL

In this section we review the Lagrangian and
Hamiltonian formulations of the compact Abelian Higgs
model with emphasis on the meaning of the signs of the
couplings. As we will see the sign question is important
from the point of view of quantum simulations.

A. Lagrangian formulation

We first review the Lagrangian path integral formulation
of the Abelian Higgs model at Euclidean time using most of
the notations of Ref. [21] which should be consulted for
more details. The partition function has the form,

Z ¼
Z

Dϕ†DϕDUe−S: ð1Þ

The action is the sum of three terms,

S ¼ Sg þ Sh þ Sλ; ð2Þ

where the gauge part is

Sg ¼ −βpl
X
x

Re½Upl;x�; ð3Þ

the hopping part,

Sh ¼ −κτ
X
x

½ϕ†
xUx;τ̂ϕxþτ̂ þ ϕ†

xþτ̂U
†
x;τ̂ϕx�

− κs
X
x

½ϕ†
xUx;ŝϕxþŝ þ ϕ†

xþŝU
†
x;ŝϕx�; ð4Þ

and the self-interaction,

Sλ ¼ λ
X
x

ðϕ†
xϕx − 1Þ2 þ

X
x

ϕ†
xϕx: ð5Þ

By writing

ϕx ¼ jϕxj expðiφxÞ; ð6Þ

we can separate the compact and noncompact variables in
Sh,

Sh ¼ −2κτjϕxjjϕxþτ̂j
X
x

cosðφxþτ̂ − φx þ Ax;τ̂Þ

− 2κsjϕxjjϕxþŝj
X
x

cosðφxþŝ − φx þ Ax;ŝÞ: ð7Þ

It is assumed that κs and κτ are positive as in ferromagnetic
interactions. This means that if we neglect the gauge fields
and the self-interactions, large values of jϕj favor the

alignment of the matter fields (configurations where all
the angles φx are equal), as expected in the continuum limit
of the free Oð2Þ scalar model.
In the following, we take the limit where λ become large

and positive. The Brout-Englert-Higgs mode jϕj is then
frozen to 1. The Nambu-Goldstone mode φ is compact. We
call this model the compact Abelian Higgs model. By
shifting the integration variable φ by π on every other site
say in the spatial direction, we can flip the sign of κs
without affecting the partition function. A similar reasoning
can be applied for κτ and the time direction. However, if
observable are inserted in the partition function, these
changes of variable need to be performed for the observ-
ables too. For instance, the magnetization becomes a
staggered magnetization. Similar considerations apply to
the plaquette term and the sign of βpl. This is discussed at
length in [43,44].

B. Hamiltonian and Hilbert space

Following Refs. [21,22,31] the continuous-time limit for
the compact Abelian Higgs model was taken in the field
quantum number representation in the limit where the
Higgs quartic self-coupling goes to infinity. To take the
time continuum limit, one takes κτ; βpl → ∞ while simul-
taneously taking κs, and the temporal lattice spacing, a, to
zero such that the combinations,

U≡ 1

βpla
¼ g2

a
; Y ≡ 1

2κτa
; X ≡ 2κs

a
; ð8Þ

are finite. These equations make clear that the signs ofU, X
and Y are the same as βpl, κτ and κs respectively. The
Hamiltonian for Ns links reads

H ¼ U
2

XNs

i¼1

ðLz
i Þ2

þ Y
2

X
i
0ðLz

iþ1 − Lz
i Þ2 − X

XNs

i¼1

Ux
i ; ð9Þ

where the sum,
P0

i, means that for open boundary con-
ditions (OBC) we need to include ðLz

1Þ2 þ ðLz
Ns
Þ2. We used

the operator,

Ux ≡ 1

2
ðUþ þ U−Þ; ð10Þ

with

U�jmi ¼ jm� 1i: ð11Þ

The quantum number m corresponds to the Fourier modes
in the character expansion of the Lagrangian formulation
[21]. In practice, we need to apply truncations. For a spin-
mmax truncation we have

YANNICK MEURICE PHYS. REV. D 104, 094513 (2021)

094513-2



U�j �mmaxi ¼ 0: ð12Þ

In the following we mostly focus on the spin-1 truncation
where m ¼ �1, 0. In this special case Ux ¼ Lx=

ffiffiffi
2

p
.

The truncations are compatible with the identities fol-
lowing from local or global symmetries of several models
with continuous Abelian symmetries [23,24,27]; however,
they can affect the type of phase transition present in
the model.
The physical interpretation of the three terms of the

Hamiltonian is the same as in conventional electrodynam-
ics except for the fact that all the values involved are
discrete. The U-term represents the electric field energy.
The Y-term is associated with matter charges. They can be
interpreted as charges determined by Gauss’s law; in other
words, the difference between the two plaquettes (electric
field) on each side of a site in the Lagrangian form. Finally
the X-term is related to matter currents inducing temporal
changes in the electric field, again in the Lagrangian form.
This corresponds to the other inhomogeneous Maxwell
equation involving the currents. In higher dimensions, the
discrete curl of a magnetic field appears as in the con-
tinuum [24].

C. Charge conjugation

As in standard quantum electrodynamics this
Hamiltonian has a charge conjugation symmetry. This will
play an important role in the construction of simulators
because this property will translate into a global reflection
symmetry in the geometrical setup of the atoms. For this
reason we remind the basic equations associated with this
symmetry. The charge conjugation C is a unitary trans-
formation which reverses the sign of m,

Cjmi ¼ j −mi ð13Þ

It is clear that C2 ¼ 1 and that

CLzC−1 ¼ −Lz; ð14Þ

CU�C−1 ¼ U∓; ð15Þ

CUxC−1 ¼ Ux: ð16Þ

This implies that the Hamiltonian is invariant under charge
conjugation,

CHC−1 ¼ H ð17Þ

D. The building blocks of the Hamiltonian formalism

In order to conduct actual experiments to quantum
simulate the compact Abelian Higgs model, we need to
identify its building blocks. The first one is the local spin-1
or higher spin Hilbert space where we need to implement

the operators Lz and Ux. This will be discussed in Sec. IV.
The second is the coupling of two spins with an operator
that is the product of their respective Lz’s. This will be
discussed in Sec. V.

III. RYDBERG ATOM SIMULATORS

A. A ladder-shaped optical lattice simulator

In Ref. [31], a quantum simulator for the spin-2
truncation of the Hamiltonian in Eq. (9) was proposed.
The general idea is to use an 5 × Ns optical lattice that one
can visualize as a ladder with Ns rungs. There is only one
atom per rung, and the five sites on each rung represent the
five possible values for m, with m ¼ 0 at the center.
Tunneling in the direction orthogonal to the rung is not
allowed. Tunneling along the rung generates the X-term.
The U-term is created by a parabolic potential. The Y-term
is mediated by the 1=r6 interactions of the Rydberg-dressed
atoms [45]. These interactions were chosen to be attractive
and favoring ferromagnetism: neighbor atoms with the
same m are closer to each other than atoms with different
m’s. By taking the distance between the rungs as larger than
the distance between the sites on the rungs ar, it is possible
to do perturbation in ar=as in Pythagoras theorem and
approximately generate the quadratic Y-term. A more
complete discussion and illustrations can be found
in Ref. [31].

B. CARA simulators

In the following we discuss the possibility of adapting
the idea of Ref. [31] to configurable arrays of Rydberg
atoms [32–36] denoted CARA. They can be configured by
positioning 87Rb atoms separated by controllable (but not
too small) distances, homogeneously coupled to the excited
Rydberg state jri with a detuning Δ. The ground state is
denoted jgi and the two possible states jgi and jri can be
seen as a qubit. The Hamiltonian reads

H ¼ Ω
2

X
i

ðjgiihrij þ jriihgijÞ − Δ
X
i

ni þ
X
i<j

Vijninj;

ð18Þ

with

Vij ¼ ΩR6
b=r

6
ij; ð19Þ

for a distance rij between the atoms labeled as i and j. This
repulsive interaction prevents two atoms close enough to
each other to be in the jri state. This is the so-called
blockade mechanism.
This setup has been successfully used to simulate the

Kibble-Zurek mechanism for chiral clock models [34]. It
has been used to propose simulators for other gauge
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theories [37–39]. Simulations with Rydberg atoms are
reviewed in Ref. [40].
In Sec. III A, we discussed a setup [31] where one

direction of the optical lattice was used to carry the 2Sþ 1
spin degrees of freedom on the sites of the rungs. We will
now try to replace each rung by a line of 2Sþ 1 Rydberg
atoms close enough to each other to prevent more than one
atom to be in the jri state. The spin-2 case is illustrated in
Fig. 1. For instance, m ¼ 2 corresponds to jrggggi. Also
notice that charge conjugation is implemented by a reflec-
tion about the horizontal axis passing by the m ¼ 0 states.
With current technology, it is difficult to get five atoms

on a line close enough to make the blockade mechanism
efficient. However it seems possible to do it with three
atoms as in a spin-1 truncation. In the following we will
concentrate on this simpler realization.

C. Spin-1 CARA implementations

For spin-1, we propose the correspondence,

j1i → jrggi;
j0i → jgrgi;

j − 1i → jggri: ð20Þ

This is illustrated in Fig. 2. Again, charge conjugation is
implemented as a reflection with respect to the horizon-
tal axis.
An even simpler setup consists in using only two

Rydberg atoms and having jm ¼ 0i to be a state without
Rydberg states, namely,

j1i → jrgi;
j0i → jggi;

j − 1i → jgri: ð21Þ

This is illustrated in Fig. 3. Since this second possibility is
the simplest, it will be the starting point of the presentation
of the next sections.

IV. ONE SPIN SYSTEM

In this section, we discuss the one spin-1 Hilbert space
and the local Hamiltonian for the target model and the
CARA implementations with two and three atoms.

A. Target model

The local part of the target Hamiltonian is

H1T ¼ U
2
ðLzÞ2 − XUx: ð22Þ

We will discuss the spectrum of this Hamiltonian with
emphasis on the symmetries in order to build matching
simulators. Since H1T is invariant under charge conjuga-
tion, we introduce the C eigenstates,

j�i≡ 1ffiffiffi
2

p ðj1i � j − 1iÞ; ð23Þ

with C-eigenvalues �1:

Cj�i ¼ �j�i: ð24Þ

They are also eigenstates of ðLzÞ2 with eigenvalue 1. Note
that

Lzj�i ¼ j ∓i: ð25Þ

In addition Cj0i ¼ j0i.
There is only one C-odd state which is j−i. It is

annihilated by Ux,

Uxj−i ¼ 0: ð26Þ

FIG. 1. The five spin-2 states with a five atom setup.

FIG. 2. Three spin-1 states with the three atom setup, the five
other possible states are not displayed.

FIG. 3. Spin-1 states with the two atom setup.
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Consequently,

H1T j−i ¼ U
2
j−i; ð27Þ

for any value of X.
In the C-even sector, we have

Uxj0i ¼ 1ffiffiffi
2

p jþi; ð28Þ

Uxjþi ¼ 1ffiffiffi
2

p j0i; ð29Þ

and the eigenvalues are obtained from the even matrix in
the j0i; jþi basis,

H1T
even ¼

0
@ 0 − Xffiffi

2
p

− Xffiffi
2

p U
2

1
A: ð30Þ

The two eigenstates are

j0iX ¼ cosϕj0i þ sinϕjþi; ð31Þ
with eigenvalue,

E0ðXÞ ¼
1

4
ðU −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 þ 8X2

p
Þ; ð32Þ

and

jþiX ¼ cosϕjþi − sinϕj0i; ð33Þ

with eigenvalue,

EþðXÞ ¼
1

4
ðU þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 þ 8X2

p
Þ: ð34Þ

The mixing angle obeys the equation,

tanϕ ¼ −
ffiffiffi
2

p E0ðXÞ
X

: ð35Þ
If we treat X as a perturbation, we obtain that at the

lowest nontrivial order,

E0ðXÞ ≃ −
X2

U
; ð36Þ

EþðXÞ ≃
U
2
þ X2

U
; ð37Þ

ϕ ≃
ffiffiffi
2

p X
U
: ð38Þ

These results can also be derived using standard perturba-
tive formulas [46]. The perturbation has no diagonal
element and the energy corrections occur at second order.

B. Two Rydberg atom implementation

The two atom setup discussed in Sec. III C provides a
very simple implementation of a single spin-1 system.
Introducing�1 labels for the top and bottom atoms, we call
n�1 the occupation of their jri state. The list of the possible
states and their occupations are given in Table I. The
Hamiltonian for the physical two-atom system is

H2R ¼ −Δðnþ1 þ n−1Þ þ V0nþ1n−1 ð39Þ

þΩ
2

X
�1

ðjg�1ihr�1j þ jr�1ihg�1jÞ: ð40Þ

Wewant to match this Hamiltonian with the targetH1T . We
first consider the first term of the target Hamiltonian. The
splitting between j0i and j � 1i is U

2
whenΩ ¼ 0 and can be

implemented by setting

Δ ¼ −
U
2
: ð41Þ

In addition we want to suppress transitions to the jrri state
by introducing a large enough energy V0. This is the
blockade mechanism. This can be achieved by positioning
the two atoms close enough to each other.
In order to determine Ω, we compare the action of

H2R
1 ¼ 1

2

X
�1

ðjg�1ihr�1j þ jr�1ihg�1jÞ ð42Þ

on the simulator Hilbert space to the action of Ux on the
target Hilbert space,

H2R
1 jggi ¼ 1

2
ðjrgi þ jgriÞ; ð43Þ

H2R
1

1ffiffiffi
2

p ðjrgi þ jgriÞ ¼ 1ffiffiffi
2

p ðjggi þ jrriÞ; ð44Þ

H2R
1

1ffiffiffi
2

p ðjrgi − jgriÞ ¼ 0: ð45Þ

Comparing with the action of Ux on the three states of the
target Hilbert space, we see that, except for the heavy state
jrri, they are identical. Consequently, we can set

TABLE I. Graphical representation of the two atoms in space,
the symbol ∘ represents the ground state jgi and • represents the
Rydberg state jri, ket notation, occupations, short notation and
energy for Ω ¼ 0.

Setup Ket nþ1 n−1 Short Energy (Ω ¼ 0)

• ∘ jrgi 1 0 j1i −Δ
∘ ∘ jggi 0 0 j0i 0
∘ • jgri 0 1 j − 1i −Δ
• • jrri 1 1 j2i −2Δþ V0
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Ω ¼ −X: ð46Þ

Except for possible transitions to jrri, the correspondence
is exact, and the linear formula applies for arbitrary values
of X. The good matching for U ¼ 1 with X ¼ 0.5 and U ¼
1 with X ¼ 1.5 is demonstrated in Fig. 4.

C. Three Rydberg atom simulator

In the three atom setup, we have an additional atom
which is associated with the m ¼ 0 state. We label its jri
occupation n0. The Hamiltonian reads

H3R ¼ −Δ0n0 − Δ
X

j¼0;�1

nj ð47Þ

þ V0ðn0nþ1 þ n0n−1Þ þ V 0
0nþ1n−1 ð48Þ

þΩ
2

X
j¼0;�1

ðjgjihrjj þ jrjihgjjÞ; ð49Þ

with

V 0
0 ¼

V0

64
ð50Þ

when the three atoms are located equidistantly on a line as
in Fig. 2. The spin-1 sector is shown in Table II. The
auxiliary sector has five states shown in Table III.
Following previous notation, we also define

j�0i≡ 1ffiffiffi
2

p ðj10i � j − 10iÞ; ð51Þ

and

H3R
1 ¼ 1

2

X
j¼0;�1

ðjgjihrjj þ jrjihgjjÞ: ð52Þ

Unlike the previous situation with two atoms, H3R
1 only

connects the spin-1 sector with the auxiliary sector,

H3R
1 j0i ¼ 1

2
j000i þ 1ffiffiffi

2
p jþ0i; ð53Þ

H3R
1 jþi ¼ 1

2
jþ0i þ 1ffiffiffi

2
p j00i þ 1ffiffiffi

2
p j000i; ð54Þ

H3R
1 j−i ¼ 1

2
j−0i: ð55Þ

Using the corresponding matrix elements together with
standard perturbation theory [46], we obtain the perturba-
tive matching equation for the energy differences,

FIG. 4. jhmjUðtÞjm ¼ 1ij2, one site with exact Hamiltonian
U ¼ 1, X ¼ 0.5 (solid lines) and Rydberg Hamiltonian with
Ω ¼ −0.5, Δ ¼ −0.5 and V0 ¼ 64jΩj ¼ 32 (empty symbols)
(top), and U ¼ 1, X ¼ 1.5 (solid lines) and Rydberg Hamiltonian
H2R with Ω ¼ −1.5, Δ ¼ −0.5 and V0 ¼ 64jΩj ¼ 96 (empty
symbols) (bottom).

TABLE II. Spin-1 states for the three atom simulator.

Setup Ket Energy (Ω ¼ 0)

• ∘ ∘ j1i −Δ
∘ • ∘ j0i −Δ − Δ0∘ ∘ • j − 1i −Δ

TABLE III. Auxiliary states for the three atom simulator.

Setup Ket Energy (Ω ¼ 0)

∘ ∘ ∘ j000i 0
• • ∘ j10i −2Δ − Δ0 þ V0

• ∘ • j00i −2Δþ V0

64∘ • • j − 10i −2Δ − Δ0 þ V0

• • • j3i −3Δ − Δ0 þ 2V0 þ V0

64
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X2

U
¼ Ω2

2

�
1

Δ − V0

64

−
1

Δ

�
;

U
2
þ X2

U
¼ Δ0 þ

Ω2

4

�
1

Δþ Δ0

þ 2

V0 − Δ
−

1

V0 − Δ − Δ0

�
:

ð56Þ

Similarly we can try to match perturbative expressions for
the mixing angle ϕ defined in Eq. (35). However, ϕ
contributions appear at first order in X in the target model
(becauseUx connects j0i and jþi), but only at second order
in Ω in the three-atom simulator. More explicitly,

ffiffiffi
2

p X
U

¼ Ω2

2
ffiffiffi
2

p
Δ0

�
1

Δ
þ 1

V0 − Δ − Δ0

�
: ð57Þ

This apparently contradicts the idea that X and Ω should be
proportional for small values of X. If we are givenU and X,
we have three nonlinear equations for Ω, Δ, Δ0 and V0 and
generically, we expect one-parameter families of solutions.
By fixing one of the unknowns, one can look for solutions
using Newton’s method. More generally, it is easy to find
accurate numerical solutions for the energies and mixing of
the simulators, and it seems possible to attack the matching
problem nonperturbatively. In order to pursue such effort, it
would be useful to know the range of values corresponding
to feasible experiments.
With today’s technology, it seems difficult to create

nonhomogeneous detuning, and we should consider the
limit where Δ0 is zero. In this limit, j0i and jþi are
degenerate when Ω is set to zero. In the j0i and jþi basis,
the energy matrix up to second order in Ω has the form,

−Δ1 −
Ω2

4
M; ð58Þ

with

M ¼
0
@

1
Δ þ 2

V0−Δ

ffiffi
2

p
Δ þ

ffiffi
2

p
V0−Δffiffi

2
p
Δ þ

ffiffi
2

p
V0−Δ

2
Δ þ 1

V0−Δ
− 2

Δ−V0
64

1
A: ð59Þ

The matrix M determines the mixing angle and the
eigenvalues.

D. An example of approximate solution with three
Rydberg atoms

The three-atom simulator leads to nonlinear equations.
However, it is not difficult to find approximate solutions
whenΔ and V0 are in a specific ratio. As a simple example,
we picked

Δ0 ¼ 0 and V0 ¼ 2Δ: ð60Þ

If we neglect the V0

64
term, we have

M ≃
1

Δ

�
3 2

ffiffiffi
2

p

2
ffiffiffi
2

p
1

�
: ð61Þ

Given that there is an overall minus sign in front of M, its
largest eigenvalue corresponds to the lowest energy state,
and the mixing angle approximately satisfies the equation,

tanϕ ≃
1ffiffiffi
2

p ð62Þ

Comparing with Eq. (35), we find that this angle corre-
sponds to the situation X ¼ U. Note that for this significant
value X=U ¼ 1, the angle is not small, and the linear
approximation of Eq. (35) given in Eq. (38) is not accurate.
Instead, we used the exact value of E0 given in Eq. (32). For
the simulator, this large mixing angle is not controlled by
Ω2. This is a feature of degenerate perturbation theory. This
procedure is justified by the good quality of the agreement
between target and simulator shown in Fig. 5.
Furthermore, we can compute the energy spectrum in

this simple example. The eigenvalues of M are approx-
imately 5=Δ and −1=Δ. In addition, we have up to second
order in Ω,

E− ¼ −Δ −
Ω2

4

1

V0 − Δ
ð63Þ

Consequently, in this simple example, we have

Eþ − E0 ¼
3

2

Ω2

Δ
; ð64Þ

E− − E0 ¼
Ω2

Δ
: ð65Þ

In the target model with X ¼ U, we have

FIG. 5. jhmjUðtÞjm ¼ 1ij2 for one site with exact Hamiltonian
U ¼ 0.064, X ¼ 0.067 (solid lines), Rydberg Hamiltonian with
Ω ¼ 1, Δ ¼ 15 and V0 ¼ 30 (empty symbols).
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Eþ − E0 ¼
3

2
U; ð66Þ

E− − E0 ¼ U: ð67Þ

The ratio of differences are both 3=2 and we can match the
scale for Ω2=Δ ¼ U. Given that the matrix has been
approximated, we should look for matching in the region
X ≃U. As a numerical example, we used Ω ¼ 1, Δ ¼ 15
and V0 ¼ 30 and found good matching forU ¼ 0.064, X ¼
0.067 both close to 1=15 ¼ 0.0666…. This is illustrated in
Fig. 5. Note that the time scale in 1=Ω units is significantly
larger than in the two atom case. This is due to the extra
Ω=Δ factor in the energy scale.

V. TWO-SPIN SYSTEM

In this section, we follow the same sequence as in
Sec. IV for a two-spin system motivated by the
Hamiltonian of Eq. (9).

A. Target model

For the target model we consider two spins called left (L)
and right (R) connected by a Y-term. The target
Hamiltonian for the two-spin system is chosen to be

H2T ¼ H1T
L þH1T

R þ Y
2
ðLz

L − Lz
RÞ2

¼ U
2
ððLz

LÞ2 þ ðLz
RÞ2Þ − XðUx

R þUx
LÞ

þ Y
2
ðLz

L − Lz
RÞ2: ð68Þ

For the time evolution we consider an initial state j0; 0i, and
calculate the probability to stay in that state or to be in the
state,

jSi≡ 1

2
ðj0; 1i þ j0;−1i þ j1; 0i þ j−1; 0iÞ ð69Þ

obtained by applying the X-term on the initial state. This
guarantees a significant overlap when X is not too small.
For the comparison of the four and six atom simulators we
picked a special target situation where solutions of the one-
spin problems are available, more specifically we picked
U ¼ 1, X ¼ 1.2 and Y ¼ 0.2.

B. Four Rydberg atom simulator

For a simulator with four atoms, we use the two-atom
setup for two pairs and include the additional Vij appearing
in Eq. (18). The Hamiltonian reads

H4R ¼ H2R
L þH2R

R þ V1ðnþ1Ln−1R þ n−1Lnþ1RÞ
þ V2ðnþ1Lnþ1R þ n−1Ln−1RÞ: ð70Þ

When the Vi are positive, we need to have the opposite
signs closer (bipartite charge conjugations on alternate
sites). In other words, if the interactions are repulsive and
decreasing like 1=r6, we need to put atoms with the samem
farther apart. This is illustrated in Fig. 6. For the standard
1=r6 Rydberg interactions as in Eq. (19), and using ar and
as as the vertical (as in one spin) and horizontal (coupling
the two spins) lattice spacings respectively, and their ratio,

ρ≡ ar
as

ð71Þ

we have

V1 ¼ V0ρ
6; ð72Þ

V2 ¼ V0ðρ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ρ2

q
Þ6: ð73Þ

The matching condition when X ¼ Ω ¼ 0 reads

Δ ¼ −
U
2
−
Y
2
; ð74Þ

V1 ¼ Y; ð75Þ

V2 ¼ −Y: ð76Þ

The second equation can be solved using

ρ ¼
�
Y
V0

�
1=6

: ð77Þ

The third equation has no solutions for positive V2. In
Eq. (72) V2 is smaller than V1 but nevertheless positive.
This implies that it is not possible to exactly match the
energy of the states jþ1;−1i and j−1;þ1i. The possible
solutions to this problem are (1) ask experimentalists to
adjust the couplings locally and (2) consider Y-perturba-
tions over situations with nonzeroΩ. On the other hand, the
phase structure and dynamical features of the simulator are
worth exploring even if the matching with the target is not
perfect. Note that for the six-atom setup discussed below,
we will see that the matching in the limit Ω ¼ X ¼ 0 is
approximately possible following the mechanism invoked
in Ref. [31].

FIG. 6. Rydberg interactions for the four atom simulator.
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In order to give an idea of the size of the effects discussed
above for the four atom system, we have considered the
problem mentioned in the target section, first with the
futuristic V2 ¼ −Y (the agreement is excellent) and then
with V2 is as in Eq. (72) (deviations from exact are quite
visible for t≳ 3). The results are displayed in Fig. 7.

C. Six Rydberg atom implementation

We now consider a six-atom setup with two three-atom
spin-1 setups. The Hamiltonian reads

H6R ¼ H3R
L þH3R

R þ V1ðnþ1Ln−1R þ n−1Lnþ1RÞ
þ V2ðn0Lðnþ1R þ n−1RÞÞ þ V2ððnþ1L þ n−1LÞn0RÞ
þ V3ðnþ1Lnþ1R þ n−1Ln−1RÞ: ð78Þ

When the Vi are positive, we again need to have the atoms
representing spins of opposite signs closer in space. This is
illustrated in Fig. 8. For the standard Rydberg interactions
of Eq. (19), we have V1 and V2 as in Eq. (72) and

V3 ¼ V0ðρ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ρ2

q
Þ6 ð79Þ

Matching condition when X ¼ Ω ¼ 0 are

Δ0 ¼
U
2
þ Y

V1 − V2 ¼
Y
2

V1 − V3 ¼ 2Y; ð80Þ

These equations have approximate solutions with a tuned ρ
when Y is not too large. In Fig. 9, we used Δ ¼ 15, Ω ¼ 1,
V0 ¼ 30, and empirically tuned ρ to a value 0.326. A
rescaling K ¼ 0.05464 has been applied to the simulator
time to match the target evolution. In Fig. 9, we show the
case Δ ¼ 15, Ω ¼ 1, V0 ¼ 30, as in the one spin-1,
with ρ ¼ 0.326.

VI. DIGITAL IMPLEMENTATIONS

So far we have discussed an analog simulator with a
computational basis given by the states jgi and jri for each

FIG. 7. jh0; 0jUðtÞj0; 0ij2 and jhSjUðtÞj0; 0ij2, with jSi defined
in Eq. (69), for the target two-spin Hamiltonian with U ¼ 1, X ¼
1.2 and Y ¼ 0.2 (solid lines) and the four atom simulator with
Δ ¼ −0.6, Ω ¼ −1.2, V0 ¼ 64, V1 ¼ 0.2, with V2 ¼ −0.2 (top)
and V2 ¼ 0.13 (bottom).

FIG. 8. Rydberg interactions for the six atom simulator.

FIG. 9. jh0; 0jUðtÞj0; 0ij2 and jhSjUðtÞj0; 0ij2, with jSi defined
in Eq. (69), with the target two-spin Hamiltonian with U ¼ 1,
X ¼ 1.2 and Y ¼ 0.2 (solid lines) and the six atom simulator with
Δ ¼ 15, Ω ¼ 1, V0 ¼ 30, ρ ¼ 0.326. A rescaling K ¼ 0.05464
has been applied to the simulator time to match the target
evolution.
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atom. However, it is also possible to calculate the time
evolution corresponding to the Rydberg atom Hamiltonians
HnR using digital methods, for instance a universal quan-
tum computer with qubits. Before going farther, it should
be mentioned that a large V0 requires small Trotter steps (of
order 1=V0) in order to suppress the contributions with
multiple jri states by fast oscillations. This is not optimal
with NISQ machines, and it would be profitable to find a
native way to implement the blockade. However, we will
discuss the results to give an idea of the time scales
involved.
As a simple example, we considered the two atom

Hamiltonian H2R with the values Ω ¼ −1.5, Δ ¼ −0.5
as in Fig. 4, but with a lower value V0 ¼ 10. We used a
Trotter step δt ¼ 0.1 ¼ 1=V0. We used Qiskit with the
classical simulator called with the instruction
Aer.get_backend(‘qasm_simulator’) and
which sample the so-called statevector [47]. This simulator
does not include a realistic noise model corresponding to
current hardware such as, for instance, ibmq_lima. The
circuit is shown in Fig. 10 with Qiskit notations. We used
1,000 shots for each of the times. In Fig. 10, P is the phase
gate

PðϕÞ≡
�
1 0

0 expðiϕÞ

�
; ð81Þ

and we have the usual definition,

RXðλÞ≡ exp

�
−i

λ

2
X

�
: ð82Þ

The results of the Qiskit simulations are shown in Fig. 11.
The Trotter errors become quite significant when t≳ 2.
Based on recent runs on IBMQ [48], we would expect that
computations on actual IBMQ hardware with a slightly
larger Trotter step would lead to reasonable results for
t≲ 1. The two spin system can be implemented with
universal quantum computers provided that an all-to-all

connectivity is available. Hardware considerations will be
discussed in a separate paper.

VII. CONCLUSIONS

In summary, we have proposed a ladder-shaped CARA
with two and three atoms for a single spin-1 and four and
six atoms for two coupled spins. In one spatial dimension
this is all we need to control in order to study larger
systems. We compared target and simulators using pertur-
bative and numerical methods. The two-atom setup pro-
vides an easily controllable simulator of the one-spin model
while the three-atom setup involves a nonlinear matching.
However when two spins are coupled, the six-atom
simulator provides solutions closer to the target than the
four-atom simulator for small Ω. Approximate implemen-
tations of the two-spin model appear to be possible with
near term technology. Extensions to spin-2 and implemen-
tations in 2þ 1 dimensions are under investigation.
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FIG. 10. Qiskit circuit for a Trotter form of the evolution
operator for H2R described in the text.

FIG. 11. jhmjUðtÞjm ¼ 1ij2, one site with exact Hamiltonian
U ¼ 1, X ¼ 1.5 (solid lines) and Rydberg Hamiltonian H2R with
Ω ¼ −1.5, Δ ¼ −0.5 and V0 ¼ 10, with the circuit of Fig. 10
calculated with the Qiskit simulator (empty symbols).
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